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1. Borehole stability with applications in Oil and gas industry and Tunneling

2

Typical boundary value bifurcation problems in 
geomechanics

Martin 1997
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2.   Multi-Layer buckling with application in the folding of geological formations
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3. Spalling and buckling of surface parallel cracks with application 
in rock bursting in mining He et al. 2012
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• Borehole failure is an important geomechanical 
problem for the assessment of the integrity of 
tunnels, wellbores and perforations in the field

• A common failure mode is the formation of breakouts

5

1     Borehole stability
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• Orientation of breakout failure 
depends on the relative stress 
magnitude of 
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Breakout failure modes
(Maury 1992)
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Hollow cylinder test
• Typical test for studying hole failure 

for borehole stability

Field
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Hollow cylinder test (with fluid flow)
(Papamichos et al. 2001)

 Typical system
(SINTEF Petroleum Research, Norway)

 Specimen size:
o.d. 10/20 cm, i.d. 2/5 cm

 Isotropic confining stress up to 100 MPa
 Oil / Water flow up to 4 L/min or 40 MPa fluid 

pressure
 Gas flow
 Temperature up to 80°C
 Axial, internal and external diametrical  

deformations
 Continuous sand production measurements
 Radial permeability measurements

Sand trap

Fluid inlet

Specimen
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Photographs SINTEF Petroleum Research, Norway

Loading cell
Instrumented jacketed
specimen

Hollow cylinder experiments
HC sample from a North Sea core
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• Cavity deformations
– The deviation of the 2 measurements indicates cavity 

failure
– AE location and borescope data confirm this
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Hollow cylinder failures
Effect of stress anisotropy on failure pattern

• CT scan sections normal and 
parallel to the hole axis

• Cavity failure on Red 
Wildmoor sandstone:
– (a) high lateral stress
– (b) high axial stress

(a)  

 

     

 

 

(b)   
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True triaxial apparatus

• MTS True triaxial cell
– 100 MPa confining stress
– 50 MPa vertical deviatoric stress
– 50 MPa horizontal deviatoric stress
– Truncated samples, 200 mm diameter
– Hollow-cylinder tests
– Radial flow

12
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• Underlying hypothesis of the bifurcation theory is that breakouts and shear 
bands are the result of material instabilities, termed equilibrium bifurcations

• Bifurcation approach associates failure with the occurrence of the 
instabilities in contrast to classical procedures where failure is usually 
assumed ad hoc to be an intrinsic material property associated with the 
elastic-plastic limit

• Elastoplastic solutions associated with a yield/failure surface 
UNDER-PREDICT hole failure
• Conservative

• NO SIZE effect for the hole strength is predicted
• Small holes stronger than large holes

13

Why bifurcation theory ?
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• Many studies from the late 1980's studied hole failure 
as a bifurcation phenomenon
• Vardoulakis I, Papanastasiou P, Papamichos E, 

Sulem J, Guenot A, van den Hoek PJ, etc.

• From Foreword by Cor J Kenter, Head Rock Mechanics, 
Shell Research
• "Suddenly a technology that was initially regarded 

as rather academic contributes to million dollars 
savings."

14
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Physical boundary value problem
• In situ stresses ⇒ Stress concentrations around the hole

– Elasticity: Kirsch solution
– Elasto-plasticity: Solutions for Mohr Coulomb F, Q
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• Stresses around a borehole essential for any borehole related problem
• Drilling, production, hydraulic fracturing, water injection, waste disposal, 

CO2 injection, tunneling, mining, etc.

16

Drilling of borehole/tunnel
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• 3 normal stresses: Radial σr, tangential σθ and axial σz

• 3 shear stresses: σrθ (or τrθ), σθz (or τθz), σrz (or τrz)

17

Stresses in cylindrical coordinates
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Examples

1. Drilling of a vertical borehole under 
isotropic in situ horizontal stresses

2. Hollow Cylinder (HC) test

18

Axisymmetric problems
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• uθ = 0
• σrθ = σθz = 0
• εrθ = εθz = 0

• Equilibrium equations

19

Simplifications due to axisymmetry
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• Usually in our problems (drilling, tunneling, HC, HF, ….)
• No shear :   σrz = εrz = 0
• Body forces due to gravity: e.g. in a vertical hole:   fr = 0, fz = -ρg

• ⇒ equilibrium equations decouple and can be solved independently

⇒
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further…
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• Substitution of σ - ε and ε – ur equations in equilibrium equations

• One unknown ur (pore pressure neglected for  simplicity)

21

Elastic solution for axisymmetric problem
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• Equilibrium eqn in terms of displacement ur

• Direct integration 2 times gives

• c1 and c2 are integration constants to be solved from the b.c.

22
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• Displacement ur and strains εr and εθ

• Stresses σr, σθ, σz
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Elastic solution for axisymmetric
problem
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Elastoplasticity - Plastic region 
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The stresses in the plastic region must satisfy:

• Equilibrium equation:
• Yield condition:

• Substitute in equilibrium equation:

• Solve equation with b.c.
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Elastoplastic boundary at r = rb
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• Solution is:

• At EP boundary:

• Radial stress must be continuous with stress from elastic region
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Stresses in the borehole
• Linear elasticity + perfect plasticity with Mohr-

Coulomb yield function

• Yield when σext = ½ UCS
(because of stress concentration)
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Cavity failure stress vs. UCS for sandstones

Theoretical line
σext = ½ UCS

Experimental data
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Why?

• Rock near the cavity does not fail when it 
reaches its peak strength

• Instead it yields and plastifies creating a 
plastic region

• Remaining rock supports more stress 
until macroscopic localization
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Macroscopic rock failures
in laboratory tests
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Size or scale effect on failure stress

• Any size hole in the earth (an infinite medium) 
has the same diameter

– Classic theories

• Experiments show that:
“Small holes are more stable than big holes”

– Theories with internal length are needed

• NOTE:  What is size/scale dependent is the 
localization failure and not the continuum 
behavior of the rock
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Formulation of bifurcation criterion within a FE scheme

• Bifurcation criterion for the global BVP
• Criterion gives the onset of 

deviation/bifurcation of classical 
solution of uniform hole closure

• Formulation is based on the 
assumption that in addition to the 
trivial solution of cylindrical 
convergence of the hole during the 
primary loading path, there exists 
another non-trivial warping solution 
that fulfils homogeneous boundary 
conditions

32
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Lateral borehole failure

• Warping of hole surface develops 
as (a) spalling or (b) shear banding 

33
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Post-bifurcation numerical simulations
(Papamichos 2010)

34
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• Non trivial solution dunon_trivial = dutrivial + dû (or dεnon_trivial = dεtrivial + dὲ)

• Both dunon_trivial and dutrivial must satisfy the same equilibrium b.c.
(e.g. loading {t} )

• For the incremental form of the virtual work equation this means

• Then dὲ (and dû) satisfies a condition of zero additional loading or the 
homogeneous system

35
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• Non trivial solution for lateral hole failure

• m = 1, 2, 3, ... is the wavenumber of the warping mode
• Wavelength W = 2πri/m
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Bifurcation modes
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• Shape functions relate displacements to nodal values

• Strain – displacement differential operator

• Gives finally
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• Substitution into the virtual work eqn

• Gives

• Where contains only the relevant terms of

• We can simplify by direct integration over θ and z to obtain

• Within a FE scheme, the solution to this eigenvalue problem is obtained by requiring 
that the global stiffness matrix [K] becomes singular, i.e.

• Bifurcation condition:
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Comments

• Reduction to an 1-d problem
• Each node has three degrees of freedom. These are the radial Vr and tangential Vθ

displacement amplitude and the Cosserat microrotation Wz amplitude
• The bifurcation problem requires that the global stiffness matrix becomes singular
• In inhomogeneous problems like the present, failure of local stability conditions does 

not necessarily imply loss of uniqueness
• In fact, the obtained bifurcation points correspond to loading states where elements 

close to the hole have entered the softening regime. Although at these elements the 
local stability criterion is violated, the global stiffness matrix remains positive.

• The loading stresses at which the bifurcation condition is satisfied depend on the 
wavenumber m of the bifurcation mode. There exists a critical wavenumber mcr that 
corresponds to the least required load.

• It is obtained by solving the bifurcation condition for various m and selecting the mcr
corresponding to the least required load. It maybe, therefore, assumed that the hole 
would fail under mcr.

41
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Simulation of hollow-cylinder experiments

• Hollow cylinder tests under isotropic and plane-strain loading
• Identification of onset of bifurcation

42
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• If the internal length R is known we can make forward prediction
If R is NOT known, calibrate in one test and forward predict the other tests

• The minimum in each curve leads to the selection of the critical mode mcr
corresponding to the least external radial stress

43
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Size effect of the failure stress

• Vary internal radius ri to obtain size effect (scales with R)
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• mcr decreases with R/ri
– Large holes -> large wavenumber

• Experimental and numerical evidence show that although localization 
may initiate under a high mode, a lower mode may finally evolve

• Indeed experiments show that an initial mode m = 6 localization evolves 
to an apparent mode m = 3 failure [Haimson 1993]
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Axial failure

• Axial warping of hole surface develops as 
(c) spalling or (d) shear banding 

.

46
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Axial failure

• Non trivial solution for axial hole failure
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• Following the same FE discretization, the solution to this eigenvalue 
problem is obtained by requiring that the global stiffness matrix [K] 
becomes singular, i.e.

• Bifurcation condition:

• Where ξ = mπ/H
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2.   Folding of elastic/viscoelastic layered media as a 
bifurcation problem

• Constitutive equations of large strain 
elasticity theory are used to study buckling of 
elastic layered media

– Geometric non-linearity

• Buckling modes can explain various periodic 
structures in geology such as folds

• Maurice Biot has presented an analysis of folding 
of stratified sedimentary rock in a series of 
pioneering papers and in his book "Mechanics of 
incremental deformations" (1965)

49
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• The folding mechanism considered in Biot’s theory is the spontaneous 
folding caused by instability under a compressive load acting in a direction 
parallel to the layers

• From the geological viewpoint, a purely elastic theory is not sufficient to 
explain folding
– Time-dependent phenomena such as viscous behavior must be taken into 

account
• Biot (1957) developed a general theory of folding of a compressed 

viscoelastic layer embedded in an infinite medium of another viscoelastic 
material
– In general, there exists a lower and a higher critical load between which folding 

occurs at a finite rate with a dominant wavelength
– This is the wavelength whose amplitude increases at the fastest rate
– An experimental verification of Biot’s theory of folding of stratified viscoelastic 

media in compression is presented by Biot et al. (1961)

50
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Buckling of a layer under initial stress

• Layer of thickness 2h under in situ stress σ1 , σ2

• Do they exist other solutions superimposed on the large strain uniform 
compression? 

– They will satisfy homogeneous boundary conditions

51
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Large strains/deformations

52

• C = initial configuration
• = Current configuration
• C* = Resulting configuration

• σij = stresses in C
• = stresses in 

• Stress vectors in initial and 
current configuration
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• σij = Cauchy stress tensor (symmetric)

• πij = 1st Piola-Kirchoff stress tensor (non-symmetric)

• = objective part = Jaumann stress increment of the
Cauchy stress

• = geometric part

• Jaumann stress increment is related to strain increments through
hypoelastic laws (constitutive)

53

ij ij ij ij ik kj ik kj ij kkTπ π σ ω σ σ ε σ ε∆ = − = ∆ + ∆ − ∆ + ∆

ij

ik kj ik kj ij kk

T

ω σ σ ε σ ε

∆

∆ − ∆ + ∆



Petroleum Research Aristotle University of 
Thessaloniki

• Jaumann stress increment is related to 
strain increments through hypoelastic
laws (constitutive) for anisotropic
materials in plane-strain

• Incemental equilibrium equations
• Incremental boundary conditions

from the current configuration C_bar to 
the resulting configuration C* are
written in terms of the 1st P.K. stress

54

11 11 11 12 22

22 21 11 22 22

12 122
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• Substitution into the equilibrium equations

• where

• Assumed displacement to be given in terms of two unknown amplitude 
functions
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• Substitution in the equilibrium equations gives

• For non-trivial (non-zero) solutions for the displacements :      det = 0
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• Four roots give four solutions: Complete solution is a linear combination of the
solutions w/ ak integration constants

• Tractions                           are

• where
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At layer boundaries

• Eigendisplacements and tractions
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In matrix form solution for 1 layer

• For i = 1 upper layer and i = 2 lower layer
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Buckling of a layer system—the transfer matrix 
technique

• System of n layers of different 
materials and different initial 
stresses parallel to the layer axis 
with a global coordinate system 
located at the top layer

• Assuming perfect adherence at 
the interfaces
– Incremental stresses and 

displacements are continuous 
along the interfaces
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• Amplitude of the incremental stresses
and displacements for the
ith interface of the jth layer

• OR  
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• Continuity of the incremental
displacements and tractions at all 
interfaces, the integration constants of 
every layer are linked to the integration 
constants of the top layer as follows

• In order to formulate the eigenvalue problem we have to consider boundary 
conditions only at the upper and lower boundary surfaces of the layered 
medium
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Example

• Zero tractions at the upper boundary surface
(i = 1, j = 1) and zero displacements at the
lower boundary surface (i = n+1, j = n)

• = 2 last rows of
• = 2 first rows of

• Homogeneous algebraic system of equations for the integration constants

• For non-trivial solutions
• The least load σ1 that satisfies the bifurcation condition
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Buckling of homogeneous half space

• The buckling condition for a homogeneous half-space is independent of the 
wavelength of the considered mode

– No length appears in this problem and consequently the various modes corresponding to 
different wavelengths cannot be differentiated
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Buckling of layer on a half space

• Introduce length to select a particular buckling mode

• An example is the buckling of a layer with height h on
top of a half-space due to a horizontal
homogeneous strain field
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Critical buckling stress vs wavenumber β = 2πh/W

• GL/G = 0.5 – 1.5

• For β → 0 or →∞
• σcr = σ cr _half_space

• For stiffer layer at the top
a dominant wavelength
is obtained
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Buckling of a half-space under
geostatic compression

• (A) Buckling of a layer on a 
rigid base under constant 
horizontal load: Wcr → 0

• (B) Buckling of a half-space 
under horizontal load 
increasing with depth Wcr →∞

• (C) Buckling of a layer under 
horizontal load increasing with 
depth Wcr = selected

• Two competing factors lead to 
wavelength selection
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Interfacial instability

68

• Buckling load for stiff layer
• Symmetric mode only
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Viscoelastic materials

• Exists dominant wavelength for fastest growth at given stress level
• Critical buckling stress of a viscoelastic layer on a viscoelastic half space with 

relaxation constant ratio r/rL = 0.01 (Maxwell material) and rate of growth p.
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• Axial splitting in uniaxial 
loading, spalling of a free 
surface and rock bursting are 
common phenomena in 
brittle materials, like rock and 
concrete, under compressive 
stresses parallel to a free 
surface
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3.  Spalling and buckling of surface parallel cracks with 
application in rock bursting in mining
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• Axial splitting and spalling as the result of 
interaction between surface instabilities 
and surface parallel Griffith cracks

• Surface instabilities in a uniformly stressed 
half-space, produce secondary tensile 
stresses, which, for material points close to 
a free surface remain unbalanced in the 
direction normal to the surface

• These tensile stresses cause latent, surface 
parallel cracks to open and thus magnify the 
effect of diffuse bifurcation

• Tensile stress concentrations develop at the 
crack tips resulting in unstable crack growth 
and finally axial splitting and spalling of the 
material.
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• Analytical solution exists
(Nazarenko 1985, 1986)
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Buckling of a half space with a single crack

σ/G
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• Distributed damage in the material
• Numerical solution (Vardoulakis + 

Papamichos 1991) based on Displacment
Discontinuity method

• For 1 periodic array of cracks (Keer 1981)
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Buckling of half space with arrays of cracks

σ/G

σ/G
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• Eigendispalcements affect
primarily the row of cracks

• Progressive spalling that starts 
close to the free surface and 
subsequently progresses deeper 
into the material
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Muliple arrays of cracks

(Papamichos, Labuz, Vardoulakis 1994)
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• Boundary conditions at the crack

• A way of estimating stress intensity factors derives from the strain energy associated 
with the crack

• The strain energy for one-half crack
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Stress intensity factor at the tip of a pressurized crack
(Papamichos and Vardoulakis 1989)
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• Linear elastic fracture mechanics solutions which do not usually take into 
account the initial stress field give a standard relationship between the strain 
energy rate ∂W/∂α and the stress intensity factor K

• Repeat calculation by including initial stress field

• By compute numerically W for slightly different crack lengths and solve for K
• K combines KI and KII modes: 
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2 2 2
I IIK K K= +
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• K∞ = p√α     Crack in an infinite medium

• For σ = 0: K/K∞ = 1.4968
• Erdogan et al (1973) solution
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Results for K/K∞ for h/α = 1

σ/G
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Rock 
mechanics is 
KAMIKAZE

Infinite 
stability!

PREIKESTOLEN, NORWAY
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Life is risk
management
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