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Introduction 

• Our probabilistic models require distributions for the soil 
properties. 

• Each distribution is characterized by parameters such as the 
mean and standard deviation. 

• spatial correlation is characterized by a correlation length. 
• the mean is generally easy to estimate, mean trends require 

somewhat more data. 
• the standard deviation requires even more data to estimate – 

we often depend on the literature for estimates. 
• the correlation length requires huge amounts of data to 

estimate – even difficult to find useable estimates in the 
literature (design may have to proceed using a worst case 
correlation length). 
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Interpolation vs. Extrapolation 

How the statistical estimates are to be used influences how they 
are determined; 

1. Interpolation: the goal here is to use the data to best 
describe the site at which the data was obtained. In this 
case all trends should be accounted for. May want to 
perform simulations conditioned (i.e. “pinned”) on the 
data. Correlation length is now of “residual” variability. 

2. Extrapolation: the goal here is to use the data to attempt 
to characterize other (similar) sites. In this case, trends 
should only be accounted for if they are expected to recur 
at the other sites. Mean estimates will be uncertain, 
variances will be underestimated. Correlation length will 
be larger than estimated (i.e. generally unknown). 
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Interpolation vs Extrapolation 

Interpolation: 
• data is used to characterize site at which data was obtained 
• estimator errors decrease with increasing correlation 

between observations, i.e. the more highly correlated the 
site is, the fewer samples required to characterize it. 
(Unfortunately, we generally don’t know a-priori how 
highly correlated a site is!) 

•  the data can be assumed known – uncertainty now occurs 
between data points, so we need only model this residual 
variability. 

• Kriging and/or conditional models can be used to 
characterize the residual variability. 
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Interpolation vs. Extrapolation 

Extrapolation: 
• the data are being used to characterize the soil population 

(i.e. to infer the population parameters for use at other 
sites). 

• estimator error increases with increasing correlation 
between observations, i.e. the more highly correlated a site 
is, the less representative it is of other sites –  you cannot 
expect to accurately characterize a neighboring site if all of 
your samples are taken from a (highly correlated) stiff soft 
clay layer at the current site. 

• statistical estimates of population parameters are typically 
quite inaccurate (due to correlation), especially estimates of 
correlation length. 
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Interpolation vs. Extrapolation 

• Practicing geotechnical engineers are typically interpolating. 
That is, they sample with the goal to characterize the site at 
which the samples are observed. 

• Published research papers and textbooks are extrapolating (or 
at least they should be). That is, they are expressing soil 
property information that is meant to be useful at sites other 
than the single site at which the data were obtained. 

• Unfortunately, all too often, research papers will provide soil 
property statistics where the locally observed trend has been 
removed. This leads to significantly underestimated 
variabilities (only useful at sites where similar trends occur 
and have been similarly removed). 

• In extrapolation trends should be generally considered to be 
part of the uncertainty being characterized. 
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Choosing a Distribution 

Once the data have been gathered, we need to decide how to best 
represent the “population”. The first step is to decide on a 
population distribution. There are several possibilities; 

1. Trace driven simulation: use the data directly in a 
simulation. This is the least preferable approach since it 
can only reproduce the data and not all possibilities. This 
approach is most commonly used in earthquake ground 
motion simulation. 

2. Empirical distribution: the data are used to define an 
empirical cumulative distribution function (e.g. P[ X < x ] 
is just equal to the number of observed values less than 
x). This does not allow for the extremes that often control 
design. That is, most samples will not include those 
1/1000 extremes that would lead to failure. 
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Choosing a Distribution 

3. Fit a Distribution: A common distribution, such as the 
normal or lognormal, is fitted to the data. The advantages 
to this approach are that 
a) irregularities in the data, due to the natural variability in any 

data set, are smoothed out. That is, we don’t end up with a 
distribution that is skewed by an outlier in the data set. 

b) the known physics of the property can be properly represented 
(e.g. properties such as porosity, friction angle, and Poisson’s 
ratio have known (or at least almost known) upper and lower 
bounds, so a bounded distribution would be appropriate). 

c) extremes can also be modeled in a physically reasonable way. 
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Choosing a Distribution 

Extrapolation: 
• fit the simplest distribution that you can – you are trying to 

model the population, not the specific data set. 
 
Interpolation: 

• fit a distribution of reasonable complexity – just remember 
that you still need to capture the range of possibilities that 
might occur between your observation points (so there is 
probably little point in employing a 20 parameter 
distribution). 
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Choosing a Distribution 

The normal distribution is a very popular choice, especially if the 
soil property is a random field (since we then only need to know 
the mean and covariance structure). 
The one major disadvantage to the normal distribution is that its 
range is from −∞ to +∞, so for many non-negative soil properties 
it is not physically possible. 
However, if the probability of obtaining a negative value is 
sufficiently small, the normal distribution might be a reasonable 
approximation. What is meant by “sufficiently small” depends on 
the acceptable probabilities of the extremes that might lead to 
failure. 
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Choosing a Distribution 

Probability that X < 0 for coefficients of variation v = 0.3 and 1.0 



35 

Goodness-of-Fit 

Once a distribution has been selected and then fit, by estimating 
its parameters using the collected data, the fit must be assessed. 
There are two common approaches to measuring how well the 
assumed distribution fits the data; 

1. Frequency comparisons and probability plots, and 
2. Goodness-of-Fit tests. 
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Frequency Comparison 

Example: 
Suppose that, just after construction, a series of 50 randomly selected one-
kilometre long sections of highway through a hilly region were selected to 
evaluate the annual probability of slope failure under the existing design code. 
The number of years until an observable slope failure occurred within each 
one-kilometre length, ti , was recorded, with the following results 
 3, 2, 8, 9, 10, 4, 4, 2, 7, 7, 1, 14, 2, 1, 8, 3, 4, 5, 4, 2, 10, 
 2, 1, 7, 8, 4, 3, 3, 21, 1, 3, 9, 1, 4, 5, 1, 4, 1, 4, 3, 5, 3, 1, 
 9, 1, 6, 3, 5, 12, 11 
A previous analysis of similar data suggested that the annual probability of 
observable slope failure in each one-kilometre section of highway is 0.2. 
Assuming that sections fail independently and that each year constitutes an 
independent trial, how reasonable does the hypothesis that the annual 
probability of slope failure per km is 0.2 appear to be on the basis of this data? 
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Frequency Comparison 

If sections fail independently, and each year is also independent, then we have 
50 independent observations of the ‘number of trials’ (i.e. years) to first failure 
of a 1-km section. Under the given assumptions, the ‘number of trials to first 
failure’ follows a geometric distribution. 
The estimate of the annual probability of slope failure per km is just one (year) 
over the average time to slope failure; 
 
 
 
which is very close to the hypothesized annual probability. 
 
The following page compares the frequency histogram with that predicted by 
theory along with the empirical and fitted cumulative distribution functions. 

( )
1ˆ 0.199

3 2 11 / 50
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Frequency Histogram 

Frequency-density plot of annual 
failure probability and fitted 
geometric distribution. The lower 
plot compares the empirical cumulative 
distribution with the fitted cumulative 
geometric distribution. 
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Parameter Estimation 

There are many ways to estimate distribution parameters – some 
are better than others. The common criteria used to compare 
estimators are 

1. unbiasedness: E[estimator] = parameter? 
2. consistency: 
3. efficiency:       Var[estimator] small? 
4. sufficiency:     utilizes all pertinent information?    

lim  estimator parameter?
n→∞

=
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Classical Estimators 

Sample Mean:                         estimates the true mean μX 
 
 

Sample Variance: 
 
is an estimate of the true variance  
 
 
Sample Correlation: 
 
is an estimate of the true correlation ρX  
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Estimation in the Presence of Correlation 

Friction angle measured at regular locations along a 10 km line. 
• if we measured only from 0 – 0.75 km, our estimate of the global average 

would be very poor. In fact, most 1 km segments would give poor results. 
• best to sample at widely spaced points (>> θ). 
• the variance estimated over 0 – 0.75 km is far less than the site variance. 
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Estimation Without Correlation 

Friction angles measured along a 10 km line where soil properties are largely 
spatially independent. 

• in this case, both the estimated mean and variance obtained over 
0 – 0.75 km are quite representative of the entire 10 km. 
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Classical Estimate of the Mean:  
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Introduction of Correlation Between Samples 

Recall from last slide: 
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Classical Estimate of the Variance:  2 2
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Introduction of  Correlation Between Samples 

Recall from last slide: 
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Case 1: Data are Gathered over the Design Site 

• we will know the soil properties at the data site locations and 
will not be attempting to extrapolate beyond the site borders, 

• estimates for μX , σX , and θX are “local” and can be be 
considered to be reasonably accurate 

• best estimates for the value and variability of the random field 
between observation points can be obtained using Best Linear 
Unbiased Estimation (BLUE) or Kriging. 

• probability estimates should be obtained using a random field 
conditioned on the data (possibly via conditional simulation) 
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Case 2: Data are Gathered at a Similar Site 

• data gathered at another similar site are used to characterize 
the design site (extrapolation) – this might occur during 
preliminary design,  e.g. before the site has been cleared. 

• much greater uncertainty in applying the resulting statistics to 
the design site. The sample mean should be viewed with 
caution and the sample variance should be assumed to be 
underestimated. 

• BLUE and Kriging are not options because no data available at 
site. 

• treatment of trends needs special care – are they likely to recur 
at the design site? 
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Characterization of Trends? 

• locally, trends should be accounted for in design 
• globally, trends should only be accounted for if 

expected to continue (or repeat) offsite 
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Estimating the Mean 

Classical sample mean: 
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where T is the domain over which the samples are gathered. 
For highly correlated samples, γ(T ) ≈ 1.0, and the sample mean 
could be quite variable (i.e. large estimator error). 

[ ] [ ]
1 1

1 1ˆE E E       (unbiased)
n n

X i i X
i i

X X
n n

µ µ
= =

 
= = =  

∑ ∑



51 

Effect of Correlation on Statistical Estimates 

- mean and variance estimates are locally accurate but globally 
  poor 
- this is one of the reasons why geotechnical engineering is difficult 
  to codify 

T 
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Estimating the Variance 

Classical Maximum Likelihood Estimator: 
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Estimating the Covariance Structure 

Consider a sequence of observations X1, X2, …, Xn, each 
separated by distance Δx. Then for τj = jΔx,   j = 0, 1, …, n – j – 1 
we have 
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Estimating the Covariance Structure 
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Bias: 

Note that in a strongly correlated field,            will become 
negative, often at about the field midpoint. 

( )ˆ jρ τ
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Estimating the Covariance Structure 

Correlation function estimates from a finite-scale process (θ = 3) 
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Estimating the Covariance Structure 

Correlation function estimates from a fractal process (H = 0.95) 
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The Sample Semivariogram 

The semivariogram gives essentially the same information as the 
correlation function since they are related according to 
 
 
Its estimator is 
 
 
This estimator does not depend on       , which is a significant 
advantage. In particular, it means it is unbiased, 
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The Sample Semivariogram 

Semivariogram estimates from a finite-scale process (θ = 3) 
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The Sample Semivariogram 

Semivariogram estimates from a fractal process (H = 0.95) 
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Conclusions 

• the mean is relatively easy to estimate at a site, the variance 
less easy, and the correlation length is very hard to estimate. 

• interpolation is generally more accurate than extrapolation due 
to correlation between observations 

• use caution when using statistics from the literature – these are 
generally unconservative due to correlation 

• account for trends when interpolating, but not usually when 
extrapolating 

• when estimating the correlation structure 
• correlation function estimates can be highly biased 
• the variogram is approximately unbiased. 
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