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Strain localization analysis 

The strain localization analysis consists in searching the incipient of a shear 
band in a solid as a mathematical bifurcation condition for the deformation 
field.  

The strain localization phenomenon is understood as the appearance of a 
discontinuity in strain rates which marks the onset of non-uniform 
response.  
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1D Localization in a layer under simple shear 

Palmer & Rice (1973), Rice (1975), Vardoulakis (1976), Bésuelle & Rudnicki (2004)…. 
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Possibility of non homogeneous deformation in the next increment?  
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1D Localization in a layer under simple shear 
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1D Localization in a layer under simple shear 

For elasto-plastic solids the response differs in loading and unloading 
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1D Localization in a layer under simple shear 

The non homogeneous solution for Htan≤ 0 is not unique 
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1D Localization in a layer under simple shear 

Summary: 

 Non homogeneous deformation occurs past the peak of the shear stress vs 
shear strain curve. 

 The non homogeneous solution is not unique. Different solutions with 
different shear band widths or with multiple shear bands exist. 

 In the post-peak regime, deformations localize inside a shear band whereas 
elastic unloading occurs outside 

 Past peak, the load vs displacement curve is not unique and depends upon the 
actual thickness of the strain localized zone. 

 Information on the number and the width of the shear bands cannot be 
obtained with constitutive models without a  characteristic length scale (e.g. 
lectures of P. Papanastasiou, A. Zervos, E. Papamichos, F. Collin tomorrow).  
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Deformation band model 

kinematical compatibility condition 
(weak discontinuity) 

The continuity of the velocity field across 
the shear band implies that the 
tangential component of the velocity 
gradient is continuous across the band 
(Maxwell theorem) 

  0 and i j i i ju u g n       [.] jump across the shear band boundary 

The above expression assumes that the non homogeneous solution has the form 
of a planar band.  

Consequently, localization is favored when the pre-bifurcation, homogeneous 
field contains a plane of zero extension rates, as in plane strain whereas highly 
destabilizing effects as strong softening behaviour is needed to generate shear 
band formation in axisymmetric deformation. 
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Deformation band model 

Equilibrium across the shear band boundary 

  . 0i ij jt n     

Incremental constitutive relationships 

ij ijkl l kC u   

Two possibilities: 

Discontinuous bifurcation: elastic unloading occurs outside the band 

while continued elastic-plastic loading occurs within the band.  

Continuous bifurcation: The constitutive tensor is continuous across 

the band 

Continuous bifurcation precedes discontinuous bifurcation (Rice and 

Rudnicki 1980, Simo, 1993) 
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Deformation band model 
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Strain localization criterion det 0 
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Du Bernard et al., 2002 

1 : pure dilation band

1 : pure compaction band

0 : simple shear

1 0 : compactive shear band

0 1: dilatant shear band
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Deformation band model 

Strain localization criterion det 0 

Strong Ellipticity condition: ,  strictly definite positiveijkl j ln C n n

ik ijkl j lC n n 

• The strain localization criterion corresponds to the state of loss of ellipticity of 
the governing equations.  

• They change type and from elliptic they turn to hyperbolic.  

• Shear bands are thus identified with the characteristic lines of the governing 
hyperbolic partial differential equations. 

Wave propagation along the direction n 

 2det 0ik ikc   The wave velocity c is solution of : 

• If the acoustic tensor is strictly definite positive, all the velocities of 
acceleration waves are real (Hadamard’s (dynamic) stability criterion, 1903). 
• The localization criterion corresponds to a state for which the velocity of wave 
propagation in the direction normal to the band is null (stationary wave).  
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Strain localization and plasticity 

Example of a constitutive model commonly used for rocks:  

Drucker-Prager plasticity model with non associate flow rule: 

( );F q Q        

Mean stress: / 3

Mises equivalent stress: / 2, 

                     with 

friction coefficient: 

dilatancy coefficient: 

kk

ij ij

ij ij ij

s s

s
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


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Q=0 

Q=0 

For low mean stress, the behavior is frictional and dilatant, μ and β are positive.  

For higher mean stress, the behavior is compacting, μ and β are negative. 
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EXAMPLE: 2D COMPRESSION TEST 

(small strain analysis) 
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det( ) 0ij 
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Classification of the regimes of the characteristic equation 

Elliptic imaginary 

(EI) 

4 imaginary roots 
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The condition for shear band formation is derived from the requirement that 
the characteristic equation has real solutions.  

This condition is firstly met at a state CB (B for bifurcation) for which 

2: / 0 and 4 0BC b a D b ac   

 1/4arctanB c  

critical hardening modulus hB at shear banding  
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-For associate plasticity () localisation occurs at 
peak (hB=0) 

-For non associate plasticity () localisation occurs 
in the hardening regime 

4 4 4

B B

B

 
    Arthur et al. 1977, Vardoulakis, 1980 

2D COMPRESSION TEST 

For associate plasticity (BB) the Coulomb orientation is retrieved:     

B  /4/2 
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Shear band formation in rocks 
General 3D state of stress 
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Shear band formation in rocks 
General 3D state of stress 

Shear band orientation with respect to the least (in absolute value) compressive 
stress (Rudnicki and Olsson, 1998) 
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Shear band formation in rocks 
Dilation and compaction bands 
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Shear band formation in element tests on rocks 
Dilation and compaction bands 

axisymmetric compression
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Shear band formation in element tests on rocks 
Dilation and compaction bands 

axisymmetric compression

1 / 3N

from  Bésuelle & Rudnicki, 2004 
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Conjugate shear bands in perlite 

 (Milos Island, Greece) 

(photo I. Vardoulakis) 

Shear band formed in triaxial test on 
Fontainebleau sandstone 

El Bied and Sulem (2002) 
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2 dB = 660 μm : thickness of the shear band as

measured with the magnifying glass

2 dC = 300 μm :

thickness of the

crushed zone

cracked zone
intact zone

Shear band formed in triaxial testing on Fontainebleau sandstone 

(porosity 21%, grain size 0.2mm) 

 

Elbied and Sulem, 
2002, Int. J. Rock 
Mech Min Sci 
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Fault zone in porous sandstone 
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Confining pressure: 7 MPa  Confining pressure : 28 MPa  

Shear band formed in triaxial testing on Fontainebleau sandstone 

(porosity 21%, grain size 0.2mm) 

Cataclastic shear banding 
Sulem & Ouffroukh, 2006, Int. J. Rock Mech. Min. Sci 
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Porosity inside the shear band
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Compaction bands 
 

Compaction bands in sandstone East 
Nevada, (Sternlof, 2006) 

Compaction bands in sandstone Triaxial 
compression, (Fortin et al., 2005) 
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Non coaxial plasticity 

Classical plasticity flow rule: 
p

ij

ij

Q
 








• The direction of the plastic deformation is fixed by the current state of stress 
and does not depend upon the direction of the stress increment.  

• The plastic deformation rate possesses the same principal axes as the stress 
tensor, which means that it is coaxial to the stress tensor. 

• For better predictions for shear-band formation, one has to consider non 
coaxial plasticity flow rule or resort to hypoplasticity flow rules which consider 
the effect of stress rate.  

Examples: 
- Yield vertex plasticity model (Rudnicki & Rice, 1975) 
- Deformation theory of plasticity (Vermeer and Schotman, 1986, Sulem & 
Vardoulakis, 1990) 
- Non coaxial plasticity model (Papamichos and Vardoulakis, 1995) 
- Incrementally non-linear laws (Darve, 1985, Chambon and Desrues, 1989)  
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Post bifurcation behavior 
Limits of the classical continuum theory 

• In the post bifurcation regime the governing equations are 
mathematically ill-posed (loss of uniqueness, Hadamard sense) 

• Conventional constitutive models do not have an internal length 
(material parameter with the dimension of length), so that the 
shear band thickness (i.e. the extent of the plastically softening 
region) is undetermined.  

• It appears necessary to resort to continuum models with 
microstructure to describe correctly localization phenomena.  
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Post bifurcation behavior 
Limits of the classical continuum theory 

•These generalized continua usually contain additional kinematical degrees 
of freedom (Cosserat, higher grade continuua, lectures of E. Papamichos, P. 
Papanastasiou, A. Zervos, F. Collin).  

• In this case the underlying mathematical problem describing localization 
phenomena is regularized and the governing equations remain elliptic.  

• Moreover, this technique allows robust computations to follow the 
evolution of the considered system in the post-bifurcation regime and to 
extract additional information such as the shear band thickness or to assess 
the scale effect.  
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Strain localization in fluid saturated porous media 

,    is the pore pressure

,    is the fluid mass conten
1

t







 C

σ ε

σ ε

K

K

C
d

u

pp

D

Constitutive equations (Benallal & Comi, 2003, Coussy, 2004) 

,  

Stability of homogeneous deformation 

 exp i st   X X n.xPerturbation field:  

2det det 0        n.C .n n.C .n
u dsD k

Instability in the form of unbounded growth of the perturbation occurs when:  

k is the permeability of the medium 
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Strain localization in fluid saturated porous media 

,  

Strain localization occurs when the drained or the undrained acoustic tensor 
becomes singular (Rudnicki, 2000) 

ordet 0    det 0       n.C .n n.C .n
d u

 The two conditions must be checked on the real deformation path (which is 
not necessarily drained or undrained.) to infer which one is met first.  

 For associative behavior, it is shown that the singularity of the drained 
acoustic tensor occurs before the singularity of the undrained acoustic tensor 
which means that instability occurs when the condition of localization of the 
underlying drained deformation is met (Rice 1975, Benallal & Comi, 2000) 

 For non-associative behavior, instability is controlled either by the drained or 
the undrained properties, depending on the constitutive equations and on the 
loading path.  

 For compactant behaviour as for highly porous rocks, conditions of localization 
can be met for undrained response before they are met in terms of the 
drained response.  
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Strain localization in fluid saturated porous media 

,  

( 60 MPa, 0.3, 7500 MPa, 1, 0.08, 0)E M bn       

  

Critical hardening modulus at localization under drained and undrained conditions for 
(a) associative flow rule, (b) non associative flow rule  (after Benallal & Comi, 2003) 

(a)                                                                                                         (b) 
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Example of a saturated layer sheared in plane strain under 
globally undrained conditions  

,  

(Rice, 1975, Vardoulakis, 1985, 1996, Rudnicki & Garagash, 2000, Garagash, 
2005) 
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0 0
z z

  
 

 

Shear strain and volume strain 

 
1 1

;    p pd d d d d p d
G M

     

Uniform state of stress in the layer 

Elasto-plastic constitutive equations 

  
1

;   p p pd d d p d d
H

      

,  = const.p
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Fluid mass balance 

Fluid mass per unit volume of porous medium f fm n

n is the pore volume fraction (Lagrangian porosity)  

f  is the density of the saturating fluid.  

f fm q

t z

 
 

 
qf  is the fluid flux 


 



f
f f

f

p
q k

z



h
Darcy law for the fluid flow, with viscosity hf through 
a material with permeability kf 

For incompressible fluid and solid phase 

2

2

 




p

tz




/ ( ) is the permeability f f fk  h
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Summary of the governing equations: 

0 0
z z

  
 

 

  

    

1 1

1

   

    

d d d d p
G H

d d p d d p
M H

    


    

Equilibrium equations: 

Constitutive equations: 

Fluid mass balance: 

Boundary conditions: 
0drained b.c.:  ( / 2, )

undrained b.c.:  ( / 2, ) 0

  


  



p z L t p

p
z L t

z

2

2

 




p

tz



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Homogeneous drained response: 

0dp
1 1

 or 
1 /

 
   

 

H
d d d d

G H H G
   

Homogeneous undrained response: 

 

  
 

0 

1 1
 

1 /

   



     

 

M
d d p d

H M

H M
d d d d p d d

G H H M G


  




      



d hd 

 ud h d 

 1 /



 

H M

H M G





1 /

H

H G
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Stability analysis of undrained deformation 
Fluid flux is prevented at the 
boundaries. However, internal fluid is 
permitted inside the layer.  

Homogeneous solution: 

0 0 0 0, , , p  

0 0 0 0 0; ; ; ; p p p                    

Introduction of small perturbation 
quantities: ,  etc... 

0 

L 

z ux(z,t) 

uz(z,t) 

x 

p, T 

qf=0 0(t) 

0 00, 0 , , 0, 0
z z

 
     

 
      

 

Equilibrium equations: 

The stress field is uniform within the layer 

Physically, perturbations may correspond to either material imperfections or 
disturbances in the loading system 



Stability analysis of undrained deformation 

Fluid mass balance equations Constitutive equations 

1



  

p
H

p p
M H







2

2

 




p

tz



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The spatial dependence of the perturbations is decomposed into Fourier modes 
with wavelenth λ: 

2
(0) cos

 
  

 

st z
p P e





λ = L/n , n is an integer, the zero fluid flux 
boundary conditions at y = ±L/2 is satisfied. 

s is the growth coefficient in time of the 
perturbation 

2

2

 


  

p H p
M

t H M z




2
2 

   
  

H
s M

H M




 
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Stability analysis of undrained deformation 

if 0, then 0 


H
s

H M
This is equivalent to a diffusion equation with 
negative diffusivity or a diffusion equation with time 
running backwards: Non-uniformities become more 
localized  rather than more diffuse with time. 

2

2
 with 0

 
 

 

p p
c c

t z

 For dilatant material, instability occurs 
when H passes through zero from 
positive to negative: i.e. For dilatant 
hardening materials instability occurs 
when the underlying drained response 
passes through a peak. 

 For compacting materials, the 
denominator changes sign when the 
undrained modulus hu passes through 
zero   
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Stability analysis of undrained deformation 

 For dilatant materials, instability occurs for H < 0.  
 The shortest wave length grows most rapidly.  
 The perturbation wavelength cannot be arbitrarily small as it is physically 
 bounded by the material microfabric length (grain size).  

 
 For compacting materials, at the peak of the undrained stress-strain curve, 

hu=0, and the perturbation rate is infinite for all wave lengths (ill-posedness). 
 

 Necessity to incorporate more physics to regularize the mathematical ill-
posedness:  

 Constitutive model with microstructure  
 Rate sensitivity 
 Inertia 

2
2 

   
  

H
s M

H M




 
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Stability analysis of undrained shearing for rate-sensitive materials 

Yield condition:  

 , ,

, ,  (rate and state friction law)
( ) ln

 

  
  

   

p p

p p

f p

f f f
h

p

   

 
  

Governing equations for the perturbation quantities 

0
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
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
       
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


2

2
0 0

    
             

p p
p p p

p p
h M M h

t z

 
     

 

(Vardoulakis, 1996, Garagash, 2005) 



46 

Stability analysis of undrained shearing for rate-sensitive materials 

2 2
2

0 0

2 2
0

    
             
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s h M M s M h

   
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  

2
cos

 
   

 

p st z
e






Quadratic equation for the growth coefficient s  

If a solution has a positive real part, then the corresponding perturbation grows 
exponentially in time. 

2

0

2
0

 
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 
p

h M M
 

 


This condition occurs first for the largest wave length i.e.  = L  i.e. diffuse 
instability occurs first for undrained shearing of compacting materials 

Condition for the existence of positive growth coefficient 
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Stability analysis of undrained shearing for rate-sensitive materials 

2

0

2
puh h M

L








 
     

 

 Strain-rate sensitivity is amplified by pore fluid diffusion to delay the 
instability. 

 Higher shearing rate leads to earlier instability. 
 If the layer thickness is small enough, diffuse instability may be prevented 

(scale effect) and localized instability will occur first. 

Stability condition 
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CONCLUSIONS 
 Strain localization occurs when there exists one direction for which acoustic 

tensor becomes singular (Rice’s criterion) 

 Advanced constitutive models (non associate, non coaxial) allow for good 
predictions of the occurrence of strain localization  and of the orientation of the 
shear band 

 Classical continuum models are unable to describe the finite thickness of the 
shear band 

 The underlying mathematical problem becomes ill-posed in the post localization 
regime 

 Necessity to resort to continuum models with internal lengths (micromorphic 
continuum models) to regularize the mathematical problem in the post 
localization regime and to restore ellipticity for FEM applications.  

 For saturated porous media, instability is controlled either by the drained or the 
undrained properties, depending on the constitutive equations and on the 
loading path. The inelastic volume changes play a key role in the occurrence of 
localized or diffuse instability. 

 


