

Hydraulic Fracturing:

Basic Concepts and Numerical Modelling

Panos Papanastasiou Department of Civil and Environmental Engineering University of Cyprus

1991-2002 in Schlumberger Cambridge Research

Outline

- Applications and issues
- Basic fracturing theory: controlling parameters
 - fracture opening, propagation, modes, initiation, closure
- Perforating for fracturing
- Fracture geometry
 - deviated and horizontal wellbores
 - tortuosity and multiple fractures
- Hydraulic fracturing modeling
 - physical processes, geometrical models, height growth, net-pressure
- Fracturing weak formations

2 Initials 10/16/2019

HF Applications and issues

- Petroleum engineering
 - stimulate oil and gas reservoirs, cuttings re-injection, frac-packs for sand control
 - predict pressures and fracture dimensions and fracture containment
 - interval selection for HF in shale reservoirs (brittleness index)
- Environmental engineering
 - waste disposal in shallow formations, cleaning up contaminated sites
- Geotechnical engineering
 - injection of grout, dam construction
- Enhanced Geothermal Systems
 - Maximized heat extraction

Why hydraulic fracturing in Petroleum engineering?

- Bypass near-wellbore formation damage
 - drilling induced, fines invasionmigration, chemical incompatibility
- Extend a conductive path deep into the formation
 - increase area exposure to flow
- Reservoir management tool
 - change flow, fewer wells, well
 placement, IVF, frac&pack, screen less completion

Mechanisms of CO2 escape

abandon wells

- due to bad or non-existence cement,
 1000s old wells in hydrocarbon basins
- non-sealing faults
- diffusion through the cap rock
- capillary leakage
 - if pressure exceeds capillary pressures in the cap

induced hydraulic fractures

- CO2 pressure exceeds the closure stress + ….
- but if propagate horizontally may solve wellbore injectivity problem (Andre et al, 2016) and storage capacity

Fracture Opening

- Fracture opens if the net pressure
 - $p_{net=} p_f \sigma_{min} > 0$
- Fracture opening
 - w(x)=4 $p_{net} (L^2-x^2)^{1/2}/E'$
 - E'=E/(1- v^2) is the plane strain modulus
- maximum width for x=0
 - for constant height: W=4 p_{net} L/E'
 - for radial fracture: W=8 p_{net} R/ (π E')
- singular stress at the crack tip, for x=L
 - $\sigma_{yy} = p_{net} [x/(x^2-L^2)^{1/2}-1]$

γ	cillig	
Ļ	σ_{min}	Ļ
	y †	уу
	2L	×
1	$\uparrow \uparrow \\ \sigma_{min}$	Î

Fracture Propagation

- The stresses ahead of the crack tip are singular characterized by the stress intensity factor K_I
 - $\sigma_{ij} = [K_l / (2\pi r)^{1/2}] f(\theta) + ...$
 - example: an elliptical crack, $K_I = p_{net} L^{1/2}$
- A crack will propagate if
 - $K_I = K_{IC}$
 - K_{IC} is a material parameter called fracture toughness. Typical values for rocks are 0.1 2 MPa m ^{1/2}

Fracture Modes

tensile fractures hydraulic fractures drilling induced II. Sliding mode

faults shear fractures and turning of fractures near wellbore

splitting of the crack front, multiple fractures

Fracture Initiation in Open Holes

- Fracture initiation at lower pressures
 - large contrast between insitu stresses
 - high pore pressure, e.g. eject at low rates prior pressurization
 - preexisting flaws and natural fractures

Fracture Initiation and Closure

BHP

- Mini-frac calibration test
- Breakdown pressure
 - $Pb = 3\sigma_h \sigma_H p + T$
 - p is the formation pressure
 - T is the tensile strength
 - no fluid penetration, upper bound
- Closure stress
 - ISIP in low permeability formations

Perforated Cased Holes

11 Initials 10/16/2019

Perforations

 The perforation guns contain many shaped charges in different directions (phased and nonphased perforations). In each shaped charge there is a cone of explosive. When detonated, this sends out a high-pressure unidirectional jet which punches through the casing, the cement, and 1-2 feet into the formation

detonating

Perforating gun

Fracture Tortuosity

- Gradual or sharp fracture re-orientation to the preferred plane results in width restriction near the well
- Tortuosity occurs
 - in high differential stress fields
 - in deviated wells

- in reservoirs with natural fractures
- Problems
 - near-wellbore friction resulting in pressure drop
 - premature screen-out due to proppant bridging

Multiple Fractures

- Propagation of multiple fractures away from the wellbore area
- Multiples occur
 - in multiple or long perforated intervals with phased perforations
 - in deviated wells where the separation between fractures is large compared to the fracture height
 - in reservoirs with natural fractures
- Problems
 - increase treating net-pressure
 - reduced fracture widths: increase screenout potential
 - increased leakoff: lower efficiency
 - Reduced fracture length

16 Initials 10/16/2019

Deviated and Horizontal Wells

Experiments in Delft Fracturing Consortium (1997)

17 Initials

Hydraulic Fracture Optimization

Oriented Perforations normal to Sмін

- hard rock
- soft rock : Frac & Pack, Screenless
 Completion
- Creating single, bi-wing fracture in PFP
 - Minimizing near-wellbore tortuosity
 - Minimizing frac pressures
 - Eliminating multiple, competing fractures
- ¹⁸ Initials Minimizing risk of premature screen-outs

Horizontal Wellbores

Modelling Hydraulic Fracture Propagation

- Optimize the treatment (pumping schedule, proppant stages)
 - increase well production
 - reduce cost
- Control where the fracture is growing
 - avoid fracturing near layers with different content: oil, gas, water
 - create long fractures in some layers
- Predict the response during treatment
- Post-evaluation of the treatment

Physical Processes in Hydraulic Fracturing

 p_w Viscous fluid flow in the fracture V p, \rightarrow V Fluid leakoff in the formation **P**_{net} W **Rock deformation** $K_{I} = K_{IC}$ Fracture propagation Proppant transport 0

21 Initials 10/16/2019

Pressure Loading on Fracture Surfaces

- Pressure drop: dp/dx=12 μ q/w³
- Net pressure $p_{net}=p_f \sigma_h$ gives $K_l^{(+)} > 0$
- Closure stress over fluid-lag gives K_I⁽⁻⁾
 <0
- Fracture propagates when $K_{I}^{(+)} + K_{I}^{(-)} = K_{IC}$
- Fracture toughness K_{IC} is small but plasticity may increase it to large values of an apparent fracture toughness

Fracture Profiles in Layered Formations

•Fracture may not penetrate deep to the optimum length

Fracture may connect several

pay zones separated by shale layers

- •Fracture may grow in nonproductive layers
- Problems with proppant
- placement
- Indirect Vertical Fracturing (IVF) for sand control

10/16/2019

T-shape fracture

Fracture tip

- High net-pressures (Pnet=Pfrac-σmin)
 - flow behaviour near the tip: fluid-lag, rock dilation
 - high apparent fracture toughness: due to scale effect, confining pressure, heterogeneities and plasticity
 - underestimation of the **closure stress** (σ_{min})

Elasto-plastic HF model

- Fluid-flow in the fracture
 - Newtonian viscous fluid, lubrication theory: dp/dx=12 μ q/w³
- Rock deformation
 - Mohr-Coulomb flow theory of plasticity
- Fracture propagation
 - Cohesive model

- Finite element analysis
 - fully coupled solution, special continuation algorithm
 - meshing/remeshing

Papanastasiou (Comp. Mech. J,1999)

Fracture propagation

Plastic fractures are wider and shorter than the elastic fractures

Fluid-lag is smaller in the plastic fracture

Apparent fracture toughness

Propagating pressures are higher in plastic fractures

Effective fracture toughness, determined from J-integral, is higher for the plastic fracture

Theories together

Scaling of plastic zones

Papanastasiou (I J Frac, 1999)

Effective fracture toughness (EFT)

	plane strain modulus		E' = 31	.25 GPa	
	friction and dilation angles		$\phi = \psi$	$r = 30^{o}$	
	rock fracture toughness		$K_{\rm IC}=2$	$MPa\sqrt{m}$	
	pumping parameters	$\mu v =$	$= 10^{-8} \sim$	$\sim 10^{-7} MPc$	a m
			rock stre	ngth $\frac{\sigma_c}{\sigma_T}$	
	stress field $\frac{\sigma_3}{\sigma_1}$	$\frac{60}{6}$	$\frac{20}{6}$	$\frac{20}{2}$	
	$\frac{30}{30} = 1.0$	2.0	2.0	2.0	
	$\frac{45}{30} = 1.5$	2.0	4.60	7.31	
	$\frac{60}{30} = 2.0$	2.0	7.03	15.48	
Examples 1,	2 Ex Chrin	ample 3			

Table 3. Variation of EFT with stress field and rock strength.

Table 4. Variation of EFT with stress field and pumping parameters.

	E' = 31.2	25 GPa	
	$\phi=\psi$	$= 30^{\circ}$	
$K_{\rm IC} = 1M Pa\sqrt{m}$			
$\frac{\sigma_c}{\sigma_T} = \frac{20}{2}$			
pumping parameters $\mu v MPa m$			
10^{-8}	10^{-7}	10 ⁻⁶	
1.0	1.0	1.0	
1.0	1.88	5.66	
1.0	1.00	5.00	
	pumpin 10 ⁻⁸ 1.0	$E' = 31.$ $\phi = \psi$ $K_{\rm IC} = 1\hbar$ $\frac{\sigma_c}{\sigma_T} =$ pumping parameter $10^{-8} 10^{-7}$ $1.0 1.0$	

Papanastasiou (I J Frac, 1999)

Experimental results on fracture toughness

(Funatsu et al. Int. J. Rock Mech. & Min. Sci, 2004)

- Significant Increase of the rock fracture toughness with confining pressure
 - the fracture toughness of Kimachi sandstone increased by approximately 470% at 9 MPa confinement over its value at atmospheric pressure
 - similar variation of fracture toughness is caused by the combined effects of temperature and confining pressure.

Fracture closure

Plastic fracture closes first near the tip

Fracture is open at zero net-pressure and closes at negative values

Papanastasiou (I J Frac, 2000)

Experimental Set-up (DelFrac)

34 Initials 10/16/2019

Closure in plaster

Strong Plaster:

Weak Plaster

³⁵ Initials 10/16/2019 van Dam D.B., et al *J. SPE Prod. & Fac*, (2002)

Dislocation model

• Fracture loading

 $\sigma = p + \sigma_1$ (net-pressure) $K_{el} = \sigma (\pi a)^{1/2}$

Position and strength of super-

dislocations $z = a + \ell e^{i\theta}$

- stress intensity factor at the crack tip

$$\sigma \sqrt{\pi \alpha} - \frac{1}{8(\pi \alpha)^{1/2}} \frac{E}{(1-\nu^2)} b f = K_{IC}$$

 stresses satisfy Mohr-Coulomb yield criterion at dislocations

 $\tau + \sigma_n \tan \phi = c$

- total crack-opening-displacement is maximized θ

Papanastasiou and Atkinson IJ Frac (2000)

For small scale yielding $l \ll \alpha$ and $K_{IC} = 0$ (Papanastasiou and Atkinson (2000)

$$\frac{l^{1/2}}{K_{el}/c} = \left(\frac{2}{\pi}\right)^{1/2} \frac{f_1(\theta) + \tan \varphi f_2(\theta)}{f_0}$$

$$\frac{b}{(1-\nu^2)K_{el}^2/(Ec)} = \frac{4}{3} \frac{f_1(\theta)/f_3(\theta) + \tan \varphi f_2(\theta)/f_3(\theta)}{f_0}$$

$$\frac{b}{(1-\nu^2)K_{el}^2/(Ec)} = \frac{4}{3} \frac{f_1(\theta)/f_3(\theta) + \tan \varphi f_2(\theta)/f_3(\theta)}{f_0}$$

$$\frac{f_1(\theta) = \frac{2\sin^2 \theta \cos^2(\frac{\theta}{2}) - 1}{12\sin \theta \cos(\frac{\theta}{2})}$$

$$f_1(\theta) = \frac{2\sin^2 \theta \cos^2(\frac{\theta}{2}) - 1}{12\sin \theta \cos(\frac{\theta}{2})}$$

$$f_2(\theta) = \frac{\cos \theta/\sin \theta + \sin(2\theta) - 1.5\sin \theta \cos^2(\frac{\theta}{2})}{12\sin \theta \cos(\frac{\theta}{2})} + \frac{\cos^3(\frac{\theta}{2})}{2}$$

$$f_3(\theta) = \sin \theta \cos(\frac{\theta}{2})$$

$$f_3(\theta) = \sin \theta \cos(\frac{\theta}{2})$$

$$f_4(\theta) = \cos(\frac{\theta}{2})$$

Frictionless or undrained analysis

Dimensionless quantities vs ductility number for an undrained material for small scale yielding (solid lines) and large scale yielding (dashed lines).

Cohesive-frictional material

The values between 0 and 1 correspond to fracture propagation of increasing ductility from brittle to small and large scale yielding and finally to 1 for a fracture that requires infinite energy release per unit advance

Dimensionless quantities vs ductility number for a cohesive-frictional material for small scale yielding (solid lines) and large scale yielding (dashed lines).

Papanastasiou et al (IJNAMG, 2016)

Brittleness parameters

• Brittleness parameters reported in Holt et al Int. J. Petr. Sc. Eng. (2015)

Definition of brittleness parameter	Comment	Reference]
$B_1 = \frac{\varepsilon_{ei}}{\varepsilon_{tot}}$	Elastic vs. total strain prior to failure	Hucka and Das, 1974	
$B_2 = \frac{W_{el}}{W_{tot}}$	Elastic vs. total strain energy prior to failure	Hucka and Das, 1974	ε _{el} ε _{pl} τ _{max}
$B_3 = \frac{C_0 - T_0}{C_0 + T_0}$	Difference between unconfined compressive (C_0) and tensile (T_0) strengths, normalized by their sum	Hucka and Das, 1974	τ _{res}
$B_4 = \sin \varphi$	φ is friction angle, measured from the failure envelope at zero normal stress	Hucka and Das, 1974	
$B_5 = \frac{\tau_{\max} - \tau_{res}}{\tau_{\max}}$	Stress drop from peak (τ_{max}) to residual strength (τ_{res}) normalized by the peak stress	Bishop, 1967	Strain
$B_{\delta} = \frac{\varepsilon_{f}^{p} - \varepsilon_{c}^{p}}{\varepsilon_{c}^{p}}$	\mathcal{E}_{f}^{p} and \mathcal{E}_{c}^{p} represent plastic strain at failure and at some specific strain level beyond	Hajiabdolmajid and Kaiser, 2003	
$B_{\gamma} = OCR^{b}$	OCR is the overconsolidation ratio, i.e. the ratio between maximum historic and present in situ effective vertical stress	Ingram and Urai. 1999	
$B_{\rm g} = \frac{1}{2} \left(\frac{E_{dym} \left[Mpsi \right] (0.8 - \phi) - 1}{8 - 1} + \frac{v_{dym} - 0.4}{0.15 - 0.4} \right) \cdot 1$	00 E _{dyn} and V _{dyn} are dynamic Young's modulus and Poisson's ratio, respectively	Rickman et al., 2008	
$B_9 = \frac{c_{qtz}}{c_{qtz} + c_{cl} + c_{carb}}$	c _{qtz} , c _{cl} and c _{carb} are weight fractions of quartz, clay and carbonate, respectively	Jarvie et al., 2007	

New parameter

В

$$= 1 - t = 1 - \frac{(\sigma_1 - \sigma_3)}{2c\cos\varphi - (\sigma_1 + \sigma_3)\sin\varphi}$$

Propagation direction: Effective toughness vs closure stress gradient

• Net pressure

$$P_{net} = P_f - \sigma_{h\min}$$

Linear elastic fracture mechanics

$$K_{I} = P_{net}\sqrt{\pi a} = (P_{f} - \sigma_{h\min})\sqrt{\pi a} = K_{IC}$$
$$P_{f} = \sigma_{h\min} + K_{IC} / \sqrt{\pi a}$$

- Local stress gradient for $\sigma_{h\min}$ is 15.8 kPa/m (0.7 psi/ft)
- As fracture propagates vertically upward the resistance decreases by 15.8 KPa/m but may increase proportionally to

$$K_{eff} \sim 10 M Pa \sqrt{m}$$

 As fracture propagates horizontally the closure stress does not change and the resistance due to EFT is smaller

Conclusions

- Plasticity plays a shielding mechanism around the tip resulting in a significant increase of the apparent fracture toughness.
- Plasticity results in higher pressures and larger width everywhere in the fracture even though dilatancy tends to close the fracture near the tip.
- Closure pressure in plastic rock may be significantly lower than the far field stress on the fracture plane.
- Stress redistribution after closure of the fracture is important in weak rocks for sand avoidance. The shear stress near the wellbore is significantly lower than expected from elastic behaviour.

 A new definition of a brittleness index for interval selection for HF in shale reservoirs

$$B = 1 - t = 1 - \frac{(\sigma_1 - \sigma_3)}{2c\cos\varphi - (\sigma_1 + \sigma_3)\sin\varphi}$$

- a combination of material strength parameters and in-situ stresses.
- it varies between 0 and 1 with the value 1 to correspond to brittle propagation and 0 to a fracture that requires infinite energy release per unit advance

CO2 related applications

- Less resistance for a fracture to propagate horizontally than vertically.
 This decreases the risk of CO2 escape and increases the wellbore injectivity and reservoir storage capacity.
- if the corrosive CO2 damages both cohesion and fracture toughness of rock proportionally then higher energy will be needed to propagate a mode I fracture