

Coupled and multiphysics phenomena 24th ALERT School, Aussois, 1-3 October 2015

Thermo-hydro-mechanical issues in geomaterials Physical mechanisms and experimental determination

Pierre DELAGE Ecole Nationale des Ponts et Chaussées, Paris Navier/CERMES

ParisTech

École des Ponts

Sinkhole in unsaturated collapsible loess (Northern France)

Unsaturated soil : water + air Loess: small clay fraction Hydro-mechanical coupling

Deep radioactive geological disposal in claystone in France, - 490m

ANDRA 2005

Deep radioactive geological disposal French concept in claystone, - 490m **Callovo-Oxfordian claystone submitted to temperature elevation T = 90°C** Ø excavated: 0.7m approx. Length: approx. 40m Cecce **High activity Exothermic wastes** Separator Sleeve Disposal package Lic 0.57m Primary package to 0.64m Steel over-pack 1.30m to 1.60m

ANDRA 2005

Callovo Oxfordian claystone

- Stable geological context (155 My)
- > Porosity: 14-19%
- Clay fraction 48-50% at 490m
 Very low permeability: 10⁻¹³ 10⁻¹⁴ m/s
- Small deformability
 Good ability to retain radionuclides

BUT Excavation Damaged Zone - EDZ

Sensitive to drying

Thermal transient phase, France

Radioactive waste concept in granite highly compacted bentonite (Sweden)

Temperature elevation

Gens, Romero et al.

Thermal transient phase, Switzerland

Ekofisk oilfield subsidence (North sea)

Enhanced recovery by sea-water injection: 10 m subsidence

Non conventional oil recovery – oil sands Steam assisted gravity drainage (SAGD)

Collapse behaviour of loess (Northern France)

Natural collapsible unsaturated loess (Northern France)

silt grain (20-30 µm)

Dry inter-grain pores (20-30 μm) - Compressed

- Collapsed

Clay aggregate (saturated)

Unsaturated granular soil

Collapse behaviour of loess (Northern France)

Bishop's "effective" stress

$$\sigma' = \sigma - u_a + \chi \left(u_a - u_w \right)$$

dry : $0 < \chi < 1$: saturated

- collapse under wetting : suction decrease down to zero
- σ u_a constant
- $-\chi > 0$

 σ decreases so volume should increase due to stress release BUT volume decrease ! NOT VALID

2 INDEPENDENT STRESS VARIABLES NECESSARY

Net stress : $\sigma - u_a$ Suction : $u_a - u_w$

Oil reservoir chalk

pore (φ 2μm)

coccolith (ϕ 1-10 μ m) pure calcite : CaCO₃ n = 38-41%

Oil reservoir chalk

Unsaturated fine grained soils Schematic view

Clay mineralogy Clay water interaction

Clay minerals have a paramount role in THM coupling (sand or sandstone are not sensitive to water; they only dilate when heated)

Clay mineralogy Elementary sheets

After Grim 1968, Mitchell 1976

Kaolinite: 1 tetra + 1 octa

Kaolinite layer

Kaolinite

7,5 µm

Tovey 1971 in Mitchell 1976

Montmorillonite: 1 octa + 2 tetra

9.6 Å= 0.96 nm

Exchangeable cations (Ca⁺⁺, Na⁺ to compensate electrical deficiency)

Water molecules stuck around cations: hydration INSTABLE PLATELETS : INTERLAYER SWELLING

Montmorillonite suspension (gel)

7,5 µm

Illite: 1 octa + 2 tetra, K⁺ bonding

Stable structure, same as mica (muscovite)

Tovey 1971 in Mitchell 1976

Illite

7,5 µm

Compacted silt

Compacted silt

HEAVILY COMPACTED SMECTITE

Compacted Kunigel clay (Japan), $r = 2 Mg/m^3$, w = 8%

Cui et al. 2002

Clay water interaction : double layer theory from Mitchell (1993)

Double layer theory Mitchell (1993)

Interparticle interaction Mitchell (1993)

HYDRATION OF SMECTITES

Saturated intra-aggregates swelling mechanisms Saiyouri, Hicher & Tessier (2000), using Pons et al. (1981)

- X ray scattering at low angles
- Probabilistic analysis

Interlayer distances inside a particle
Number of clay layer in a particle

Saturated intra-aggregates swelling mechanisms

Sayiouri, Hicher & Tessier (2000)

Hydration from a dry state, FoCa

formation of several particles	inside the saturated aggregates
$\frac{\text{yer space}}{\text{-particle space}} = \frac{d_2}{possible double laye}$	in - particle size or thickness d d initial particle
Iow suction (< 7 MPa) 10 layers	high suction (> 50 MPa) 100 layers

Sayiouri, Hicher & Tessier (2000)

WATER RETENTION PROPERTIES

Air overpressure technique of controlling suction (axis translation)

Other techniques (see paper)

Osmotic method (semi-permeable membrane + large moleculesPEG salt) (semi-permeable membrane +

Water retention curve, clayey sand

(Croney et al. 1952)

Oil-water retention curve, lixhe chalk

Priol et al. 2005

TYPICAL WATER RETENTION CURVES (Barbour 98, Vanapalli, et al. 99)

Water retention properties, COx

Water retention properties, COx

Mercury intrusion porosimetry, COx claystone

52 Menaceur 2014

Compacted bentonite

Water retention properties, constant volume

Yahia-Aissa et al. 2002, Villar et al. 2005

Water retention properties, bentonites

FLUID TRANSFERS

Unsaturated permeability

Instantaneous profile method - water infiltration in a column with suction monitoring along column

- water retention curve determined (psychrometer)

curve slopes give hydraulic gradient *i* at various suctions

Daniel 1984

- the water retention curve provides the corresponding water contents
- changes in water content with time provide water unit flow

$$q = A \frac{\sum_{i=1}^{L} \int_{x_i}^{L} \theta_{t+\Delta t} dx - \int_{x_i}^{L} \theta_t dx}{\Delta t}$$

- unsaturated permeability is given by : $K = -\frac{1}{A} \frac{q}{0.5(i_t + i_{t+\Delta t})}$

A is the sectional area

Air permeability measurement Yoshimi and Osterberg (1963)

Air and water permeability

MECHANICAL TESTING

Bishop & Donald's suction controlled triaxial cell (1962) axis translation method

Osmotic suction controlled oedometer

Kassiff & Benshalom (1974), Delage et al. (1992)

Vapour equilibrium triaxial (Blatz & Graham 2000)

TYPICAL FEATURES

The state surface concept (Matyas & Radhakrishna 1968)

Isotropic compression (cui & delage 1996, osmotic triaxial)

Constant σ_3 triaxial compression (Cui & Delage 1996)

Elasto-plastic behaviour

THERMAL ISSUES

Surface waste disposal

Di Molfietta and Aglietto 1999

Heat effects: lab experiments

Compacted bentonite, $S_{ri} = 50\%$

Villar 1994
Coupled THM transfers

degree of saturation

Compacted bentonite, $S_{ri} = 50\%$

Villar 1994

Thermal triaxial cell

Sultan et al. 2000

Thermal volume changes (drained)

Temperature effects on permeability

Intrinsic permeability

Normalised yield envelopes

In-situ thermal experiments (Mt Terri, Switzerland)

In-situ thermal experiments (Mt Terri, Switzerland)

Thermal pressurization: lab device

Undrained heating under in-situ stress with pore pressure measurement

Thermal pressurization coefficient Λ , COx claystone

Issues in THM testing of claystones

- Is the extracted specimen tested in the lab representative of in-situ conditions?
 - Partial saturation (stress release, air coring, evaporation,...)
 - Damage (stress release, drying)
- Very low permeability:

 $k = 10^{-13}$ m/s (10⁻²⁰ m² intrinsic permeability)

- Initial full saturation
- Drainage conditions

Saturated and drained testing of claystones

Emphasis put on:

Controlled saturation procedure
<u>under in-situ stress conditions</u>

$$B = \frac{c_d - c_s}{c_d - c_s + \phi(c_w - c_s)}$$

to avoid swelling/damage

Good drainage conditions

homogeneous pore pressure field thanks to short drainage length

TIMODAZ hollow cylinder apparatus

External diameter 100 mm Internal diameter 60 mm Height 70 mm Internal and external pressures equal Top, bottom and lateral drainage

Drainage length H = 10 mm Half the hollow cylinder thickness

Monfared et al. IJRMMS (201

Pressure volume transducers

Monfared et al. IJRMMS (201

Local strain measurements

Monfared et al. IJRMMS (201

TIMODAZ hollow cylinder apparatus

Drainage conditions (mechanical and thermal)

Thermal hardening of Opalinus clay

Monfared et al. RMRE 2014

Thermal reactivation of shear plane

91

Menaceur (2014)

Failure criterion (temperature), COx

Menaceur et al. IJRMMS 2015

Radial permeability test

93

Radial permeability test, sheared specimen

Changes in permeability, COx claystone

Changes in permeability, COx claystone

Concluding remarks

THM couplings related to various geomechanical problems:

- Unsaturated soils (collapse)
- Radioactive waste disposal (claystones and bentonites)
- Reservoir rocks (multiphase chalk)
- Importance of clay
- Importance of clay-water interaction (DDL, smctite hydration)
- Importance of microstructure
- Difficult lab testing invery low permeability claystone and shale (host rocks for waste isolation, caprocks for CO2 sequestration, shale gas and oil)
 - Special new devices with short drainage length:

Complete saturation and good drainage conditions

- Thermal pressurisation
- Thermal hardening
- Excavation damaged zone (EDZ)
 - No effects of cracks on permeability and excellent self-sealing behaviour (initial and 80°C)
- Help better understand and model THM phenomena