
Eleni Gerolymatou

Geotechnical Research Group

Introduction to Python and FEniCS

Introduction

► A small repetition on finite elements.

► Some basics in python.

► Getting started in FEniCS.

► Some examples.

More information on fenicsproject.org

and

https://fenicsproject.org/pub/course/lectures/2017-nordic-phdcourse/

09/10/2018 2ALERT Doctoral School 2018

Finite Element Method: you all know this, but…

► this is a quick reminder for:

► problem position

► strong and weak form

► test and trial functions

► discretization

► and we will just be using an example

09/10/2018 3ALERT Doctoral School 2018

The Poisson equation

► this is the Poisson equation

► is the Laplace operator

► f is a known function

► and u is the unknown function

09/10/2018 4ALERT Doctoral School 2018

The following are needed:

► the equation

► a spatial domain

► a boundary conditiom

Problem position – in the strong form

► this is the Poisson equation

► is the Laplace operator

► f is a known function

► u is the unknown function

► ub is the value of u on the boundary

► is the domain where the solution is sought

► is the boundary of the domain

09/10/2018 5ALERT Doctoral School 2018

Deriving weak form

► multiply both sides by the function and integrate over the whole domain

► The function can be any function and is often referred to as a test function

► If a function u satisfies the above equation and the boundary conditions for any
function v, then u is the (or at least a) solution.

09/10/2018 6ALERT Doctoral School 2018

Deriving the weak form

► Integrating by parts and making use of the Green theorem yields

► where n is the outward normal unit vector to the boundary. Demanding that

► means

09/10/2018 7ALERT Doctoral School 2018

The weak form

► This is the weak or variational or integral form.

► It is called weak because it is less restrictive to continuity than the strong form.

► V is called the space of test functions

► U is the called the space of trial functions

09/10/2018 8ALERT Doctoral School 2018

Test and Trial functions

The functions u and v should fulfill certain prerequisites in terms of continuity and
integrability:

where H1 is the Sobolev space containing functions u such that u2 and | u|2 have finite
integrals over Ω.

09/10/2018 9ALERT Doctoral School 2018

Discretization

09/10/2018 10ALERT Doctoral School 2018

The variational problem is a continuous problem.

The finite element method finds an approximate solution of the variational problem by
replacing the infinite-dimensional function spaces V and U by discrete (finite-dimensional)
trial and test spaces:

where the boundary conditions are part of the function space definitions.

The variational problem

09/10/2018 11ALERT Doctoral School 2018

Find such that:

where the test and trial function space definitions are

To a discrete system of equations

09/10/2018 12ALERT Doctoral School 2018

Choose a basis for the discrete function space:

Make an ansatz for the discrete solution:

Test against the basis functions:

So what should be done?

09/10/2018 13ALERT Doctoral School 2018

► FEniCS takes care of the integration

► Define element geometry

► Define element order

► Provide the boundary conditions

► Provide the weak form

Python

► General purpose and easy

► Slow

Let‘s try this:

► Computing the sum of the integers from 1 to 100:

s = 0

for i in range (1,101):

s+=i

print s

09/10/2018 14ALERT Doctoral School 2018

Python

► Summing from 1 to 100 millions:

► time python 001.py

5000000050000000

real 0m10.572s

user 0m7.234s

sys 0m3.109s

09/10/2018 15ALERT Doctoral School 2018

► Summing from 1 to 100 millions with c++:

► g++ -o 001c 001.cpp

► time ./001c

sum = 5000000050000000

real 0m0.250s

user 0m0.234s

sys 0m0.016s

Python program structure

import stuff

def some_function (argument):

" Function documentation "

return something

This is a comment

if _name_ == " _main_ ":

do_something

09/10/2018 16ALERT Doctoral School 2018

Python declaring variables

a = 5

b = 3.5

c = ”hi”

d = ’hi’

e = True

f = False

09/10/2018 17ALERT Doctoral School 2018

Python - Comparison

x == y

x != y

x > y

x < y

x >= y

x <= y

09/10/2018 18ALERT Doctoral School 2018

Python – Logical operators

not x

x and y

x or y

09/10/2018 19ALERT Doctoral School 2018

Python – If construct

if x > y

x += y

elif x < y

y += x

else:

x += 1

Python – For construct

for variable in enumerable :

stuff

for i in range (100):

stuff

morestuff

09/10/2018 20ALERT Doctoral School 2018

Python – While construct

while condition :

stuff

i = 0

while i < 100:

stuff

i++

i = 0

while True :

stuff

if i == 99:

break

Python - Functions

def myfunction (arg0 , arg1 , ...) :

stuff

...

return something # or not , gives None

def res(x,y):

res = x*y+y

return res

09/10/2018 21ALERT Doctoral School 2018

Python - Classes

class Foo:

def __init__ (self , argument):

stuff

def foo(self):

stuff

return something

def bar(self):

stuff

return something

09/10/2018 22ALERT Doctoral School 2018

Calling it :

f = Foo(argument)

f.foo ()

f.bar ()

Python – More on classes

09/10/2018 23ALERT Doctoral School 2018

class Foo:

def __init__ (self , argument):

self.x = 3 # this is a public member variable

self.__x = 3 # this is a private member variable

def foo(self): # this is a member function

stuff

return something

FEniCS - Installation

► On Ubuntu – using PPA

► Using Docker containers

► Using Anaconda – Linux and Mac only

► On Windows Subsystem – as in Ubuntu

► From source

09/10/2018 24ALERT Doctoral School 2018

FEniCS – What is it?

► It‘s a C++ \ Python library

► It‘s licensed under the GNU LGPL

► It‘s designed to automate the solution of PDEs

► generation of basis functions

► evaluation of variational forms

► finite element assembly

► error control

► It‘s designed for parallel execution

09/10/2018 25ALERT Doctoral School 2018

FEniCS - Documentation

► fenics.readthedocs.org

► https://fenicsproject.org/tutorial/

► access to the book

► several examples

► https://www.allanswered.com/community/s/fenics-project/

► help from the community

09/10/2018 26ALERT Doctoral School 2018

https://fenicsproject.org/tutorial/
https://www.allanswered.com/community/s/fenics-project/

Is it working?

► Try: python -c ’import fenics’

► if all is well, you should get no message

► Try: python 002.py

► if all is well, you should get the same result

09/10/2018 27ALERT Doctoral School 2018

FEniCS

Solving a boundary-value problem such as the Poisson equation in FEniCS consists of the
following steps:

► 1. Identify the computational domain (Ω), the PDE, its boundary conditions, and
source terms (f).

► 2. Reformulate the PDE as a finite element variational problem.

► 3. Write a Python program which defines the computational domain, the variational
problem, the boundary conditions, and source terms, using the corresponding FEniCS
abstractions.

► 4. Call FEniCS to solve the boundary-value problem and, optionally, extend the
program to compute derived quantities such as fluxes and averages, and visualize the
results.

09/10/2018 28ALERT Doctoral School 2018

A walk through 002.py

from fenics import *

import matplotlib.pyplot as plt

mesh = UnitSquareMesh(32 , 32)

V = FunctionSpace(mesh , "Lagrange", 1)

u = TrialFunction(V)

v = TestFunction(V)

f = Expression ("x[0]*x[1]", degree =2)

09/10/2018 29ALERT Doctoral School 2018

imports the key classes from the FEniCS library
imports plotting functionalities

defines a uniform mesh over the unit square

defining the finite element function space

defining the trial functions

defining the test functions

defining the expression on the right hand side

A walk through 002.py

a = dot(grad(u), grad(v))*dx

L = f*v*dx

bc = DirichletBC (V, 0.0, DomainBoundary ())

u0= Function (V)

solve (a == L, u0, bc)

p=plot(u0)

plt.show()

09/10/2018 30ALERT Doctoral School 2018

Defining the bilinear form

Defining the linear form

Defining the boundary condition

Defining the solution function

Solving

Plotting the results

The effect of the order

Try 003.py

What is the program doing?

Which is the correct approach?

09/10/2018 31ALERT Doctoral School 2018

A first program

Modify 004.py to solve the problem:

The analytical solution is

What is the effect of order and discretization?

09/10/2018 32ALERT Doctoral School 2018

Elasticity

Consider the biaxial problem on the right.

The material is isotropically elastic with E=10 Mpa, v=0.2

The displacements at the boundary are controlled.

Evaluate the stress, strain and stored energy for this problem.

09/10/2018 33ALERT Doctoral School 2018

Elasticity

The balance equations in strong form read

where f expresses the body forces.

Alternatively we can write

For implementation the weak form is needed.

09/10/2018 34ALERT Doctoral School 2018

Elasticity

and

09/10/2018 35ALERT Doctoral School 2018

Elasticity – let’s walk it through

09/10/2018 36ALERT Doctoral School 2018

► We have a rectangular mesh

Geometry

Lx = 0.1 # width

Ly = 0.2 # height

nx = 5 # number of elements in the x-direction

ny = 10 # number of elements in the y-direction

Preparing the mesh

mesh = RectangleMesh(Point(0,0), Point(Lx,Ly), nx, ny)

Elasticity – let’s walk it through

09/10/2018 37ALERT Doctoral School 2018

► We use a vector function space

V = VectorFunctionSpace(mesh, 'Lagrange', 2)

► and only constrain one component in the BC

Define Dirichlet boundary conditions

Lower boundary, zero vertical displacement

tol = 1E-14

def lower_boundary(x, on_boundary):

return on_boundary and x[1] < tol

bcd = DirichletBC(V.sub(1), Constant(0.001), lower_boundary)

Elasticity – let’s walk it through

09/10/2018 38ALERT Doctoral School 2018

► We also introduce the strain, the stress, the stiffness

Strain

def epsilon(u):

e =-0.5*(nabla_grad(u) + nabla_grad(u).T)

return as_tensor([[e[0, 0], e[0, 1]],

[e[1, 0], e[1, 1]]])

Stress tensor

def sigma(u):

eps=epsilon(u)

stiffness =dsde()

sigma = as_tensor(stiffness[i,j,k,l]*eps[k,l],(i,j))

return as_tensor(sigma)

Stiffness tensor

def dsde():

stiffness = np.zeros((d,d,d,d))

for i in range(0,d):

for j in range(0,d):

stiffness[i,i,j,j] +=lamda

stiffness[i,j,i,j] +=mu

stiffness[i,j,j,i] +=mu

return as_tensor(stiffness)

Elasticity – let’s walk it through

09/10/2018 39ALERT Doctoral School 2018

► Change the discretization and the order of the elements. Does it make a difference?

► Change the boundary condition. What happens when the lower boundary is clamped?

► What happens when you add body forces?

► Can you assess the magnitude of the error?

Neumann conditions

09/10/2018 40ALERT Doctoral School 2018

► Save the same file as 006.py

► Declare the position of the boundaries

boundary_parts = MeshFunction("size_t", mesh, mesh.topology().dim() - 1)

left_boundary.mark(boundary_parts, 1)

right_boundary.mark(boundary_parts, 2)

ds = ds(subdomain_data = boundary_parts)

► Define the boundary tractions T and Ti

► Run the code

Neumann conditions

09/10/2018 41ALERT Doctoral School 2018

► What happens to the horizontal displacements? Find a solution.

► What is the effect of the Poisson ratio on the stored energy?

► What is the effect of the Poisson ratio on the stored energy

► If all boundary displacements are controlled

► If all boundary stresses are controlled

Time dependent problems

Open file 007.py

Fill in the gaps for the triaxial loading to work.

Is this the correct procedure for a triaxial test?

09/10/2018 42ALERT Doctoral School 2018

Iterative solutions

For nonlinear problems using an iterative method, such as the Newton-Raphson is
common. For elasticity this is unnecessary but easy.

A new definition of the bilinear form and the linear form is necessary. The problem to
solve is now

Where successive increments are evaluated, whose sum leads to the solution.

Details are not included here.

09/10/2018 43ALERT Doctoral School 2018

Iterative solutions
The stiffness matrix and residuals change:

Newton-Raphson matrix

def NR(u):

stiffness =dsde()

stf=-as_tensor(stiffness[(i,j,k,l)]*nabla_grad(u)[(k,l)],(i,j))

NR = inner(stf, nabla_grad(v))*dx

return NR

Newton-Raphson residual

def res(sol):

res = -inner(sigma(sol), nabla_grad(v))*dx + dot(f, v)*dx + dot(T, v)*ds(1) + dot(Ti,v)*ds(2)

return res

09/10/2018 44ALERT Doctoral School 2018

Iterative solutions

09/10/2018 45ALERT Doctoral School 2018

Open file 008.py

What is it doing?

What is wrong with the boundary conditions?

Can you fix it?

Compare the results for clamped and not clamped boundaries.

Is there an influence on the stored energy? Why?

