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Outlook

>

» Localized deformation

P Elastoplasticity

» Anisotropy

» Coupling
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Derivation of the balance equations

» The laws of physics are invariant under a
transformation between two coordinate
frames moving at a constant velocity
with respect to each other.
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Conserved quantities
EIWF‘FWC_Ekm

» W, is the work of the forces
» W, is the work of the couples
» E,, is the kinetic energy

For a single, rigid object this means:

WF+Wc:f-V+m-W

. 1 1 .
FErin, = §mv V+mv-v+ §WTQW +wlOw
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Galilean change of observer

» A second observer moves at constant linear velocity with respect to the initial system

v

v

=l
g-li
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Galilean change of observer

» A second observer moves at constant linear velocity with respect to the initial system
=0 & w=w & m=m & v =v-—a
» Then it must hold that:
(WF +We — Ekin)g = (WF +We — Ekin)
1

f-v + m-w—f’-v’—m-W:imv-v—l—mv-\?+

. 1 1 ...
+ §WTQW +wlOw — §mv’ v —mv v — inQW —wlow =

1
f’-a:[(f’—f)-V}F[ma»v%—ma-v]—

a




CHALMERS

UNIVERSITY OF TECHNOLOGY

Galilean change of observer

Since a is arbitrarily selected,

1
f’-a:(f’—f)-v+ma-v+ma»\'f—§ma-a

means that the following holds:

Force transformation rule f'=¢f
Mass balance m =

Momentum balance f =mv+mv
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Leibniz change of observer

» A second observer moves at constant angular velocity with respect to the initial system
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Leibniz change of observer

» A second observer moves at constant angular velocity with respect to the initial system

B = %m 0'x+0"v| ! 0'x+0"v|+
+ m[0"x+ 07| [0 Wik +20v+ 074 +
bW b0 O [w b+
b oW b0 0 [0 (w-b)+ 07w+
+ o[ b0+ w0 007 [w—b

where O is a rotation tensor.
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Leibniz change of observer

» The previous equation yields the already known mass balance and
» The couple transformation rule

m =m
» the angular inertia tensor balance

0=WG0 1+ 0W

» and the angular momentum balance
m = 0w + 0w

» where W is the rotational velocity tensor corresponding to the vector w.
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Micromechanical stress tensors — two particles in contact

» Consider the depicted grains and their contact.

» The relative displacement at the contact is:
u(id) — ylia) _ yae)

(@) () ->< (x —x)

’\{1(?1)

» with
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Micromechanical stress tensors

» The same principle can be applied to assemblies of rigid particles, such as granular media

Assumption: a

» The displacement and rotation rates are affine:
u® =1 4+ vu? . x®

w) = w® + vw? . x()
» meaning that

Pt = > ((fa 219 : (VVO —EO))

acC

+ Z ((f* x 1) @ (x* —x9) : Vw©) + Z (m* ®1* : Vw?)

acC acC
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Affinity of displacements and rotations
Experiment DEM Simulation

DEM Simulation Velocities Displacement Fluctuations Velocity Fluctuations
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Micromechanical stress tensors

Assumption: P =V (g ; £+ u: 5)
» meaning that

P alternatively

B = ;Z(m 2 1%) + — Z @ % 17) ®1%)

acC acC
Tordesillas and Walsh (2002)
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Comparison of different formulations
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Comparison of different formulations
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Stability — potential energy characteristics

» A force field exists

» To move something in the force field, work must be
done

» The force field is conservative

» The force field itself does negative work when &
another force is moving something against it

» Itis recoverable energy ‘

Yy 7

Minimum potential energy -> Stable equilibrium
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Stability — Equivalence of virtual work and balance equation

ﬂ t

» The solution coincides with the one of the virtual
work method

» The balance equations read
0ijj+ fi=0& (0i;+ fi)u; =0
(0ijui) ; — oijui; + fiv; =0«

oijeij = (Tiju;) ; + fiug

oNl=>5

» Integrating over the domain and using the
divergence theorem

/aijefjdw:/fm,}"dw%—/tiu;‘ds
Q w S
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Stability — Mathematically?

» A problem is well posed when
» There is a solution
» The solution is unique
» The solution's behavior changes continuously with the initial conditions

» Deviations lead to numerical instability 4 'T‘
» This has nothing to do with energy
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Strain localization

» More than one possible solution

S
Desrues &Viggiani (2004) 0.3
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And the energy?
» A simple example: uniaxial test with radial strain rate control
Oyy» Cyy
2 0.15
1.5+ =
‘© o 01¢f
Opp = 0 02_ 1 i
érr =C 8 S
7 £ 0.05
0.5 2
0 : : ‘ 0 : : :
0 0.1 0.2 0.3 04 0 2000 4000 6000

strain [%] time [sec]
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And the energy?

» A simple example: uniaxial test with radial strain rate control

2 0.15
T & 01
a =,
=3 <
E
? g 0.05¢

0 : : : : 0 ‘ : :
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Strain localization — Thought example in 1D

» Consider the constitutive response of the material point to be the one shown here.

PSS
tot — 20’f€f 20'f€c
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Strain localization — Thought experiment in 1D

» Assume a shear band forms with a width of d. Two springs in series can be viewed as

the mechanical equivalent. _ o
» The mechanical response for each spring is

lF lekel—(k—l—h)<61—6f>

L, 1 d 09 = ICEQ
» The stress becomes zero when €1 = €5 + €,

2 L—d  p Meaning that it becomes zero at

d
o =01+ 09 Ez(ﬁf"'ec)z

€1d + EQ(L - d)
L
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Strain localization — Thought experiment in 1D

» For different (decreasing) values of d:

157

stress [MPa]
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Controllability is another thing:

» A simple example: uniaxial test with radial strain rate control

Oyy, Cyy

Typpy =
.
E,r,,r = C 2 0.15
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Elasto-plasticity

» Itis assumed that deformations are reversible
(elastic) within a limited domain

fla) <0

P Strain rates are decomposed into reversible and
irreversible:

.'. _ ‘e op

» To solve the problem, the direction of the plastic
strain increment is required. It is assumed that

15

5 . 10
axial strain [%]

Castellanza et al. (2009)

Pl — %9
i = Do
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Associativity
pl af
» The flow rule reads: €i; = A
80'@'3'
1.5 =
- Q
£)=0.002 @ 135
@
£
1.0F £ 90t
o w
L 9
b:H c_% 45+
05} O Experimental = O Experimental
---- Approximated: Case 1 2 0 ---- Approximated: Case 1
2 —— Approximated: Case 2
------- D ——-- Approximated: Case 3
0.0 - 5— 5 45 : : -
-1.0 -0.5 0.0 0.5 1.0 1.5 0 45 90 135 180
o, /0'0 Loading direction ¢ /°

Ishiki et al. (2011)



CHALMERS

UNIVERSITY OF TECHNOLOGY

Convexity &associativity

P Assumption: The stress state is such, that the dissipation
rate is maximum (Hill 1948)

» For normality, the dissipation rate is maximum with
respect to the stress, if the yield surface is convex.

Wy = (045 — 07;) €, > 0

» which would mean that
» the flow rule is associative
» the yield surface is convex

» The underlying assumption is that the body tries to
minimize its internal energy as fast as possible.
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Convexity &associativity

P Assumption: The body tries to minimize its internal
energy as fast as possible.
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Non associativity

— plastic strain
increment direction

--= total strain 1
increment direction \

Failure surface % ‘
e
oS eni

-75 -50 -25
X (kPa) No volumetric deformation
(ds? -def)

Gutierrez and Ishihara (2000)



Maximum shear stress (GPa)
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Non convexity?

Tests on fused silica glass
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Meade and Jeanloz (1988)

FEM on honeycombs

Ti2
10 -05 00 05

-1.0

-0.5
-0.5

0.
).0 0.075

0.5

1.0
1.0

Gliige and Bucci (2017)



CHALMERS

UNIVERSITY OF TECHNOLOGY

Limitations

» The dissipation rate should always be non negative, or

» Dissipated energy along a closed loading path should be non-negative

» The angle between stress vector and plastic strain increment vector can never be
more than 90°

» Different types of constraints can determine the flow direction
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Limitations
Meade and Jeanloz (1988)
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Anisotropy

» Usually ignored because:
» Usually not known
» Experimentally hard/expensive to get

» Already incorporated in the failure envelope from
experimental data

» We will take a look at what this means for the
elastic energy
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Anisotropy — Experimental observations

» For cohesive materials the yield locus is affected:
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Anisotropy — Experimental observations

P For granular materials the elastic response is affected:
300

Ipg = 0.16
—— Ipp =062
— Ipp=095

200

AEQ A AQ
100
’ E
{ ) > X,
Aep @/ AP o
response
envelope -100]
average stress
® response to volumetric strain cycles
® response to deviatoric strain cycles
-200 : :
0 100 200 300 400 500 600
P [kPa]

Wichtmann (2016)
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Anisotropy

» To simplify matters, a 2-D elastic anisotropy is considered:

[ 1

Vyx

€xx E. E, Oxx
€ =t . 0 o
vy o B, Yy
L €Ty
05 05 05 05 05
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180 O 0 180 8 0 180 CD 0 180 (Q 0 180 0 0
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200 300 240 0 30 200 0 30 20030 240 030
5 5 5 5 T 5 T
0 0 0 0 i 0 ‘
5 5 5 5 ! 5 L
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Anisotropy

» The elastic energy depends on the relative angle and the degree of anisotropy:

1.2
15
111
P
LL
0.9 0.5
2
3
0.8 1 2
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Anisotropy
» The minimum is found for coaxial tensors, when the stiffness ratio equals the stress ratio:
12 137
—a=0
1.2+ a=T7/2
1.1+ o lo
XX yy
1.1+ —0 o
—_ yy XX
- 1F L
|_lo LIJo Tt
5 M
0.97 0.9 /
08F 08r \/
0.7 ‘ ‘ '
0.7 ‘ ‘ ‘ 0 1 2 3
0 0.5 a [_] 1 1.5 EXX/Eyy [_]

» In general granular media try to move in this direction
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Implications for modelling

P Elastic strains are miscalculated

P Elastic strain increments are usually much smaller than the plastic strain increments

» The elastic energy is overestimated
» It is usually of no direct consequence to the results or application

» Energy ‘invested’ in changing the internal structure is neglected

» This may affect coaxiality, but does not play a role for monotonic coaxial loading
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Structure evolution: an example

» Work rate balance in general _
O'z'jéij = Eel + D

» Ignoring the evolution of anisotropy

0ij€ij = O;5€ z; 'y D=

_ -pl
D = oy €
» Considering the evolution of anisotropy

oF
0ij€ij = 05€; ¢y "4+ D=
7 da OF

D O.‘.' O- l a
ij€ij ) €;
J1) 7% o
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Coupling: Thermoelasticity

» The heat equation reads

oT oT
c— — V. (kVT) = g c— = kV*T
peo (kVT) = gy pe
» where p is the density » for constant conductivity and no
» cis the specific heat capacity volumetric source

» Tis the temperature
» kis the thermal conductivity
» ¢, is the volumetric heat source

» Temperature increase causes thermal expansion

er = —aol’
» where a is the thermal expansion coefficient and compression is assumed positive
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Thermoelasticity — one way coupling

» The heat diffusion is assumed uncoupled from the elastic response:

oT :
PCor V. (kVT) = g,

» The elastic response depends on the (independently evaluated) temperature change
o=E(e—aTll)

heat diffusion >
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Thermoelasticity — a simple example

Consider a small uniform volume.
No boundary displacements are allowed.

The temperature is increased from T, to T,.

vVvyyvyy

The heat equation becomes

oT . or .
peor — V. (kVT) = q, :>ch = Gy = q» = pc (T — Tp)

meaning that the energy density stored due to the temperature change is
Q = pc(Ty —Tp)

\4

» generated by the volumetric heat source
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Thermoelasticity — a simple example

» The thermal expansion — since the material is constrained —
causes an increase in mean pressure:

o=—E (a1} —Tp)I)

P increasing the elastic energy stored to

1 1
E:§O"€:§KQ{2(T1—TO)2 Q:pc(Tl_TO)

» Where did this come from?
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Thermoelasticity — coupled

» The heat equation is derived from the energy balance and Fourier’s law:
AQ — Qin — Qout 7 = —kVT
» If the internal energy does not depend only on temperature: heat diffusion

T
pc%—t + Toap — V. (kVT) = g,

P again under assumptions:
> (Tl—To)/Tg <<1

» All coefficients are independent of temperature and pressure
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Thermoelasticity — a simple example

» How large is the discrepancy?

1 1
F = 50’ - € — §K032(T1 — T[})Q

» Temperature increase of 100 °C results in a discrepancy of

o s i cbim)—

Aluminium 70000 18.51
Concrete 20000 12 1.44
Water 2200 69 5.24

» Volumetric compression by 10 results in elastic energy of 105, 30, 3.3 kJ/m3
correspondingly
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Closing remarks

» Take the time to find out the underlying assumptions

» Don’t use models outside their domain of validity

» Keep in mind where errors can arise and how big they can get

» Keep an eye on reality

» No model is perfect, small discrepancies for the sake of convenience can be acceptable



