Generalized Plasticity modelling of soils: the role of dilatancy

M.Pastor

D.Manzanal, J.A.Fernández Merodo, Y.Javanmardi P.Mira, M.M.Stickle, P.Dutto, A.Yagüe

manuel.pastor@upm.es

ETS de Ingenieros de Caminos UPM Madrid

Contents

Classical and Critical State Plasticity

- Failure surfaces
- Classical EPlasticity
- Critical State Plasticity

Generalized Plasticity

- Basic Model
- Bounded materials
- State Parameter
- Unsaturated

- Rheology
- Dilatancy
- A Perzyna viscoplasticity approach

I Introduction

Simplified methods of analysis (slide [©])

Simplified methods of analysis (slide ©)

Assumptions

- Failure is of localized type
- Stress at failure surface

But...

So?

- What if failure is of diffuse type?
- Stress inside failure surface

Finite elements + classical plasticity (Mohr Coulomb)

But...

• Data from Lizcano, Herrera & Santamarina (2007)

Figura 15: Datos de ensayo de compresión triaxial CU – Muestras saturadas (Localización: Manizales. Profundidad: 7.0 m).

IIa. Constitutive Generalized Plasticity:

Introduction

Contents

Introduction

Classical and Critical State Plasticity

- Failure surfaces
- Classical EPlasticity
- Critical State Plasticity

Generalized Plasticity

- Basic Model
- Bounded materials
- State Parameter
- Unsaturated

- Rheology
- Dilatancy
- A Perzyna viscoplasticity approach

Tensor representation Vector representation

$$\sigma = \begin{pmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{pmatrix} \qquad \sigma = (\sigma_{xx}, \sigma_{yy}, \sigma_{zz}, \sigma_{xy}, \sigma_{xz}, \sigma_{yz})$$

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad m^{T} = (1 \ 1 \ 1 \ 0 \ 0 \ 0)$$

$$\sigma : d\varepsilon \implies \sigma^{T} . d\varepsilon$$

$$D_{ijkl} \implies D_{ij}$$

$$D_{ij} d\varepsilon_{kl} \implies D_{ij} d\varepsilon_{j}$$

Effective Stresses

$$\sigma_{ij} = \sigma'_{ij} - p_w \delta_{ij}$$
$$\sigma = \sigma' - p_w I$$
$$\sigma = \sigma' - m p_w$$

• Correction

$$\sigma = \sigma'' - \alpha m p_w \qquad K_s \quad \text{Vol. Stiffness particles}$$

$$\alpha = 1 - \frac{K_T}{K_s} \qquad K_T \quad \text{Vol. Stiffness skeleton}$$

$$\alpha \approx 1 \quad \text{soils}$$

• Total Stress Tensor

σ

• Effective Stress Tensor

$$\sigma = p_w I + \sigma$$

 p_w Pore Water Pressure

• Hydrostatic and deviatoric components

$$\sigma' = p'I + s$$

- **S** Deviatoric stress tensor
- p' Effective Hydrostatic stress

Invariants

- Stress tensor σ_{ij}
- Eigenvalues and eigenvectors

$$\sigma . n = \lambda n \qquad \det(\sigma - \lambda I) = 0$$

Characteristic Polynomial

$$\lambda^{3} - P_{1}\lambda^{2} + P_{2}\lambda - P_{3} = 0 \qquad \sigma^{3} - P_{1}\sigma^{2} + P_{2}\sigma - P_{3} = 0$$

$$P_{1} = tr(\sigma_{ij})$$

$$P_{2} = \sigma_{xx}\sigma_{yy} + \sigma_{yy}\sigma_{zz} + \sigma_{zz}\sigma_{xx}$$

$$-\sigma_{xy}^{2} - \sigma_{yz}^{2} - \sigma_{zx}^{2}$$

$$P_{3} = det(\sigma_{ij})$$

 P_1, P_2, P_3 Do not depend on reference system

• Alternative I

$$I_1 = tr(\sigma) \quad I_2 = \frac{1}{2}tr(\sigma^2) \quad I_3 = \frac{1}{3}tr(\sigma^3)$$

$$P_1 = I_1$$
 $P_2 = \frac{1}{2} \left(I_1^2 - 2I_2 \right)$ $P_3 = \frac{1}{6} I_1^3 - I_1 I_2 + I_3$

Hydrostatic and Deviatoric Components

$$\sigma = s + pI \quad \sigma_{ij} = s_{ij} + p\delta_{ij}$$

• Alternative II

$$J_{1} = tr(s) = 0 \quad J_{2} = \frac{1}{2}tr(s^{2}) \quad J_{3} = \frac{1}{3}tr(s^{3})$$
$$I_{1} = tr(s+pI) = tr(s) + 3p = 3p$$
$$J_{2} = \frac{1}{6} \left\{ (\sigma_{xx} - \sigma_{yy})^{2} + (\sigma_{yy} - \sigma_{zz})^{2} + (\sigma_{zz} - \sigma_{xx})^{2} \right\}$$
$$+ \sigma^{2}_{xy} + \sigma^{2}_{yz} + \sigma^{2}_{zx}$$
$$J_{2} = \frac{1}{6} \left\{ (\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2} + (\sigma_{3} - \sigma_{1})^{2} \right\}$$

• Uniaxial test

$$J_{2} = \frac{1}{6} \left\{ (\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2} + (\sigma_{3} - \sigma_{1})^{2} \right\}$$
$$= \frac{1}{6} \left\{ (\sigma_{1} - 0)^{2} + (0 - 0)^{2} + (0 - \sigma_{1})^{2} \right\} = \frac{1}{3} \sigma_{1}^{2} \qquad \sigma_{1} = \sqrt{3} J_{2}$$

• Triaxial test $J_{2} = \frac{1}{6} \left\{ (\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2} + (\sigma_{3} - \sigma_{1})^{2} \right\}$ $= \frac{1}{6} \left\{ (\sigma_{1} - \sigma_{3})^{2} + (\sigma_{3} - \sigma_{3})^{2} + (\sigma_{3} - \sigma_{1})^{2} \right\}$ $= \frac{1}{3} (\sigma_{1} - \sigma_{3})^{2} \implies (\sigma_{1} - \sigma_{3}) = \sqrt{3J_{2}}$ = q

$$J_{2} = \frac{1}{6} \left\{ \left(\sigma_{xx} - \sigma_{yy} \right)^{2} + \left(\sigma_{yy} - \sigma_{zz} \right)^{2} + \left(\sigma_{zz} - \sigma_{xx} \right)^{2} \right\} + \sigma_{xy}^{2} + \sigma_{yz}^{2} + \sigma_{zx}^{2}$$

$$J_2 = \frac{1}{6} \tau_{xy}^{2}$$

Plane p'-c

$$p' = \frac{1}{3} \operatorname{tr}(\sigma) \Longrightarrow (\sigma'_{1} - \sigma_{3}')$$

$$q = \sqrt{3J_{2}'}$$

Work
$$\delta W = \sigma' : d\varepsilon = p' d\varepsilon_v + q d\varepsilon_s$$
$$\varepsilon_v = \operatorname{tr}(\varepsilon) \Rightarrow (\varepsilon_1 + 2\varepsilon_3)$$
$$\varepsilon_s = \frac{2}{3} \sqrt{3J'_{2\varepsilon}} \Rightarrow \frac{2}{3} (\varepsilon_1 - \varepsilon_3)$$

Represented on same plane

Failure surfaces

Contents

Introduction

Classical and Critical State Plasticity

- Failure surfaces
- Classical EPlasticity
- Critical State Plasticity

Generalized Plasticity

- Basic Model
- Bounded materials
- State Parameter
- Unsaturated

- Rheology
- Dilatancy
- A Perzyna viscoplasticity approach

Failure Surface
$$F(\sigma_{ij}) = 0$$

• Example: Von Mises

$$F \equiv \left(\sigma_{xx} - \sigma_{yy}\right)^2 + \left(\sigma_{yy} - \sigma_{zz}\right)^2 + \left(\sigma_{zz} - \sigma_{xx}\right)^2 + \left(6\sigma_{zz} - \sigma_{xx}\right)^2 + \left(6\sigma_{zz}^2 - \sigma_{xx}\right)^2$$

• Isotropic Materials

$$F\left(\sigma_{ij}\right) = 0 \rightarrow F\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right) = 0 \quad \rightarrow F\left(I_{1}, J_{2}, J_{3}\right) = 0$$

$$F \equiv \left(\sigma_{1} - \sigma_{2}\right)^{2} + \left(\sigma_{2} - \sigma_{3}\right)^{2} + \left(\sigma_{3} - \sigma_{1}\right)^{2}$$

$$-6Y^{2}$$

$$F \equiv J_{2} - Y^{2} = 0 \qquad \Longrightarrow \qquad \text{Several Alternative Sets}$$

Tresca Surface

$$\frac{\sigma_1 - \sigma_3}{2} \cos \phi = c + \left(\frac{\sigma_1 + \sigma_3}{2} - \frac{\sigma_1 - \sigma_3}{2} \sin \phi\right) \tan \phi$$
$$\left(\sigma_1 - \sigma_3\right) = 2c \cos \phi + \left(\sigma_1 + \sigma_3\right) \sin \phi$$

$$(\sigma_{1} - \sigma_{3}) = 2c \cos \phi + (\sigma_{1} + \sigma_{3}) \sin \phi$$

$$p = \frac{1}{3}(\sigma_{1} + 2\sigma_{3}) \quad q = \sigma_{1} - \sigma_{3}$$

$$q = \frac{6c \cos \phi}{3 - \sin \phi} + \frac{6 \sin \phi}{3 - \sin \phi} p$$

$$M = \frac{6 \sin \phi}{3 - \sin \phi}$$

$$M = \frac{6 \sin \phi}{3 - \sin \phi}$$

Drucker-Prager Surface

$$J_2 - \alpha I_1 - Y = 0$$

$$\alpha = \frac{\frac{1}{3}\sin\phi}{\cos\theta - \frac{1}{\sqrt{3}}\sin\theta\sin\phi}$$
$$Y = \frac{c\cos\phi}{\cos\theta - \frac{1}{\sqrt{3}}\sin\theta\sin\phi}$$

•
$$\phi_{compression} \neq \phi_{extension}$$

$$\sin \phi_{compression} = \frac{3\sqrt{3}\alpha}{2+\sqrt{3}\alpha} \quad \sin \phi_{extension} = \frac{3\sqrt{3}\alpha}{2-\sqrt{3}\alpha}$$
$$\frac{\sin \phi_{extension}}{\sin \phi_{compression}} = \frac{2+\sqrt{3}\alpha}{2-\sqrt{3}\alpha}$$

Improvements

Matsuoka-Nakai

$$F \equiv \frac{I_1 I_2}{I_3} - Y = 0$$

 \bigcirc

Zienkiewicz-Pande

$$M = \frac{6\sin\phi}{3 - \sin\phi\sin3\theta}$$

• Lade

$$\left(\frac{I_1^3}{I_3} - 27\right) \left(\frac{I_1}{p_{atm}}\right)^m - \eta_1 = 0$$

Figure 5. Characteristics of failure surfaces shown in principal stress space. Traces of failure surfaces shown in (a) triaxial plane and in (b) octahedral plane

Figure 9. Comparison of failure criterion with experimental results of cubical triaxial tests projected on common octahedral planes for (a) dense Monterey No. 0 sand by Lade,¹⁰ and for (b) normally consolidated, remolded Edgar plastic kaolinite by Lade and Musante¹⁸

Contents

Introduction

Classical and Critical State Plasticity

- Failure surfaces
- Classical EPlasticity

• Critical State Plasticity

Generalized Plasticity

- Basic Model
- Bounded materials
- State Parameter
- Unsaturated

- Rheology
- Dilatancy
- A Perzyna viscoplasticity approach

Perfect plasticity

Hardening

Softening

I : Decomposition of strain increment

II : Yield surface in the stress space

Necessary elements

$$d\varepsilon^{p} = \frac{1}{h} n_{g} \left(d\sigma : n \right) \qquad d\varepsilon^{p} = \frac{1}{H} \frac{\partial g}{\partial \sigma} \left(d\sigma : \frac{\partial f}{\partial \sigma} \right)$$

• Yield Surface

$$f(\sigma, \alpha) = 0$$

$$n = \frac{\partial f / \partial \sigma}{\left| \partial f / \partial \sigma \right|}$$

• Plastic Potential

$$n_{g} = \frac{\partial g / \partial \sigma}{\left| \partial g / \partial \sigma \right|}$$

• Plastic Modulus h

Plastic Modulus

• Consistency Condition

$$f(\sigma, \alpha) = 0$$

 $df = 0$
 $\frac{\partial f}{\partial \sigma} : d\sigma + \frac{\partial f}{\partial \alpha} d\alpha = 0$

$$H = -\frac{\partial f}{\partial \alpha} \left(\frac{\partial \alpha}{\partial \varepsilon^p} : \frac{\partial g}{\partial \sigma} \right)$$

• Strain Hardening

$$\frac{\partial f}{\partial \sigma} : d\sigma + \frac{\partial f}{\partial \alpha} \left(\frac{\partial \alpha}{\partial \varepsilon^p} : d\varepsilon^p \right) = 0$$
$$\frac{\partial f}{\partial \sigma} : d\sigma + \frac{\partial f}{\partial \alpha} \left(\frac{\partial \alpha}{\partial \varepsilon^p} : \frac{1}{H} \frac{\partial g}{\partial \sigma} \left(\frac{\partial f}{\partial \sigma} : d\sigma \right) \right) = 0$$

Hunting of the Yield Surface

Limiting loads by different meshes for foundation problem

Limiting loads by different meshs for vertical cut problem

GeHoMadrid

- Constitutive Models
 - Elastoplastic Models
 - Generalized Plasticity
 - Cam-Clay
 - Nova
 - Concrete

Special Techniques

Adaptive remeshing Adaptive Timestepping Backwards Euler Integration Consistent Stifness Stabilization ...

Slope Stability: Finite Element Model

8 nodes for displacements4 nodes for pressures

Failure

Critical state based models

Contents

Introduction

Classical and Critical State Plasticity

- Failure surfaces
- Classical EPlasticity
- Critical State Plasticity

Generalized Plasticity

- Basic Model
- Bounded materials
- State Parameter
- Unsaturated

- Rheology
- Dilatancy
- A Perzyna viscoplasticity approach

Critical State Models

- Hydrostatic Compression
 - Gives Hardening Rule
- Triaxial tests
 - Plastic Potential
 - Yield Surface
- Improvements
 - Overconsolidated Clays
 - Granular Soils

• Conclusions (so far)

- Plastic strains during Hydrostatic Compression Oedometer
- Yield surfaces MUST be closed

Hardening Rule

$$\sigma' = \sigma - p_{w}\mathbf{I}$$

$$p' = \frac{1}{3}tr(I'_{1}) = (\sigma'_{1} + 2\sigma'_{3})$$

$$q = \sqrt{3J'_{2}} = (\sigma'_{1} - \sigma'_{3})$$

$$\varepsilon_{v} = tr(\varepsilon) = \varepsilon_{1} + 2\varepsilon_{3}$$
 $\varepsilon_{s} = \frac{2}{3}(\varepsilon_{1} - \varepsilon_{3})$

Consolidated Drained

No volume change at failure

>

• Compression and extension

$$\frac{M_c}{M_e} = \frac{3 + \sin \phi}{3 - \sin \phi} > 1$$

• Conclusions CD

- Material tends to compact
- Failure at q/p=M
- Strength increases with confining pressure
- Failure takes place at constant volume

• Conclusions CU

- PWP Increases
- Failure at q/p=M
- Strength increases with confining pressure
- strength smaller than in CD
- Failure takes place at constant Pw

Normal Consolidation and Critical State Lines

Critical State Models

Origin : work of:

- Drucker and Prager 1952
- Drucker, Gibson and Henkel 1957
- Cambridge group

Ingredients

- Normal Consolidation and Critical State Lines
- Failure takes place at Critical State Line
- Hardening depends on volumetric plastic strain
- Plastic Potential and Yield surfaces

• • • • • • • •

 $d\varepsilon^{p} = \frac{1}{h} \frac{\partial g}{\partial \sigma} \left(\frac{\partial f}{\partial \sigma} : d\sigma \right) \qquad h = -\frac{\partial f}{\partial p} \left(\frac{\partial p_{c}}{\partial \varepsilon^{p}} : \frac{\partial g}{\partial \sigma} \right)$

 $h = -\frac{\partial f}{\partial p_c} \left(\frac{\partial p_c}{\partial \varepsilon_v} \frac{\partial g}{\partial p'} + \frac{\partial p_c}{\partial \varepsilon_s} \frac{\partial g}{\partial q} \right) \qquad h = 0 \quad \Longrightarrow \begin{cases} \frac{\partial f}{\partial p_c} = 0\\ \frac{\partial g}{\partial p'} = 0 \end{cases}$

$$f = g = q + Mp' \ln\left(\frac{p'}{p_c}\right)$$

$$f \equiv g = q^2 + M^2 p(p - p_c)$$

Critical State Models

• Hardening Law

$$\frac{\partial p_c}{\partial \varepsilon_v^{p}} = \frac{1+e}{\lambda-\kappa} p_c$$

• Plastic Potential

$$\frac{\partial g}{\partial p'} = 0 \quad \text{at} \quad \eta = M$$

• Failure surfaces of Frictional Type

OverConsolidated Clays

Behaviour of sands (CD) Influence of Density

Mean effective confining pressure p' (KPa)

Liquefaction of very loose sands (CU)

Behaviour of sands (CU) Influence of Confining Pressure

Generalized Plasticity

Contents

Introduction

Classical and Critical State Plasticity

- Failure surfaces
- Classical EPlasticity
- Critical State Plasticity

Generalized Plasticity <</p>

- Basic Model
- Bounded materials
- State Parameter
- Unsaturated

- Rheology
- Dilatancy
- A Perzyna viscoplasticity approach

Generalized plasticity

$$d\varepsilon = C : d\sigma$$

C depends on:

- stress level
- history
- direction of stress increment

- Direction of stress increment
 - Introduce a direction n such that $d\varepsilon = C_L : d\sigma$ for $n : d\sigma > 0$
 - $d\varepsilon = C_U : d\sigma \quad \text{for} \quad n : d\sigma > 0$
 - $n: d\sigma > 0$ Loading
 - $n: d\sigma = 0$ Neutral loading
 - $n: d\sigma < 0$ Unloading

Continuity between L-U

$$C_{\rm L} = C^e + \frac{1}{H_L} n_{gL} \otimes n$$
$$C_{\rm U} = C^e + \frac{1}{H_U} n_{gU} \otimes n$$

→ Decomposition of strain increment

$$d\varepsilon^{e} = C^{e} : d\sigma$$

$$d\varepsilon = d\varepsilon^{e} + d\varepsilon^{p}$$

$$d\varepsilon^{p} = \left(\frac{1}{H_{L/U}}n_{gL/U} \otimes n\right) : d\sigma$$

- Loading-Unloading discriminating direction n
- Direction of Plastic flow $n_{gL/U}$
- Plastic Modulus $H_{L/U}$
- Elastic constants

Classical Plasticity

- n given by normal to f
- n_g given by normal to g
- H given by consistency condition
 (unloading is elastic)

A Generalized Plasticity Model for sand (1991)

• ng
n
$$n_{g} = (n_{gv}, n_{gs})$$

 $d_{g} = (1+\alpha)(M_{g} - \eta)$
 $n_{gv} = d_{g}/(1+d_{g}^{2})^{1/2}$
 $n_{gs} = 1/(1+d_{g}^{2})^{1/2}$
 $H_{L} = H_{0}p'H_{f} \{H_{v} + H_{s}\}$
 $H_{f} = \left(1 - \frac{\eta}{\eta_{f}}\right)^{4}$
 $\eta_{f} = \left(1 + \frac{1}{\alpha}\right)M_{f}$
 $H_{v} = \left(1 - \frac{\eta}{M_{g}}\right)^{4}$
 $H_{s} = \beta_{0}\beta_{1} \exp(-\beta_{0}\xi)$

Figure 14. Strain-controlled cyclic triaxial test on loose Banding sand (predicted)

491

• Cyclic Mobility (Experiments)

$$H_D = \exp\left(-\gamma_d \varepsilon_v^p\right)$$

3a2 Debonding

Contents

Introduction

Classical and Critical State Plasticity

- Failure surfaces
- Classical EPlasticity
- Critical State Plasticity

Generalized Plasticity

- Basic Model
- Bounded materials
- State Parameter
- Unsaturated

- Rheology
- Dilatancy
- A Perzyna viscoplasticity approach

Debonding

Reduction of yield surface size

Lagioia & Nova, 1995

GPM for bonded geomaterials

Gens & Nova, 1993 Lagioia & Nova**, 1995**

Introduce
$$p^* = p' + p_t$$

 $p_t = p_{t0} \exp(-\rho_t \varepsilon)$
 $\eta^* = q / p^*$

$$H_{L} = \left(H_{0} p^{*} - H_{b}\right) H_{f}^{*} \left(H_{v}^{*} + H_{s}\right) H_{DM}^{*} \qquad H_{b} = b_{1} \varepsilon_{v}^{p} \exp(-b_{2} \varepsilon_{v}^{p})$$
$$H_{f}^{*} = \left(1 - \frac{\eta^{*}}{\eta_{f}}\right) \qquad H_{v}^{*} = \left(1 - \frac{\eta^{*}}{M_{g}}\right) \qquad H_{DM}^{*} = \left(\frac{\zeta^{*}}{\max} / \zeta\right)$$

A generalized plasticity model for debonding (JA Fernández Merodo et al 2003)

Introduce
$$p^* = p' + p_t$$
 with $p_t = p_{t0} \exp(-\rho_t \varepsilon)$
 $\eta^* = q / p^*$

$$H_{L} = \left(H_{0} p^{*} - H_{b}\right) H_{f}^{*} \left(H_{v}^{*} + H_{s}\right) H_{DM}^{*}$$
$$H_{f}^{*} = \left(1 - \frac{\eta^{*}}{\eta_{f}}\right) \qquad H_{DM} = \left(\zeta_{\max}^{*} / \zeta\right)$$
$$H_{v}^{*} = \left(1 - \frac{\eta^{*}}{M_{g}}\right) \qquad H_{b} = b_{1} \varepsilon_{v}^{p} \exp(-b_{2} \varepsilon_{v}^{p})$$

F.E. modelling of Las Colinas landslide u-pw model

 Las Colinas landslide in Santa Tecla, San Salvador El Salvador Earthquake, 13-01-2001

Figure 2.11 Bird's eyes view of the Las Colinas landslide

F.E. modelling of Las Colinas landslide u-pw model

• Material: Tierra Blanca – pumice ash: loose cemented soil

Imperial Collège (Bommer & al.)

before static triaxal test

after static triaxal test

interior of the shear band

exterior of the shear band

F.E. modelling of Las Colinas landslide

u-pw model

- Geommetry
- Finite element model: Coupled formulation (pore fluid is air)
- Boundary conditions :
 - Γ_1, Γ_2 free stress boundaries, $p_a = 0$
 - Γ_3, Γ_4 : a) Base motion+absorbing boundary
 - b) Base motion + infinite stratum condition

F.E. modelling of Las Colinas landslide

u-pw model

F.E. modelling of Las Colinas landslide

u-pw model

u-pw model

F.E. modelling of Las Colinas landslide

Debonding

Reduction of yield surface size

Lagioia & Nova, 1995

3a3 State Parameter

Contents

Introduction

Classical and Critical State Plasticity

- Failure surfaces
- Classical EPlasticity
- Critical State Plasticity

Generalized Plasticity

- Basic Model
- Bounded materials
- State Parameter
- Unsaturated
- Fluidized geomaterials
 - Rheology
 - Dilatancy
 - A Perzyna viscoplasticity approach

Undrained Triaxial Test (from Li & Dafalias, 2000)

Behaviour of sands (CU) Influence of Confining Pressure

$$\psi = e - e_c$$

log p'

Modified flow rule (Li & Dafalias 2000)

$$d_g = \frac{d_0}{M_g} \cdot \left[M_g \cdot \operatorname{Exp}(m\psi) - \eta \right]$$

Direction of plastic flow

 \mathbf{n}_{g}

$$= (n_{gv}; n_{gs})^{T} \implies n_{gs} = \frac{a_{g}}{\sqrt{1 + d_{g}^{2}}}$$
$$n_{gs} = \frac{1}{\sqrt{1 + d_{g}^{2}}}$$

1

$$d_{g} = \frac{d_{0}}{M_{g}} \cdot \left[M_{g} \cdot \operatorname{Exp}(m\psi) - \eta \right]$$

At CSL $\psi = 0$ $\eta = M_{g} \implies d = 0$
 $\eta = M^{d} = M_{g} \exp(m\psi) \implies d = 0$

Fig. 5. Variation in the phase transformation stress ratio with material state (data from Verdugo & Ishihara (1996))

Loading - Unloading discriminating direction

$$n_v = \frac{d_f}{\sqrt{1 + d_f^2}}$$
 $n_s = \frac{1}{\sqrt{1 + d_f^2}}$

$$d_f = \frac{d_0}{M_f} \cdot \left(M_f \cdot \operatorname{Exp}(m\psi) - \eta \right)$$

$$\frac{M_f}{M_g} = h_1 - h_2 \cdot e$$

Modified Plastic Modulus

$$H_{L} = H_{0} \cdot \sqrt{p' \cdot p'_{atm}} \cdot f(\eta; \psi)$$

$$f(\eta,\psi) = \left(1 - \frac{\eta}{\eta_f}\right)^{\mu} \cdot \left[\left(1 - \frac{\eta}{M_g}\right) + \beta_2(\psi) \cdot \exp(-\beta_0 \cdot \xi)\right]$$
$$\underbrace{H_f} \qquad H_v \qquad H_s$$

$$\eta_{f} = \left(1 + \frac{1}{\alpha_{f}}\right) M_{f} \qquad \qquad \beta_{2}\left(\psi\right) = \beta_{1} \cdot \left[M_{g} \cdot \exp\left(-n\psi\right) - \eta\right]$$

Simulations: CD Triaxial Test

Simulations: CD Triaxial Test

CU Triaxial Test

CU Triaxial Test

Madrid Sand

3a3 Unsaturated

Contents

Introduction

Classical and Critical State Plasticity

- Failure surfaces
- Classical EPlasticity
- Critical State Plasticity

Generalized Plasticity

- Basic Model
- Bounded materials
- State Parameter
- Unsaturated

- Fluidized geomaterials
 - Rheology
 - Dilatancy
 - A Perzyna viscoplasticity approach

Basic definitions (1/2)

• Suction
$$s = p_a - p_w$$

• Cementation Parameter (Haines 1925, Fisher 1926, Gallipoli and Gens 2003)

$$f(s) = \frac{3}{4} \left\{ 2 - \frac{1}{2s} \left[-\frac{3T_s}{R} + \sqrt{\left(\frac{3T_s}{R}\right)^2 + \frac{8T_s}{R}s} \right] \right\}$$
$$\xi = f(s)(1 - S_r)$$

Relationship between stabilizing pressure at a given suction s and at zero suction Ts surface tension R radius particles

• Effective stress (Bishop,...Schrefler)

$$\sigma' = \sigma + S_r s I - p_a I \quad (\chi = S_r)$$

• Work (Houlsby 1997)

$$\delta W = (\sigma + S_r s I - p_a I) \delta \varepsilon + \frac{s (-n \delta S_r)}{s (-n \delta S_r)}$$

From Vanapalli et al 1992

Basic definitions (2/2)

• Wetting-drying

Basic aspects of behaviour (1/5)

• CSL on (e,p') plane

Basic aspects of behaviour (2/5)

• CSL on (e,p') plane: normalization Gallipoli et al 2003

Isotropic compression lines at constant suction (left) and normalization using the bonding factor (rigth) Data from Sharma 1998 and predictions by Gallipoli et al (2003)

Basic aspects of behaviour (3/5)

• CSL on (e,p') plane: alternative normalization Manzanal 2008

$$\frac{p'}{p'_s} = \exp(g(\xi)) \qquad g(\xi) = a \exp(b\xi) - 1\}$$

Data from Sivakumar (1993)

Basic aspects of behaviour (3b/5)

Proposed

Basic aspects of behaviour (4/5)

• CSL on (p',q) plane

$$\sigma' = \sigma + S_r S I - p_a I \quad (\chi = S_r) \qquad \sigma' = \sigma + S_r S I - p_a I \quad (\chi = S_{re})$$
$$\chi = S_{re} = \frac{S_r - S_{r0}}{1 - S_r}$$

 $1 - S_{r0}$

CSL on p'-q plane: without correction (left) and using the effective degree of Saturation (right

Generalized Plasticity Model (1/2)

• Main ingredients

• Effective stress $\sigma' = \sigma + S_r s I - p_a I \quad (\chi = S_r)$

• Work conjugate pairs

$$\delta W = (\sigma + S_r s I - p_a I) \delta \varepsilon + s. (-n \delta S_r)$$

- Wetting-drying with hysteresis
- Increment of strain

$$d\varepsilon_{ij} = d\varepsilon^{e}_{ij} + d\varepsilon^{p}_{ij\sigma} + d\varepsilon^{p}_{ijs}$$

• State parameter dependent

Generalized Plasticity Model (2/2)

$$d\varepsilon_s^p = \frac{1}{H_b} n_g ds$$

- (A) Constant v , constant s tests, pw and pa increased to keep the volume and the suction constant
- (B) Constant ⁻p , constant s tests, pw and pa increased to keep ⁻p and the suction constant
- (C) Fully drained constant s test, pw and pa kept constant

Manzanal (2008)

4. Rheological

Contents

Introduction

Classical and Critical State Plasticity

- Failure surfaces
- Classical EPlasticity
- Critical State Plasticity

Generalized Plasticity

- Basic Model
- Bounded materials
- State Parameter
- Unsaturated

• Rheology

- Dilatancy
- A Perzyna viscoplasticity approach

• In a fluid, shear stress depends on rate of shear strain

• Differences with elastoplasticity

 $\dot{\varepsilon}^{p} = \frac{1}{H} n_{g} \left(n^{T} . \dot{\sigma} \right) \quad \Longrightarrow \quad if \ \sigma = ct \quad \dot{\varepsilon}^{p} = 0$

• Differences with viscoplasticity

$$\dot{\varepsilon}^{vp} = \frac{1}{H} n_g \left(\frac{P_c - P_{c0}}{P_{c0}} \right)^n \quad \Longrightarrow \quad if \ \sigma = ct \quad \dot{\varepsilon}^{vp} \neq 0$$

$$\dot{\varepsilon} = \dot{\varepsilon}^e + \dot{\varepsilon}^{vp}$$

• Similarities with viscoplasticity 1D

$$\dot{\varepsilon}^{vp} = \frac{1}{\hat{\mu}} \left(\frac{\tau - \tau_0}{\tau_0} \right)$$

$$\frac{\tau - \tau_0}{\tau_0} = \hat{\mu} \dot{\varepsilon}^{vp}$$

 $\tau = \tau_0 + \tau_0 \hat{\mu} \dot{\varepsilon}^{vp}$

$$\implies \tau = \tau_0 + \mu \dot{\varepsilon}^{vp}$$
 (Bingham model)

• In a fluid, shear stress depends on rate of shear strain

- R1 What is rheology? Generalization to 3D
 - Rate of deformation tensor D

$$D_{ij} = \frac{1}{2} \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right)$$

• Stress

- $\sigma = -pI + \Phi_0 I + \Phi_1 D + \Phi_2 D^2$
- Assumptions
 - $I_{D1} = 0 \quad \text{(incompressible)}$ $\Phi_k = \Phi_k \left(I_{D2} \right)$

- $\Phi_k = \Phi_k \left(I_{D1}, I_{D2}, I_{D3} \right)$ $I_{D1} = tr D$ $I_{D2} = \frac{1}{2} tr D^2$ $I_{3D} = \frac{1}{3} tr D^3$
- Hydrostatic & deviatoric

$$p_{hyd} = -\frac{1}{3}tr(\sigma) = p - \left(\Phi_0 + \frac{1}{3}\Phi_2 trD^2\right)$$

• Simple shear flow

$$v = (v, 0, 0) \qquad v = v(z)$$

$$\sigma = -pI + \Phi_0 I + \Phi_1 D + \Phi_2 D^2$$

$$\sigma_{xx} = \sigma_{zz} = -p + \Phi_0 + \frac{1}{4} \Phi_2 \left(\frac{\partial v}{\partial z}\right)^2$$

$$\sigma_{yy} = -p + \Phi_0$$

$$\sigma_{xz} = \frac{1}{2} \Phi_1 \frac{\partial v}{\partial z}$$

• Example: generalization of Newtonian fluid

 $\sigma = -pI + \Phi_0 I + \Phi_1 D + \Phi_2 D^2 \qquad \Longrightarrow \qquad \sigma = -pI + 2\mu D$

Newtonian Fluid

• Experimental
$$\tau = \mu \frac{\partial v}{\partial z}$$

 $\sigma_{xx} = \sigma_{zz} = -\overline{p} + \frac{1}{4} \Phi_{z} \left(\frac{\partial v}{\partial z} \right)^{2}$
 $\sigma_{yy} = -\overline{p}$

$$\sigma_{xz} = \frac{1}{2} \Phi_1 \frac{\partial v}{\partial z} \longrightarrow \Phi_1 = 2\mu$$

• General law $\sigma = -\overline{p}I + 2\mu D$

Material	viscosity(Pa.s)		
air	10 ⁻⁶		
water	10 ⁻³		
mud	10 ⁻²		

Bingham Fluid

• Experimental
$$\tau = \tau_y + \mu \frac{\partial v}{\partial z}$$

 $\sigma_{xx} = \sigma_{zz} = -\overline{p} + \frac{1}{4} \Phi_2 \left(\frac{\partial v}{\partial z} \right)^2$
 $\sigma_{yy} = -\overline{p}$
 $\sigma_{xz} = \frac{1}{2} \Phi_1 \frac{\partial v}{\partial z}$
 $\tau = \frac{1}{2} \Phi_1 \frac{\partial v}{\partial z}$

$$\frac{\partial v}{\partial z}$$

but $I_{2D} = \frac{1}{2} tr D^2 = \frac{1}{4} \left(\frac{\partial v}{\partial z} \right)$
 $\Phi_1 = \frac{\tau_y}{\sqrt{I_{2D}}} + 2\mu$

General law \bigcirc

$$\sigma = -\overline{p}I + \left\{\frac{\tau_y}{\sqrt{I_{2D}}} + 2\mu\right\}D$$

	ρ	$ au_{y}(Pa)$	$\mu(Pa.s)$
Jan		100-160	40 - 60
Johnson	2000 - 2400	60, 170–150	45
Sharp&Noble	2400		20 - 60
Pierson	2090	130 - 240	210-810
Rickenmann&Koch		100-800	400 - 800
Jeyapalan	1400	1000	50

Bagnold's rheometer

FIGURE 2. The apparatus (rotating parts shown hatched).

• D1 Introduction. The infinite slide

• D2 Some simple examples: <u>Newtonian</u>

$$\mu \frac{\partial v}{\partial z} = \rho g \left(h - z \right) \sin \theta$$
$$v = \frac{\rho g \sin \theta}{\mu} \left(hz - \frac{z^2}{2} \right)$$
$$v = \frac{\tau_B h}{\mu} \left(\xi - \frac{1}{2} \xi^2 \right)$$
$$\overline{v} = \frac{1}{h} \int_0^h v(z) dz = \frac{\tau_B h}{3\mu}$$

$$\tau_{B} = \frac{3\mu\overline{v}}{h}$$

$$\rho g \sin \theta h_P = \tau_Y$$

$$h_{P} = \frac{\tau_{Y}}{\rho g \sin \theta}$$
$$h_{S} = h - h_{P}$$

$$\rho g \sin \theta h_P = \tau_Y$$

$$h_{P} = \frac{\tau_{Y}}{\rho g \sin \theta}$$
$$h_{S} = h - h_{P}$$
Contents

Introduction

Classical and Critical State Plasticity

- Failure surfaces
- Classical EPlasticity
- Critical State Plasticity

Generalized Plasticity

- Basic Model
- Bounded materials
- State Parameter
- Unsaturated

- Rheology
- Dilatancy

• A Perzyna viscoplasticity approach

Bagnold's Fluid

• Experimental

$$\tau = \mu_B \sin \phi_B \left(\frac{\partial v}{\partial z}\right)^2$$
$$\sigma_v = -p - \mu_B \cos \phi_B \left(\frac{\partial v}{\partial z}\right)^2$$

 $\sigma_h = \sigma_v$

$$\sigma_{xz} = \sigma_{zz} = -p + \frac{1}{4} \Phi_2 \left(\frac{\partial v}{\partial z}\right)^2$$
$$= -p - \mu_B \cos \phi_B \left(\frac{\partial v}{\partial z}\right)^2$$
$$= \frac{1}{2} \Phi_1 \left(\frac{\partial v}{\partial z}\right) = \mu_B \sin \phi_B \left(\frac{\partial v}{\partial z}\right)^2$$

• General law

$$\sigma_{xz} = \sigma_{zz} = -p + \frac{1}{4} \Phi_2 \left(\frac{\partial v}{\partial z}\right)^2$$
$$\sigma_{xz} = \frac{1}{2} \Phi_1 \left(\frac{\partial v}{\partial z}\right)$$

$$\Phi_1 = 2\mu_B \sin \phi_B \left(\frac{\partial v}{\partial z}\right)$$
$$= 4\mu_B \sin \phi_B \sqrt{I_{2D}}$$
$$\Phi_2 = 4\mu_B \cos \phi_B$$

$$\sigma = -pI + 4\mu_B \sin \phi_B \sqrt{I_{2D}}D$$
$$-4\mu_B \cos \phi_B D^2$$

• R3 Behaviour of fluidized soil: volumetric component

Voids ratio

• R3 Behaviour of fluidized soil: volumetric component

First ingredient: dynamic CSLs

$$e_{CSL,dyn} = e_{CSL} + \beta_1(I_{2d})$$

Contents

Introduction

Classical and Critical State Plasticity

- Failure surfaces
- Classical EPlasticity
- Critical State Plasticity

Generalized Plasticity

- Basic Model
- Bounded materials
- State Parameter
- Unsaturated

- Rheology
- Dilatancy
- A Perzyna viscoplasticity approach

Infinite landslide: Perzyna, Von Mises Model \bigcirc

Velocity Profile

Infinite landslide: Perzyna

Velocity	Profi	le

	[j]] Animate	×	
	Results View		
	🔽 Automatic Limits		
	Deformation	Static	
	Endless	analysis animation	
~	🔽 Delay: 🚺 ms.	profile	
	Step: Orig 00:00		
	0		
		>[
	🗖 Save 🛛 TIFF on 🔛		
	🗖 Save MPEG on 🄛 🔿	0	
	Default Resize	Close	

Note: Sigma x = Sigma y within shear zone!

E 1.5 e7 Pa
Poiss 0.3
Dens 1500 Kg/m3
Mg 1.1
Lambda 0.51 k 0.09
Pc0 0.285 e5 Pa
gamma 0.1
delta 1.
Slope 1:4

Velocity Profile

Note: Sigma x = Sigma y within shear zone!

