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Preface

From 3rd October to 5th October 2024, the ALERT Doctoral School 2024 will take
place in Aussois and will be dedicated to “Numerical Methods in Geomechanics”.
The School has been organized by Claudio Tamagnini (Università degli Studi di Peru-
gia), Lorenzo Sanavia (Università degli Studi di Padova) and Manolo Pastor (Univer-
sidad Politécnica de Madrid). I sincerely thank the organizers and all the contributors
to this book for their effort!

Numerical methods in geomechanics involve different approaches, but also common
ingredients to deal with: non-linear behavior, interactions with fluids included in the
pores of the geomaterial, non-uniqueness of the material response... These methods
are now part of the life of researchers but also of practitioners. This year’s doctoral
school focuses on the finite element method, which has been developed over many
years. The school aims to provide participants with the tools to make informed use
of this method, covering a wide range of aspects such as constitutive laws, their de-
velopment and numerical integration, as well as modeling under partially saturated
conditions or for thermo-hydro-mechanical problems.

The school will take place over three days, and will aim to explain the basics of finite
element analysis, the potential problems associated with different types of problem,
and possible solutions. Numerical aspects of dealing with non-linear problems will
also be covered, as these non-linearities arise from the behavior of geomaterials and
the multiphysical couplings taking place within them. Practical sessions will be orga-
nized in order to better grasp the theoretical concepts and put them into practice.

As usual, the pdf file of the book can be downloaded for free from the website of
ALERT Geomaterials (https: // alertgeomaterials. eu/ publications/ ) af-
ter the school. On behalf of the ALERT Board of Directors I wish all participants a
successful ALERT Doctoral School 2024!

Frédéric Collin
Director of ALERT Geomaterials
University of Liege
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Foreword

The contributions assembled in the present volume proceed from the lectures of the
2024 ALERT Geomaterials Doctoral School devoted to Numerical methods in geome-
chanics. The school has been organized and coordinated by Claudio Tamagnini (Uni-
versità degli Studi di Perugia), Lorenzo Sanavia (Università degli Studi di Padova)
and Manuel Pastor (Universidad Politécnica de Madrid). It follows the 1st and the
2nd ALERT Olek Zienkiewicz Course organized at the Universidad Politécnica de
Madrid by Manuel Pastor and Claudio Tamagnini in 2009 (Numerical Methods in
Geomechanics) and in 2014 (Advanced Numerical Modelling in Geomechanics), re-
spectively.

The study and application of rock and soil mechanics require solving mainly nonlinear
initial boundary value problems on complex domains, for which the analytical solution
is usually unavailable. It also needs to consider the material as a multiphase porous
system characterized by coupled multiphysics phenomena. Consequently, only nu-
merical methods can be applied successfully to solve real problems and, because they
are approximate methods, need to be thoroughly understood and used carefully and
critically.

This volume contains eleven chapters presenting the fundamentals that help in un-
derstanding numerical methods applied to multiphase porous systems. The volume
is divided into five main parts: (i) an introduction to the finite element method for
ellipt, parabolic and hyperbolic equations, (ii) the constitutive modelling of geomate-
rials within the Theory of plasticity and Generalized plasticity, also for rate dependent
materials and unsaturated soils, respectively, (iii) the formulation of a mathematical
model for non-isothermal multiphase porous materials based on the Hybrid Mixture
Theory, which includes, as a particular case, the well-known Biot poromechanical
model, (iv) the numerical approaches for the solution of nonlinear problems, the com-
putational plasticity, and the space and time discretization of a multiphase porous
media model at large elasto-plastic strains as an example of the application of the
previous sections, and (v) the finite element modelling of non-isothermal variably sat-
urated soils under quasi-statics or dynamics conditions.
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The 2024 ALERT Geomaterials Doctoral School also includes some practical sessions
to practice with the numerical solution of some geomechanical problems with the fi-
nite element code GeHoMadrid.

We believe that this volume may provide to postgraduate students, researchers and
practitioners, a valuable introduction and a sound basis for further progress in the
challenging field of virtual modelling of coupled and multiphysics phenomena in mul-
tiphase porous systems, which extends not only to geomechanics but far beyond.

Claudio Tamagnini (Università degli Studi di Perugia)
Lorenzo Sanavia (Università degli Studi di Padova)
Manuel Pastor (Universidad Politécnica de Madrid)
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Introduction to finite elements (I): steady state
problems of elliptic type

Manuel Pastor, Saeid M. Tayyebi, Pablo Mira, Miguel
M. Stickle, Diego Manzanal, J.A. Fernandez Merodo

ETS de Ingenieros de Caminos, Universidad Politecnica de Madrid,
Ciudad Universitaria s/n, 28040, Madrid, Spain

The Finite Element metod has reached its maturity after some 75 years since their
development. During these years it has become a tool for engineers and scientists
in many fields. This introductory pair of lectures aim to present the fundamentals of
the method in both steady state and transient problems- We have chosen to present the
material at a MSc level, as in the reference books by Zienkiewicz and his coworkers.
This first Chapter is devoted to steady state problems, trying to show the common
equations of various problems.

1 1. Introduction

Late Professor O.C.Zienkiewicz, one of the founders and pioneers of the Finte Ele-
ment Method, used to include in some talks a quote from Von Karman, ”.engineers
build things that did not exist before..” and explained that engineers must therefore
predict the behaviour of the structures they projected and their interaction with the
environment - the latter, is sort of a live-hate relation. as engineers structures affect
the environment and suffer actions from it which may result on disaster,

For such predictions, there exist three alternative ways:

(i) Building of prototypes and studying their behaviour

(ii) small scale laboratory models (such in harbour or hydraulics engineering)

and (iii) create mathematical models describing the fundamental phenomena involved.

This course, and this talk, deal precisely with this latter way. It is a course on mod-
elling for which in most of occasions three ingredients are needed:

(a) A mathematical model

Pastor, Tayyebi, Mira, Stickle, Manzanal & Fernandez Merodo 5
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(b) A constitutive -sometimes called rheological- model describing the behaviour of
the materials, and

(c) A numerical model to discretize the two previous ingredients.

This is why these two Chapters will be devoted to present elliptic, parabolic and hy-
perbolic models, rather than to explain a series of different phenomena and the models
that describe them.

The reader is encouraged to find applications in different areas of engineering where
models are similar. For instance, landslide propagation is described by models which
were derived first for hydraulics engineering.

2 Strong formulation of steady state problems of ellip-
tic time

We will consider first two simple 1D problems, the transport of heat in a 1D bar, and
the behaviour of a simple component of a structure, 1 1D bar (figure 1).

Figure 1: Two simple 1D problems

In both cases, formulations are very similar:

Fluxes are related to field variables as:

q = −k∂ϕ
∂x

and σ = −E∂u
∂x

(1)

6 Introduction to finite elements (I): steady state problem of elliptic type
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(a) In the heat conduction problem, the balance equation reads:

−∂
∂
q + s = 0 x ∈ (o, L) (2)

from where, substituting the flux q, we have:

∂

∂

(
k
∂ϕ

∂x

)
+ s = 0 x ∈ (o, L) (3)

We will assume that on the left boundary temperature is prescribed as zero, and at the
right boundary, flux is prescribed equal to qL

ϕ (0) = 0 − k ∂ϕ
∂x

∣∣∣∣
x=L

= qL (4)

where k is the thermal conductivity, s the heat sources and qL the prescribed flux at
x = L

(b) For the elastic bar, the equations are:

∂

∂

(
EA

∂u

∂x

)
− b = 0 x ∈ (o, L) (5)

u (0) = 0 − EA ∂u

∂x

∣∣∣∣
x=L

= FL (6)

where E is the elastic modulus, A the cross sectional area, b the bodyf orces and FL

the force acting at at x = L

In 3D situations, the equations are obtained in a similar way figure 2:

In figure 2 we have sketched the fluxes q along x,y and z. The balance equations are
written in term of fluxes as:

−∂qx
∂x

dxdtdz − ∂qx
∂x

dxdtdz − ∂qx
∂x

dxdtdz + s = 0 (7)

Pastor, Tayyebi, Mira, Stickle, Manzanal & Fernandez Merodo 7
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Figure 2: Heat conduction problem in 3D.

from where we obtain

−∂qx
∂x
− ∂qy

∂y
− ∂qz

∂z
+ s = 0 (8)

which can be written in a more compact form as

−divq+ s = 0 (9)

with

q=(qx, qy, qz)
T (10)

from where the balance equation is

div (k gradϕ) + s = 0 (11)

In cases where the conductivity k is different along x, y and z, the tensor of conduc-
tivity k is introduced as:

k =




kx 0 0
0 ky 0
0 0 kz


 (12)

8 Introduction to finite elements (I): steady state problem of elliptic type
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and the balance equation is now

div (k gradϕ) + s = 0 (13)

Boundary conditions on the boundary ∂Ω (figure 3) can be of two main types:

Figure 3: Boundary conditions on the boundary ∂Ω .

(i) Dirichlet, in a part of the boundary ∂ϕΩ ⊂ ∂Ω ϕ− ϕ = 0

(ii) Neumann, at ∂qΩ ⊂ ∂Ω D ∂ϕ
∂n + q were n is the outer normal to the boundary

Other boundary conditions for the heat conduction problem are the convection and the
radiation boundary conditions.

The formulation presented is found, in addition to the Fourier problem described
above in other transport problems such as Darcy, Fick and Navier.

The equations can be written more formally in what is called strong formulation as

div (D gradϕ) + s = 0 in Ω ϕ ∈ C2 (Ω) (14)

ϕ− ϕ = 0 on ∂ϕΩ D : Ω→ R (15)

D
∂ϕ

∂n
+ q = 0 on ∂qΩ Ds : Ω→ R (16)

3 Finite element approximation of functions: Nodes,
elements and shape functions. Isoparametric elements

If we had to choose the two main ingredients of finite elements, we would undoubtely
mention the concept of finite element approximation of functions and the weak formu-
lations of the field equations i.e, Galerkin and virtual work methodd of approximation.

Pastor, Tayyebi, Mira, Stickle, Manzanal & Fernandez Merodo 9
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We will address here the former, which we could characterize as a ”divide and con-
quer” based method.

3.1 1D problems: linear 2 node elements

Functions can be approximated in many alternative ways, being interpolation the sim-
plest. Let us consider the simple prismatic bar depicted in figure 4, and a field magni-
tude ϕ of which we know its values at a set of points 1...n+1 which we will call nodes.
The spacing can be either fixed or variable, using closer nodes where the function
varies more (larger gradients). We see that the bar has been divided into n segments,
which we will call elements, where we will approximate using simpler functions, for
instance, linear functions.

Figure 4: Concepts of nodes, elements and linear 1D elements.

A simple way to describe the approximation done in each element (ej), is to define the
two linear functions -which will be called shape functions -shown in figure 5.

Nj =
xj+1 − x
xj+1 − xjc

(17)

Nj+1 =
x− xj

xj+1 − xj
(18)

It is easily seen that Nj is 1 at node j and 1 at node j+1, while Nj+1 is 0 at node j and
1 at node j+1

10 Introduction to finite elements (I): steady state problem of elliptic type
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Figure 5: Nodes, elements and shape functions (linear 1D element).

The interpolation, which will be denoted as ϕ̂ (x) can be written as:

ϕ̂ (x) = Nj ϕ̂j +Nj+1ϕ̂j+1 (19)

where ϕ̂j and ϕ̂j+1are the nodal values at the element nodes left and right.. Above
expression can be written in a more compact manner as

ϕ̂ (x) = NT ϕ̂ (20)

In above, we have introduced two vectors of nodal variables and shape functions,
respectively.

N(ej) =
(
N

(ej)
j N

(ej)
j+1

)
(21)

and

Φ̂ =

(
Φ̂j

Φ̂j+1

)
(22)

The superindex (ej) refers to element j

Pastor, Tayyebi, Mira, Stickle, Manzanal & Fernandez Merodo 11
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Figure 6: Global shape functions.

A global approximation can be built by combining the approximations in all elements,
as sketched in figure 6.

Function Φ is approximated as

Φ̂ = N.Φ̂ (23)

where

N =
(
N0 N1 ... NN

)
(24)

and

Φ̂ =




Φ̂0

Φ̂1

...

Φ̂N




(25)

Let us remember at this point that:

(i) The global approximation is continuous

(ii) First order derivatives are discontinuous at nodes

(iii) Second order derivatives are infinity at nodes

12 Introduction to finite elements (I): steady state problem of elliptic type
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3.1.1 Mapping

Shape functions of element (ej) are:

Nj−1 =
xj − x

xj − xj−1
(26)

Nj =
x− xj−1

xj − xj−1
(27)

and vary from element to element. It would be convenient to define shape functions
in a such way that they would be always the same. This is achieved by geometrical
mappings which transform the elements into a standard one. In the case of the linear
1D elements we are considering, If we introduce the abscissa

ξ =
x− xj

xj+1 − xj
(28)

the interval [0, L] is normalized, being all elements transformed into the element
[0, 1] .This results in allelements having the same shape functions

NA = 1− ξ (29)

NB = ξ (30)

whereA and B are the nodes of the element considered..

Inside each element it is possible to obtain x empleando la definición deusig the defi-
nition of ξ as

x = xj−1 + ξ (xj − xj−1) (31)

x = (1− ξ)xj−1 + ξxj (32)

x = NAxj−1 +NBxj (33)

Therefore, the mapping can be defined by the shape functions which were used for
building the approximation, and the element is referred to as isoparametric

The main advantage of the proposed mapping isto express both the approximation and
its derivatives in acommon form for all elements.

Φ̂(ej) = NA.Φ̂A +NB .Φ̂B (34)

Pastor, Tayyebi, Mira, Stickle, Manzanal & Fernandez Merodo 13
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Figure 7: The concept of isoparametric element.

or, in a more compact manner

Φ̂(ej) = N(e).Φ̂(e) (35)

Φ̂(ej) =
[
NA NB

]
.

[
Φ̂A

Φ̂B

]
(36)

Derivatives are obtained as follows:

∂Φ̂(ej)

∂x
=
∂Φ̂(ej)

∂ξ
.
∂ξ

∂x
=
∂Φ̂(ej)

∂ξ
.

1

L(e)
(37)

where L(e) is the length of the considered element.

From here, and expresing Φ̂(ej) using the shape functions,

∂Φ̂(ej)

∂x
=

1

L(e)

[
∂NA

∂ξ
∂NA

∂ξ

]
.

[
Φ̂A

Φ̂B

]
(38)

=
1

L(e)

[
-1 1

]
.

[
Φ̂A

Φ̂B

]

14 Introduction to finite elements (I): steady state problem of elliptic type
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which is usually written as

∂Φ̂(ej)

∂x
= B.Φ̂

(e)
(39)

where matrix B is the discrte form of the derivative operator. If we introduce S

S =
∂

∂x
(40)

it is easy to see that

B = S.N (41)

3.1.2 Finite elements in two and three dimensions

There exist today a wide variety of two dimensional elements, from the simplest linear
triangles to much more complex elements such as, for instance, the 15 noded trian-
gles which have become popular in geotechnical finite element codes because of their
robustness. The choice of element depends, of course on the element availability in
the computer code we are using. First finite element programmers favoured simple
triangle and quadrilaterals for the simplicity and speed of computations. However, it
soon became apparent that such simple elements presented important inconvenients
(poor convergence rate, por behaviour in bending, locking in quasi-incompressible
materials...). Because of this reason, and also because availability of frontal solvers,
during a second period, more complex elements were used. Today, further theoretical
developments have allowed to improve the simplest elements. This is the case of the
”enhanced strain” quadrilaterals, with an excellent behaviour in bending dominated
situations and when the materials are close to incompressibility, or some pressure-
displacement mixed triangles.

In the domain of Computational Fluid Dynamics, the situation is different, as triangles
and tetrahedra are the favourite choices in large scale problems with more than 106

degrees of freedom.

The simplest element in 2D is the linear triangle. Fig.8 shows the domain Ω and its
approximation Ωh by a mesh of triangular finite elements. It can be seen how the
boundary ∂Ω is also approximated by ∂Ωh. All the elements can be mapped into the
normalized triangle which can be seen in the figure, using the same shape functions of
the triangle:

N
(e)
1 = 1− ξ − η (42)

N
(e)
2 = ξ

N
(e)
3 = η

x =
(
N

(e)
1 (ξ, η) N

(e)
2 (ξ, η) N

(e)
3 (ξ, η)

)
.




x
(e)
1

x
(e)
2

x
(e)
3


 (43)
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Figure 8: Mesh of linear triangles.

Among triangles of higher order, we can mention the 6 noded quadratic triangle, which
is sketched in Fig.9. This element provides a better approximation to curved bound-
aries, as it approximate them

The bilinear quadrilateral is sketched in Fig.10, and the ”serendiptic” 8 noded quadri-
lateral can be seen in Fig.11.

Concerning 3D problems, we could mention the linear and quadratic tetrahedra, with
4 and 10 nodes, and the 8 and 20 nodes hexahedral or ”bricks”. All of them are
isoparametric elements.

An important point is the evaluation of derivatives inside elements, which are needed
to obtain approximations of the gradient operator, fluxes, strain and stress, for in-
stance.

The gradient of the approximation,∇uh(e)can be obtained substituing uh(e) = N(e).û(e),
which results on

∇uh(e) = ∇N(e).û(e) = G(e).û(e) (44)

where we have introduced the discrete gradient operator G(e) = ∇N(e). In the case
of 3D, it is given by:

G(e) =




∂xN
(e)
1 ... ∂xN

(e)
nnode

∂yN
(e)
1 ∂yN

(e)
nnode

∂zN
(e)
1 ∂zN

(e)
nnode


 (45)

We can follow a similar method to obtain the strain within a particular element. The
strain is related to the displacements uh(e) by εh(e)= S.uh(e) where S is the strain
operator. If we write the displacement field in terms of the shape functions, we arrive
at:

εh(e) = B(e).û(e) (46)

16 Introduction to finite elements (I): steady state problem of elliptic type
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Figure 9: Quadratic triangle.

Figure 10: Bilinear Quadrilateral.
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Figure 11: 8 noded quadrilateral.

where B(e) is the discrete strain operator. In the case of a plane strain problem, it is
given by

B(e) =




∂xN
(e)
1 0 · · · ∂xN

(e)
nnode 0

0 ∂yN
(e)
1 · · · 0 ∂yN

(e)
nnode

∂yN
(e)
1 ∂xN

(e)
1 · · · ∂yN

(e)
nnode ∂xN

(e)
nnode


 (47)

The stress follows immediately as σ(e) = De.B(e).û(e). It is important to notice that
all entities related to derivatives will be discontinuous between elements.

4 A note on numerical integration techniques on finite
element spaces

Quite often we will have to evaluate integrals over the domain Ωh of functions which
will involve products of shape functions and their derivatives. Of course, the inte-
gral will be decomposed into integral over the elements. In some rare cases the inte-
grals can be easily obtained as it actually happens with linear triangles and tetrahedra.
However, in the more general case, we will have to evaluate them using numerical
integration techniques.

A numerical integration rule can be expressed as:

∫

Ω(e)

f(x)dΩ =

ngauss∑

k=1

Wk f(xk) =

ngauss∑

k=1

Wk f(ξk) detJ (48)

18 Introduction to finite elements (I): steady state problem of elliptic type
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where Wk and xk (with k = 1..ngauss) are the weights and the position of the
integration points. If the integral is performed over the normalized element, we need
to multiply by the determinant of the jacobian matrix of the mapping J. The number
of points in the integration rule ngauss depends on the particular rule which has been
chosen. A key point is the order of precision of the formula, which indicates the higher
order of the polynomial which can be exactly integrated. Sometimes, the analysts
use integration rules of lower degree of precission than required. This is done for
several reasons, among which we can mention (i) speed up the computations, (ii) avoid
volumetric locking, etc. However, the use of these so-called ”reduced integration”
formulae can cause spurious oscillations.

5 Method of Galerkin (Boubnov)

5.1 General description

When we substitute the solution of the PDE Φ(x),x ∈ Ω ⊂ R2 by its approximation
Φ̂(x), both the PDE and its boundary conditions will not be satisfied. We will denote
residual to the error :

RΩ = ∇T
(
k∇Φ̂

)
+ s ̸= 0 (49)

in Ω the residuals in the boundary conditions being

RΓΦ = Φ̂− Φ ̸= 0 (50)

RΓq = nT .k∇Φ̂ + q̄ ̸= 0 (51)

where n is the unit vector normal to the contour. In the case that the material is
isotropic (kx = ky = k) the previous equation reduces to

RΓq = k
∂Φ̂

∂n
+ q̄ ̸= 0 (52)

In the case where there is heat loss by convection in the contour Γh,

RΓh = nT .k∇Φ̂ + hc

(
Φ̂− Φ∞

)
̸= 0 (53)

or

RΓh = k
∂Φ̂

∂n
+ hc

(
Φ̂− Φ∞

)
̸= 0 (54)

if the material is isotropic. Finally, the residual in the contour where there is heat loss
by radiation is:

RΓr = nT .k∇Φ̂ + σε
(
Φ̂4 − Φ4

∞
)
̸= 0 (55)
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where Φ̂ = N.Φ̂, or Φ̂ =
∑N

j=0Nj .Φ̂j .

Galerkin’s method basically consists of determining the N + 1 unknownsΦ̂j , j =
1..N , imposing the N + 1 conditions:

∫

Ω

NiRΩdΩ+

∫

ΓΦ

αϕNiRΓΦdΓ +

∫

Γq

αqNiRΓqdΓ + ... = 0 (56)

∫

Ω

Ni

[
∇T

(
k∇Φ̂

)
+ s
]
dΩ+

∫

ΓΦ

αϕNi

(
Φ̂− Φ

)
dΓ (57)

+

∫

Γq

αqNi

(
nT .k∇Φ̂ + q̄

)
dΓ + ... = 0

where αq, etc., are parameters whose value will be obtained later so that the expres-
sions obtained are as simple as possible.

Applying Green’s Theorem, we obtain

−
∫

Ω

(∇Ni)
Tk∇Φ̂dΩ+

∫

ΓΦ+Γq

Ni.n
T .k∇Φ̂dΓ +

∫

Ω

NisdΩ+ ... (58)

+

∫

ΓΦ

αϕNi

(
Φ̂− Φ

)
dΓ +

∫

Γq

αqNi

(
nT .k∇Φ̂ + q̄

)
dΓ = 0 (59)

where the first term is

−
∫

Ω

(
∂Ni

∂x
∂Ni

∂y

)
k

(
∂Φ̂
∂x
∂Φ̂
∂y

)
dΩ (60)

Now considering only the terms corresponding to the integrals on the contour, we
obtain
∫

ΓΦ+Γq

nT .k∇Φ̂dΓ +

∫

ΓΦ

Ni

(
Φ̂− Φ

)
dΓ +

∫

Γq

αqNi

(
nT .k∇Φ̂ + q̄

)
dΓ + .... = 0

(61)

∫

ΓΦ

Nin
T .k∇Φ̂dΓ +

∫

ΓΦ

Ni

(
Φ̂− Φ

)
dΓ +

∫

Γq

[
Nin

T .k∇Φ̂ + αqNin
T .k∇Φ̂ + αq q̄

]
dΓ

(62)

where it can be seen that if we choose αq = −1, it results
∫

ΓΦ

Nin
T .k∇Φ̂dΓ−

∫

Γq

Niq̄dΓ (63)
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having assumed that in the contour ΓΦ Φ̂ − Φ = 0 is approximately fulfilled. This
implies that the number of unknowns is reduced by NΦ}, since the values of Φ are
then known. It should be noted that the terms

∫
ΓΦ
Nin

T .k∇Φ̂dΓ or
∫
ΓΦ
Nik

∂Φ̂
∂n dΓ

are not known in ΓΦ, , being, therefore, additional unknowns, so that the system that
is finally solved has as unknowns to be determined the N −NΦ values of Φ̂, as well
as the NΦ values of the flows -k ∂Φ̂

∂n at ΓΦ

These are, therefore, additional unknowns, so that the system that is finally solved has
as unknowns to be determined the N − NΦvalues of Φ̂, as well as the Nq values of
the flows -k ∂Φ̂

∂n

The resulting system is, then,

−
∫

Ω

(∇Ni)
Tk∇Φ̂dΩ+

∫

Ω

NisdΩ+

∫

ΓΦ

Nin
T .k∇Φ̂dΓ−

∫

Γq

Niq̄dΓ = 0 (64)

or,
∫

Ω

(∇Ni)
Tk∇Φ̂dΩ =

∫

Ω

NisdΩ+

∫

ΓΦ

Nik
∂Φ̂

∂n
dΓ−

∫

Γq

Niq̄dΓ (65)

Substituting below the value of Φ̂ by Φ̂ =
∑N

j=0Nj .Φ̂j , we obtain
(∫

Ω

∫

Ω

(∇Ni)
Tk∇NjdΩ

)
Φ̂j = −

∫

Ω

NisdΩ+

∫

ΓΦ

Nik
∂Φ̂

∂n
dΓ−

∫

Γq

Niq̄dΓ

(66)

or, in a more compact manner,

KijΦ̂j = fi (67)

KΦ̂ = f (68)

where Kij are the terms (i, j)of the coefficient matrix of a system of linear equations,
and fi are the independent terms, given, respectively, by

Kij =

∫

Ω

∫

Ω

(∇Ni)
Tk(∇Nj)dΩ (69)

fi =

∫

Ω

NisdΩ+

∫

ΓΦ

Nin
T .k∇Φ̂dΓ−

∫

Γq

Niq̄dΓ (70)

Taking into account that the terms nT .k∇Φ̂ are flows with a changed sign, the above
equation can be written as

fi =

∫

Ω

NisdΩ−
∫

ΓΦ

Niq̂dΓ−
∫

Γq

Niq̄dΓ (71)
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where q̂ is the value of the normal flow (positive according to the normal) in the
contour ΓΦ. The terms coming from the unknown flow in the boundary are usually
expressed as

Ri =

∫

ΓΦ

Niq̂dΓ (72)

The matrix K is called in some texts ”Stiffness Matrix”, and the vector of independent
terms, ”Force Vector”, terms taken from applications to the structural analysis.

5.2 One dimensional problems
In the case of one-dimensional problems, the equations obtained are considerably sim-
plified. The residues in the domain and in the boundary are given, respectively, by:

RΩ =
d

dx

(
k
dΦ̂

dx

)
+ s ̸= 0 (73)

RΓΦ = Φ̂− Φ ̸= 0 (74)

RΓq = k
dΦ̂

dn
+ q̄ ̸= 0 (75)

RΓh = k
dΦ̂

dn
+ hc

(
Φ̂− Φ∞

)
̸= 0 (76)

RΓr = k
dΦ̂

dn
+ σε

(
Φ̂4 − Φ4

∞
)
̸= 0 (77)

where, Φ̂ = N.Φ̂, or Φ̂ =
∑N

j=0Nj .Φ̂j .

The N + 1 equations obtained by the Galerkin method allow us to obtain the corre-
sponding unknowns Φ̂j , j = 1..N , by imposing the N + 1 conditions:

∫

Ω

NiRΩdΩ+

∫

ΓΦ

αϕNiRΓΦ
dΓ +

∫

Γq

αqNiRΓq
dΓ + ... = 0 (78)

∫

Ω

[
Ni

d

dx

(
k
∂Φ̂

∂x

)
+ s

]
dΩ+

∫

ΓΦ

αϕNi

(
Φ̂− Φ

)
dΓ (79)
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+

∫

Γq

αqNi

(
D
∂Φ̂

∂n
+ q̄

)
dΓ + ... = 0

being in this case the contour integrals

∫

ΓΦ

αϕNi

(
Φ̂− Φ

)
dΓ = αϕNi

(
Φ̂− Φ

)
A |ΓΦ

(80)

∫

Γq

αqNi

(
k
dΦ̂

dn
+ q̄

)
dΓ = αqNi

(
k
dΦ̂

dn
+ q̄

)
A |Γq

(81)

where A is the section of the one-dimensional region considered, αq , etc., parameters
whose value will be obtained later so that the expressions obtained are as simple as
possible.

Integrating by parts, we obtain

−
∫

Ω

dNi

dx
k
dΦ̂

dx
dΩ+

[
Ni

(
k
dΦ̂

dn
+ q̄

)
A

]

ΓΦ+Γq

+

∫

Ω

NisdΩ+ ... (82)

+
[
αϕNi

(
Φ̂− Φ

)
A
]
ΓΦ

+

[
αqNi

(
k
dΦ̂

dn
+ q̄

)
A

]

Γq

= 0

Now considering only the terms corresponding to the integrals in the contour, we
obtain

[
Ni

(
k
dΦ̂

dn
+ q̄

)
A

]

ΓΦ+Γq

+
[
αϕNi

(
Φ̂− Φ

)
A
]
ΓΦ

(83)

+

[
αqNi

(
k
dΦ̂

dn
+ q̄

)
A

]

Γq

[
αϕNi

(
Φ̂− Φ

)
A
]
ΓΦ

+

[
Ni

(
k
dΦ̂

dn
+ q̄

)
A+ αqNi

(
k
dΦ̂

dn
+ q̄

)
A

]

Γq

(84)
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where it can be seen that if we choose αq = −1 it results
[
Nik

dΦ̂

dn
A

]

ΓΦ

− [Niq̄A]Γq
(85)

having assumed that in the contour ΓΦ the condition Φ̂ − Φ = 0. is approximately
satisfied.

This implies that the number of unknowns is reduced by NΦ, since the values of Φ are
then known.

It should be noted that the terms
[
Nik

dΦ̂
dnA

]
ΓΦ

are not known ΓΦ, thus dealing with

NΦ additional unknowns, so that the system that is finally solved hasN+1 unknowns.
In summary, the unknowns to be determined are the N +1−NΦ values of Φ̂, as well
as the NΦ values of the flows -D ∂Φ̂

∂n

The resulting system is, then,

−
∫

Ω

dNi

dx
k
dΦ̂

dx
dΩ+

∫

Ω

NisdΩ+

[
Nik

dΦ̂

dn
A

]

ΓΦ

− [Niq̄A]Γq
= 0 (86)

or,

∫

Ω

dNi

dx
k
dΦ̂

dx
dΩ = −

∫

Ω

NisdΩ+

[
Nik

dΦ̂

dn
A

]

ΓΦ

− [Niq̄A]Γq
= 0 (87)

If we substitute next the value of Φ̂ by Φ̂ =
∑N

j=0Nj .Φ̂j , we arrive to

(∫

Ω

dNi

dx
k
dNj

dx
dΩ

)
Φ̂j = −

∫

Ω

NisdΩ+

[
Nik

dΦ̂

dn
A

]

ΓΦ

− [Niq̄A]Γq
(88)

or, in a more compact form

KijΦ̂j = fi (89)

KΦ̂ = f (90)

where Kijare the terms(i, j) of the coefficient matrix of a system of linear equations,
and fi the independent terms, given, respectively, by

Kij =

∫

Ω

dNi

dx
k
dNj

dx
dΩ =

∫ L

0

dNi

dx
k
dNj

dx
Adx (91)
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fi = −
∫ L

0

NisAdx+

[
Nik

dΦ̂

dn
A

]

ΓΦ

− [Niq̄A]Γq
(92)

Taking into account that the terms are flows with changed signs, the previous equation
can be written as

fi = −
∫ L

0

NisAdx− [Niq̂A]ΓΦ
− [Niq̄A]Γq

(93)

where q̂ is the value of the normal flow (positive according to the normal) in the
contour ΓΦ.

5.3 Examples

We will consider next some simple examples in order to fix the ideas.

Example 1

Solve the problem of heat transfer in a bar of lengthL and sectionAwith the boundary
conditions Φ̂ = 0 at x = 0, and q = q̂ at x = L.

Solution

The coefficients Kij are obtained as:

K11 =

∫ L

0

dN1

dx
k
dN1

dx
Adx (94)

K12 = K21 =

∫ L

0

dN1

dx
k
dN2

dx
A.dx (95)

K22 =

∫ L

0

dN2

dx
k
dN2

dx
Adx (96)

from where

K =

∫ L

0

{
dN1

dx k
dN1

dx
dN1

dx k
dN2

dx
∂N1

∂x D
∂N2

∂x
∂N2

∂x k
dN2

dx

}
Adx (97)

=

∫ L

0

{
dN1

dx
dN2

dx

}
k
{

dN1

dx
dN2

dx

}
Adx (98)

=

∫ L

0

BT .D.BAdx (99)
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Taking into account that

B =
{

- 1
L

1
L

}
(100)

we obtain

K =

∫ L

0

{
k
L2 - k

L2

- k
L2

k
L2

}
Adx =

kA

L

[
1 -1
-1 1

]
(101)

On the other hand, the vector of independent terms is

fi = −
∫ L

0

NisAdx− [Niq̂A]ΓΦ
− [Niq̄A]Γq

(102)

being in this particular case

f =

(
−q̂1A
q̄A

)
(103)

The system is, therefore,

kA

L

[
1 -1
-1 1

]
.

[
Φ̂1 = 0

Φ̂2

]
=

(
-q̂1A
-q̄A

)
(104)

the unknowns being Φ̂2 and q̂1.

Starting with the second equation, we obtain

kA

L
Φ̂2 = −q̄A (105)

from where,

Φ̂2 = − q̄L
k

(106)

The flux at x = 0 is obtained using the first equation:

kA

L

(
q̄L

k

)
= −q̂1A (107)

and

q̂1 = −q̄ (108)

It is important to remember that the flow obtained at node 0 is

q̂1 = −k∂Φ
∂n

= k
∂Φ

∂x
(109)
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so it is correct that it is equal to −q̄.

Example 2

Solve the problem of heat transfer in a bar of lengthL and sectionAwith the boundary
conditions Φ̂ = 0 at x = 0, and q̂ = 0 at x = L , existing source terms of constant
value s.

Solution

The equations are analogous to those obtained in the previous example, with the dif-
ference that the contribution of the sources will now have to be added to the vector of
independent terms. s :

∫

Ω

NisdΩ =

∫ L

0

NisAdx (110)

which, taking into account that s is constant results on

fi =
1

2
sAL (111)

From here, we arrive to

kA

L

[
1 -1
-1 1

]
.

[
Φ̂1 = 0

Φ̂2

]
=

(
-q̂1A+ 1

2sAL
0 + 1

2sAL

)
(112)

which solution is

Φ̂2 =
sL2

2k
(113)

being the heat flow in the bar

q = B.Φ̂ =

(
− 1

L
,
1

L

)(
Φ̂1 = 0

Φ̂2

)
=

1

2
s.L (114)

Comparing the solution obtained with the analytical

ϕ(x) =
sL

2
x− s

2k
x2 (115)

where the flux is

q(x) = −kdϕ
dx

= s(L− x) (116)

It is observed that the values obtained at the nodes are exact, as well as the value of
the heat flow at the midpoint of the element.
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Example 3

Obtain the coefficient matrix for a linear triangular element with verticesA(0, 0), B(1, 0)and
C(0, 1) in the case that the conductivities according to x and y are k.

Solution

The coefficients Kij are:

∫

Ω

(
∂Ni

∂x
∂Ni

∂y

)
k

(
∂Nj

∂x
∂Nj

∂y

)
dΩ (117)

where k =kI, being I the identity matrix:

Kij =

∫

Ω

k

(
∂Ni

∂x

∂Nj

∂x
+
∂Ni

∂y

∂Nj

∂y

)
dΩ (118)

If we introduce now the matrix B

B =

( ∂N1

∂x
∂N2

∂x
∂N3

∂x
∂N1

∂y
∂N2

∂y
∂N3

∂y

)
(119)

the coefficient matrix K can be expressed as

K =

∫
BTkBdΩ (120)

or, defining Bi as:

Bi=

( ∂Ni

∂x
∂Ni

∂y

)
(121)

it results on

Kij =

∫

Ω

BT
i kBjdΩ (122)

In the case of the element considered, which coincides with the normalized element,
we have:

B1 (123)
B2 (124)
B3 (125)

from where:

B =

(
−1 1 0
−1 0 1

)
(126)
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and

K =

∫

Ω

BT kBdΩ =

∫

Ω



−1 −1
1 0
0 1


 k

(
−1 1 0
0 0 1

)
dΩ (127)

= kA




2 −1 −1
−1 1 0
−1 0 1


 (128)

with A = 1
2

Example 4

Obtain the vector of independent terms of a linear triangle with nodesA(0, 0), B(1, 0)
and C(0, 1) in the case that there is a constant source term s in the element:

Solution

The contribution of the source term to the vector of element-independent terms is:

fi =

∫

Ω

NisdΩ (129)

or

f =

∫

Ω

NT sdΩ (130)

with

NT =




NA

NB

NC


 (131)

This integral is calculated taking into account that the volume of a tetrahedron of area
A and unit height is (1/3)A, so it results:

f =
1

3
As




1
1
1


 (132)

Example 5

Given a triangular-shaped plate whose vertices are the points 1(0, 0), 2(1, 0) and 3(0, 1)
whose edge 12 is maintained at a temperature Φ0, the other two edges being isolated,
obtain the temperature at node 3, when there is a heat source of intensity s on the plate
and the thermal conductivity is k.
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Solution

Taking into account the coefficient matrix and the independent term obtained in the
previous examples, the system to be solved is:

kA




2 −1 −1
−1 1 0
−1 0 1






Φ̂1 = Φ0

Φ̂2 = Φ0

Φ̂3


 =

1

3
As




1
1
1


+




R1

R2

0


 (133)

where the terms R1 and R2 originated by the integral on the contour ΓΦ have been
included

R1 =

∫

Ω

N1k
∂Φ̂

∂n
dΓ (134)

The system solution is immediate, obtaining:

Φ̂3 = Φ0 +
s

3k
(135)

6 Assembling of elements

In the previous examples, problems that have been discretized using a single element
have been solved. In general, more elements will always be used, obtaining the coef-
ficient matrix as the sum of those obtained by integration in each of the elements.

The contribution of an element to the global coefficient matrix will only be non-zero
for those pairs of values (i, j) in which both nodes belong to the element. Therefore,
instead of adding ne matrices of dimensions (N + 1)x(N + 1), a simpler procedure
called ”assembly” is used, which is described below.

6.1 One dimensional problems
The coefficients of the matrix K are given by

Kij =

∫ L

0

dNi

dx
k
dNj

dx
Adx (136)

The integral in the domain Ω can be obtained as the sum of the integrals in the ele-
ments,

Kij =

∫

Ω

dNi

dx
k
dNj

dx
Adx =

Nelem∑

e=1

∫

Ωe

dNi

dx
k
dNj

dx
Adx =

Nelem∑

e=1

Ke
ij (137)

where the superindex (e) refers to the element considered. On the other hand, the
functions Ni are the global shape functions defined above.
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Considering the element (j) of nodes j − 1 and j, it can be easily verified that only
the shape functions corresponding to the nodes of the element will be different from
zero in Ωe, and therefore, they will only be different from zero the terms (j − 1, j −
1), (j − 1, j), (j, j − 1) and (j, j). The contribution of this element to the stiffness
matrix will be therefore:

K
(j)
j−1,j−1 =

∫

Ω

dNj−1

dx
k
dNj−1

dx
Adx =

∫

Ωe

dNj−1

dx
k
dNj−1

dx
Adx (138)

which, taking into account the nomenclature introduced for the functions used in the
elements, can be written as

K
(j)
j−1,j−1 =

∫

Ωe

dNA

dx
k
dNA

dx
Adx (139)

In a similar way, we will obtain

K
(j)
j−1,j = Kj,j−1 =

∫

Ωe

dNA

dx
k
dNB

dx
Adx (140)

and

K
(j)
j,j =

∫

Ωe

dNB

dx
k
dNB

dx
Adx (141)

The contribution to the global matrix of the element considered would therefore be:

nodes 0 1 ... ... N

0
1
...

...
N

K
(j)
j−1,j−1 K

(j)
j−1,j

K
(j)
j,j−1 K

(j)
j,j

or

nodes 0 1 ... ... N

0
1
...

...
N

K
(j)
A,A K

(j)
A,B

K
(e)
B,A K

(j)
B,B
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Under these conditions, when obtaining the contribution of each element, it is simpler
to use a ”matrix of element coefficients” K(e)

K(e) =

[
K

(e)
A,A K

(e)
A,B

K
(e)
B,A K

(e)
B,B

]
=

∫ L

0

{
∂N1

∂x D
∂N1

∂x
∂N1

∂x D
∂N2

∂x
∂N1

∂x D
∂N2

∂x
∂N2

∂x D
∂N2

∂x

}
Adx

=

∫

Ω(e)

{
dNA

dx
dNB

dx

}
k
{

dNA

dx
dNB

dx

}
Adx (142)

=

∫
B(e)T .k.B(e)Adx

where

B(e)=
{

- 1
L(e)

1
L(e)

}
(143)

Once obtained, their coefficients are placed in the corresponding positions of the
global matrix. For this, the information of the nodes that each element has is used,

Local Global
A j-1
B j

(144)

the coefficient (A,B) of the element matrix corresponds to the global (j − 1, j). This
operation of distributing the terms is called ”Assembly”, and is usually represented in
an abbreviated form as

K =
N∪
e=1

K(e) (145)

Example 7

Solve the problem of heat transfer in a bar of length L whose left end is maintained at
a temperature of zero degrees, with the flow being prescribed at the right end, using
two elements of length L/2

Solution

The coefficient matrix of the first element is

K(e) =

[
K

(e)
A,A K

(e)
A,B

K
(e)
B,A K

(e)
B,B

]
=

∫

Ω1

B(1)T .k.B(1)Adx (146)

where

B(1)=
{

- 1
L(1)

1
L(1)

}
(147)
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and

L(1) = L/2 (148)

From here, we obtain

K(1)=

∫ { D
L(1)2 - D

L(1)2

- D
L(1)2

D
L(1)2

}
Adx =

DA

L/2

[
1 -1
-1 1

]
(149)

The coefficient matrix of the second element is obtained in a similar way, reaching the
same result, since the lengths of the elements are equal.

The global array is formed by assembling the arrays of each element,

K =




K
(1)
A,A K

(1)
A,B 0

K
(1)
B,A K

(1)
B,B +K

(2)
A,A K

(2)
A,B

0 K
(2)
B,A K

(2)
B,B


 (150)

=
kA

L/2




1 −1 0
−1 2 −1
0 −1 1


 (151)

The system to be solved is, therefore,

kA

L/2




1 −1 0
−1 2 −1
0 −1 1






Φ̂1 = 0

Φ̂2

Φ̂3


 =



−q̂1A
0
−q̄A


 (152)

Using the second and third equations we obtain the system

2Φ̂2 − Φ̂3 = 0 (153)

−Φ̂2 + Φ̂3 = −qL
2k

(154)

which solution is
Φ̂2 = −qL

2k
Φ̂3 = −qL

k
(155)

obtaining, from the first equation, q̂1 = −q̄.
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6.2 General case
In the general case, the coefficients of the matrix K are given by

Kij =

∫

Ω

BT
i kBjdΩ (156)

integrals in the elements,

Kij =

∫

Ω

BT
i kBjdΩ =

Nelem∑

e=1

∫

Ωe

BT
i kBjdΩ =

Nelem∑

e=1

Ke
ij (157)

where the superindex (e) refers to the element considered. On the other hand, the
functions Ni are the global shape functions defined above.

Considering the element (e) of nodes i, j and k, it can be easily verified that only
the shape functions corresponding to the nodes of the element will be different from
zero in Ωe , and therefore, only they will be different from zero the terms (i, i),
(i, j), (i, k), (j, j),(j, k), (k, k) and their symmetrical terms. The contribution of this
element to the stiffness matrix will therefore be:

K
(e)
αβ =

∫
Ω
BT

αkBβdΩ (α, β) ∈ {i, j, k} (158)

The contribution to the global matrix of the element considered would therefore be:

nodes 1 ... i ... j ... k ... N

1
...
i
...
j
...
k
...
N

K
(e)
ii K

(e)
ij K

(e)
ik

K
(e)
ji K

(e)
jj K

(e)
jk

K
(e)
ki K

(e)
kj K

(e)
kk

all other coefficients being null

Under these conditions, when obtaining the contribution of each element, it is simpler
to use an ”element coefficient matrix” K(e)

K(e) =

∫

Ω(e)

BTkBdΩ (159)

Once obtained, their coefficients are placed in the corresponding positions of the
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global matrix. For this, the information of the nodes that each element has is used,

Local Global
1 i
2 j
3 k

(160)

corresponding, for example, the coefficient (2, 3) of the element matrix to the global
(j, k). As explained before, this operation of distributing the terms is called ”Assem-
bly”, and is usually represented in an abbreviated form as

K =
N∪
e=1

K(e) (161)

• Example 9

A square plate with a unit side has its left edge at a temperature of 0°, the two vertical
edges being insulated, and there being a unit flow of heat on the right edge, directed
towards the interior of the plate. Obtain the temperature distribution using two three-
node triangular elements, assuming that the thermal conductivity is k.

Figure 12: A square plate with a unit side.

Solution

• Contribution of the first element to the coefficient matrix

According to the results obtained in the preceding examples, and arranging the nodes
in the order (1, 2, 3) we obtain:

•
Local Global
1 1
2 2
3 3
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K(1) = kA




1 -1 0
-1 1 0
0 0 1


 (162)

• Contribution of the second element to the coefficient matrix:

The nodes of element 2 will be ordered as follows:

Local Global
1 (A) 3
2 (B) 2
3 (C) 4

The coefficient matrix will be:

K(e) =

∫

Ω(e)

BTkBdΩ (163)

where B will be:

B =

( ∂N1

∂x
∂N2

∂x
∂N3

∂x
∂N1

∂y
∂N2

∂y
∂N3

∂y

)
(164)

=
1

(xBA.yCA − yBA.xCA)

(
yCA −yBA

−xCA xBA

)(
−1
−1

1
0

0
1

)

and
xBA = x2 − x3 = 1
xCA = x4 − x3 = 1
yBA = y2 − y3 = −1
yCA = y4 − y3 = 0

(165)

Once these values have been substituted, we obtain

B =
1

1 ∗ 0− (−1) ∗ 1

(
0 1
−1 1

)(
−1
−1

1
0

0
1

)
(166)

=

(
−1
0

0
−1

1
1

)

This matrix could have been obtained directly, since the partial derivatives of the shape
functions in the case considered are easy to calculate. The element stiffness matrix is,
therefore,

K(2) =

∫

Ω(2)



−1 0
0 −1
1 1


 k

(
−1
0

0
−1

1
1

)
dΩ (167)

= kA




1 0 −1
0 1 −1
−1 −1 2



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• Global matrix of coefficients

The global coefficient matrix is obtained by assembling the element matrices. Once
the first element has been assembled, and without having yet assembled the second,
the global array is:

kA.




nodes 1 2 3 4
1
2
3
4

1 -1 0
-1 1 0
0 0 1




(168)

The second element is then assembled by adding the terms of its coefficient matrix to
the corresponding positions in the global matrix. In this way we obtain:

kA.




nodes 1 2 3 4
1
2
3
4

1 −1 0
−1 1+1 0+0 −1
0 0+0 1+1 −1

−1 −1 +2




(169)

= kA




1 −1 0 0
−1 2 0 −1
0 0 3 −1
0 −1 −1 2




• Independent terms

The contribution of each element to the vector of independent terms is given by:

f
(e)
i =

∫

Γ
(e)
Φ

Nin
T .k∇Φ̂dΓ−

∫

Γq

Niq̄dΓ (170)

In the case studied, only (i) Flow terms should be included in the nodes where the
temperature is prescribed (ii) integrals where q̄ is different from zero. Therefore, it is
only necessary to consider the contribution of element (2), in its contour 2-4, where a
heat flow per unit length of unit value directed towards the inside of the plate has been
imposed, and which will give rise to :

f
(2)
2 = −

∫

Γq

N2q̄dΓ = −
∫

Γ2−4

N2(−1)dΓ =
1

2
(171)

f
(2)
4 = −

∫

Γq

N4q̄dΓ = −
∫

Γ2−4

N4(−1)dΓ =
1

2
(172)

• The system of equations to be solved is, therefore,

kA




1 −1 0 0
−1 2 0 −1
0 0 3 −1
0 −1 −1 2







Φ̂1 = 0

Φ̂2

Φ̂3 = 0

Φ̂4


 =




R1

1/2
R3

1/2


 (173)
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Taking equations (2) and (4), the reduced system is obtained:

2Φ̂2 − Φ̂4 =
1

2kA
= 1 (174)

−Φ̂2 + 2Φ̂4 =
1

2kA
= 1 (175)

where it has been taken into account that A = 1/2 and k = 1 . The solution is

Φ̂2 = Φ̂4 = 1 (176)

Once the unknowns are calculated, the total flows in the nodes where the temperature
has been prescribed are obtained.

R1 = R3 = −1 (177)
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Introduction to finite elements (II): transient
problems of parabolic and hyperbolic types

Manuel Pastor, Saeid M. Tayyebi, Pablo Mira, Miguel
M. Stickle, Diego Manzanal, J.A. Fernandez Merodo

ETS de Ingenieros de Caminos, Universidad Politecnica de Madrid,
Ciudad Universitaria s/n, 28040, Madrid, Spain

This Chapter is the second part of the material devoted to present the finite element
method. As in the previous Chapter, we have chosen a level of mathematics accesible
to MSc students of engineering.

1 Introduction

The elliptic problems presented in the previous Chapter describe the steady state con-
ditions which can be attained in time dependent problems. Indeed, the diffusion prob-
lems presented there correspond to a particular type of PDE referres to as parabolic
In addition to them there is another class of PDE describing a large group of prob-
lems. Hyperbolic PDEs describe problems such as pollutant transport by a current,
hydaulics of rivers and coasts, and dynamics of soils and structures.

This Chapter will be devoted to present both types of PDEs, hyperbolic and hyper-
bolic. We will present first the mathematical models describing transient diffusion
and convective problems, showing the main differences between thei funsdamental
solutions. While in diffusive problems we find physical damping of the solution, pure
convective problems do not exhibit it. Moreover, discontnuities are propagated by the
later bud diffused by the former.

Regarding discretization, we have chosen to use finite differences as a pedagogical
vehicle to show why classical finite elements (Galerkin) will nor work for convection
dominated problems. Then, we will show how one of the methods that work for
convective problems, the Lax-Wendroff scheme, can be extended to finite elements,
leading to the Taylor Galerkin method.
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2 Model equations for time dependent problems

2.1 Parabolic problems

One of the simplest time-dependent problems is diffusion. Examples of this type of
problems are the following:

(a) Heat transport by convection (Fourier’s Law)

(b) Transport of matter by diffusion (Fick’s Law)

(c) Linear momentum transport in viscous fluids (Navier’s Law)

(d) Flow in porous medium (Darcy’s Law)

All these problems can be described by Parabolic Partial Differential Equations. In
the case of heat conduction, the equations in one-dimensional problems are:

ρc
∂ϕ

∂t
= D

∂2ϕ

∂x2
+ s (1)

where D is the thermal conductivity coefficient, ρ is the density and c is the specific
heat, with the term s representing the heat sources (power generated per unit volume).

This equation has been obtained in a similar way to what was done in the case of the
stationary problem, first considering the heat flow, given by Fourier’s Law:

q = −D∂ϕ
∂x

(2)

as well as the balance or conservation equation:

ρc
∂ϕ

∂t
= s− ∂q

∂x
(3)

Both equations are combined, giving:

ρc
∂ϕ

∂t
=

∂

∂x

(
D
∂ϕ

∂x

)
+ s (4)

which is the EDP that describes the problem.

For the problem to be well posed, initial conditions must be defined:

ϕ(x, t0) = g(x) (5)

together with suitable boundary conditions

ϕ(x, t)− ϕ̄(t) in Γϕ (Dirichlet) (6)
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and
D
∂ϕ

∂n
+ q̄ = 0 en Γq (Neumann) (7)

If we try to find elementary solutions of the type

ϕ(x, t) = A exp(iκx− iωt) (8)

where κ is the number of waves and ω the angular frequency, in the problem without
source type terms:

ρc
∂ϕ

∂t
=

∂

∂x

(
D
∂ϕ

∂x

)
(9)

we obtain:

ρc(−iω)A exp(iκx− iωt) = −Dκ2A exp(iκx− iωt) (10)

from where
ρc(−iω)A = −Dκ2A (11)

−iωt = −D
ρc
κ2t (12)

being, therefore, the elementary solution to the problem 1:

ϕ = A. exp(−D
ρc
κ2t) exp(iκx) (13)

In view of the solution obtained, the following fundamental aspects of its behavior can
be deduced:

• The factor exp(−D
ρcκ

2t) will cause the solution to soften over time, as outlined
in figure 1

Figure 1: Softening over time.

• Damping increases with the wave number κ, being therefore greater for the
higher modes having smaller wavelengths.

Pastor, Tayyebi, Mira, Stickle, Manzanal & Fernandez Merodo 41

ALERT Doctoral School 2024



Figure 2: Smoothing of solutions.
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• Discontinuities that may exist in the initial conditions are smoothed( figure 2).

• No discontinuities of any kind can spontaneously appear in the problem de-
scribed.

• In two and three dimensions, the equations are similar. In the case of heat
transport, the equations are:

ρc
∂Φ

∂t
= div (D.gradΦ) + s (14)

where div is the divergence operator in 2D, equal to the transposed of the gra-
dient

div = ∇T= gradT = (∂x, ∂y) (15)

orin3D div = ∇T= gradT= (∂x, ∂y, ∂z) (16)

2.2 1st order hyperbolic PDEs: convective transport problems

1st order PDEs are one of the simplest that can be found in Physics and Engineering,
as they involve 1st order derivatives with respect to time and space. In addition to
the pure convection of a scalar magnitude by a flow, they are found in Navier Stokes
equations, when formulated in an eulerian framework; in the shallow water equations
which describe coastal hydraulics problems, in flood waves caused by breaking of
dams, and in fluidized soil avalanches, just to mention a few examples.

However their apparent simplicity, they present difficulties such as:

• The convective terms require special discretization techniques from the classical
Boubnov-Galerkin Finite Elements -which are not stable.

• They present numerical diffusion and damping.

• Numerical dispersion, making shorter wavelenghts to travel with smaller speeds
than the theoretical, appear.

The simplest model we will consider is the 1D scalar convection equation. If we
introduce ϕ(x, t) as the concentration of a magnitude which is being convected by a
fluid of constant velocity u, the balance equation is obtained by considering a control
volume of length dx and cross section A as (figure 3):

Figure 3: 1D convective transport of a magnitude ϕ.
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Adx
∂ϕ

∂t
= Auϕ−Au

(
ϕ+

∂ϕ

∂x

)
(17)

from where we arrive to:
∂ϕ

∂t
+ u

∂ϕ

∂x
= 0 (18)

This equation is a particular case of the more general

a
∂ϕ

∂t
+ b

∂ϕ

∂x
= c (19)

or,
aϕt + bϕx = c (20)

The equation is called linear when a, b and c depend on (x, t) but not on ϕ, and quasi-
linear when they depend on (x, t, ϕ).

There exists an alternative formulation referred to as ”conservative”, written as:

∂ϕ

∂t
+

∂

∂x
(u ϕ) = 0 (21)

∂ϕ

∂t
+
∂F

∂x
= 0 (22)

where the flux F is
F = u ϕ (23)

The PDE can be derived by considering an arbitrary segment [a, b] and expressing the
rate of change of ϕ as the difference between the incoming and the outcoming fluxes:

d

dt

∫ b

a

ϕ (x, t) dx = F (a)− F (b) (24)

Taking into account that

d

dt

∫ b

a

ϕ (x, t) dx =

∫ b

a

∂ϕ

∂t
(x, t) dx (25)

and

F (a)− F (b) = −
∫ b

a

∂F

∂x
(x, t) dx (26)

we arrive to: ∫ b

a

∂Φ

∂t
(x, t) dx = −

∫ b

a

∂F

∂x
(x, t) dx (27)

from where we obtain: ∫ b

a

(
∂Φ

∂t
+
∂F

∂x

)
dx = 0 (28)
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Finally, as the chosen segment is arbitrary, we obtain the conservative formulation
(22). The integral formulation is to be used when discontinuities appear in ϕ,as 24
does not involve partial derivatives

Regarding initial and boundary conditions, it is important to notice that we will need:

(i) an initial condition ϕ (x, t = 0) = h0(x) x0 ≤ x ≤ xL
(ii) one boundary condition at the end where the velocity enters the domain ϕ (x0, t) =
g (t) 0 < t < Tend

where the domain is [x0, xL]x [0, Tend]

• If we try to find elementary solutions of the type

ϕ(x, t) = A exp(iκx− iωt) (29)

where κ is the number of waves and ω the angular frequency, in the problem
without source type terms:

∂ϕ

∂t
+ u

∂ϕ

∂x
= 0 (30)

we obtain:

−iωA exp(iκx− iωt) + iκu A exp(iκx− iωt) (31)

i.e, −iωϕ+ iκu ϕ = 0 from where

ω = uκ (32)

−iωt = −D
ρc
κ2t (33)

the elementary solution to the problem being:

ϕ (x, t) = A. exp(iκ (x− ut)) (34)

which is a wave moving without changig of shape along X axis with a constant ve-
locity u. In view of the solution obtained, the following fundamental aspects of its
behavior can be deduced:

• The solution is not damped

• The velocity does not depend on the wave length

• Discontinuities that may exist in the initial conditions are NOT smoothed

• In two and three dimensions, the equations are similar. In the case of heat
transport, the equations are:

∂ϕ

∂t
+ udiv (ϕ) = 0 (35)
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• In many practical cases, source terms and diffusion may exist. The PDE is then

∂ϕ

∂t
+ div (uϕ) = s+

∂

∂x

(
D
∂ϕ

∂x

)
(36)

where we have assumed that u depends on x

3 Finite difference approximations

The objective of this section is to introduce some basic finite difference (FD) schemes
for both the 1D heat conduction and the 1D scalar convective transport equation. We
have selected 3 schemes, (i) Forwards in time and centered in space (FTCS), (ii) For-
wards in time and backwards in space (FTBS) and (iii) Lax-Wendroff. These schemes
are interesting as they illustrate one fundamental difficulty presented for both Finite
Elements and Differences and the ways to circumvent it.

These methods can be applied to more complex problems, such as system of 1st order
hyperbolic PDEs and the convective part of Navier Stokes equations.

Finite differences schemes present the advantage of being simpler to present and un-
derstand, hence more pedagogic.

There exist many texts describing Finite Difference schemes, among which we can
mention those of [Far82], [Fle88], [Hir88], [Lev92], [Roa98], [Smi78] and [Str89].

3.1 Finite difference schemes for the 1D heat conduction problem
The Finite Difference Method is based on constructing a grid in the domain Ω × I.
For instance, if we consider the heat conduction in a one dimensional bar of length L
at times t0 ≤ t ≤ tf ,

ρc
∂ϕ

∂t
= D

∂2ϕ

∂x2
(37)

the mesh would be the one depicted in Figure 4. Any node x = x0 + j.△x, t =
t0 + n△t, can be identified by (j, n).

Partial derivatives with respect to time and space can then be approximated as combi-
nations of the values at a set of nodes. For instance, the partial derivative with respect
to time

∂ϕ

∂t

∣∣∣∣
n

j

:=
∂ϕ

∂t
(x = xj , t = tn) (38)

can be approximated as:

∂ϕ

∂t

∣∣∣∣
n

j

=
ϕn+1
j − ϕnj

∆t
+O(∆t) (39)
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Figure 4: Finite Difference Grid for the 1D heat conduction problem in a bar.

Another alternative is:

∂ϕ

∂t

∣∣∣∣
n

j

=
ϕn+1
j − ϕn−1

j

2∆t
+O(∆t2) (40)

Second derivatives with respect to space can be obtained in the same way:

∂2ϕ

∂x2

∣∣∣∣
n

j

=
ϕnj+1 − 2ϕnj + ϕnj−1

∆x2
+O(∆x2) (41)

If we now substitute (39) and (41) into (37), we obtain:

ϕn+1
j − ϕnj

∆t
=
D

ρc

ϕnj+1 − 2ϕnj + ϕnj−1

∆x2
(42)

from where we get:

ϕn+1
j = ϕnj +D∗(ϕnj+1 − 2ϕnj + ϕnj−1) (43)

where we have introduced D∗ = D∆t/ρc∆x2.

The finite difference scheme (43) is explicit, as the solution at tn+1can be obtained
directly without having to solve any system of equations, and it is conditionally stable
as it will be shown later on, as the timestep ∆t has to be smaller than a critical value
to avoid oscillations growing with time (see figure 5).

Of course, both the problem and the finite difference solution are complemented with
suitable boundary and initial conditions.
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Figure 5: Stencil for the explicit FD FTCS scheme.

• Example

Given a one dimensional bar of constant cross section and length L = 10 with bound-
ary conditions ϕ(0, t) = 0 and ϕ(L, t) = 0 and the initial distribution of temperature

ϕ(x, 0) = x/10 0 ≤ x ≤ 5
ϕ(x, 0) = 1− x/10 5 ≤ x ≤ 10

(44)

obtain the evolution with time of the bar temperature using the finite difference scheme
given in this section using a grid with ∆x = 1.0 in the two cases ∆t = 0.49 and ∆t =
0.60.Specific heat, density and thermal conductivity will be taken as unity.

Solution

We will use the FD scheme ϕn+1
j = ϕnj +D∗(ϕnj+1 − 2ϕnj + ϕnj−1) with j = 1..9

(which can be easily done using a spreadsheet).

Figures 6 and 7 depict the results obtained in both cases. As expected, the scheme
with ∆t = 0.60 is unstable as D∗ = 0.60.

3.2 Finite difference schemes for the 1D linear convective trans-
port in 1D

We will consider two alternative explicit schemes, a FTCS (forward in time, centered
in space) scheme and the Lax-Wendroff scheme. The former corresponds to the clas-
sical Galerkin formulation in finite elements, and it is unconditionally instable (i.e.
never works), while the Lax Wendroff provides a different framework, and is the basis
of the extension to finite elements (Taylor-Galerkin methods)

FTCS scheme Regarding the FTCS scheme, it approximates the time derivative in

∂ϕ

∂t
+ u

∂ϕ

∂x
= 0 (45)
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Figure 6: Explicit scheme with D∗ = 0.49.

Figure 7: Explicit scheme with D∗ = 0.6.
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0 ≤ x ≤ L 0 ≤ t ≤ T
by:

∂ϕ

∂t

∣∣∣∣
n

j

=
ϕn+1
j − ϕnj
△t +O(△t) (46)

and the spacial derivative by

∂ϕ

∂x

∣∣∣∣
n

j

=
ϕnj+1 − ϕnj−1

2△ x
+O(△x2) (47)

from where we obtain the FD scheme:

ϕn+1
j = ϕnj −

C

2
.
(
ϕnj+1 − ϕnj−1

)
(48)

where we have introduced the non dimensional number C , referred to as Courant
number,

C =
u

△x/△ t
(49)

which is the ratio between the physical convective velocity u and unum,the numerical
velocity with which a signal can propagate in the FD grid,

unum = △x/△ t (50)

The scheme is of explicit type, as once the value of ϕ is known at time tn , we can
obtain the values of ϕ at tn+1 directly, without having to solve a linear system of
equations. The reader should notice that the space derivative used in the scheme is of
second order, with an error which is of the order△x2 he derivatives at the ends of the
domain, can be approximated by alternative expressions not involving the outer part
of the domain, as for instance:

∂ϕ

∂t

∣∣∣∣
n

M

=
ϕnM − ϕnM−1

△x +O(△x) (51)

• Example

Apply the FTCS to solve the problem described in the preceding example, taking again
△x = 0.1, and studying the three cases C = {0.5, 1.0, 1.5}.
Solution

The results obtained in the three cases can be seen in figure 8, where we have drawn
the values of ϕ after 5 and 10 time increments in the first two cases, and 5 ∆ts in the
case C = 1.5 . In all the three cases we find growing oscillations, which correspond
to unstable schemes.
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Figure 8: FTCS scheme. Solution for C=0.5,1 and 1.5.

Lax-Wendroff scheme Lax Wendroff scheme consists of two parts. First, we make
a Taylor series expansion with respect to time of ϕ in (j, n)

ϕn+1
j = ϕnj +△t.∂ϕ

∂t
|nj +

1

2
△ t2.

∂2ϕ

∂t2
|nj (52)

Then, we will use the partial derivatives with respect to time provided by the PDE,

∂ϕ

∂t
= −u∂ϕ

∂x
(53)

and
∂2ϕ

∂t2
=

∂

∂t

(
∂ϕ

∂t

)
=

∂

∂t

(
−u∂ϕ

∂x

)
(54)

= −u ∂

∂x

(
∂ϕ

∂t

)
= u2

∂2ϕ

∂x2

We obtain, after substitution in the PDE

ϕn+1
j = ϕnj −△t.u

∂ϕ

∂t

∣∣∣∣
n

j

+
1

2
△ t2.u2

∂2ϕ

∂x2
|nj (55)

where we can observe that all derivatives with respect to time have been replaced by
space derivatives.
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And now, it is possible to discretize the equation in space, using either Finite Dif-
ferences or Elements. In the former case, we can use a 2nd order, centered scheme,
approximating the derivatives as:

∂ϕ

∂x

∣∣∣∣
n

j

=
ϕnj+1 − ϕnj−1

2△ x
(56)

∂2ϕ

∂x2

∣∣∣∣
n

j

=
ϕnj+1 − 2ϕnj − ϕnj−1

△x2 (57)

After substitution in (55), we obtain:

ϕn+1
j = ϕnj −△t.u

(
ϕnj+1 − ϕnj−1

2△ x

)
+

1

2
△ t2.u2

(
ϕnj+1 − 2ϕnj − ϕnj−1

△x2
)

(58)

or,

ϕn+1
j =

1

2
C(1 + C)ϕnj−1 + (1− C2)ϕnj −

1

2
C(1− C)ϕnj+1 (59)

which is the Lax-Wendroff scheme.

• Example

Apply the Lax Wendroff scheme to solve the problem of examples 7 and 8, taking
△x = 0.1, and studying the cases C = {0.5, 1.0, 1.5}.
Solution

We obtain, for the three cases considered, the results shown in figure 9, where we have
drawn the values of ϕ after 5, 10 and 15 increments of time in the first case, 5 and 10in
the second, and 10 in the third case. We can observe that the exact solution is obtained
for the case C = 1 while when C = 0.5 we observe numerical diffusion damping and
smoothing the solution. In the case C = 1.5, the

4 Finite element approximations

4.1 1D finite elements for the heat conduction problem

The procedure followed usually consists of first discretizing the PDE4 in space, using
the Galerkin method described above. The only difference with the elliptic type partial
differential equation corresponding to the stationary problem is the term

ρc
∂Φ

∂t
(60)

which, when using the Galerkin Method, gives rise to:
∫

Ω

Niρc
∂Φ̂(x, t)

∂t
dΩ (61)

52 Introduction to finite elements (II): transient problems of parabolic and
hyperbolic types

ALERT Doctoral School 2024



Figure 9: Lax Wendroff scheme. C=0.5,1.0 and 1.5.

where
∂Φ̂(x, t)

∂t
=
∑

j

∂

∂t
Nj(x).Φ̂j(t) (62)

arriving, in this way, at:

∫

Ω

Niρc
∂Φ̂(x, t)

∂t
dΩ =

∑

j

∫

Ω

NiρcNj
dΦ̂j(t)

dt
dΩ (63)

where it has been assumed that the problem considered is one-dimensional. However,
in the case of problems in two or three dimensions, the procedure to follow in this first
stage of discretization in space is similar to that described in the chapter dedicated to
elliptic type equations, and in fact, in all cases we arrive at a term that can be written,
in a more compact way, as

C.
d

dt
Φ̂(t) (64)

where
Cij =

∫

Ω

ρcNiNjdΩ (65)

C =

∫

Ω

NT .ρc.N.dΩ (66)
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In this way we arrive at the equation

K.Φ̂(t) +C.
d

dt
Φ̂(t) = f (67)

where
K =

∫

Ω

∇TN.k.∇N.d (68)

f =

∫

Ω

s.N.dΩ+

∫

Γq

N.q̄.dΓ (69)

with the vector Φ̂(t) given by:

Φ̂(t) =
{
Φ̂1(t), Φ̂2(t), Φ̂3(t), ...

}
(70)

It is important to notice that the unknowns Φ̂i(t) now depend on time. These expres-
sions are general, and can be used in both 1D, 2D and 3D problems. However, for
simplicity, both in the numerical stability analysis and in some examples, the 1D case
will be studied.

A simple scheme for the equation (67) is obtained by particularizing it in tn , and
approximating the time derivative by means of forward differences (Forward Euler):

K.Φ̂(t) +C.
d

dt
Φ̂(t) = f (71)

d

dt
Φ̂(t) =

Φ̂n+1 − Φ̂n

△t (72)

from where we obtain

K.Φ̂
n
+C

Φ̂n+1 − Φ̂n

△t = fn (73)

arriving to
Φ̂n+1 = Φ̂n +△tC−1

(
fn −K.Φ̂

n
)

(74)

The scheme is explicit when a diagonal representation of the matrix C is used so that it
is not necessary to invert it, and conditionally stable, oscillations appearing for values
of the time increment greater than a certain critical value. In this case, the scheme
obtained coincides with the explicit one derived previously in Finite Differences.

• Example

Given a bar of length L and constant scross ection A whose left end located at x = 0
is maintained at a temperature Φ = 10C, the right end being insulated, and the initial
temperature being Φ(x, 0) = 1 − x/L , obtain the finite element equations for the
case of the explicit scheme presented in this section, particularizing them for the case
where a diagonal representation of the matrix C is used. Three elements of equal
length will be used in the analysis.
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Solution:

The contribution of each element to matrix C is obtained first as:

C
(e)
ij =

∫

(e)

ρcNiNjAdx (75)

These integrals can be done in a relatively simple way taking into account that the area
enclosed by a parabola is equal to 2/3 of the area of the rectangle where it is inscribed,
as indicated in Figure10.

Figure 10: Areas defined by a parabola.

From here, and taking into account that the length of each element is L/3, we obtain:

C
(e)
11 = C

(e)
22 =

L

3
Aρc.

1

3
=

1

9
ALρc (76)

C
(e)
12 = C

(e)
21 =

L

3
Aρc

2

3
.
1

4
=

1

18
ALρc (77)

where the factor 1/4 that appears in the second expression comes from the fact that
the product of the shape functions N1 and N2 at the midpoint of the element is 1

2 .
1
2

The matrix C(e) of the element is, then,

C(e) =
1

18
ALρc

(
2 1
1 2

)
(78)

and its diagonal representation C
(e)
L is obtained by concentrating the sum of all the

elements of each row on the diagonal:s

C
(e)
L =

1

18
ALρc

(
2 + 1 0
0 2 + 1

)
=

1

6
ALρc

(
1 0
0 1

)
(79)

The global matrix is obtained by assembling the contributions of each element:

C =
1

18
ALρc




2 1 0 0
1 2 + 2 1 0
0 1 2 + 2 1
0 0 1 2


 =

1

18
ALρc




2 1 0 0
1 4 1 0
0 1 4 1
0 0 1 2


 (80)
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where CL is

CL =
1

6
ALρc




1 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1


 (81)

On the other hand, the coefficient matrices of the elements are given by

K(e) =
DA

L/3

(
1 −1
−1 1

)
(82)

which, once assembled give

K =
DA

L/3




1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1


 (83)

The resulting system is, then,



Φ̂n+1
1

Φ̂n+1
2

Φ̂n+1
3

Φ̂n+1
4


 =




Φ̂n
1

Φ̂n
2

Φ̂n
3

Φ̂n
4


+

3△t
ALρc




2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2


 . (84)








R1

0
0
0


−

DA

L/3




1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1


 .




Φ̂n
1

Φ̂n
2

Φ̂n
3

Φ̂n
4








Taking into account now that△x = L/3, the second equation is:

Φ̂n+1
2 = Φ̂n

2 +
D△t
ρc△x2

(
Φ̂n

1 − 2Φ̂n
2 + Φ̂n

3

)
(85)

which coincides with those obtained in the explicit finite difference scheme studied
above.

The Finite Element scheme presented above is a simple case of a single step-in-time
scheme. In fact, it is a particular case of a general family of single-pass schemes
known as generalized Newmark-type schemes. To obtain it, the values of Φ̂ and its
derivative with respect to time are approximated by the following expressions:

Φ̂n+1 = Φ̂n +△t.
•
Φ̂

n

+ β △ t
•
△Φ̂

n

(86)
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and
•
Φ̂

n+1

=
•
Φ̂

n

+ △
•
Φ̂n (87)

where
•
Φ̂ =

d Φ̂

dt
(88)

being β a parameter ranging from 0 to 1.

0 ≤ β ≤ 1 (89)

Writing now the discretized equation in space at time t(n+1),

K.Φ̂
n+1 − fn+1 +C.

•
Φ̂

n+1

= 0 (90)

and substituting the values of Φ̂n+1 and its derivative into it, we arrive at:

(C+β △ t.K)△
•
Φ̂n = fn+1 −

(
C.

•
Φ̂

n

+K.

(
Φ̂n +△t

•
Φ̂

n
))

(91)

which can be expressed in a more compact way as:

(C+β △ t.K)△
•
Φ̂n = Ψn+1 (92)

where Ψn+1 is

Ψn+1 = fn+1 −K.Φ̂
n+1,pred −C.

•
Φ̂

n+1,pred

(93)

and Φ̂n+1,pred,
•
Φ̂

n+1,pred

the approximated values of Φ and its derivative with re-
spect to time at tn+1

Φ̂n+1,pred = Φ̂n +△t
•
Φ̂

n

(94)
•
Φ̂

n+1,pred

=
•
Φ̂

n

(95)

The resulting scheme is reduced, for certain values of the parameter β to schemes such
as:

β scheme
0 Forward Euler
1 Backward Euler
1
2 Crank-Nicolson
1
3 Galerkin (time)

(96)

For values of the parameter β ≥ 0.5 the scheme is unconditionally stable, being in the
other cases conditionally stable, which implies that for values of the time increment
greater than a certain critical value, oscillations will appear that will grow with time
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In the particular case of β = 0, the resulting scheme is the explicit Euler one, in which
the matrix C can be easily inverted if a diagonal representation is used, which consists
of replacing it with a diagonal matrix whose terms are the sum of those of each row
of the original matrix (Lumped mass matrix):

CLi,i =
n∑

j=1

Ci,j (97)

In this case, it is immediate to invert the matrix CL .

To start the algorithm it is necessary to know the value of Φ̂0, as well as estimate the

value of its derivative with respect to time
•
Φ̂

0

, using, for example,

K.Φ̂
0 − f0 +C.

•
Φ̂

0

= 0 (98)

from where
•
Φ̂

0

= C−1.
(
f0 −K.Φ̂

0
)

(99)

4.2 Finite elements for the 1d linear convective transport problem

So far, we have studied some explicit FD schemes for the 1D convective transport
equation. We have studied the stability of the FTCS and the Lax Wendroff schemes,
and found that FTCS schemes were unconditionally unstables.

Here we will consider first the problems found when applying the classical Galerkin
approximation for the simple 1D convective problem, finding it unconditionally stable.
Indeed, when using a 1D mesh of equally spaced nodes both FTCS finite differences
and elements will result on the same set of discrete equations.

The objective of this section is to present some Finite Element techniques for convec-
tive transport problems. We recommend the material given in the following references:
[Cho90], [Far82], [Gui03], [Hir88], [Lev92], [Tor97], [Tor01] y [Zie00b].

Classical Galerkin approximation: a fundamental problem First of all, we will
present a simple 1D example where we will see how classical Galerkin Finite Ele-
ments are unconditionally unstable when applied to the scalar convective transport
equation.
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The mathematical model describing the convective transport of a magnitude ϕ along
a 1D channel where the velocity u is constant is

∂ϕ

∂t
+ u

∂ϕ

∂x
= 0 (100)

with the initial condition
ϕ (x, 0) = 0 0 ≤ x ≤ L (101)

and the boundary condition

ϕ (0, t) = 0 0 < t ≤ T (102)

The analytical solution is sketched in Figure 11.

Figure 11: Analytical solution.

We will discretize the problem using the simple mesh consisting of 5 nodes and 4
elements which can be seen in figure 12 below. The element size is constant and
equal to h = L/nelem = L/4. The time step is denoted by ∆t as usual.

Figure 12: One dimensional finite element mesh for the convective transport problem.

We will define the global shape functions Nj (x) j = 1, ..5, and introduce the nodal
variables ϕ̂j (t) which will be used to approximate the solution as:

ϕ (x, t) ≈ ϕ̂ (x, t) =
5∑

j = 1

Nj (x) ϕ̂j (t) (103)

or, in a more compact manner:

ϕ̂ (x, t) = N.Φ̂ (104)
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where we have introduced the vectors of global shape functions N and nodal un-
knowns Φ̂.

The initial condition reads
Φ̂ = 0 (105)

The boundary condition of the proposed example consists, simply, on making

ϕ̂1 (t) = 1 0 < t (106)

Following Galerkin method, we will introduce the error or residual RΩ as

RΩ =
∂ϕ̂

∂t
+ u

∂ϕ̂

∂x
(107)

and substitute 103 in it

RΩ =
∂

∂t




5∑

j=1

Nj (x) Φ̂j (t)


+ u

∂

∂x




5∑

j=1

Nj (x) Φ̂j (t)


 (108)

from where we obtain

RΩ =
5∑

j = 1

Nj (x)
dΦ̂j

dt
+

5∑

j = 1

v Φ̂j
dNj

dx
(109)

The Galerkin method consists of obtaining the unknowns Φ̂j (t) using the equations:
∫

Ω

NiRΩdΩ = 0 (110)

which provides us with the same number of equations than unknowns, taking into
account that in node 1 the nodal value is known.

Equation 110 can be interpreted as making the error orthogonal to the subspace where
we are building the approximation. When approximating functions, the best approx-
imation to a given function using a certain basis is such that the residual or error is
orthogonal to all vectors of the subspace.

If we further develop 110 using 109, we obtain:

∫

Ω

Ni




5∑

j=1

Nj (x)
dΦ̂j

dt


 dΩ = −

∫

Ω

Ni




5∑

j=1

u Φ̂j
dNj

dx


 dΩ (111)

from where: (∫

Ω

NiNjdΩ

)
dΦ̂j

dt
= −u

(∫

Ω

Ni
dNj

dx
dΩ

)
Φ̂j (112)
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This equation can be written in matrix form as:

M
dΦ̂

dt
= −uH Φ̂ (113)

The mass matrix M and the discrete convective matrix H are obtained by assembling
the contributions of all elements in the mesh. All element matrices are equal:

M(e) =
h

6

(
2 1
1 2

)
H(e) =

1

2

(
−1 1
−1 1

)
(114)

The assembled matrices are:

M =
h

6




2 1 0 0 0
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
0 0 0 1 2




(115)

and

H =
1

2




−1 1 0 0 0
−1 0 1 0 0
0 −1 0 1 0
0 0 −1 0 1
0 0 0 −1 1




(116)

Next, we will discretize in time equation 113 considering a series of time stations
t0, t1, ..tn with tn = t0 + n∆t

The value of the vector of unknowns at time nwill be denoted Φ̂(n). We will introduce
a simple forwards approximation of the time derivative:

dΦ̂n

dt
=

Φ̂n+1 − Φ̂n

∆t
(117)

which will be substituted in 113 to yield:

Φ̂n+1 = Φ̂n −∆t uM−1HΦ̂n (118)

or

Φ̂n+1 =
(
I −∆t uM−1H

)
Φ̂n (119)

Φ̂n+1 = A Φ̂n

where I is the identity matrix of order 5 and A the iteration matrix. The scheme is said
to be explicit as the matrix of coefficients M is the mass matrix. Indeed, this problem
can be solved using a Jacobi iteration scheme. Usually, a reasonably accurate solution
is obtained with 3-5 iterations.

Pastor, Tayyebi, Mira, Stickle, Manzanal & Fernandez Merodo 61

ALERT Doctoral School 2024



We will start with an initial solution Φ̂0 = (1, 0, 0, 0, 0)T , and choose an increment
of time ∆t, obtaining:

Φ̂1 = AΦ̂0 (120)
Φ̂2 = AΦ̂1

· · ·
Φ̂n+1 = AΦ̂n

The results present important oscillations which grow up with time which can be seen
in figures 13 and 14.

Figure 13: Evolution of concentration at nodes 3 and 5 as a function of time step.

The former shows how the solution evolves with time at two control nodes, while
the latter gives the concentration in the domain at two different times. The analytical
solution is a step function, located at xs = n∆t

This type of behaviour will be obtained no matter the increment of time used.

The reason is that the proposed scheme is unconditionally unstable, i.e., it will not
converge for any value of .

A simple proof of why the error is growing can be obtained by considering the scheme
given in eqn. 119. As the exact solution will fulfil this equation, we can write:

¯̂
Φn+1 = A

¯̂
Φn (121)

where ¯̂
Φn is the exact value at time n. If we subtract from this equation 119, we find

that the error at times n + 1 and n are related by the same numerical scheme we are
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Figure 14: Concentration in the mesh at time steps 0, 6 and 12.

using to obtain the solution
ε̂n+1 = Aε̂n (122)

It can be shown that the necessary and sufficient condition for the error not to grow is
that the moduli of all the eigenvalues have to be smaller than unity. In the case we are
considering here, there are complex eigenvalues with their modulus larger than one.

Sometimes, in order to save computer time, the consistent mass matrix M is approx-
imated by a diagonal matrix with diagonal terms which are the sum of all the coeffi-
cients in the same row. This diagonal matrix is referred to as “lumped mass matrix”
or ML .

In our case, ML is obtained immediately from M as

ML =
h

6




3 0 0 0 0
0 6 0 0 0
0 0 6 0 0
0 0 0 6 0
0 0 0 0 3




(123)

The iteration matrix A has the eigenvalues {1± 0.3536, 1.0 (triple)}] and it is
given by:

A =
(
I −∆t vM−1

L H
)
= (124)
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=




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



− u∆t

2h




−1 1 0 0 0
−1 0 1 0 0
0 −1 0 1 0
0 0 −1 0 1
0 0 0 −1 1




The iteration equation for node 3 is

ϕn+1
j = ϕnj −

u∆t

h

(
ϕnj+1 − ϕnj−1

2

)
with j = 2 (125)

which is exactly the finite difference equation obtained for the scheme FTCS.

The basic Taylor Galerkin algorithm There exist today a variety of finite element
methods for the discretization of the convective transport equation. Among them,
it is worth mentioning the Taylor Galerkin schemes proposed by Donea, Peraire,
Zienkiewicz and Morgan, and the Characteristic based Galerkin methods, introduced
by Zienkiewicz, Codina and Ortiz . The classic text by Zienkiewicz and Taylor
[Zie00b] presents an excellent state of art of these methods.

Here, we will focus in the Taylor-Galerkin method, which we will apply to solve both
the linear transport equation and the quasi linear Burger equation.

The method is similar to the above described Lax Wendroff scheme, as it does a Taylor
series expansion on time around tn.The difference with the Lax Wendroff method
arises in the second part, where the space derivatives are discretized. We will consider
here the 1D equation including a source term of intensity S which we have written in
conservative form as:

∂

∂t
ϕ+

∂

∂x
F = S (126)

with F = uϕ in the case of the convective transport equation and F =
(
ϕ2/2

)
in the

Burger equation.

The Taylor series expansion up to second order results on

ϕn+1 = ϕn +∆t
∂ϕ

∂t

∣∣∣∣
n

+
1

2
∆t2

∂2ϕ

∂t2

∣∣∣∣
n

(127)

Then, we substitute the first order partial derivative with respect to time using the
PDE:

∂ϕ

∂t

∣∣∣∣
n

=

(
− ∂

∂x
F + S

)∣∣∣∣
n

(128)
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and obtain the second order derivative with respect to time as

∂2ϕ

∂t2

∣∣∣∣
n

=
∂

∂t

(
− ∂

∂x
F + S

)∣∣∣∣
n

(129)

which consists of the terms

∂

∂t

(
− ∂

∂x
F

)
= − ∂

∂x

∂

∂t
F (130)

and,
∂S

∂t
(131)

The derivatives of the flux and source terms are:
∂

∂t
F =

∂F

∂ϕ

∂ϕ

∂t
= A

∂ϕ

∂t
(132)

∂

∂t
S =

∂S

∂ϕ

∂ϕ

∂t
= B

∂ϕ

∂t

where A and B are the derivatives of the flux F and source terms with respect to the
unknown ϕ. ( A = 0 or A = ϕ in the two cases being analyzed)

Next, we will substitute in (132) the time derivative of ϕ :

∂F

∂t
= A

(
−∂F
∂x

+ S

)
(133)

∂S

∂t
= B

(
−∂F
∂x

+ S

)

and introduce both expressions in (129):

∂2ϕ

∂t2
=

∂

∂x

{
A

(
∂F

∂x
− S

)}
+B

(
−∂F
∂x

+ S

)
(134)

From here, substituting (128) and (134) in the Taylor series expansion ( 127) we arrive
to:

ϕn+1 = (135)

ϕn−∆t
(
∂F

∂x
− S

)∣∣∣∣
n

+
∆t2

2

{
∂

∂x

[
A

(
∂F

∂x
− S

)]
+B

(
−∂F
∂x

+ S

)}n

Once we have discretized on time the convective transport equation, arriving to 4.2,
the discretization in space is performed using standard Galerkin Finite Elements.

We will present the space discretization of the advective terms, leaving to the reader
as an exercise the extension to the case with sources.
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We will start by approximating ϕ (x, t) as:

ϕ̂ (x, t) = Nj (x) ϕ̂j (t) (136)

where ϕ̂j (t) is the value of the unknown ϕ at node j and time t, and Nj (x) is the
correspondent shape function. If we introduce the increment of the unknown ∆ϕ̂nj =

ϕ̂n+1
j − ϕ̂nj the result is:

(
Ni,∆ϕ̂

n
)
= −∆t

(
Ni,

∂F

∂x

∣∣∣∣
n)

+
∆t2

2

(
Ni,

∂

∂x

(
A
∂F

∂x

∣∣∣∣
n) )

(137)

where we have used the notation

(f, g) =

∫

Ω

f g dΩ (138)

From above equation, and taking into account the following expressions

∆ϕ̂ (x, t) = Nj (x) ∆ϕ̂j (t) (139)

∂F

∂x

∣∣∣∣
n

=
∂Nj (x)

∂x
F̂n
j (140)

where F̂n
j is the value of the flux F at node j and time tn,we arrive, after integrating

by parts, to:

(Ni, Nj)∆ϕ̂
n
j = −∆t

(
Ni,

∂Nj (x)

∂x

)
F̂n
j

−∆t2

2

(
∂Ni (x)

∂x
A
∂Nj (x)

∂x

)
ϕ̂nj (141)

+
∆t2

2

∫

∂Ω

NiA
∂F

∂n

∣∣∣∣
n

dΓ

where n is the unit normal vector at the boundary ∂Ω.

The term ∂F
∂n

∣∣ncan be evaluated at every element belonging to the boundary.

The discretized system can be written in matrix form as:

M∆ϕ̂n = −∆tH F̂n − ∆t2

2
K ϕ̂

n
+

∆t2

2
f (142)

where
Mij = (Ni, Nj) (143)

Hij =

(
Ni,

∂Nj (x)

∂x

)
(144)
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fi =
∆t2

2

∫

∂Ω

NiA
∂F

∂n

∣∣∣∣
n

dΓ (145)

The boundary conditions are directly applied at nodal points belonging to the bound-
ary where the velocity enters the domain.

4.2.1 The two steps Taylor Galerkin algorithm

An alternative, which in the case of systems of PDEs reduces the computational cost
is the two steps algorithm proposed by Peraire et al. [Per86], which is similar to a 2nd
order Runge-Kutta scheme.

In the first step, a Taylor series expansion of first order is performed, and the value of
ϕ at time tn+1/2is obtained as:

ϕn+
1
2 = ϕn − ∆t

2

(
∂F

∂x
− S

)∣∣∣∣
n

(146)

Once ϕn+
1
2 is known, we can obtain the values of the flux and source terms at tn+1/2as:

Fn+ 1
2 = Fn +

∆t

2

∂F

∂t
(147)

= Fn +
∆t

2
A

(
−∂F
∂x

+ S

)n

and

Sn+1/2 = Sn +
∆t

2
B

(
−∂F
∂x

+ S

)n

(148)

From here, we obtain:

A

(
−∂F
∂x

+ S

)n

=
F

n+ 1
2

x − Fn
x

∆t/2
(149)

and

B

(
∂F

∂x
+ S

)n

=
Sn+ 1

2 − Sn

∆t/2
(150)

which substituted in (4.2), give:

ϕn+1 = ϕn +∆t

(
−∂Fx

∂x
+ S

)∣∣∣∣
n

(151)

+
∆t2

2

(
∂

∂x

(
−F

n+ 1
2 − Fn

∆t/2

)
+

(
Sn+ 1

2 − Sn

∆t/2

))
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from where we obtain:

ϕn+1 = ϕn +∆t

{
− ∂

∂x
Fn+ 1

2 + Sn+ 1
2

}
(152)

This equation can be discretized using the method of Galerkin, The result is

(
Ni, ϕ̂

n+1
)
=
(
Ni, ϕ̂

n
)
−∆t

(
Ni,

∂

∂x
Fn+ 1

2

)
−∆t

(
Ni, S

n+ 1
2

)
(153)

From here, integrating by parts the term −∆t
(
Ni,

∂
∂xF

n+ 1
2

)
,we obtain:

(
Ni, ϕ̂

n+1
)
=
(
Ni, ϕ̂

n
)
+∆t

(
∂

∂x
Ni, F

n+ 1
2

)
(154)

−∆t
(
Ni, S

n+ 1
2

)
+∆t

∫

∂Ω

Ni.
∂

∂n
Fn+ 1

2 dΓ

which can be written in a more compact form as,

M.∆ϕ̂
n+1

= (155)

∆t

{∫

Ω

∂N

∂x
Fn+ 1

2 dΩ−
∫

Ω

NSn+ 1
2 dΩ+

∫

∂Ω

N.
∂

∂n
Fn+ 1

2 dΓ

}

The systems of equations is of both the 1step and the 2 steps Taylor Galerkin are of
the type

M.x = f (156)

which can be solved using a Jacobi-like iterative method as,

x(k+1) = x(k) +M−1
L

(
f −Mx(k)

)
(157)

This scheme converges in very few iterations (3-5), and in consequence, the method is
considered as explicit. In above equation, the superindex (k) is the iterations counter.
The algorithm uses as starting value x(0) = 0.
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This paper deals with practical aspects of the use and implementation of the finite
element method. These aspects frequently cause serious difficulties specially to new
comers to finite element practice and may even be the source of important errors
on the final results of computations. The aspects that will be analyzed are: - the
computational aspects of bending - the reduced integration - the volumetric locking
of incompressible situations - the patch test for mixed formulations - the solver of the
system of equations.

1 Introduction

The Finite Element method has become one powerful tool of analysis which is being
used all over the world both in the industry and in research. Many young (and not
so young) engineers are nowadays familiar with commercial codes such as ANSYS,
ABAQVS, COSMOS..., just to mention a few. Beginners face some questions such as
(i) Which element should I use? (ii) How many elements and how big (or small)?, (iii)
Which material model? (iv) Is there any saving in using reduced integration?, and so
on.

While the number of questions and doubts is huge, there are some important aspects
of which all of us should be aware when running finite element codes. The purpose
of this Chapter is to provide a pocket guide for travellers in this unknown country.
Of course, it is just a pocket guide. We do not pretend otherwise! And they have
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been described in detail in classical guides, such as those of Bathe [Bat96], Hughes
[Hug87], Irons and Shrive [IS83], Zienkiewicz and Taylor [ZT00].

Therefore, we will describe some pitfalls and difficulties in doing finite element com-
putations, such as poor bending behaviour, locking and modes of zero energy when
using reduced integration. We will also deal with topics as Babuska-Brezzi restric-
tions (the light version), and will comment on which solvers are easy to program and
are efficient.

2 The Misteries of Bending

Not all elements perform as we wish when dealing with problems in which bending
is important. For instance, linear triangles give much stiffer response of the structure
than they should. Moreover, when obtaining natural frequencies of vibration, we will
get higher values because of this extra stiffness. To understand the problem, we will
consider the simple case of a square [−1, 1]x[−1, 1] under pure bending conditions.
We will discretize the domain with one bilinear quadrilateral, as depicted in Fig.1.

Figure 1: Bending of a bilinear quadrilateral
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The solution of this plane stress problem is the displacement field

u = −M
EI

xy v = −M
EI

(
1− x2

)
(1)

with horizontal displacements at the nodes given by ±u0 = M
EI .

u = −M
EI

xy v = −M
EI

(
1− x2

)
(2)

The origin of coordinate axes have been taken at the centre of the square. The strain
field is given by

εx = −M
EI

y εy = 0 γxy = 0 (3)

Should we reproduce the displacement field with the bilinear quadrilateral, we would
obtain a constant strain field

εhx = −M
EI

y εhy = 0 γhxy = −M
EI

x (4)

It is important to note that the discretization has introduced an spurious shear strain
which is only zero at the centre. Therefore, the element will be stiffer, and the defor-
mation under a given moment M will be smaller than it should. The reader can verify
that if we discretize the square with two linear elements, the situation is the same.

3 Risks of Reduced Integration

Reduced integration consists on using an integration rule of smaller degree of preci-
sion than required with less integration points. In this way, we get two advanteges (i)
The cost of computation -and therefore the time- is reduced. We can analyze larger
problems in the same time or we reduce the computer time. (ii) We obtain better
performance (sometimes) when computing limit loads.

Two popular reduced integration rules are: (I) One point for bilinear quadrilaterals (ii)
Two by two points for 8 noded quadrilaterals. Let us consider the first case. The bilin-
ear quadrilateral has 8 degrees of freedom, and the dimension of the stiffness matrix is
8x8. The matrix has eigth eigenvectors which are sketched in Fig.2. The eigenvalues
of the two translation and rotation modes are zero, but this mode of deformation with
zero energy is prevented by boundary conditions avoiding rigid solid motions.

If we integrate the stiffness matrix using just one point of integration (the centre), the
situation changes. The stiffness matrix is given by

K =

∫

Ω

BT .D.B dΩ (5)

which is computed as:
K = BT

0 .D.B0 .W0 (6)
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Figure 2: Eigenvectors of the stiffness matrix

Figure 3: Hourglassing of 4 noded quadrilaterals
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where the subindex 0 refers to the integration point. Dimensions of matrix B are 8x3,
and D is a 3x3 matrix. Therefore, the rank of K is 3. This means that, in addition
to the 3 free energy modes, there are two more now. These modes are the ”bending”
modes B1 and B2. A finite element mesh can in some conditions (for instance, poor
conditioning of the equations system) exhibit an spurious mode called ”hourglassing”
because of the shape of the deformed elements (Fig.3)

Reduced integration of 8 node quadrilaterals produce also another hourglass mode.
The shape is sketched in Fig.4. The advantages of this under-integrated element are
important, specially in computation of failure loads, and some finite element codes
incorporate a ”horglass control” to warn the user this spurious mechanism is present.

4 Volumetric locking and failure loads

We will consider now the case of an incompressible material under plane strain con-
ditions. The problem is sketched in Fig. 5

Boundary conditions are: (i) Prescribed zero horizontal and vertical displacements at
the left side and the bottom, (ii) traction free rigth side and top, with a point load
applied at the corner. If the material is incompressible, the node 4 cannot move in
the vertical direction as it belongs to triangle 124 which otherwise would change its
volume, and it cannot move in horizontal as it belongs to triangle 143. Therefore, the
node cannot move. This can be repeated for node 6, which belongs to triangles 256
and 264, and for all the remaining nodes in the mesh. All the nodes are ”blocked”,
which is unrealistic. This example can be reproduced with plane strain finite elements
using Poisson ratios approaching 0.5 (For instance, 0.49, 0.499, 0.4999 and so on.

The reader should be aware of this problem when trying to model the behaviour of
saturated soils under fast loading or undrained conditions, where values of Poisson
ratio close to 0.5 are usually chosen.

All displacement based finite elements present this problem to a certain extent. The
elements performing better are higher order triangles (15 nodes). Other popular alter-
native is to use quadratical eight noded quadrilaterals with a reduced integration rule
of 2x2 points.

However, the best choices are assumed strain elements (Simo Rifai, for instance), or
mixed displacement-pressure formulations. This techniques will be described later on
in this book.

The reader should be aware that this problem is also exhibited in Plasticity, because
at failure the flow rule imposes an additional condition on the rate of plastic strain
(which can be zero). To ilustrate this problem let us analyse the problem of a footing
on a vertical slope as sketched in figure 6. The material models used in the analysis
are presented in the following table:
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Figure 4: Hourglassing of 8 noded quadrilaterals

Figure 5: Volumetric Locking
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Figure 6: Footing on vertical slope
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Material type E(Pa) υ σy (Pa)
Soil Von Mises 1.0E5 0.35 200.0
Footing Linear elastic 1.0E8 0.35

The objective of the analysis is to obtain a failure mechanism and a value for the limit
load using different element types and different meshes. The different element types
used in the analysis are listed in the following table:

Standard 3 node displacement triangle 3st0
Standard 4 node displacement quadrilateral 4st0
B 4 node quadrilateral 4bb0
Simo&Rifai 4 node quadrilaterals with 4 internal modes 4sr0
Simo&Rifai 4 node quadrilaterals with 5 internal modes 4sr1
Simo&Rifai 4 node quadrilaterals with 6 internal modes 6sr4
Standard 6 node displacement triangle 6st0
B 6 node triangle 6bb2
Standard 7 node displacement triangle 7st0
B 7 node triangle 7bb2

A theoretical solution for this problem may be obtained based on limit analysis. The
failure mechanism would be a shear band descending leftwards from the bottom right
corner of the footing in a 45o angle. Accordingly for each element type two mesh
orientations were tested :

1) A so called right orientation (r) in which mesh alignment ran parallel to the direction
of the expected failure mechanism

2) A so called wrong orientation in which mesh alignment ran perpendicular to the
direction of the expected failure mechanism. (w)

The different meshes used are presented in figure 7.

As will be shown, this test appears to be very demanding. Poor performing elements
exhibit not only significant differences in the load-displacement curves and different
shear band widths but also significant changes in the failure mechanism direction de-
pending on the mesh orientation. Load displacement diagrams are presented in figures
8 and 9. Failure mechanisms are presented in figures 10 and 11.

The worst performers are as always standard displacement elements. The best per-
formers are Simo-Rifai and 7 node elements.

In the case of the poor performers a wrong mechanism appears which significantly
prevails over the correct one. In the case of the good performers both mechanisms
appear but the correct one prevails over the wrong one.

As we can see from the graphs the failure mechanism appears to be more important
than the load-displacement curve since good performers appear to have more problems
in the first one than in the second one.
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Figure 7: Meshes used to analyse footing on vertical slope depending on the number
of nodes per element: (a) 3 nodes right orientation (b) 3 nodes wrong orientation
(c) 4 nodes right orientation (d) 4 nodes wrong orientation (e) 6 and 7 nodes right
orientation (f) 6 and 7 nodes wrong orientation
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Figure 8: Force displacement diagrams for triangles (a) H=0.0 (b) H=-0.01E

Figure 9: Force displacement diagrams for quadrilaterals (a) H=0.0 (b) H=-0.01E
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Figure 10: Failure mechanisms for footing on vertical slope using 3 and 4 node ele-
ments and a perfectly plastic material

Figure 11: Failure mechanisms for footing on vertical slope using 6 and 7 node ele-
ments and a perfectly plastic material
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5 Why are T3P3 and Q4P4 elements not a good idea
for geotechnical analysis: the Zienkiewicz-Taylor patch
test

Users of finite element codes for geotechnical analysis often wonder why the choice of
elements is so limited. For instance, it is not possible to choose bilinear quadrilaterals
or enhanced strain elements like those of Simo-Rifai, which are excellent for bending,
quasi incompressibility, failure loads, etc. The reason is that in mixed displacement-
pore pressure problems we cannot use the same shape functions for interpolation of
both fields - unless we develop special stabilized elements-. Well, we can indeed, but
if the permeability is very small (undrained conditions), the system of equations is of
the form [

A −B
−B T 0

] [
ξ
ϕ

]
=

[
fξ
fϕ

]
(7)

This is in detail similar to those found in mixed formulations of incompressible solid
mechanics and fluid dynamics problems.

It will be demonstrated next that the system will be singular and present pressure os-
cillations whenever the number of ξ variables nξ ≤ nϕ ,i.e., the number of ϕ variables.
Although this condition is not sufficient for stability (and solvability) it is neccessary
and it generally excludes equal order of interpolation spaces for pressure and displace-
ments.

A complete mathematical treatment of the problem can be found in Refs. [Bab73] and
[Bre74]. However, a much simpler explanation is provided by the patch test for mixed
formulations proposed by Zienkiewicz et al. [ZQTN86], which will be described later.

To illustrate the problem, let us consider a layer of saturated soil of infinite length and
depth L depicted in Fig.12, subjected to a harmonic distributed load on its surface.

The problem has been discretized using a column of 1 m. width with the following
boundary conditions:

(i) At the top of the layer y = L :

Prescribed pressure pw = 0

Prescribed traction t̄y = 100 exp(−iωt)(Pa)

(ii) on the vertical sides
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∂pw
∂x

= 0

t̄y = 0 and ux = 0

(iii) on the bottom

∂pw
∂y

= 0

ux = uy = 0

Figure 12: Boundary conditions for saturated soil column with periodic surface load (
q = ty = 100 exp(−iωt) )

The material parameters chosen for the analysis are the following:

kw 10−7m/s
n 0.333
E 7.492 108 (Pa)
ν 0.2
ρs 2.0× 103 (N/m3)
ρw 1.0× 103 (N/m3)
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The height of the column has been taken as L = 30 m and the excitation frequency
chosen is ω = 3.379 rad/s.

The problem was discretized using 20 four node quadrilateral elements with bilinear
shape functions for both pressure and displacements. As can be seen in the table,
permeability is 10−7 ms−1, so the column is close to undrained conditions.Two dif-
ferent compressibilities of water and solid grains will be considered: 104MPa and
109MPa. The results have been plotted in Fig.13 where it can be seen how spuri-
ous oscillations grow as compressibility (i.e. 1/Q∗) decreases. If we choose now
quadratic polynomials for displacements and bilinear for pressure, no oscillations ap-
pear, as it can be seen in Fig.14.

Therefore, even if some compressibility exists, it is not possible to use any combina-
tion of shape functions for pressure and displacements, as oscillations can appear as
the undrained-incompressible limit is approached.

In the case of quadrilaterals, allowable interpolation functions are bilinear for pres-
sure and quadratic for displacements. Similarly, quadratic displacement triangles with
linear pressure are admissible (Fig.15).

To provide a rational explanation of why some combinations work while some others
don’t, we will follow that given in [ZQTN86] and begin by rewriting system (7) as

[
K −Q
−Q T 0

] [
u
p

]
=

[
fu
fp

]
(8)

from which we obtain, using the first equation of (8)

u = K−1Q.p+K−1fu (9)

Substituting this into the second equation of (8), we arrive at

−QT
(
K−1Q.p+K−1fu

)
= 0

or
(QTK−1Q)p =−QTK−1fu (10)

which is a system of equations with a matrix of coefficients of dimension (npxnp)
obtained by multiplication of three matrices of dimensions (npxnu), (nuxnu) and
(nuxnp) where nu and np are the number of degrees of freedom of displacements and
pressures once suitable boundary conditions have been applied.

If nu < np, the system is singular, and spurious oscillations in the pore pressure field
will always appear. Therefore, the condition to be fulfilled is

nu ≥ np (11)

for any assembly (or patch) of elements.

It is important to note that this is a necessary but not a sufficient condition and singu-
larity has to be tested in all cases.
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Figure 13: Amplitude of pore pressure for the soil column problem using 20 Q4P4
elements with k = 10−7m/s and (a) Q∗ = 104MPa (b) Q∗ = 109MPa

Figure 14: Amplitude of pore pressure for the soil column problem using 20 Q8P4
elements with k = 10−7m/s and (a) Q∗ = 104MPa (b) Q∗ = 109MPa
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Figure 15: Some allowed elements

Figure 16: Bilinear quadrilateral with equal order of interpolation of displacement and
pressure
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Figure 17: A single element patch of quadratic displacement - linear pressure triangle.

Figure 18: Patch of six T6P3 elements.
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In order to illustrate the application of this condition, we will consider next the case
of a quadrilateral with bilinear shape functions for both pressure and displacement
(Fig.16).

We shall first use a single element patch. If the displacements have been prescribed
on the boundary, and pore pressure has been fixed at one point we have zero degrees
of freedom for displacements and three for pressures. The element does not pass the
count conditions of the patch test as nu < np and the element will present oscillations
in the undrained-incompressible limit as was shown in previous example. For larger
patches obviously the same factors of the count will continue.

Examining the quadratic displacement triangle shown in Fig.17, a first patch consist-
ing in one element alone does not pass the test, as, again, all displacement degrees of
freedom have been fixed, and, therefore,

(nu = 0) < (np = 2)

However, this a rather uncommon situation, and patches incorporating more elements
do pass the patch test.

This is illustrated in Fig.18. Now, there are 7 free nodes in the interior of the patch, and
14 degrees of freedom for displacements, and 6 degrees of freedom for the pressure.
Therefore,

(nu = 14) > (np = 6)

and the count of the patch passes the test.

6 Our favourite solver (do we have any?)

Finite elements can give rise to huge systems of equations which we have to solve,
perhaps many times if we are analyzing transient problems. If you are thinking of
building your own finite element code, this is a crucial question: which solver should
I use? And the answer depends on the problem.

In our opinion, iterative solvers like the preconditioned conjugate gradient or the Ja-
cobi are excellent choices because they are really simple to program, especially if
we are using a language like FORTRAN 90 or C. Another advantage is that they do
not require any renumbering to save memory. We will describe the above-mentioned
iterative solvers in the following section.

The choice of iterative methods mentioned above is in our opinion the best for really
large problems (tens or hundreds of thousands of degrees of freedom). For large but
not so large problems ( just thousands of degrees of freedom) a direct method with
a special storage scheme for sparse problems is also a good choice and in general
requires less numerical operations. Direct methods such as LU Gauss-Jordan fac-
torization perform very satisfactorily under these circumstances. Additionally, they
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present the advantage of requiring relatively few changes to solve non symmetric sys-
tems, while conjugate gradient methods require special schemes such as GMRES to
solve this type of problems. When using direct methods it is decissive to use sparse
storage schemes, otherwise the computational cost and the required storage space are
not affordable and round off errors reach unacceptable levels. A well known sparse
storage scheme is the skyline method which will be presented in section 6.3. A more
recent and more efficient storage scheme known as Harwell-Boeing is presented in
section 6.4.

6.1 Conjugate Gradient Method with Preconditioning
One of the most effective and simple iterative methods (when used with precondi-
tioning) for solving Ax = b is the conjugate gradient algorithm. The algorithm is
based on the idea that the solution of Ax = b minimizes the total potential Π =
1
2x

TAx − xTb. Hence, the task in the iteration is, given an approximate xk to
x for wich the potential is Πk, to find an improved approximation xk+1 for wich
Πk+1 < Πk. However, not only do we want the total potential to decrease in each
iteration but we also want xk+1 to be calculated efficiently and the decrease in the
total potential to occur rapidly. Then the iteration will converge fast.

In the conjugate gradient method, we use in the kth iteration the linearly independent
vectors p1,p2,p3, ...,pk and calculate the minimum of the potential in the space
of the potential in the space spanned by these vectors. This gives xk+1. Also, we
establish the additional basis vector pk+1 used in the subsequent iteration.

The algorithm can be summarized as follows.

Choose the starting iteration vector x1 (frequently x1 is the null vector).

Calculate the residual r1 = b−Ax1. If r1 = 0 , quit.

Else:

Set p1 = r1.

Calculate for k = 1, 2, ...,

αk =
rk

T

rk

pkTApk

xk+1 = xk + αkpk

rk+1 = rk − αkApk (12)

βk =
rk+1T rk+1

rkTArk

pk+1 = pk+1 + βkpk

We continue iterating until
∥∥rk
∥∥ ≤ ε, where ε is the convergence tolerance. A con-

vergence criterion on
∥∥xk

∥∥ could also be used.
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The conjugate gradient algorithm satisfies two important orthogonality properties re-
garding the direction vectors pi and the residual ri, namely, we have

pT
i Apk

j = 0 (13)

PT
j r

k+1 = 0 (14)

where Pj = [p1, ...,pj ] .

Convergence to the solution x, in exact arithmetic, is achieved in at most n iterations.
Of course, in practice, we want convergence to be reached in much fewer than n
iterations.

The rate of convergence of the conjugate gradient algorithm depends on the condition
number of matrix A, defined as cond(A)=λn/λ1, where λ1 is the smallest eigenvalue
and λn is the largest eigenvalue of A. The larger the condition number, the slower the
convergence, and in practice, when the matrix is ill-conditioned, convergence can be
very slow.

To increase the rate of convergence of the solution algorithm, preconditioning is used.
The basic idea is that instead of solving Ax = b, we solve

Ã−1Ax = Ã−1b (15)

where Ã is called the preconditioner. The objective with this transformation is to
obtain a matrix Ã−1A with a much improved conditioned number choosing an easy
inverting matrix Ã. Various preconditioners have been proposed, the choose of the
diagonal part of A results in the Jacobi

Conjugate Gradient method (JCG).

The new algorithm introduces an additional set of vectors zk defined by:

zk = Ã−1rk (16)

who modifies the definitions of αk, βk,pk :

αk =
zk

T

rk

pkTApk

βk =
zk+1T rk+1

zkT rk
(17)

pk+1 = zk+1 + βkpk

6.2 GMRES iterative method
We considered in the previous section only the case of a symmetric coefficient matrix.
It should be noted that finite element models for geomechanical problems frequently
present non symmetric coefficient matrices. For non symmetric coefficient matrices,

90 Practical aspects of the finite element method

ALERT Doctoral School 2024



the conjugate gradient method has been generalized and other iterative schemes, no-
tably, the generalized minimal residual (GMRES) method, have been developed and
researched.

The GMRES method is an iterative method for the numerical solution of non-symmetric
linear equation systems developed by Yousef Saad and Martin H. Schulz in 1986 . The
method approximates the solution of the system based on the vector that minimizes
the residual within the Krylov subspace associated to each iteration. The Krylov sub-
space is updated at every iteration. To search for that vector, the method uses Arnoldi
iteration. The details may be found in [SS86]

In the context of finite element models for saturated soil mechanics, the use of the full
Newton-Raphson method is common. This method involves updating the stiffness
matrix at each iteration and solving the conrresponding system of linear equations. In
this context, it is decisive to have an efficient method for solving systems of linear
equations. This task becomes particularly complicated since it is common for these
systems of equations to be poorly conditioned due to the presence of undrained con-
ditions and quasi-incompressibility, as explained in the previous section. The most
precise methods would be the direct methods, based on the Gaussian elimination al-
gorithm, but they require a large amount of computer memory. Iterative methods
constitute a good alternative, it is necessary to have good preconditioners that allow
overcoming the greater sensitivity of iterative methods to poor conditioning of the sys-
tem. The work of White and Borja [WB11] provides a very efficient preconditioning
strategy based on the two blocks of the coupled formulation, the displacement block
and the pore pressure block, with a different preconditioning strategy for each of them.

6.3 Skyline storage scheme
The skyline scheme consists of storing the stiffness matrix in a vector including the
diagonal terms and the off diagonal terms between the non zero off diagonal term
which is farthest from the diagonal in each row (or column) and the corresponding
diagonal term. Additionally, it will be necessary to use an N component integer vector
to store the direction in the stiffness vector where the last component of the ith row (
or column) is stored. Let us assume our stiffness matrix is the following one:




2 −2 0 0 −1
−2 3 −2 0 0
0 −2 5 −3 0
0 0 −3 10 4
−1 0 0 4 10




Taking advantage of the symmetry of the matrix and storing the upper half would
produce the following vector:

i 1 2 3 4 5 6 7 8 9 10 11 12
a(i) 2 −2 3 −2 5 −3 10 −1 0 0 4 10
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The integer vector storing the positions of diagonal terms would be:

i 1 2 3 4 5
jdiag(i) 1 3 5 7 12

Once the matrix has been stored in this fashion, all the operations leading to the solu-
tion of the linear equation system are performed on vector a. Factorization will change
the contents of a and back substitution will use these new contents in conjunction with
the load vector to produce the solution.

6.4 Harwell-Boeing storage scheme
However, the skyline method is not optimal either since it stores many zeros and op-
erates with them. Operations carried out with zeroes are trivial, avoidable. They
increase the computational cost without relevant benefits. More recently, the use of
storage methods without zeros has spread with the consequent savings in space and op-
erations. One of the best known schemes is the Harwell-Boeing compressed columns.
Also called CSC (Compact Storage Columns) and similar to CSR (Compact Storage
Rows) except in columns. It requires the storage of a vector with non-zero coefficients
and two auxiliary vectors with integers. Using the same matrix as in the previous sub-
section the following vectors would be required:

i 1 2 3 4 5 6 7 8 9 10
a(i) 2 −2 3 −2 5 −3 10 −1 4 10

row(i) 1 1 2 2 3 3 4 1 4 5

The integer vector storing the starting positions of each column would be:

i 1 2 3 4 5
ColStart(i) 1 2 4 6 8

7 Conclusions

The finite element method is a powerful tool that has been used in many fields of en-
gineering analysis. But it should be used with care. We have discussed some practical
aspects that could introduce important errors in the results of computations. One fun-
damental aspect is the choice of the kind of element to do the analysis. The element
type chosen strongly affects the results, and can also be the source of unsatisfactory
performance in bending and incompressible situations. For mixed formulations, the
element type should also verify some important restrictions (patch test). Concerning
the type of algorithm that should be used to solve the system of equations obtained
with the FEM the discussion is open. The choice of iterative methods is in our opinion
the best for really large problems.
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The theory of plasticity in constitutive
modeling of rate–independent soils

Claudio Tamagninia, Kateryna Oliynyka,b

a)University of Perugia, Italy
b) University of Dundee, UK

This chapter presents a review of the applications of the theory of plasticity to the
modeling of rate–independent geomaterials, starting from classical approaches and
covering some of the advanced versions of the theory designed to improve its capabili-
ties in cyclic/dynamic loading conditions as well as to model “environmental” loading
effects. In the discussion of the different approaches, particular attention is given to
the incremental nature of the constitutive equations, emerging from the need of repro-
ducing the essential features of the history–dependent behavior of soils. The relative
merits and limitations of each class of models discussed are outlined with emphasis
on those inherent features of their mathematical structure which might be of help in
the assessment of their predictive capabilities when applied to practical geotechnical
problems. This chapter was first published in the lecture notes of the 2021 ALERT
School “Constitutive Modelling in Geomaterials”.

1 Introduction

In the application of continuum theories to the analysis of any solid mechanics prob-
lem, a fundamental role is played by the constitutive equations, which are expected to
describe in precise mathematical terms the actual mechanical behavior of the material.
Constitutive equations do not represent universal laws of nature. Rather, they can be
considered definitions of ideal materials, i.e., what is usually referred to as constitu-
tive models. Constitutive models may possess the properties of the actual materials
they are intended to model only to a limited extent. However, this do not lessen their
worth, which is to produce a mathematical tool to predict the behavior of the physical
system under any possible circumstance, starting from the limited knowledge gathered
in a few experimental observations.

The quality of the predictions depends on the ability to define a suitable idealization
for the real material which is capable to capture, from a quantitative point of view, the
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experimentally observed features which are thought to be of relevance for the practi-
cal problem at hand. This is particularly true in computational geomechanics, where
the materials under consideration – i.e., soil layers or rock masses – are usually char-
acterized by a complex multi–phase structure and by a highly non–linear, irreversible
and history–dependent response to the applied mechanical or “environmental” loading
conditions.

The main objective of this chapter is to provide an outline of the different classes of
constitutive equations for soils developed within the general framework of the theory
of plasticity – from the early, pioneering works in perfect plasticity, to more recent
developments in bounding surface and generalized plasticity, as well as in plasticity
with generalized hardening laws to capture the effects of “environmental” loading
conditions.

The topics covered in the following are not intended to provide a comprehensive re-
view of the enormous amount of work which has been done in the applications of
the theory of plasticity to soil mechanics over many decades. For this, the reader
is referred, for example, to the following monographs [DS84, DS02, Woo04, Yu06,
Bor13, Has17]. Rather, the presentation will be limited to those aspects of the general
framework of the theory of which reflect the authors’ own experience and interests. In
particular, the discussion will be mostly focused – with the only exception of Sect. 9
– on constitutive equations for rate–independent, saturated soils in isothermal condi-
tions, obeying the principle of effective stress as stated by Terzaghi [Ter48]. Details
on how the constitutive models for saturated soils should be extended to account for
partially saturated conditions can be found in the chapter by Jommi [Jom21] in this
book. In the presentation of the different classes of models, we will focus on the
infinitesimal theory of plasticity, suitable for small deformations and rotations. The
extension of the theory to finite deformations is discussed in the chapter by Oliynyk
and Tamagnini [OT21] in this book. The constitutive equations for brittle materials
– e.g., rocks or concrete – developed in the framework of damage mechanics are de-
liberately left out of this exposition. Finally, only constitutive equations for simple
materials, according to Truesdell & Noll [TN65], will be considered in the following.
Although non–local or weakly non–local theories for materials with microstructure –
such as polar, second gradient or micromorphic materials – have been the subject of
a considerable amount of research in geomechanics, mainly in relation to the study of
strain localization into shear bands, they are outside the scope of the present work. For
this interesting subject, the reader is referred to the books by Vardoulakis and Sulem
[VS95, Var19], and references therein.

2 Notation

In the following, boldface lower– and upper–case letters are used to represent vector
and tensor quantities. The symbols 1 and Is are used for the second–order and fourth–
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order identity tensors, with components:

(1)ij = δij (Is)ijkl =
1

2
(δikδjl + δilδjk) (1)

The symmetric and skew–symmetric parts of a second–order tensor X are denoted as:
symX := (X +XT )/2 and skwX := (X −XT )/2, respectively. The dot product
is defined as follows: v ·w := viwi for any two vectors v and w; X · Y := XijYij
for any two second–order tensors X and Y . The dyadic product is defined as follows:
[v ⊗ w]ij := viwj for any two vectors v and w; [X ⊗ Y ]ijkl := XijYkl for any
two second–order tensors X and Y . The quantity ∥X∥ :=

√
X ·X denotes the

Euclidean norm of X . The usual sign convention of soil mechanics (compression
positive) is adopted throughout. In line with Terzaghi’s principle of effective stress, all
stresses are effective stresses, unless otherwise stated. In the representation of stress
and strain states, use will sometimes be made of the invariant quantities: p (mean
stress), q (deviator stress), and θ (Lode angle), defined as:

p :=
1

3
(σ · 1) ; q :=

√
3

2
∥s∥ ; sin(3θ) :=

√
6

(s3) · 1
[(s2) · 1]3/2

(2)

and: ϵv (volumetric strain), ϵs (deviatoric strain), ϵ̇v (volumetric strain rate), and ϵ̇s
(deviatoric strain rate), defined as:

ϵv := ϵ · 1 ; ϵs :=

√
2

3
∥e∥ ; θϵ :=

√
6

(e3) · 1
[(e2) · 1]3/2

ϵ̇v := ϵ̇ · 1 ; ϵ̇s :=

√
2

3
∥ė∥ θ̇ϵ :=

√
6

(ė3) · 1
[(ė2) · 1]3/2

(3)

In eqs. (2) and (3), s := σ − p1 is the deviatoric part of the stress tensor; e :=
ϵ − (1/3)ϵv 1 and ė := ϵ̇ − (1/3)ϵ̇v 1 are the deviatoric parts of the strain and the
strain rate tensors, respectively, while s2 and s3 are the square and the cube of the
deviatoric stress tensor, with components (s2)ij := sikskj and (s3)ij := siksklslj . It
is worth noting that in eqs. (3)5 and (3)6, with a slight abuse of notation, the symbols
ϵ̇s and θ̇ϵ have been employed to denote the second and third invariants of the strain
rate tensor, which generally do not coincide with the time rates of ϵs and θϵ, as defined
in in eqs. (3)2 and (3)3.

3 History–dependent materials modeling and the need
for constitutive equations in rate–form

According to the principles of determinism and local action [TN65], the most general
expression for the constitutive equation of a simple material is given by:

σ(x, t) =
∞
G

τ=0

[
F (t)(X, τ)

]
(4)
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where G is a functional of the history up to time t of the deformation gradient asso-
ciated with the motion x = φ(X, t) carrying the material point X in the reference
configuration to its position x in the current configuration at time t, defined as:

F (t)(X, s) := F (X, t− s) F (X, t) :=
∂φ

∂X
(X, t) (s ≥ 0) (5)

Eq. (4) essentially states that the (effective) stress tensor σ is a function of the entire
deformation history, i.e., that the knowledge of the state of strain at a given time t is
in general not sufficient to determine the stress state. This is an essential feature of
inelastic, history–dependent materials such as soils.

A third fundamental principle, the principle of material frame indifference, implies the
following restriction to the functional G: for every orthogonal tensor function Q(τ)

and every history F (t)(X, τ), the relation:

Q0

∞
G

τ=0

[
F (t)(X, τ)

]
QT

0 =
∞
G

τ=0

[
Q(τ)F (t)(X, τ)

]
Q0 := Q(0) (6)

must hold. Conversely, any such functional G satisfying eq. (6) can be considered as
defining the constitutive equation of a particular material.

The fundamental properties of the functional G should be defined according to our
knowledge of the main characteristic of the mechanical behavior of the materials we
intend to model. As far as geomaterials – and soils in particular – are concerned, a
long standing experimental evidence indicates that the mechanical response of such
materials is strongly non–linear and dependent on such factors as current state, pre-
vious loading history, load increment size and loading direction. Even the simplest
and most common laboratory tests, such as a one–dimensional compression test or a
axisymmetric (triaxial) drained compression test, can highlight such features in both
fine and coarse–grained soils.

A main consequence of this observation is that the constitutive functional G must be
non–linear and non–differentiable, see [OW69]. However, working with non–linear,
non–differentiable functionals poses formidable mathematical problems, even in the
simplest cases. An alternative strategy, which overcomes this difficulty and is com-
monly adopted in nonlinear solid mechanics, is to avoid formulating the constitutive
equation in global terms, as in eq. (4), and rather adopt an incremental (or rate–type)
formulation, in which the (objective) stress rate is given as a function of the rate of
deformation d := sym∇v (v := dφ/dt ◦ φ being the spatial velocity) and of the
current state of the material:

◦
σ= G (σ, q,d) (7)

In eq. (7),
◦
σ denotes a suitable objective stress rate, such as the Jaumann–Zaremba

stress rate, defined as:
▽
σ := σ̇ + σω − ωσ (8)

where ω := skw∇v is the spin tensor. In eq. (7), q represents a set of internal
state variables, which are introduced to account for the effects of the previous loading
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history. An additional set of rate equations is then required to define the evolution of
the internal variables in time. In classical elastoplasticity, these evolution equations
are referred to as hardening laws.

Restricting our discussion to the infinitesimal theory, the objective stress rate
◦
σ can

be replaced by the standard objective time rate σ̇, and the rate of deformation d with
the (linearized) strain rate tensor ϵ̇. Thus, eq. (7) can be rewritten as:

σ̇ = G (σ, q, ϵ̇) (9)

Rate–indepence means that a change in the time scale does not affect the material
response, e.g., doubling the strain rate doubles the stress rate. More generally:

G (σ, q, λϵ̇) = λG (σ, q, ϵ̇) ∀ λ > 0 (10)

A direct consequence of the above equation is that the function G is positively ho-
mogeneous of degree one in ϵ̇. This latter property yields the following alternative
expression for the constitutive equation (9):

σ̇ = D (σ, q,η) ϵ̇ (11)

where D is the (fourth–order) tangent stiffness tensor at the current state, which de-
pends on the strain rate only through its direction, defined by the unit tensor η :=
ϵ̇/ ∥ϵ̇∥. Eq. (11) provides a general representation for rate–independent constitutive
equations which encompasses as particular cases all the constitutive equations derived
within the general framework of the theory of plasticity.

4 Non–linearity and incremental non–linearity

Let (σ0, q0) be the initial state of the material at time t = 0. For a given strain path E
from ϵ0 to ϵ(t), the state of stress at time t, σ(t), is obtained by integrating eq. (11):

σ(t) = σ̂ (σ0, q0, E) = σ0 +

∫

E
D (σ, q,η)

dϵ

ds
ds (12)

From the above equation, it is immediately apparent that the dependence of the tan-
gent stiffness D on the current state (σ, q) renders the function σ̂ non–linear, e.g.,
doubling the strain increment does not result in doubling the stress increment. This
is the notion of non–linearity to be invoked when describing a material response for
which the observed stress–strain curve (e.g., in a triaxial compression path) is not a
straight line.

An independent concept of non–linearity can be defined by considering the functional
relation between stress rate and strain rate, as first suggested by Darve [Dar78]. If
the constitutive function G is linear in ϵ̇, then the material is said to be incrementally
linear. In this case, the tangent stiffness tensor D does not depend on the strain rate
direction η, and eq. (11) reduces to:

σ̇ = D (σ, q) ϵ̇ (13)
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While a linear behavior implies incremental linearity, the opposite is not true. That is,
incremental linearity does not imply linearity of the stress–strain response over a finite
load increment. On the other hand, when G is a non–linear function of the strain rate,
i.e., for any ϵ̇1 and ϵ̇2 and a, b ∈ R:

G (σ, q, aϵ̇1 + bϵ̇2) ̸= aG (σ, q, ϵ̇1) + bG (σ, q, ϵ̇2) (14)

the material behavior is said to be incrementally non–linear. In this case, the tangent
stiffness D explicitly depends on the strain rate direction, see eq. (11).

From eq. (14) it follows that:

G (σ, q, ϵ̇) ̸= −G (σ, q,−ϵ̇) (15)

which, in turn, implies:
D(σ, q,η) ̸= D(σ, q,−η) (16)

Equation (16) expresses a fundamental feature of incrementally non–linear models:
for any strain rate direction, the reversal of the loading path is always associated with
a change in the tangent stiffness D. Indeed, such a feature is necessary in order
to correctly describe irreversible behavior. In fact, although eq. (13) is in general
non–integrable, the response of an incrementally linear material remains completely
reversible in any closed loading–unloading program following the same path in two
opposite directions.

When discussing the dependence of D on η, it is useful to introduce the concept of
tensorial zone, as defined by Darve [Dar78, Dar90]. A tensorial zone Z is a portion of
the strain rate space in which G is a linear function of ϵ̇. Accordingly, in a particular
tensorial zone the tangent stiffness is independent of η:

D(σ, q,η) = DZ(σ, q) ∀η ∈ Z (17)

As G is positively homogeneous of degree one in ϵ̇, Z is a cone in the strain rate space
with the vertex at the origin (i.e., all strain rates λϵ̇ with λ > 0 belong to the same
tensorial zone as ϵ̇).

Following Darve [Dar90], incrementally non–linear, rate–independent constitutive
equations can be classified according to the number of associated tensorial zones.
When the number of tensorial zones of G is finite, the constitutive equation is incre-
mentally multi–linear (bi–linear in the particular case of only two zones). In incre-
mentally multi–linear materials, an important issue is represented by the continuity of
the response at the boundary between any two tensorial zones [Gud79]. Let ∂ZAB

be such a boundary between the tensorial zones ZA and ZB . If ϵ̇∗ ∈ ∂ZAB , then,
continuity of the response requires that:

σ̇ = DZA ϵ̇∗ = DZB ϵ̇∗ ⇒
(
DZA −DZB

)
ϵ̇∗ = 0 (18)

Equation (18)2 represents a generalization of the continuity condition established by
Green [Gre56] for hypoelastic materials. In the following, we will focus on models
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with one or two tensorial zones, leaving aside the theories of plasticity with multi-
ple plastic mechanisms and more than two tensorial zones (multi–surface plasticity).
Interested readers may refer to Ch. 5 of the book by Simo and Hughes [SH97] for a
general treatment of this subject.

As opposed to multi–linearity, a strictly incrementally non–linear behavior is provided
by constitutive models for which a continuous dependence of D on η is assumed.
This is the case of rate–type constitutive models developed within the framework of
the theory of hypoplasticity [Kol91, TVC00]. This subject is presented in the chapter
by Mašı́n [Mas21] in this book.

5 Linear elasticity, hyperelasticity and hypoelasticity

In the early application of continuum mechanics to geotechnical engineering, the enor-
mous analytical difficulties posed by the design of even simple geotechnical structures
led to the traditional distinction between “deformation” and “failure” problems, for
which different, very simple constitutive equations could be used, see e.g., [TP48].
The rationale behind this approach is that only some very specific features of soil be-
havior are of interest for the particular problem at hand, while the others could be
neglected without affecting the quality of the prediction in a substantial way. In par-
ticular, the only possible constitutive framework for which (analytical) solutions to
deformation problems could be obtained at that time – in lack of suitable numerical
methods and powerful computer platforms – was provided by the theory of linear elas-
ticity. Its successful application then relied on the “proper” selection of the relevant
soil constants (in essence, the Young’s modulus), which had to be assumed to depend
on such primary factors as current stress state, previous stress history, and nature of
the applied stress path – in terms of magnitude and, possibly, direction.

Nowadays, the theory of elasticity still plays an important role, as it can be considered
a cornerstone of any plasticity theory. For this reason, the main features of elasticity
models adopted in the description of soil behavior are briefly recalled in this Section.

5.1 Linear elasticity
The simplest linear elastic model is provided by the Hooke’s law for isotropic materi-
als:

σ̇ = Dϵ̇e D = K1⊗ 1+ 2G

(
Is − 1

3
1⊗ 1

)
(19)

where ϵ̇e is the elastic strain rate – coinciding with the total strain rate if there are no
irreversible deformations – while K and G are the (constant) bulk and shear moduli
of the material. The two elastic constants can be replaced by other, frequently used
pairs of alternative elastic properties, such as the Young’s modulus and Poisson’s ratio
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(E, ν) related to K and G by the relations:

K =
E

3(1− 2ν)
G =

E

2(1 + ν)

or the Lame’s constants (λ, µ), linked to E and ν by the relations:

λ =
Eν

(1 + ν)(1− 2ν)
µ =

E

2(1 + ν)
= G

Linear isotropic elasticity is still widely used in a number of important geotechnical
applications. However, it fails to capture an essential feature of the reversible response
of granular material, i.e., global non–linearity, due to the dependence of the stiffness
constants on the current stress state. This feature of soils’ elastic response originates
from the nature of the reversible grain to grain interactions at the microscopic level
[CJR13].

5.2 Hypoelasticity
Early attempts to incorporate global non–linearity in the elastic response of the soil
can be traced back to the works of Kondner & Zelasko [KZ63] and Duncan & Chang
[DC70]. In essence, it consists in adopting an isotropic elastic constitutive equation in
the form of eq. (19), where the elastic stiffness coefficients are not constants but rather
functions of the strain level and/or of the stress state. Generally speaking, all models
of this kind are defined as hypoelastic, since the quantity:

dϵe = Cdσ C := D−1 (20)

is not an exact differential, i.e., it is not possible to define a one–to–one correspon-
dence between the stress and strain tensors, and a closed stress cycle might result in
the development of residual deformations.

The early hypoelastic formulations adopted an elastic tangent stiffness tensor D of
the form:

D (σ, ϵ) = Kt (p, ϵv)1⊗ 1+ 2Gt (p, ϵs)

(
Is − 1

3
1⊗ 1

)
(21)

In constitutive models of this class, the dependence of the tangent bulk and shear
moduli, Kt (p, ϵv), and Gt (p, ϵs), on the strain invariants is obtained by curve–fitting
the observed stress–strain response in standard loading paths, such as drained (or
undrained) triaxial compression, and isotropic compression, see for example [JPFB86,
JP88, JPSJH91]. For this reason, these constitutive equations are also referred to as
variable–moduli models.

A main drawback of variable–moduli models is the fact that, in this case, the strain
invariants cannot be considered as true state variables, since the reference configu-
ration from which the strains are defined is arbitrary. In this respect, a more sound
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approach is provided by those hypoelastic models in which the stiffness coefficients
depend only on the current stress state, typically through the mean stress p:

Kt(p) = Kt0

(
p

patm

)α

Gt(p) = Gt0

(
p

patm

)β

(22)

where patm is the atmospheric pressure, used as a scaling factor for the mean stress, and
Kt0, Gt0, α and β are model constants, determined by empirically fitting stress–strain
curves from conventional laboratory test results. The phenomenological nature of the
relations (22) implies that the resulting elastic constitutive equation is hypoelastic and
cannot be derived from a potential function. Zytynski et al. [ZRNW78] have discussed
the necessary conditions for the stiffness coefficient to make dϵe in eq. (20) an exact
differential. In particular, they observe that if both Kt and Gt depend only on p,
as in eq. (22), then the resulting elastic constitutive equation in rate form cannot be
integrated and is therefore hypoelastic.

Hypoelastic constitutive equations have been and still are widely used in the formu-
lation of both classical and advanced plasticity theories for soils. However, their use
should remain limited to monotonic loading conditions or to situations where the soil
undergoes only a small number of cycles, as pointed out in [BTA97].

5.3 Hyperelasticity
A material is said to be hyperelastic (or Green elastic [Ogd97]) when there exists an
elastic potential function ψ(ϵe) such that:

σ =
∂ψ

∂ϵe
(ϵe) (23)

Eq. (23) defines a hyperelastic constitutive equation, which implies the existence of
a direct functional relation between the stress tensor σ and the elastic strain tensor
ϵe. This relation can be recast in rate form by differentiating both sides of eq. (23),
obtaining:

σ̇ = D(ϵe)ϵ̇e D(ϵe) :=
∂2ψ

∂ϵe ⊗ ∂ϵe (ϵ
e) (24)

where the elastic tangent stiffness is obtained as the second derivative ofψ with respect
of its argument. This time, σ̇ is an exact differential, and no permanent stress changes
may occur in any closed elastic strain cycle.

The dual formulation of the hyperelastic constitutive equation (23) is obtained by pos-
tulating the existence of a complementary energy function g(σ), such that:

ϵe =
∂g

∂σ
(σ) (25)

By differentiating eq. (25) we obtain the following complementary hyperelastic con-
stitutive equation in rate–form:

ϵ̇e = C(σ)σ̇ C(σ) :=
∂2g

∂σ ⊗ ∂σ (σ) (26)
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where C = D−1 is the material tangent compliance tensor. The two potentials ψ and
g are related one another as g can be considered the Legendre transform of ψ, see,
e.g., [HP07]. As a consequence of the principle of material frame indifference, ψ and
g must depend on their tensorial arguments only through their invariants [SH97], i.e.:

ψ(ϵe) = ψ̂(ϵev, ϵ
e
s, θϵ) = ψ̄(ϵe1, ϵ

e
2, ϵ

e
3) (27)

g(σ) = ĝ(p, q, θ) = ḡ(σ1, σ2, σ3) (28)

The hyperelastic constitutive equations (23) and (25) allow to describe a non–linear
elastic behavior, whenever the two elastic potentials are not quadratic functions of
their arguments. However, it is worth noting that hyperelasticity (which includes linear
elasticity as a special case) as well as hypoelasticity are both incrementally linear
theories, with only one tensorial zone. Examples of hyperelastic formulations for
isotropic granular materials are provided in the works of [Hou85, BTA97, HP07].

6 Thermodynamics–based approach: the theory of hy-
perplasticity

The most important case of constitutive equations with two tensorial zones is pro-
vided by the classical theory of plasticity with a single plastic mechanism, and its
various generalizations to describe, for example, induced anisotropy and cyclic be-
havior. The general framework of the theory of plasticity is now well established and
a thorough treatment of this subject can be found in many excellent textbooks, e.g.,
[Lub90, SH97, JB02]. As for plasticity in soil mechanics, good references are pro-
vided, e.g., by [DS84, DS02, Yu06, Bor13, Has17]. As compared to those references,
in the presentation of the basic principles of the theory we have adopted a slightly dif-
ferent point of view, starting from the basic principles of the thermodynamics of con-
tinuous media and following the approach of the so–called theory of hyperplasticity,
as defined by Houlsby and Puzrin [HP07]. Then, the classical approach is presented
as a generalization of the basic concepts of hyperplasticity.

The attempts to derive the evolution equations of the infinitesimal rate–independent
plasticity from basic thermodynamics principles can be traced back to the early works
of the French school [Mor70, HN75, GNS83]. Important contributions to the under-
standing of the thermo–mechanics of solid materials have been provided, e.g., in the
works of [Zie83, ZW87, Mau92, RM93, HR99]. The advantages of ensuring thermo-
dynamic consistency when dealing with the inelastic behavior of geomaterials have
been emphasized by Houlsby [Hou81] and Collins and Houlsby [CH97], in view of
the potential drawbacks associated with purely phenomenological modeling of materi-
als featuring stress–dependent stiffness, non–associative behavior and dilatant plastic
flow. Significant contributions to the development of infinitesimal elastoplastic mod-
els for soils within the framework of continuum thermo–mechanics have been given,
for example, by [MLA94, HP00, PH01, CK02, CH02, CM03, EP04, DT05, EHN07,
OT20].
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6.1 Free energy and dissipation functions
In the framework of infinitesimal elastoplasticity, we assume the customary additive
decomposition of the total strain tensor into an elastic, reversible part and an inelastic
part:

ϵ = ϵe + ϵp ϵ̇ = ϵ̇e + ϵp (29)

By limiting the set of state variables S to the elastic strain tensor ϵe and to a pseudo–
vector of strain–like internal variables α (the components of which could be scalars or
second–order tensors), we postulate the existence of a Helmholtz free energy function
per unit volume of the form:

ψ(ϵe,α) = ψe(ϵe) + ψp(α) (30)

This assumption is equivalent to consider the contributions to the free energy function
of elastic strains and plastic internal variables as fully uncoupled. This could represent
a somewhat restrictive assumption, but it can be considered sufficiently general for the
scope of this work.

For isothermal processes, the second principle of thermodynamics requires that the
dissipation function D, defined as:

D := σ · ϵ̇− ψ̇ ≥ 0 (31)

is non–negative. Taking into account the definition of the free energy function given
in eq. (30), and introducing the set of generalized stresses K = {χ,χα}, defined by:

χ =
∂ψe

∂ϵe
χα = −∂ψ

p

∂α
(32)

we have:

D = σ · ϵ̇−
{
∂ψe

∂ϵe
· ϵ̇e + ∂ψp

∂α
α̇

}

= σ · ϵ̇− χ · (ϵ̇− ϵ̇p) + χα · α̇
= (σ − χ) · ϵ̇+ χ · ϵ̇p + χα · α̇ ≥ 0 (33)

For this inequality to hold for any possible non–dissipative processes, for which ϵ̇p =
0 and α̇ = 0, we must have:

σ = χ =
∂ψ

∂ϵe
(34)

Eq. (34) is the hyperelastic constitutive equation of the material, establishing a func-
tional relation between the stress tensor σ and the elastic strain tensor ϵe. Substituting
this last result into eq. (33), we obtain the following reduced dissipation inequality:

D = σ · ϵ̇p + χα · α̇ ≥ 0 (35)
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Eqs. (32) and (35) suggest the following functional dependence for the dissipation
function D on both the set S of the state variables and the set of dissipative flows
F := {ϵ̇p, α̇}:

D(S,F) = D (ϵe,α, ϵ̇p, α̇) (36)

To describe the behavior of a rate–independent material, we postulate that the dissipa-
tion function D is homogeneous of degree one in the elements of F . Euler’s theorem
for homogeneous functions then requires that:

D =
∂D
∂ϵ̇p
· ϵ̇p + ∂D

∂α̇
· α̇ (37)

By introducing the set of generalized dissipative stresses K := {χ,χα}, defined as:

χ =
∂D
∂ϵ̇p

χα =
∂D
∂α̇

(38)

eq. (37) can be rewritten as:

D = χ · ϵ̇p + χα · α̇ (39)

Comparing eqs. (37) and (39) we observe that generalized stresses and generalized
dissipative stresses must fulfill the following relation:

(χ− χ) · ϵ̇p + (χα − χα) · α̇ = 0 (40)

This equality is trivially satisfied if Ziegler’s orthogonality conditions – see [HP07] –
are assumed:

χ = χ χα = χα (41)

Eq. (41) is a sufficient condition for eq. (40) to hold, but not a necessary one. There-
fore, Ziegler’s orthogonality condition must be considered as a (weak) restrictive con-
stitutive assumption, yet compatible with realistic descriptions of many classes of
granular materials characterized by frictional dissipation, see e.g., [CH97, HP07].

6.2 Yield function and evolution equations
The homogeneity of degree one of D in the dissipative flows implies that the (degen-
erate) partial Legendre transformation of D with respect to the arguments in F is a
scalar function f̂ , called yield function, such that:

γ̇f̂(S,K) := χ · ϵ̇p + χα · α̇−D = 0 (42)

for dissipative processes, i.e., when the elements of F are non–zero. In the LHS of
eq. (42), the scalar γ̇ ≥ 0 is the so–called plastic multiplier. The set:

E :=
{
(ϵe,α,χ,χα) ∈ S × K

∣∣ f̂(ϵe,α,χ,χα) < 0
}

(43)
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is the elastic domain of the material, where the plastic multiplier is zero and all the
processes are non dissipative (ϵ̇p = 0, α̇ = 0). The boundary of E:

∂E :=
{
(ϵe,α,χ,χα) ∈ S × K

∣∣ f̂(ϵe,α,χ,χα) = 0
}

(44)

is the yield surface, on which γ̇ may be positive and irreversible processes may occur.

It is worth noting that, due to the orthogonality conditions (41) and the constitutive
equations (32), the yield function f can be considered as a function of ϵe and α:

f̂(ϵe,α,χ,χα) = f∗(ϵe,α) = 0 (45)

i.e., of the elastic strain and the strain–like internal variables. Therefore, the elastic do-
main and the yield function provided by eqs. (43) and (44) are defined in strain space.
The stress–space counterparts of E and f is recovered by noting that the stress tensor
σ and the stress–like internal variables χα are given functions of (ϵe,α) through the
constitutive equations (32). The yield function in stress space then reads:

f(σ,χα) = f∗ {ϵe(σ),α(χα)} = 0 (46)

From the properties of the Legendre transform of eq. (42) the following associative
flow rules for the elements of F can be obtained:

ϵ̇p = γ̇
∂f̂

∂χ
= γ̇

∂f

∂σ
(47a)

α̇ = γ̇
∂f̂

∂χα

= γ̇
∂f

∂χα

(47b)

Eq. (47a) is the standard associative flow rule for the plastic strain rate, while eq. (47b)
provides the associative hardening law for the internal variable α. It is worth noting
that the associativity of the flow rule (47a) holds in the generalized dissipative stress
space. Thus, this result does not prevent the possibility of modeling non–associative
plastic flow in standard Cauchy stress space for free energy functions different from
the one adopted in eq. (30), see [CH97, HP07].

6.3 Consistency conditions and constitutive equations in rate–form
The yield function and the plastic multiplier are subjected to the Kuhn–Tucker com-
plementarity conditions:

γ̇ ≥ 0 f(σ,χα) ≤ 0 γ̇f(σ,χα) = 0 (48)

stating that plastic flow may occur only for stress states on the yield surface (yield
state). However, these conditions do not allow to distinguish which deformation pro-
cesses taking place from a yield state are actually plastic, i.e., cause the development
of plastic deformations. Moreover, no information is yet provided on how the plastic
multiplier depends on the current state and the imposed deformation rate.
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These issues are addressed by the so–called Prager’s consistency condition, stating
that for a plastic process taking place from a state on the yield surface the value of f
must remain zero, i.e.:

ḟ =
∂f

∂σ
· σ̇ +

∂f

∂χα

· χ̇α = 0 (49)

From eqs. (32) and (47) we can derive the following expressions for σ̇ and χ̇α:

σ̇ = De (ϵ̇− ϵ̇p) = De

(
ϵ̇− γ̇ ∂f

∂σ

)
De :=

∂2ψe

∂ϵe ⊗ ∂ϵe (ϵ
e) (50a)

χ̇α = −Ξ α̇ = −γ̇Ξ ∂f

∂χα

Ξ :=
∂2ψp

∂α⊗ ∂α (50b)

which, inserted in eq. (49) provide the following expression for the plastic multiplier:

γ̇ =
1

Kp

〈
∂f

∂σ
·Deϵ̇

〉
(51)

where the McCauley brackets ⟨x⟩ := (x+ |x|)/2 are used to denote the positive part
of their argument (as by definition the plastic multiplier cannot be negative) and the
positive scalar Kp is given by:

Kp :=
∂f

∂σ
·De ∂f

∂σ
+Hp > 0 Hp :=

∂f

∂χα

·Ξ ∂f

∂χα

(52)

in which Hp is known as the plastic modulus. A positive value of Hp denotes harden-
ing, a negative value indicates softening, while Hp = 0 characterize the special case
of perfect plasticity. As thoroughly discussed in, e.g., [SH97, JB02], the constitutive
assumption that Kp > 0 is crucial in the establishment of the correct formulation of
the loading/unloading conditions in presence of softening. Its effect is essentially to
place a restriction on the amount of allowable softening.

Substituting the expression (51) for the plastic multiplier in eqs. (50a) and (50b), we
obtain the following constitutive equations and hardening laws in rate form:

σ̇ = Depϵ̇ χ̇α = Hpϵ̇ (53)

where:

Dep := De − H(γ̇)
Kp

(
De ∂f

∂σ

)
⊗
(
∂f

∂σ
De

)
(54a)

Hp :=
H(γ̇)
Kp

(
Ξ

∂f

∂χα

)
⊗
(
∂f

∂σ
De

)
(54b)

where H(x) denotes the Heaviside step function, equal to one if x > 0 and zero
otherwise.
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The constitutive equations in rate–form given by eqs. (53) are incrementally bi–linear.
In fact, according to the expression (51) for the plastic multiplier, the tangent stiffness
D assumes two possible values depending on the direction of ϵ̇:

D =





Dep if (∂f/∂σ) ·Deϵ̇ > 0 (plastic loading conditions)
De if (∂f/∂σ) ·Deϵ̇ = 0 (neutral loading conditions)
De if (∂f/∂σ) ·Deϵ̇ < 0 (elastic unloading conditions)

(55)

The continuity at the boundary between the two tensorial zones (the neutral loading
conditions) is guaranteed by the fact that γ̇ → 0 as the neutral loading condition is
approached from the plastic loading zone.

7 Non–associative phenomenological plasticity

The evolution equations of the theory of hyperplasticity – eqs. (53) – are developed
from the knowledge of the two scalar functions ψ (free energy function) and D (dissi-
pation function), in such a way to guarantee the consistency with the second principle
of thermodynamics. In this respect, the name hyperplasticity is adopted to distinguish
it from classical phenomenological plasticity in the same way as hyperelasticity is
distinguished from hypoelasticity based on the existence of a potential function.

Historically, however, the classical theory of rate–independent plasticity has been de-
veloped following a different strategy, in which the various elements of the theory are
chosen ad–hoc, based on the available experimental evidence. This phenomenological
approach has led to the most successful applications of plasticity to the modeling of
the inelastic and history–dependent behavior of soils, and it is, by far, still the most
widely used in soil mechanics.

The main assumption of the classical phenomenological theory of plasticity will be
presented in the following, pointing out the main differences with hyperplasticity.

7.1 Basic assumptions and general formulation
Starting from the additive split of the strain rate into an elastic and a plasic part,
eq. (29), the elastic strain rate is linked to the stress rate by assuming a hypoelastic
constitutive equation:

σ̇ = De (σ) ϵ̇e = De (σ) (ϵ̇− ϵ̇p) (56)

in which the elastic tangent stiffness tensor De generally depends on the current stress
state.

Irreversibility is introduced by requiring that the state of the material (σ, q) belongs
to the convex set:

E :=
{
(σ, q)

∣∣∣ f (σ, q) ≤ 0
}

(57)
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defined in terms of a phenomenologically derived yield function f , depending on the
current stress and on a set of internal variables q which account for the effects of the
previous loading history.

The plastic strain rate is prescribed, as in hyperplasticity, by a suitable flow rule:

ϵ̇p = γ̇
∂g

∂σ
(σ, q) (58)

in which g(σ, q) is a prescribed plastic potential function, chosen in order to match
available experimental observations – e.g., stress–dilatancy relations. In general, the
plastic potential function is independent of the yield function f . When g and f do
not coincide, the flow rule is said to be non–associative. Associative plastic flow is
recovered when g ≡ f , as in eq. (47a).

The evolution of the internal variables is provided by assigning a suitable hardening
law:

q̇ = γ̇h(σ, q) (59)

where h(σ, q) is a prescribed hardening function. Although the structure of the hard-
ening law (59) is similar to the hardening law of hyperplasticity – eq. (47b) – and
allows changes in the internal variables to take place only during plastic loading pro-
cesses (for which γ̇ > 0), eq. (59) is non–associative, in the sense that the hardening
function h is not derived from ∂f/∂q.

Again, the yield function and the plastic multiplier are subjected to the Kuhn–Tucker
complementarity conditions of eq. (48), stating that plastic deformations may occur
only for states on the yield surface. The consistency condition for plastic loading
processes (ḟ = 0) allows to derive the following expression for the plastic multiplier:

γ̇ =
1

Kp

〈
∂f

∂σ
·Deϵ̇

〉
(60)

formally identical to eq. (51) but in which:

Kp :=
∂f

∂σ
·De ∂g

∂σ
+Hp > 0 Hp := −∂f

∂q
· h (61)

Substituting eq. (60) in eqs. (56) and (59), we obtain:

σ̇ = Depϵ̇ q̇ = Hpϵ̇ (62)

where:

Dep := De − H(γ̇)
Kp

(
De ∂g

∂σ

)
⊗
(
∂f

∂σ
De

)
(63a)

Hp :=
H(γ̇)
Kp

h⊗
(
∂f

∂σ
De

)
(63b)
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where Kp is provided by eq. (61).

For the developments of Sect. 8, it is useful to recast the evolution equations (58) and
(62) in terms of the unit tensors:

nf :=

∥∥∥∥
∂f

∂σ

∥∥∥∥
−1

∂f

∂σ
ng :=

∥∥∥∥
∂g

∂σ

∥∥∥∥
−1

∂g

∂σ
(64)

providing the loading direction and the plastic flow direction, respectively. The flow
rule, hardening law, plastic multiplier and elastoplastic tangent stiffness then assume
the following alternative expressions:

ϵ̇p = λ̇ng q̇ = λ̇ĥ (65)

λ̇ =
1

K̂p

⟨nf ·Deϵ̇⟩ =
∥∥∥∥
∂g

∂σ

∥∥∥∥ γ̇ (66)

Dep = De − H(λ̇)
K̂p

(De ng)⊗ (nf D
e) (67)

where:

K̂p := nf ·Deng + Ĥp Ĥp :=

(∥∥∥∥
∂f

∂σ

∥∥∥∥
∥∥∥∥
∂g

∂σ

∥∥∥∥
)−1

Hp (68)

are the corresponding plastic moduli.

7.2 Perfect plasticity
The particular case in which the set of state variables contains the Cauchy stress only
(i.e., q = 0) is known as perfect plasticity. In perfect plasticity the yield function and
the plastic potential are given functions of the stress tensor σ only. The constitutive
equations for perfect plasticity are recovered from eqs. (62)1 and (63a), settingHp = 0
in eq. (61). Due to this specific feature, in perfect plasticity yielding along a predefined
stress path occurs at constant stress and constant plastic strain rate:

σ̇ = 0 ϵ̇e = 0 ϵ̇p = const.

i.e., yield states are also failure states.

The early applications of perfect plasticity to soil mechanics can be traced back to
the various solutions of failure problems for foundations, retaining walls, or slopes
obtained through the method of characteristics (slip line theory) [Sok65], or the appli-
cation of the upper and lower bound theorems of limit analysis [Che76]. In both these
approaches, the soil is modelled as a rigid–perfectly plastic medium, with a failure
condition provided, e.g., by the so–called Mohr–Coulomb yield function:

f(σ) = (σ1 − σ3)− 2c cosϕ− (σ1 + σ3) sinϕ = 0 (69)
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where σ1 and σ3 are the maximum and minimum principal stresses, and c and ϕ
are two material constants defining the cohesion and the friction angle of the soil,
respectively.

In these applications, the emphasis was placed in the determination of the stress field
in limit conditions, in order to evaluate the stability of the system with respect to a par-
ticular collapse mechanism. The success of this simple and elegant approach to failure
problems is witnessed by the fact that most of the design methods currently in use for
geotechnical structures are still based on such limit solutions, and specific numerical
techniques have been developed to extend limit analysis to those cases for which no
sufficiently accurate analytic solution can be found, see, e.g., [SK95, PBZL97, LS02].

Extension of the above concepts to the analysis of more complex deformation prob-
lems, such as soil–structure interaction or the modelling of the transition from the
small–strain regime up to failure conditions, had to wait until the pioneering applica-
tion of the finite element method to soil mechanics. Examples of the use of elastic–
perfectly plastic models with pressure–dependent yield functions such as those of
Mohr–Coulomb and Drucker–Prager models, are given, e.g., in [ZH77, SD83] for
shallow foundations, [ZHL75] for slopes, [SH92, SGvW95] for flexible retaining
structures, and [RK83, WK91] for tunnels.

7.3 Isotropic hardening plasticity
The experience gathered in using classical perfect plasticity in the analysis of defor-
mation problems has shown how these formulations provide a too crude description of
the actual behavior of natural soils in pre–failure conditions. A radical change of per-
spective in soil plasticity occurred after the pioneering work of Roscoe and coworkers
in Cambridge, which lead, in the sixties, to the basic principles of the so–called “Crit-
ical State Soil Mechanics” (CSSM) [RB68, SW68]. The practical use of CSSM in
geotechnical applications started in the early seventies, when CSSM was interpreted
as a particular application of isotropic hardening plasticity, see e.g., [ZN71], and gen-
eralized to full six–dimensional stress and strain states. The road was then open to a
new approach to geotechnical engineering practice, in which no such distinction be-
tween failure and deformation problems, or elastic response and plastic collapse was
needed any longer.

Isotropic hardening plasticity is obtained from the general formulation of Sect. 7.1
when all the elements of the pseudo–vector q collecting the internal variables are
scalar quantities, and, as such do not provide any information about the orientation of
the microstructure.

The prototype of isotropic hardening elastoplastic models for cohesive soils is the so–
called “Modified Cam–Clay” (MCC) [RB68], which assumes an associative flow rule.
The yield surface adopted in the original MCC model is given by:

f(p, q, ps) = p(p− ps) +
q2

M2
= 0 (70)
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Figure 1: Yield surfaces and plastic potentials for isotropic hardening elastoplastic
models: a) Modified Cam–Clay [RB68]; b) Sinfonietta Classica [Nov88].

In the q:p stress invariant space, it has the shape of an ellipse passing through the
origin, with its principal axes parallel to the coordinate axes. The scalar quantity ps
(preconsolidation pressure) controls the size of the yield surface, and represents the
only internal state variable of the material. For any possible value of ps, eq. (70)
describes a family of such ellipses, see fig. 1a. In eq. (70) M is a material constant
defining the aspect ratio of the ellipse.

The evolution equation for the preconsolidation pressure is provided by an empirically
derived logarithmic law of the type1:

ṗs = ρs ps ϵ̇
p
v (71)

with ρs = const. The hardening law provided by eq. (71) is purely volumetric, i.e., ps
may change only when plastic volumetric strains occur. Positive (contractant) plastic
volumetric strains cause an increase in ps (expansion of the elastic domain), while
negative (dilatant) plastic volumetric strains induce a reduction of ps and the shrinkage
of the elastic domain.

In the notation of eqs. (59) and (61)2:

ṗs = γ̇ hs(p, q, ps) hs := ρs ps
∂f

∂p
Hp = −ρs ps

∂f

∂p

∂f

∂ps
(72)

From eq. (72) it is clear that the “failure” conditions for the material (which occur
when ps = const. and Hp = 0) are characterized by purely distortional plastic strain
rates, i.e., the material can be deformed indefinitely at constant stress and constant
volume. Such particular failure states, the existence of which is experimentally ob-
served in both fine– and coarse–grained soils, are defined critical states, and form the
basis of almost all subsequent modern treatments of hardening plasticity for soils.

1Note that, to avoid using too many different symbols, the notations employed in this work can some-
times be different from the one adopted in the original works cited.
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Modifications of MCC to improve its predictive capabilities have been discussed by
numerous authors. Among them, we recall the extension of the yield function (70) to
include the third stress invariant θ [ZN73], the adoption of a composite yield surface
to include the so called Hvorslev surface for yield points on the “supercritical side” of
the critical state line [ZN73, HWW84], and the adoption of a hyperelastic constitutive
equation [Hou85, BTA97]. The isotropic hardening models known in the literature as
cap models [DMS71, SDMB76] can be considered essentially as Critical State models
with a modified supercritical yield function, the position of which, however, does not
change with plastic strains.

In the application of the concepts of isotropic hardening plasticity to coarse–grained
soils, two major limitations of classical critical state models have been pointed out.
First, the assumption of an associated flow rule is generally not supported by avail-
able experimental data on sand dilatancy, see e.g., [PHS66, PHS67]. In addition, the
modeling of static liquefaction in the hardening regime, observed in loose sands un-
der undrained conditions is not possible adopting an associative flow rule [Nov96].
Second, the hypothesis of purely volumetric hardening does not allow to describe the
so–called phase transition effect – i.e., the transition from contractant to dilatant be-
havior – typically observed in dense sand under undrained compression.

Non–associative isotropic hardening models for sands have been proposed since the
pioneering work of Pooroshasb et al. [PHS66, PHS67], who coupled a Cam–Clay
type plastic potential with a classical Mohr–Coulomb yield locus. Subsequent im-
provements were proposed, e.g., by Nova & Wood [NW79] and Kim & Lade [KL88,
LK88]. As for the hardening function, Nova [Nov77] and Wilde [Wil77] indepen-
dently proposed an extension of the volumetric hardening rule (71) which incorporates
the effect of deviatoric plastic strain rate:

ṗs = ρs ps {ϵ̇pv + ξsϵ̇
p
s} Hp := −ρs ps

{
∂g

∂p
+ ξs

∂g

∂q

}
∂f

∂ps
(73)

The scalar quantity ξs appearing in eq. (73) can be considered either a constant, as in
[Nov77], or a monotonically decreasing function of the accumulated plastic deviatoric
strains, as in [Wil77]. In this last case, a critical state is recovered in the ultimate
conditions at very large plastic strains.

An example of isotropic hardening models for sands – which combines good pre-
dictive capabilities for monotonic loading with a limited number of material constants
easily linked to observed material behavior in standard tests – is provided by the model
proposed by Nova under the name Sinfonietta Classica [Nov88]. For this model, the
adopted yield function and plastic potential are given by the following equations:

f(p, r, ps) = 3β (γ − 3) ln

(
p

ps

)
− γ tr

(
r3
)
+

9

4
(γ − 1) tr

(
r2
)
= 0 (74)

g(p, r, p∗s) = 9 (γ − 3) ln

(
p

p∗s

)
− γ tr

(
r3
)
+

9

4
(γ − 1) tr

(
r2
)
= 0 (75)
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where r := s/p is the stress–ratio tensor while β and γ are material parameters (β ̸= 3
denotes non–associative behavior). The corresponding surfaces in the q : p plane are
shown in Fig. 1b. An hardening law with volumetric and deviatoric hardening similar
to eq. (73) is assumed for the internal variable ps, which controls the size of the yield
surface.

Subsequent developments gave rise to a number of constitutive models which pro-
gressively diverged from the basic assumptions of CSSM in the attempt of covering
further aspects of experimentally observed soil behavior, as well as to tackle other,
more challenging classes of engineering problems. The breath and depth of such sci-
entific production is well portrayed, for example, by the proceedings of the workshops
held in Grenoble in 1982 [GDV84], Cleveland in 1988 [SB89], and Horton in 1992
[Kol93]. Another useful source of references is provided by the special volume pub-
lished on the occasion of the XI ICSMFE [Mur85].

7.4 Anisotropic hardening plasticity
Almost all geotechnical materials such as rocks, coarse–grained soils and fine–grained
soils are characterized – to a certain extent – by the existence of some preferential
orientations at the microstructural level. In granular soils such preferential orienta-
tions can be associated to the spatial distributions of the contact normals, to grain
shape and to void shape, see [ONNK85]. Moreover, the directional properties of the
microstructure might remain more or less stable during the deformation of the solid
skeleton (as, e.g., the distribution of grain orientations in the tests performed by Oda
et al. [ONNK85]), or they might evolve as a consequence of grain rearrangements
upon applied loading (as, e.g., the distribution of contact normals [ONNK85]). From
this observations, it follows naturally that the macroscopic response of the material –
reflecting the properties of the microstructure – can be characterized by a more or less
marked anisotropy, both in terms of stress–strain response in pre–failure conditions,
and in terms of shear strength.

According to the possibility that superimposed loading histories may change the di-
rectional properties of the microstructure, two different kind of anisotropy can be dis-
tinguished at the macroscopic level, see [CC44]:

– inherent anisotropy, “[. . . ] a physical characteristics inherent in the material
and entirely independent of the applied strains”;

– induced anisotropy, “[. . . ] a physical characteristic due exclusively to the strain
associated with the applied stress”.

Inherent anisotropy is usually relevant in hard, heavily overconsolidated soils and
stratified rocks, where strong intergranular bonds prevent the occurrence of signifi-
cant rearrangements of the microstructure, or in coarse–grained soils with strongly
non–circular particles, the orientation of which cannot be modified easily unless a
substantial amount of grain crushing occurs. On the contrary, induced anisotropy
plays a major role in non–cemented granular soils with rounded particles, or in clays
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where the applied loading can modify and, in some cases, even erase the effects of the
previous loading history. Direct and indirect experimental evidence of inherent and
induced anisotropy is reported, e.g., in [ABS77] for soft rocks, in [OKH78, WA85,
YMH91, YIV98] for sands, and in [DS66, Mit70, TL77, GNL83, SJH92] for clays.

In the framework of the classical theory of plasticity, inherent anisotropy can be
dealt with in the formulation of the elastic constitutive equation – as in, e.g., [Boe75,
GH83] – and/or in the definition of yield and plastic potential functions. Constitutive
equations for inherent anisotropy have been proposed, e.g., by Nova [Nov86], Pas-
tor [Pas91] and Semnani et al. [SWB16], based on a approach first suggested by Hill
[Hil50]. Essentially, these models are derived from existing isotropic hardening for-
mulations by replacing the standard invariants of the stress tensor with corresponding
anisotropic invariants defined by means of suitably chosen (constant) structure ten-
sors, which are employed as metric tensors in the construction of the scalar invariants
entering in the constitutive functions. An alternative strategy to incorporate inherent
anisotropy, based on the use of a microstructure tensor in the definition of the yield
surface, has been proposed in [PM00, PLS02, OKKA02].

The description of induced anisotropy – i.e., the evolution of the directional properties
of the material with the loading history – requires the set of internal state variables
q to include at least one tensor–valued quantity. In most of the existing anisotropic
hardening plasticity models, this is usually assumed to be a symmetric second–order
tensor, with the character of a microstructure tensor. Although this limits the degree
of symmetry of the material to orthotropy, see [Boe87], it is considered sufficient for
most geomaterials of relevant practical interest.

In presence of a symmetric second–order microstructure tensor among the internal
variables, the general restrictions imposed to the yield and plastic potential functions
by the principle of material frame indifference, as well as the consequences of induced
anisotropy on the relative orientation between the principal directions of the stress and
the plastic strain tensors are discussed in detail in [BD84]. Plasticity models with
anisotropic hardening can be broadly grouped into two different classes, according to
the experimental evidence which they were intended to reproduce, namely:

a) constitutive models with kinematic hardening, capable of modelling soil behav-
ior under cyclic loading paths, see, e.g., [Woo82] and references therein;

b) constitutive models with rotational hardening, which are capable of describing
the changes in the orientation of the yield surface with the evolution of plastic
strains, as observed, e.g., in [YMH91, TL77, GNL83, SJH92].

Kinematic hardening models for soils originate from the pioneering work of Mroz
[Mro67], Iwan [Iwa67], and Dafalias & Popov [DP75]. In such models, a yield func-
tion of the form:

f(σ,α, qk) = f̂(σ̂, qk) = 0 σ̂ := σ −α (76)

is assumed, in which the so–called back–stress α is the microstructure tensor, re-
sponsible for the induced anisotropy, and the scalars qk (k = 1, . . . , n) denote the
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Figure 2: Kinematic hardening inside the Bounding Surface.

other internal variables. As α changes during the loading process, the yield surface is
dragged by the stress–path as indicated qualitatively in Fig. 2. The motion of the yield
surface in stress space is typically restricted by a larger, outer surface, referred to as
Bounding Surface (BS), of equation:

F (σ, qk) = 0 {qk} ⊂ {qk} (77)

In classical anisotropic plasticity, the BS – generally similar in shape to the yield
surface – provides a limit to the possible evolution of the back–stress α. Models of
this kind have been proposed by various authors. Among them we recall the works of
Prevost [Pre77, Pre86], Mroz et al. [MNZ78, MNZ81], Hashiguchi [Has85, Has88],
Wood and coworkers [ATW89, GW99, RW00] and Stallebrass and Taylor [ST97].

Most of these works represent a straightforward extension of classical Modified Cam–
Clay, see Sect. 7.3. As an example, in the model of Al–Tabbaa & Wood [ATW89], the
yield and Bounding Surface functions are given by:

F (σ, pc) =
3

2Mθ
s · s+ (p− pc)2 − p2c = 0 (78)

f(σ, pc) =
3

2Mθ
(s− devα) · (s− devα) + (p− pα)2 −R2p2c = 0 (79)

where pc = ps/2, pα = trα/3 and R ≪ 1 is a material constant representing the
ratio between the sizes of the two surfaces.

In this class of models, the hardening function adopted for pc (or ps) is similar to the
one adopted in critical state models, see eq. (71). As for the tensor α, rather than
prescribing explicitly the hardening function, the hardening modulus Hp is assigned
as a monotonically decreasing function of the distance δ between the current state and
a image state σ on the BS, defined as the point at which the unit normals to f = 0 and
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Figure 3: Kinematic hardening models: definition of the image point.

F = 0 have the same direction (see Fig. 3a):

Hp = Ĥ
(
Hp, δ

) ∂Ĥ

∂δ
> 0 Ĥ

(
Hp, 0

)
= Hp (80)

In eq. (80), δ := ∥σ − σ∥ and Hp is the plastic modulus at σ:

Hp := − ∂F
∂pc

hc (81)

obtained from the consistency condition on the BS:

Ḟ (σ, qk) = 0

When the stress–path touches the BS, the two surfaces must share the same tangent,
otherwise some admissible states would fall outside the BS, see Fig. 3b. As shown by
Hashiguchi [Has85], this is obtained through an appropriate definition of the evolution
equation for α. For the Al–Tabbaa & Wood model [ATW89], the non–intersection
condition requires that:

α̇ = α̇+ (α−α)
ṗc
pc

+
n ·
[
σ̇ − (ṗc/pc)σ

]

n · (σ − σ)
(σ − σ) (82)

In eq. (82), the first term is related to the translation of the center of the BS, the second
represents the effect of the change in size of the BS (and of the yield surface), and the
third a net translation in the direction of the tensor β := σ − σ, see Fig. 3a.

Anisotropic plasticity models with rotational hardening are more suitable for describ-
ing the anisotropy induced by loading histories associated to depositional processes in
natural deposits, such as one–dimensional compression and, possibly, swelling. These
models can be traced back to the pioneering works of Sekiguchi & Ohta [SO77] for
clays, or Ghaboussi & Momen [GM82] for sands. Constitutive equations of this kind
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Figure 4: Typical yield surfaces adopted in rotational hardening models.

proposed for sands are usually intended to model irreversible processes associated
with deviatoric loading paths, and therefore adopt conical–shaped yield surfaces, open
towards the range of high mean pressures (fig. 4a). Among them, we recall the models
proposed in refs. [GM82, PP85, MD97, GW99, DM04, TD08].

Rotational hardening models for fine–grained soils, on the contrary, adopt closed
yield surfaces (fig. 4b,c), in order to reproduce the irreversible deformations usu-
ally observed in these materials along isotropic or proportional loading paths (q/p =
const.). Examples of rotational hardening models for clays are given in the works of
[Has79, BY86, AD86, WNKL03, DMP06, TDP10].

Exceptions to this general trend are provided, for example, by the models of di Prisco
et al. [dPNL93] – actually a generalization of the Sinfonietta Classica model discussed
in the previous section – and Pestana & Whittle [PW99], which can be employed
for coarse as well as fine–grained materials. It is worth noting that in most of the
aforementioned models, the rotational anisotropy is employed in connection to some
form of generalized plasticity allowing plastic flow inside the main state boundary
surface, which will be discussed in Sect. 8.

Rotational hardening models can be easily derived as generalizations of classical
isotropic hardening formulations (e.g., Modified Cam–Clay) by simply replacing the
stress invariants entering in the yield and plastic potential functions with appropri-
ate mixed invariants which take into due account the microstructure tensor. Possible
ways of defining such mixed invariants are provided, for example, by Anandarajah
and Dafalias [AD86] (slightly modified):

pa :=
1

3
σ · δa qa :=

√
3

2
∥sa∥ sin(3θa) :=

√
6

(da)3 · 1
[(da)2 · 1]3/2 (83)

where δa is the microstructure tensor, and:

sa := σ − pa δa da := dev (sa) δa · δa = 3 (84)

or by Wheeler et al. [WNKL03]:

pa :=
1

3
σ · 1 = p qa :=

√
3

2
∥sa∥ sin(3θa) :=

√
6

(sa)3 · 1
[(sa)2 · 1]3/2 (85)
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where δa is a purely deviatoric microstructure tensor, and:

sa := s− p δa s := dev (σ) δa · 1 = 0 (86)

In eqs. (83) and (84), the projection of σ on the isotropic axis, commonly used to
construct the isotropic and deviatoric invariants of the stress tensor, are replaced by
the corresponding projection on the microstructure tensor δa, now playing the role of
the unit tensor – compare eqs. (83) with eqs. (2) – and, in fact, defining the rotation of
the surface with respect to the isotropic axis, see fig. 4c.

In eqs. (85) and (86) the yield surface is distorted in the direction of the deviatoric
axis, rather than rotated around the origin of the stress space. This effect is obtained by
shifting the deviatoric stress by a quantity proportional to the deviatoric microstructure
tensor and the current mean stress, see fig. 4b.

Several alternative strategies have been proposed to link the evolution of the mi-
crostructure tensor (i.e., the rotation of the yield surface) with the plastic strain rate.
All of them must, however, satisfy the orthogonality condition δ̇a · δa = 0, required
by the assumption (84)3, or the requirement set by eq. (86)3. A thorough discussion
on the different rotational hardening mechanisms adopted for fine–grained soils has
been presented by Dafalias and Taiebat [DT13].

8 Bounding Surface models and generalized plasticity

An important limitation of classical elastoplasticity as applied to geomaterials is rep-
resented by the assumption of a large elastic domain, inside which the response of
the material is purely reversible. In light of the concepts introduced in Sects. 6 and
7, classical elastoplasticity is characterized by an incrementally bi–linear constitutive
equation only for states on the yield surface. All elastic states are, by definition, en-
dowed with an incrementally linear response. However, a large body of experimental
evidence suggests that soil behavior can be irreversible and path–dependent even for
strongly preloaded states, and that plastic yielding is a rather gradual process. Al-
though such effects can be considered of secondary importance in the simulation of
monotonic loading paths, it must be noted that a strong dependence of the small–strain
stiffness on the loading path direction has been observed, e.g., by [ARS86, Sta90] in
heavily overconsolidated soils, and that such a feature of soil behavior – which can-
not be reproduced by any incrementally linear model – can be of great importance
in all practical applications in which strong variations of the stress–path direction are
expected in different zones of the soil mass, e.g., in the analysis of excavations. More-
over, irreversible (plastic) strains occurring well inside the locus of admissible stress
states are obviously of great importance in cyclic loading processes, and the accu-
rate description of such phenomena as cyclic mobility or liquefaction under repeated
loading (see, e.g., [Woo82]) requires to take them into proper account.

The kinematic hardening models discussed in the previous section – mostly developed
during the early ‘80, in response to the problems posed by the design of structures such
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as offshore platforms, or by the quantitative prediction of soil response during earth-
quakes – are certainly capable to deal successfully with this particular issue. However,
a number of alternative strategies have also been proposed for the same purpose, which
represent genuine generalizations of the classical framework. Among them, definitely
worth of mention are the so–called Bounding Surface models, originally developed by
Dafalias and coworkers, and the models developed in the framework of Generalized
Plasticity, as defined by Pastor et al. [PZC90].

The key concept in the formulation of a Bounding Surface model is the fact that, as in
kinematic hardening elastoplastic models mentioned before, there exists a surface in
stress space – the Bounding Surface (BS), defined by an equation similar to eq. (77)
– which separates admissible from impossible states. Such a surface is subjected to
hardening processes which may change its size, shape and orientation due to the de-
velopment of plastic strains, exactly as a standard yield surface in classical plasticity.
However, such a surface is not a yield surface, as plastic strains can occur for stress
states located in its interior. In particular, at each admissible state (inside or on the
BS), a flow rule identical to eq. (65)1 is assumed, in which the plastic multiplier λ̇ is
replaced by:

λ̇ =
1

K̃p

⟨nL ·Deϵ̇⟩ (87)

where:
K̃p := nL ·Deng + H̃p (88)

in which nL is a unit tensor defining the loading direction, and H̃p, by analogy with
the standard formulation, plays the role of the plastic modulus. The definition of these
last two quantites relies crucially on the possibility of associating to each stress state
σ inside the BS a corresponding image state σ on the BS, through a non–invertible
mapping rule.

In the so–called radial mapping BS models, see [Daf86], this is accomplished by
simply projecting the current stress onto the BS from a given projection center α, see
Fig. 5. Once the image state is found, the loading direction is taken as the gradient of
the BS at σ, while the plastic modulus H̃p is assumed to be a monotonically decreasing
function of the distance δ := ∥σ − σ∥ between the current state and the image state,
and of the plastic modulus Hp at σ:

H̃p = H̃
(
Hp, δ

) ∂H̃

∂δ
> 0 H̃

(
Hp, 0

)
= Hp (89)

The stress–strain relation in rate form is then given by an equation similar to eq. (62)1,
with the tangent stiffness Dep provided by eq. (67), the plastic multiplier λ̇ provided
by eq. (66) and K̂p replaced by K̃p of eq. (89). The analogies existing between this
procedure for defining the loading direction and the plastic modulus and the one out-
lined for kinematic hardening models in Sect. 7.4 are apparent. As a matter of fact,
Dafalias [Daf86] considered kinematic hardening models as a special class of BS mod-
els, characterized by a special form of mapping rule.
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Figure 5: Radial mapping rule in Bounding Surface models.

However, differently than in kinematic hardening plasticity, in radial mapping BS
models, no elastic region exists anymore, and the material features an incrementally
bi–linear response at any state. A comprehensive review of the Bounding Surface
concept is provided by Dafalias [Daf86]. Applications of the Bounding Surface Con-
cept to the modelling of clays are reported, e.g., in [ZLP85, DH86, AD86, WK94,
LYKT02, DMP06, TDP10], while applications to coarse–grained soils are given, e.g.,
by [PZL85, Bar86, Cw94, MD97, DM04, TD08].

Starting from the works of Zienkiewicz & Mroz [ZM84], Pastor et al. [PZC90] de-
veloped the framework of Generalized Plasticity as a further generalization of the
Bounding Surface concept, where the concepts of plastic potential, yield function and
consistency condition are completely abandoned. In the incrementally bi–linear ver-
sion of the theory, the plastic strain rate is provided by the following equations:

ϵ̇p = λ̇L ngL if : nL ·Deϵ̇ > 0 (loading) (90)

ϵ̇p = λ̇U ngU if : nL ·Deϵ̇ < 0 (unloading) (91)
ϵ̇p = 0 if : nL ·Deϵ̇ = 0 (neutral loading) (92)

in which:

λ̇L =
1

K̂p,L

nL ·Deϵ̇ K̂pL := nL ·DengL + Ĥp,L (93)

λ̇U =
1

K̂p,U

nL ·Deϵ̇ K̂pU := nL ·DengU + Ĥp,U (94)

In eqs. (90)–(94), nL, ngL and ngU are three second–order unit tensors representing
the loading direction, the plastic flow direction for plastic loading and the plastic flow
direction for plastic unloading (reverse loading), respectively, while the scalars Ĥp,L

and Ĥp,U are the corresponding plastic moduli for (plastic) loading and unloading. All
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these quantities are considered as prescribed functions of the state variables (σ, q),
and, in general, their definition do not require any yield function, plastic potential or
consistency condition to be assumed.

The corresponding expressions for the elastoplastic tangent stiffness tensor are given
by:

Dep =




De − (1/K̂p,L) (D

e ngL)⊗ (nL De) (plastic loading)

De − (1/K̂p,U ) (D
e ngU )⊗ (nL De) (plastic unloading)

(95)

It is worth noting that both classical plasticity and Bounding Surface plasticity are
recovered from generalized plasticity as special cases, with suitable choices for the
constitutive functions nL, ngL, ngU , Ĥp,L and Ĥp,U , see [PZC90] for further details.

9 Plasticity with generalized hardening

A last, notable case of incrementally bilinear formulations is provided by the theory of
plasticity with generalized hardening – as defined by Tamagnini and Ciantia [TC16]
– proposed in the geomechanics context to describe a number of practically relevant
aspects of the mechanical behavior of geomaterials. A common, distinctive feature of
those constitutive theories is that the size and shape of the yield locus, as well as its
evolution with the loading process are assumed to depend, in addition to accumulated
plastic strains, on some other non–mechanical state variables, usually of scalar nature.
Among them, we recall:

• the thermoplastic models proposed by Nova [Nov86] or Laloui and Cekerevac
[LC08] to describe the influence of temperature on the brittle–ductile transition
of rocks in geophysical applications, in which the preconsolidation pressure
depend on the temperature T ;

• the elastoplastic models for unsaturated soil (formulated in terms of Bishop ef-
fective stresses) in which an explicit dependence of the size of the yield surface
on the degree of saturation is assumed to simulate the phenomenon of collapse
upon wetting for partially saturated soil, see, e.g., [Jom00];

• the extension of classical elastoplasticity advocated by [Nov00] to describe the
effects of weathering on cemented soils or weak rocks, in which some bonding–
related internal variables are subject to both mechanical and chemical degra-
dation, described through a normalized, scalar weathering function Xd, see
[TCN02, NCT03].

These approaches share also some similarities with a number of viscoplastic models
based on the concept of a non–stationary yield locus, see e.g., [FN90, Bor92], and
to chemoplastic models proposed for early–age concrete [UC96] or clays subject to
environmental loading [Hue92, Hue97].
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The main features of the theory, as detailed in [TC16] are summarized in the following.
Let ϑ denote the additional (scalar) variable affecting the mechanical response of the
material, i.e., temperature, suction or chemical degradation. A first modification of the
classical theory to account for the changes in ϑ is introduced in the elastic constitutive
equations, which now reads, in rate–form:

σ̇ = De (σ, ϑ) (ϵ̇− ϵ̇p) +m (σ, ϑ) ϑ̇ (96)

In eq. (96), m(σ, ϑ) is a coupling coefficient (e.g., thermal stress coefficient for
ϑ ≡ T ). While the definitions of elastic domain, flow rule and loading/unloading
conditions are identical to those of the classical theory – eqs. (57), (58) and (55) – the
evolution equation for the internal variables now assumes the following generalized
form:

q̇ = γ̇h(σ, q, ϑ) + ϑ̇η(σ, q, ϑ) (97)

where: h(σ, q, ϑ) and η(σ, q, ϑ) are suitable hardening functions. The first term on
the RHS of eq. (97) quantifies the changes in the internal variables due to plastic defor-
mations, while the second term accounts for all non–mechanical hardening/softening
processes induced by a change of ϑ.

From the consistency condition γ̇ḟ(σ, q) = 0, the elastic constitutive equation (96)
and the flow rule (58), the following generalized expression for the plastic multiplier
is obtained:

γ̇ =
1

Kp

〈
∂f

∂σ
·Deϵ̇+

(
∂f

∂q
· η +

∂f

∂σ
·m
)
ϑ̇

〉
(98)

with Kp given by eq. (61). This in turns provides the following constitutive equations
in rate form:

σ̇ = Dep ϵ̇+mep ϑ̇ (99)

q̇ = Gϵ̇+Gϑ ϑ̇ (100)

in which:

Dep := De − H(γ̇)
Kp

(
De ∂g

∂σ

)
⊗
(
∂f

∂σ
De

)
(101)

mep := m− H(γ̇)
Kp

(
∂f

∂q
· η +

∂f

∂σ
·m
)
De ∂g

∂σ
(102)

G :=
H(γ̇)
Kp

h⊗
(
∂f

∂σ
De

)
(103)

Gϑ :=
H(γ̇)
Kp

(
∂f

∂q
· η +

∂f

∂σ
·m
)
h+ η (104)

According to eq. (98), the plastic multiplier γ̇ can be considered the sum of the fol-
lowing two terms:

γ̇m :=
1

Kp

∂f

∂σ
·Deϵ̇ γ̇ϑ :=

1

Kp

(
∂f

∂q
· η +

∂f

∂σ
·m
)
ϑ̇ (105)
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The first, γ̇m, coincides with the plastic multiplier of classical elastoplasticity – see
eq. (60) – while the second, γ̇ϑ, accounts for the effect of non–mechanical harden-
ing/softening processes. Note that, for plastic loading to occur, only the sum of γ̇m
and γ̇ϑ needs to be positive. In particular, plastic strains may occur even for a trial
stress rate σ̇tr := Deϵ̇ pointing inwards the current yield locus (γ̇m < 0), provided
that the change in ϑ gives rise to a reduction in size of the elastic domain sufficiently
large to keep the plastic multiplier positive, as, for example, in the case of chemical
degradation.

Examples of application of this general framework to the modelling of mechanical
and chemical degradation processes in weak rocks or bonded soils are provided in,
e.g., [NC01, TCN02, NCT03, CdP16, TC16].

10 Concluding remarks

In this chapter, the basic principles of the theory of plasticity have been presented,
starting from the basic thermodynamic foundations of the theory of hyperplasticity
and moving to classical (perfect, isotropic and anisotropic hardening) phenomenolog-
ical plasticity, in which the main ingredients of the theory are selected ad–hoc, based
on the available experimental evidence. Some of the most relevant extensions of the
classical theory – such as Bounding Surface plasticity, generalized plasticity and plas-
ticity with generalized hardening laws, developed to improve its predictive capabilities
for complex loading conditions including cyclic loading and environmental loading –
have also been discussed to provide an overview of the capabilities of advanced plas-
ticity formulations as applied to particular geotechnical problems.

One important aspect of mathematical modeling of soil behavior which has been thor-
oughly discussed is the need to distinguish between the non–linearity of the stress–
strain response for finite stress or strain increments and the concept of incremental
non–linearity. While a non–linear soil model can be obtained with a simple hypoelas-
tic constitutive equation, the modeling of irreversible and history–dependent behavior
requires the constitutive equation to be formulated in rate–form and the use of incre-
mentally non–linear relations between the stress and the strain rates.

The theory of plasticity represents the earliest and perhaps simplest approach to in-
cremental non–linearity, achieved through the introduction of the loading/unloading
conditions in the incremental response. Its appeal throughout the decades since its
early applications to geotechnical problems stems from the ease with which some of
its basic concepts (the elastic response, the yield surface, the plastic potential) could
find a physical interpretation in the examination of classical laboratory test results.

While classical perfect plasticity is still widely used in the analysis of failure prob-
lems in geotechnical engineering, the more advanced versions of the theory have been
mostly developed in the attempt of making more accurate numerical predictions in
terms of performance of the geotechnical structures under complex loading conditions
– i.e., relevant displacement and deformations.
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It is worth noting that, as the models increase in their predictive capabilities, they
also necessarily require the introduction of more material constants as well as of a
larger pool of history–dependent internal variables. This creates two different order of
problems whenever the use of these advanced tools is required:

a) A large pool of experimental data, gathered from tests exploring different load-
ing paths, is required to calibrate models with a large set of material constants.

b) In presence of one or more internal variables, some of which could be second–
order tensors, the definition of their initial values at the beginning of the loading
process is necessary, in the same way as the definition of the initial stress state
is required in order to start the evolution process governed by the constitutive
equations in rate–form.

As for point (a), a desirable feature of the model would be that the calibration does not
require complex testing procedures to be performed with non–standard experimental
devices (e.g., true triaxial cell, hollow cylinder apparatus, simple shear devices). The
calibration of a relatively large set of material constants has always been considered
one of the main drawbacks of advanced plasticity models, and has motivated a number
of studies aimed at devising calibration algorithms for the automatic identification of
the model constants from a set of experimental data.

However, it is usually point (b) which poses the most challenging task. In fact, it
is sufficient to consider how difficult could be to make a reasonable estimate of the
coefficient of earth pressure at rest, K0, for a heavily overconsolidated soil deposit,
even in simple geometric conditions (horizontal ground surface, horizontal contacts
between soil layers), to have an idea on how hard is to estimate the initial values of a
structure tensor when no information is available on the details of the geological his-
tory of the site, or the ground surface is not horizontal and simple geostatic conditions
do not apply. In some cases, the definition of the initial state in terms of stress and
internal variables fields could require the simulation of the entire geological history of
the deposit and could represent a significant part of the numerical modeling activities
for the design of a geotechnical structure.
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Géotechnique, 25(4):671–689, 1975.

[Zie83] H. Ziegler. An introduction to thermomechanics. North Holland, 1983.

[ZLP85] O. C. Zienkiewicz, K. H. Leung, and M. Pastor. Simple model for tran-
sient soil loading in earthquake analysis. I: basic model and its applica-
tion. Int. J. Num. Anal. Meth. Geomech., 9:453–476, 1985.

[ZM84] O. C. Zienkiewicz and Z. Mroz. Generalized plasticity formulation and
applications to geomechanics. In C. S. Desai and R. H. Gallagher, editors,
Mechanics of Engineering Materials. Wiley, 1984.

[ZN71] O. C. Zienkiewicz and D. J. Naylor. An adaptation of critical state soil
mechanics theory for use in finite elements. In R. H. G. Parry, editor,

Tamagnini & Oliynyk 137

ALERT Doctoral School 2024



Stress–Strain Behaviour of Soils (Roscoe Mem. Symp.). Foulis, Henley–
on–Thames, 1971.

[ZN73] O. C. Zienkiewicz and D. J. Naylor. Finite element studies of soils and
porous media. In J. T. Oden and E. R. de Arantes, editors, Lect. Finite
Elements in Continuum Mechanics. UAH Press, 1973.

[ZRNW78] M. Zytynski, M. F. Randolph, R. Nova, and C. P. Wroth. On modelling
the unloading-reloading behaviour of soils. Int. J. Num. Anal. Meth. Ge-
omech., 2(1):87–93, 1978.

[ZW87] H. Ziegler and C. Wehrli. The derivation of constitutive relations from the
free energy and the dissipation function. Advances in applied mechanics,
page 183, 1987.

138 The theory of plasticity in constitutive modeling of rate-dependent soils

ALERT Doctoral School 2024



_____________________________________________________________________________________ 

Modelling the influence of time on the me-

chanical behaviour of geomaterials 

Claudio di Prisco*, Luca Flessati**, Matteo Zerbi* 

 
*Politecnico di Milano 

** Technical University of Delft 
____________________________________________________________________ 

In literature, the time-dependent mechanical behaviour of geomaterials is well estab-

lished and explained in the light of various phenomena, ranging from purely mechan-

ical processes, evolving with time, to those resulting from thermo/hydro/chemo/me-

chanical coupling. This chapter provides a concise overview of the most prominent 

constitutive modelling approaches, developed in recent decades, incorporating time 

variable and based on rate-dependent elastic-plasticity. 

1 Introduction 

Numerous experimental test results show that the behaviour of geomaterials (both 

soils and rocks) is influenced by (i) the loading rate and (ii) the duration of the pertur-

bation applied. Related to the time dependence of the mechanical behaviour of geo-

materials is a wide variety of phenomena, affecting natural events and the perfor-

mance of geo-structures. Among the others, well known are: 

• the creeping landslides, gravitational movements, evolving with time and 

subject to transient periods of acceleration and deceleration; 

• the aging in clayey materials, associated with the progressive accumula-

tion of strains, not induced by any apparent perturbation of the effective 

stress state, causing an evolution of the material microstructure and its 

over-consolidation;  

• squeezing processes in deep tunnels excavated in rocks, causing a pro-

gressive increase in the stresses acting in permanent and provisional lim-

ing; 

• solid-fluid and viceversa regime transitions, taking place in granular ma-

terials either flowing or depositing, when fast landslides occur. 

 

According to both geo-material microstructure and type of perturbation applied, 

the time dependency of the mechanical behaviour observed at the macro-scale (the 
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one corresponding to the Representative Elementary Volume – REV) is the result of 

many very different micro-mechanical processes, ranging from micro-inertial effects 

in granular media to thermo-hydro-chemo-mechanical processes in structured soils 

and rocks. 

A very synthetic measure of the mechanical behaviour time dependency is the so-

called characteristic time, a sort of parameter describing for each material its slowness 

in reacting to mechanical perturbations. When the reaction is instantaneous, as is as-

sumed in case, for instance, in elastic-plastic constitutive models, the characteristic 

time is nil. The characteristic time concept is very similar to the one of characteristic 

length, employed to describe localisation processes: when characteristic length nulli-

fies the mechanical response is local and the constitutive relationship is independent 

of the mechanical response of the points located in the neighbourhood. 

To account for rate/time dependency, popular is the use of viscous constitutive re-

lationships and nowadays the most common is the approach based on delayed plastic-

ity (or viscoplasticity), theory originally conceived by Perzyna [Per63]. This approach 

has been successfully employed, in case of granular media, to account for (i) “micro-

inertial effects”, associated with microstructural fabric rearrangement due to mechan-

ical perturbations (§2), (ii) progressive failure in structured/bonded materials, caused 

by the time-dependent propagation of micro-cracks in either, according to the cases,  

grains or in intergranular bonds (§4). The widespread popularity of elastic-visco-plas-

ticity of Perzyna type is mainly due to its simplicity for numerical implementation, 

since it is a straightforward extension of standard elastic-plasticity. Under suitable 

simplifying assumptions, for very slow perturbations (or for sufficiently small mate-

rial characteristic times), the viscoplastic solution converges to the corresponding 

rate-independent elastic-plastic one, and the same can be said for the conditions of 

mechanical instability (§3). 

In contrast, when the time-dependent material response is due to coupled thermo-

hydro-chemo-mechanical processes (§5), the material characteristic time is governed 

by the coupled processes occurring at the microscale and the approach employed is 

not of Perzyna type, since the micro-structural temporal evolution is governed by ad-

ditional variables. 

Strain rate dependency is also observed in granular materials subject to very large 

strain rates or when long-lasting force chains collapse and energy in the medium is 

mainly dissipated by collisions (§6). When collisions become the predominant mech-

anism between particles at the microscale, with respect to force chains, granular ma-

terials do not behave like solids, but like highly compressible fluids. In this case, time-

dependency is ruled by both current void ratio and granular temperature, a measure of 

the material agitation [Gol08]. 

2 Micro-inertial effects in granular media  

When granular materials, under either dry or saturated conditions, are subject to a 

rapid perturbation in stresses (as it is, for instance, in creep tests), the material re-

sponse can be delayed, in particular if the perturbation applied is sufficiently severe 

to cause an irreversible microstructural fabric rearrangements. This delay results in 
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macroscopic irreversible strains, progressively increasing with time. According to 

[dPI96], this time dependency is the result of numerous local grain movements, asso-

ciated with force chain collapses and reconstructions. It is about of a probabilistic 

evolution of the microstructure from the initial stable configuration to the final one, 

passing through numerous intermediate fabric configurations: the evolution rate is 

ruled by particle micro-inertia ([SV95]), since the fabric evolution at the micro-scale 

is associated with micro-dynamic phenomena with some grains accelerating and oth-

ers decelerating.  

To predict at the macro-scale the material behaviour, the delayed plasticity theory 

proposed in [P63] can be suitably employed: the strain rate tensor is decomposed into 

an instantaneous/reversible contribution and a delayed/irreversible one (𝜀𝑖̇𝑗
𝑖𝑟𝑟), calcu-

lated as it follows:  

 

                                                 𝜀𝑖̇𝑗
𝑖𝑟𝑟 = 𝛾Φ

𝜕𝑔

𝜕𝜎𝑖𝑗
′  ,                                                     (1) 

 

being 𝑔 the plastic potential (usually chosen to obtain gradient  
𝜕𝑔

𝜕𝜎𝑖𝑗
′  to be non-dimen-

sional), 𝜎𝑖𝑗
′  the effective stress tensor, 𝛾 [ 𝑠−1] the fluidity parameter (positive by def-

inition) and Φ the viscous nucleus, substituting, together with 𝛾 the plastic multiplier 

employed in standard elastic-plasticity. Φ is defined by some authors as the distance 

(measured through a suitably conceived mapping rule) between the current yield locus 

𝑓 = 0 and the current state of stress, but, in most of the cases, Φ is simply a non-

dimensional, non-negative and increasing function of 𝑓 (suitably expressed in a non-

dimensional form).  

Equation (1) allows us to introduce time dependency, since irreversible strains may 

develop even if the effective stress is not varied, as it is, for instance, in creep tests in 

the period of time in between two subsequent load perturbations. 

In elastic-viscoplasticity, consistency rule, employed in standard elastic-plasticity to 

calculate the plastic multiplier, is abolished and the current effective stress image 

point may be either inside or outside the yield locus, that is: 

 

                                                 𝑓 = 𝑓(𝜎𝑖𝑗
′ , 𝛼𝑖𝑗

⬚) ≶ 0.                                                  (2) 

 

where 𝛼𝑖𝑗
⬚ stands for hardening variables.  

In case Φ = Φ (𝑓), 𝑓 may be interpreted as a scalar measure of the probability of 

occurrence of fabric rearrangements and, consequently, of irreversible strain develop-

ment. In most of the cases, Φ is assumed to be nil for 𝑓<0 and this implies the elastic 

domain existence. Nevertheless, in general, irreversible strains may be assumed to 

develop even for 𝑓<0 ([dPSZ07]). 

 𝛾, generally identified with  𝑡𝑐
−1 (being 𝑡𝑐 the material characteristic time) governs, 

together with  Φ and 𝑓, the material rate dependence: when 𝛾 → ∞, irreversible strain 

rate becomes infinite and the material response becomes instantaneous. Moreover if  

Φ = 0 for < 0 , when 𝛾 → ∞ standard elastic-plasticity is recovered. In standard elas-

tic-viscoplasticity, hardening rules are defined as in standard elastic-plasticity. Nev-

di Prisco, Flessati & Zerbi 141

ALERT Doctoral School 2024



 

 

ertheless, since irreversible strains develop with time and are delayed, even the evo-

lution of hardening variables take place with time: in case of creep tests, this implies 

that, in between two successive stress increments, hardening variables evolve and 

yield locus evolves. 

The choice of  Φ(f) is fundamental in determining the temporal material mechanical 

response [LSdPP19]. The simplest choice is to assume  Φ(f) linearly dependent on 𝑓. 

In this case, if f is also chosen to be linearly dependent on 𝜎𝑖𝑗
′ , visco-plastic approach 

reduces to the standard Maxwell viscous model [Max67].  

Non-linear expressions for Φ(f) have been also proposed. The most common is bilin-

ear:  

                                                 Φ(f) = 〈𝑓𝛼̃〉                                                               (3) 

with the non-dimensional parameter 𝛼̃ equal to unity. In case 𝛼̃ > 1, nonlinearity is 

lost even for 𝑓 > 0.  In equation (3), Macaulay brackets ensure that for negative 𝑓 

values, Φ = 0. In this case, yield locus coincides with the elastic domain boundary.  

An alternative non-linear definition for Φ(f) is 

                                                 Φ(f) = e𝛼̃𝑓 ,                                                               (4) 

which implies the viscous nucleus to be always positive. This implies that visco-plas-

tic strains can develop even for  𝑓 < 0. This allows us to more suitably simulate age-

ing phenomena, ruled by the shape of the negative branch of Φ(f), associated with 

very small strain rates.  

The exponential expression defined in equation (4), on the other side, suggests a very 

rapid response of the material when large strain rates are taken into account, corre-

sponding to large 𝑓 values and occurring when dynamic perturbations are applied. To 

capture the time dependency of the mechanical behaviour of granular materials in case 

of both very small and very large strain rates, alternative expressions for Φ(f) have 

been proposed, like the one reported here below [dPI03]:  

                                                Φ(f) =  {
e𝛼̃𝑓

𝛽  √log (𝜁𝑓)
      

𝑖𝑓 𝑓 ≤ 𝑓0

𝑖𝑓 𝑓 > 𝑓0
                              (5) 

According to which the exponential function is substituted for 𝑓 ≥ 𝑓0 (where 𝑓0 is a 

constitutive parameter) by a logarithmic dependence ruled by two additional non-di-

mensional parameters ( 𝛽, 𝜁 ). Obviously, the choice of the expression for 𝑓 ≥ 𝑓0 is 

each time tailored on the expression employed for f, that in the specific case here 

mentioned was inspired to the one originally introduced in Cam-Clay model [SW68]. 

Under dynamic impulsive perturbations, like those illustrated in Figure 1, character-

ized by the same maximum value (it is about a biaxial test at constant 𝜎𝑥𝑥
⬚  (Figure 

1a)), the response of the specimen is totally different according to the strain rate im-

posed (Figure 1b): for very large strain rates, the response becomes more rigid and 

reversible, whereas the opposite occurs when the impulse increases (Figure 1c). 
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Figure 1: Numerical biaxial tests performed by [dPSZ07]: a) scheme of the tests, (b) 

different loading time histories and (c) numerical stress–strain curves obtained for 

four different loading time periods (from [dPSZ07]). 

Under cyclic reverse tests, this implies that elastic-viscoplastic models are capable of 

capture the dependence of damping parameter on frequency, at least for sufficiently 

small values of frequencies (Figure 2). Indeed, if an elastic-plastic constitutive rela-

tionship is adopted, damping ratio depends on the perturbation amplitude, but not its 

frequency (Hysteretic damping), whereas if an elastic-viscoplastic constitutive rela-

tionship is adopted the dependency on the perturbation amplitude is still well captured 

and damping progressively reduces with frequency. This is not confirmed by the ex-

perimental test results, that conversely are characterized by non-monotonic depend-

ence ([Shi95]) on frequency (Figure 2).  
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Figure 2: dependence of damping ratio on load frequency: comparison between ex-

perimental measurement obtained by [Men03] (interpolated by black lines) and dif-

ferent constitutive model predictions (red lines) 

This trend is the result of two antagonistic effects: (i) the former one associated with 

the previously mentioned delayed plasticity (dominant at low frequencies), (ii) the 

latter to the linear viscosity (dominant at higher frequencies) not associated with both 

an evolution of the micro-structure and any accumulation of irreversible strains. Lin-

ear viscosity is the result at macro-scale of the local agitation of grains dissipating 

energy at contacts for sliding, but not implying any force chain collapse or grain dis-

location: under dynamic conditions the material is capable of dissipating energy even 

without getting rise to any yielding.   

From a numerical point of view, elastic-viscoplastic models have been successfully 

employed in the literature to both regularize numerical solutions, in particular under 

dynamic conditions, and to implement non-local approaches for the simulation of lo-

calization processes in many different types of geomaterials [LP91, WSdB98, 

LSS15].  In this last case, the thickness of the localized zone has been demonstrated 

to be a function not only of the material characteristic length but also of fluidity pa-

rameter and rate of the perturbation applied. 

3 Stability analysis for elastic-viscoplastic materials 

As is well-known, when geomaterials are tested under constant effective loads (for 

instance, when standard triaxial creep tests are performed), strain rate evolves with 

time. After the load increment, if either the applied load is sufficiently large or the 

current stress level (Figure 3) sufficiently high, an initial strain deceleration (primary 
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creep) is followed by a constant strain rate branch (secondary creep) and by a subse-

quent severe strain acceleration (tertiary creep).  

 

Figure 3: Transition from primary to tertiary creep. 

 

As was already mentioned, incremental constitutive relationships are not suitable 

for describing the temporal accumulation of strains taking place at constant effective 

stress and, thus, not even for theoretically justifying the onset of instability, instability 

that in case of incremental constitutive relationships is discussed in the framework of 

either bifurcation ([SV95]) or controllability ([N94]) theories.  

In case of creep tests, the hardening (Figure 4) of the yield function (represented in 

the triaxial 𝑞 − 𝑝’ plane, where 𝑞 = 𝜎′𝑎 − 𝜎′𝑟 and 𝑝’ = (𝜎′
𝑎 + 2 𝜎′

𝑟)/3 being 𝜎′
𝑎 

and 𝜎′
𝑟  the effective axial and radial stress, respectively) is associated with a reduc-

tion in strain rates (primary creep), whereas its softening with strain acceleration (ter-

tiary creep). To discuss material instability, in case of elastic-viscoplastic constitutive 

relationships, is, thus, very convenient expressing the constitutive relationship in 

terms of acceleration, that in case of creep tests, since 𝜎̇𝑖𝑗
′ = 0, can be written as fol-

lows: 

                                        𝜀𝑖̈𝑗
⬚ = 𝜀𝑖̈𝑗

𝑖𝑟𝑟 = 𝛾Φ̇
𝜕𝑔

𝜕𝜎𝑖𝑗
′ + 𝛾Φ

𝜕

𝜕𝑡
(

𝜕𝑔

𝜕𝜎𝑖𝑗
′ )                                            (6) 

 

where:  
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                    Φ̇ =
𝜕Φ

𝜕𝑓

𝜕𝑓

𝜕𝑡
=

𝜕Φ

𝜕f
(

𝜕𝑓

𝜕𝜎𝑖𝑗
′ 𝜎̇𝑖𝑗

′ − 𝐻 Φ(𝑓)) =  −
𝜕Φ

𝜕f
𝐻 Φ(𝑓)                               (7) 

being 𝐻 the hardening modulus, defined as follows. 

                                                 𝐻 = −
𝜕𝑓

𝜕𝛼𝑖𝑗
⬚

𝜕𝛼𝑖𝑗
⬚

𝜕𝜀𝑟𝑠
𝑖𝑟𝑟

𝜕𝑔

𝜎𝑟𝑠
′                                                       (8) 

Since by definition both Φ(𝑓)  ≥ 0 and  
𝜕Φ

𝜕f
≥ 0, during creep tests, the sign of  Φ̇  is 

governed by 𝐻. As a consequence, if   
𝜕

𝜕𝑡
(

𝜕𝑔

𝜕𝜎𝑖𝑗
′ ) = 0 (condition satisfied by a numerous 

category of elastic-viscoplastic constitutive relationships), a deceleration in the accu-

mulation of irreversible strains is observed (stable response, primary creep, Figure 3), 

when 𝐻 > 0 and an acceleration, when 𝐻 < 0. (tertiary creep, Figure 3). When state 

variable evolution stops (𝐻 = 0), the velocity of accumulation of irreversible strains 

is constant with time (secondary creep). If a change in sign of 𝐻, from positive to 

negative, is observed, a transition from primary to tertiary creep is also observed. 

By substituting equations (7) and (1) into equation (6) and by assuming  
𝜕

𝜕𝑡
(

𝜕𝑔

𝜕𝜎𝑖𝑗
′ ) =

0, we obtain: 

𝜀𝑖̈𝑗
⬚ = 𝛾Φ̇

𝜕𝑔

𝜕𝜎𝑖𝑗
′  =−

𝜕Φ

𝜕𝑓
𝐻𝛾 Φ(𝑓)

𝜕𝑔

𝜕𝜎𝑖𝑗
′ =  −

𝜕Φ

𝜕𝑓
𝐻 𝜀𝑖̇𝑗

⬚,           (9) 

that, in case   
𝜕

𝜕𝑡
(

𝜕𝑔

𝜕𝜎𝑖𝑗
′ ) = 0 is not satisfied, has to be modified as in [PdP16].  

 

Figure 4: Evolution of yield function after an instantaneous stress increment: 

schematic representation in the triaxial plane 
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In a general case, that is for a general type of control (generalized creep tests), the 

onset of instability can be discussed by employing the approach proposed in [PdP16], 

combining Lyapunov theory of stability [L92] with controllability theory [N94], that 

is an extension to any type of test control of the method simply described here above. 

According to this approach, under quasi-static (inertia contributions are neglected) 

mixed stress-strain control conditions, once derived over time, the constitutive rela-

tionship can be written as it follows:  

 

                                                 𝐗̇ = 𝐀𝐗 + 𝐅                                                         (10) 

 

being 𝐗 a vector containing the rate of response variables (𝐗 =
d⬚

𝑑𝑡⬚ [
𝜀𝛼

𝜎𝛽
], changing 

according to the test control), 𝐅 = [
𝐹𝛼

𝐹𝛽
] a forcing term related to controlled variables 

((𝜎𝛼) and (𝜀𝛽) ) and their first and second time derivatives, whereas matrix 𝐀 depends 

on both constitutive relationship and controlled variable rates.  

 

In case of “generalized creep tests” (i.e. when both rate and acceleration of con-

trolled variables are nil), 𝐅=0 and 𝐀 only depends on the constitutive relationship. The 

eigenvalues of 𝐀 can be employed to define the system stability: a stable response is 

obtained when all the eigenvalues of 𝐀 are negative.  

In contrast, instability takes place, when at least one eigenvalue becomes non-neg-

ative, corresponding with condition 𝐻 ≤ 𝐻𝜒, being 𝐻𝜒 the controllability modulus 

([BDdP11]), already defined, by using standard controllability theory in ase of stand-

ard elastic-plastic constitutive relationships ([BDdP11]).This implies that in case of 

elastic-viscoplastic constitutive relationships even instability may be delayed with 

time but from a mechanical point of view its occurrence is governed by the same 

condition already found for elastic-plastic models. 

To clarify what inferred here above, in [dPP17] this theory was applied to interpret 

the onset of instability in infinitely long slopes, that in case of Simple Shear (SS) 

conditions. Under SS conditions, both normal and shear stresses are controlled, 

whereas, along direction 2 of Figure 5 and out- of plane, normal strains are imposed 

to be nil.  
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Figure 5: Infinitely long slope, representative of simple shear conditions 

 

Under SS conditions, in a general form, that is for  
𝜕

𝜕𝑡
(

𝜕𝑔

𝜕𝜎𝑖𝑗
′ ) ≠ 0: 

 

                                                𝐴𝛼𝛼 = −
𝛿Φ

𝛿𝑓
(𝐻 − 𝐻𝐿)𝐼𝛼𝛼                                                (11) 

 

                                                𝐴𝛽𝛽 = −
𝛿Φ

𝛿𝑓
(𝐻 − 𝐻𝐿)𝐼𝛽𝛽 − Φ𝐷22

𝛿2𝑔

𝛿2𝜎𝛽𝛽
                (12) 

 

                                                𝐴𝛽𝛼 = 0                                                                   (13) 

                                                𝐴𝛽𝛼 = Φ (
𝛿2𝑔

𝛿𝜎𝛼⨂𝛿𝜎𝛽
− 𝐶𝛼𝛽𝐶𝛽𝛽

−1 𝛿2𝑔

𝛿𝜎𝛽⨂𝛿𝜎𝛽
)                 (14) 

 

where 𝛼 = 1,4, 𝛽 = 2,3, 𝐶𝑒𝑙 is the elastic compliance matrix (𝐶𝛼𝛽 indicates the 

partition implied by the specific loading programme), 𝐼𝛽𝛽 and 𝐼𝛼𝛼  identity matrices 

and 𝐷22 stands for the slope elastic term corresponding to the direction parallel to the 

slope. Since the derivative of the viscous nucleus with respect to the yield function is 

positive by definition, whereas  
𝛿2𝑔

𝛿𝜎𝛽⨂𝛿𝜎𝛽
> 0 , due to g convexity, instability may oc-

cur if and only if  𝐻 ≤ 𝐻𝐿 . 

Under SS conditions, since with time both H and 𝐻𝐿  evolve with time, if the current 

stress level is sufficiently high, after applying the perturbation, the response may be 

stable (primary creep in Figure 3) and only in the following instability occurs (tertiary 

creep).  

4 Progressive failure in bonded/cemented soils  

In the scientific literature, the progressive failure term is commonly associated with 

the spatial propagation, under load-controlled conditions, of the damaged zone, and 
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identified with process that leads with time to the eventual failure of the entire system. 

Progressive failure is associated with an increase in the displacement rate of the un-

stable soil or rock mass. In laboratory samples, in particular, in case of bonded geo-

materials and granular materials under very large stresses, this phenomenon has been 

observed and thus described by numerous authors [SU69, ASY71, CV74, ALL04, 

EKTS16] and is notably commonly associated with the transition from primary, sec-

ondary and tertiary creeps. This behaviour becomes extremely relevant in the context 

of creeping landslides, which are generally characterized by slow movements, but, 

under particular conditions, may evolve in rapid and unexpected collapses. 

 

This process takes place in overconsolidated clayey soils, structured and cemented 

granular materials and, in general, in geomaterials characterised by a high level of 

fragility. In these materials, progressive failure is strictly related to the process known 

as 'sub-critical crack growth' [WFT80, Atk84, Fre84, OA01, OA07], eventually lead-

ing to the breakage of bonds or particles ('grain crushing'). At a microscopic scale, the 

propagation of cracks over time results in a gradual spatial rearrangement of the mi-

crostructure, testified by the accumulation of irreversible strains and a gradual reduc-

tion in material strength. Therefore, in bonded geomaterials, progressive failure is 

typically the consequence of the subcritical crack growth [Atk84] in bonds. Accord-

ingly, some authors [Ken05, OA07, ZB17] suggested to integrate concepts of fracture 

mechanics to describe, at the macroscale, the temporal evolution of the mechanical 

response of structured media. 

The term bonded geomaterials (used for instance for calcarenites and chalks) indi-

cates all those natural materials, that at the microscale show the presence of inter-

connected grains by means of inter-granular chemical bonds, causing an increase in 

stiffness and a non-negligible tensile strength.   

In the literature, the mechanical behaviour of bonded geomaterials is generally in-

terpreted within a continuum mechanics framework and according to two alternative 

approaches: 

• One (Nova-Gens approach) inspired to modified elastic-plastic models, 

based on critical state theory [GN93], according to which the effect of 

bonding is taken into account by employing additional internal hardening 

variables related to bonds [ANN00, NCT03]. 

• The second one consisting in defining binary mixture type models, inter-

preting the material mechanical behaviour as the combination of two con-

tributions, one related to bonds and the other one to grains. The two con-

tributions are assumed to behave in parallel and suitably assembled by 

respecting either micro-mechanical equilibrium or energy balance [AK97, 

YPU98].  

 

As far as the first approach is concerned, starting from the '90s ([GN93], [LN95], 

[NCT03]), under the hypothesis of material isotropy, the most popular models assume 

both yield function and plastic potential to depend on only two additional hardening 

variables: 𝑝𝑚 and 𝑝𝑡  (Figure 7), independent of 𝑝𝑠, describing this latter the size of 

the yield locus for the equivalent unbonded material. According to this approach, dur-

ing diagenesis or natural cementation, both 𝑝𝑚 and 𝑝𝑡  increase with time as a result 
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of chemo/mechanical processes. In contrast, in case a mechanical perturbation is ap-

plied and yielding takes place, at the microscale microcracks propagate in space, re-

sulting in a progressive time dependent damage of bonds and in a progressive reduc-

tion in both 𝑝𝑚 and 𝑝𝑡 . When both  𝑝𝑚 and 𝑝𝑡  nullify, the material is assumed to 

behave as a residual “granular soil” with no cohesion. 

To account for time dependency, the Perzyna approach can be applied, without 

distinguishing time dependency related to granular fabric rearrangement and bon deg-

radation. Although this approach may seem theoretically unacceptable, its use is quite 

interesting, since it can justify, even in case of standard triaxial tests the change from 

primary to tertiary creep and vice versa.  

This can be easily justified in the light of Eq.9, since during creep tests the stability 

of the response is governed by the sign of H and this, in case of bonded geomaterials, 

according to Nova-Gens approach, can be written as the combination of three terms, 

differently evolving with time: 

 

𝐻 = − (
𝜕𝑓

𝜕𝑝𝑠
⬚

𝜕𝑝𝑠
⬚

𝜕𝜀𝑟𝑠
𝑖𝑟𝑟

𝜕𝑔

𝜎𝑟𝑠
′ +

𝜕𝑓

𝜕𝑝𝑚
⬚

𝜕𝑝𝑚
⬚

𝜕𝜀𝑟𝑠
𝑖𝑟𝑟

𝜕𝑔

𝜎𝑟𝑠
′ +

𝜕𝑓

𝜕𝑝𝑡
⬚

𝜕𝑝𝑡
⬚

𝜕𝜀𝑟𝑠
𝑖𝑟𝑟

𝜕𝑔

𝜎𝑟𝑠
′ ) =  𝐻1 + 𝐻2 + 𝐻3 .    (15) 

 

In Figure 7 the temporal evolution of axial strains during a creep test, obtained by 

using this approach is illustrated and compared with the evolution with time of H 

(Figure 7a) and Hi (Figure 7b). 

 

 

 
Figure 6: Schematic representation of an isotropic yield locus, modified to ac-

count for bond resistance. 

 

Alternatively, by following the second approach, a parallel scheme can be assumed 

(Figure 7): one contribution refers to bonded medium and the other to the unbonded 

one. Two yield loci, two plastic potentials and two different rules have to be defined. 

It is worth mentioning that this approach allows us to assign two distinct fluidity pa-

rameters, suitably distinguishing the characteristic times related to micro-cracks prop-

agation (𝑡𝑚
∗ ) and to fabric re-arrangement (𝑡𝑠

∗). Additionally, since the global elastic 
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stiffness is given by the sum of the two contributions, it becomes straightforward pre-

dicting the on-going reduction in the elastic properties, consequent to bond degrada-

tion.  

The model is thus capable of predicting very different temporal evolutions according 

to the current stress state, since the combination of the two contributions and the role 

of the two fluidity parameters may vary severely. For the sake of clarity, the numerical 

simulation of a standard triaxial compression creep test, performed by employing an 

in-parallel model is illustrated in Figure 8.  

This type of models are also suitable for capturing the mechanical response of 

bonded materials, when subject to impulsive perturbations (Figure 9). If the stress 

level is sufficiently high and/or the impulsive perturbation sufficiently severe, the me-

chanical response may be unstable for a very long period of time, largely more ex-

tended then the perturbation time (t), followed by a re-stabilization (testified by a 

change in sign of the second derivative over time of strains) (Figure 10). In Figure 10 

the predicted mechanical response for two impulses characterized by the same load 

amplitude 𝜎′, but different duration 𝛥𝑡 is reported.  If a threshold duration value t is 

overcome, instability occurs, and the mechanical response is similar to that predicted 

for creep tests. 

The unstable response corresponding to t = 140 min is due to a rapid damage of 

bonds, caused by the impulse, leading to a progressive hardening of the granular ma-

trix: stability is regained, when the hardening of unbonded contribution compensates 

the progressive damage of the bonded one. 

 

 
Figure 7: Conceptual structure of the double fluidity elastic-viscoplastic model 

(from [For23]). 
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Figure 8: double fluidity elastic-viscoplastic model; predictions of a creep standard 

compression triaxial test on an isotropically consolidated sample (cell pressure equal 

to 100 kPa, load increment equal to 200 kPa); temporal evolution of axial total, bond  

and unbonded stresses (a), axial strain (b), axial strain rate (c) and gardening mod-

uli (d) (from [For23]).  

 
 

Figure 9: single square impulsive stress perturbation (from [For23]). 
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Figure 10: elastic-viscoplastic double fluidity model prediction, corresponding to 

an initial axial stress of 175 kPa, an impulsive stress of 75 kPa and two different du-

rations t (from [For23]). 

 

What observed in case of bonded geomaterials is also valid in case granular mate-

rials are loaded under very high confining pressures, since under these conditions 

grain crushing occurs (YL93). The macroscopic consequence of grain-crushing is the 

evolution of particle size distribution (Figure 11), but as is testified by many experi-

mental tests this material transformation is time dependent. 

As is suggested in the sketch of Figure 12, even in this case, the evolution with 

time of irreversible strains is due to the spatial propagation of microcracks in grains. 

Particularly interesting, in case of grain crushing, are the approaches based on break-

age mechanics (Ein07a, Ein07b), since in these models time dependence stems from 

a suitable upscaling procedure [ZB17].   

 

 
 

Figure 11: Evolution of particle size distribution due to grain crushing in granular 

soils and its dependency on strain rate imposed (from [YL93]) 

 

 
 

Figure 12: Schematic representation of grain-crushing (from [ZB17]) 

  

di Prisco, Flessati & Zerbi 153

ALERT Doctoral School 2024



 

 

5 Thermo/hydro/chemo/mechanical processes  

As was mentioned in the introduction, the time dependency of the mechanical behav-

our of geomaterials in some cases is related to the activation of thermo/hydro/chemo-

mechanical coupled processes, particularly evident in clays, peats, and naturally/arti-

ficially cemented soils when, for instance, these latter are interested by weathering 

phenomena. To model this kind of time dependence, common is the use of standard 

elastic-plastic models, including additional hardening functions, putting in relation 

thermo/hydro/chemical control to hardening variables, in which control variables 

evolve with time according to prescribed rules, implying both f and g to be dependent 

on both accumulated irreversible strains and chemical processes.  

In most of the cases, the temporal evolution of the mechanical consequences of chem-

ical reactions is assigned ([ZC74], [AO82], [BK85], [DZ87], [KS92], [NA01]) phe-

nomenologically and not derived from micro to macro upscaling procedures. 

 

According to these approaches, yield function may evolve without any either mechan-

ical perturbation (i.e., at constant effective stress) or increase in irreversible strains. 

Macroscopic evidence of material degradation may be absent, until the shrinkage of  

f becomes severe enough to get rise to yielding and to the progressive accumulation 

of irreversible strains, whose size is governed by both consistency rule and temporal 

evolution of hydro/chemo/mechanical processes ([GCH15], [CdP16]). 

 

An example of simplified micro to macro approach to describe time dependency in 

calcarenites due to weathering induced by material saturation is in [CdP16]. In this 

model, 𝑝𝑚 and 𝑝𝑡  (Figure 6) are assumed to be correlated between each other via a 

non-dimensional constant, and related, through a simplified upscaling procedure, to 

the intact material's tensile strength σ ̅, and the mean diameter of intergranular bonds 

Y ̅, evolving with time, due to the dissolution of calcium carbonate into water. This 

process is assumed to induce a change in the normalized calcite mass ξ and ξ to be 

related to 𝑝𝑡as follows: 

                                                 𝑝𝑡 = 𝜎𝑋𝑌̅(𝜉),                                                         (16) 

 

being X an upscaling parameter. In the case of calcarenites, where the intergranular 

bonds are made of calcite, the evolution rule for ξ is derived from the rate of dissolu-

tion of calcium carbonate into water solutions ([CH13]): 

 

                             𝜉̇ = 𝐾𝑏 (𝐶 − [𝐶𝑎2+]
1

2[𝐶𝑂3
2−]

1

2) (1 + 𝜙 𝜀𝑣
𝑝𝑙

),                                 (17) 

 

where 𝐾𝑏  is a dissolution parameter, C is an equilibrium constant,  𝜀𝑣
𝑝𝑙

 the volumetric 

plastic strains, [𝐶𝑎2+] and [𝐶𝑂3
2−] the ionic concentration values, and a chemo-me-

chanical coupling parameter, accounting for the increase in wet surface due to the 

development of microcracks within the intergranular bonds. 

As is evident from equations (16) and (17), the temporal evolution of 𝑝𝑡  is therefore 

ruled by the velocity of chemical reactions (chemo/mechanical coupling) whereas 
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what is not described here, for the sake of brevity, is the damage induced by mechan-

ical perturbations, affecting the 𝜎 value. 

 

In the previous sections, the importance in determining fluidity parameter 𝛾 was men-

tioned and, in particular, the authors observed that 𝛾 is a function, at the macro-scale, 

of the processes taking place at the micro-scale. In this perspective, to take thermo-

mechanical coupling in clays into account, [SWH21] suggested to simulate tempera-

ture dependence of viscous properties by assuming 𝛾 not to be constant but depending 

on temperature T as follows: 

 

                                                 𝛾(𝑇) = 𝐵 𝑒𝑥𝑝 (−
𝑚

𝑇
),                                                    (18) 

 

where 𝐵 is a material non dimensional parameter and m a material parameter ex-

pressed in degrees Celsius. Equation (18), according to the previously mentioned au-

thors, is justified in the light of Arrhenius equation, suggesting that chemical reaction 

rates increase with any increase in temperature [MS05].  

6 Response under large strain rates 

 

The most important peculiarity of granular materials consists in their double nature: 

they behave like solids or fluids, according to the applied strain rate, current porosity 

and confinement. In the former case, at the microscale, grains interact mainly through 

long lasting force chains, whereas, in the latter one, mainly through instantaneous in-

elastic collisions.  

At the macroscale, according to the prevailing mechanism of interaction among 

particles, granular matters behave differently and, when collisional interactions gov-

ern the material mechanical response, this becomes very time dependent. 

To visualize regimes and strain rate dependency of the mechanical behaviour of 

granular materials, in Figure 13 numerical results obtained by performing discrete 

element numerical constant volume simple shear tests on a dry monodisperse granular 

assembly are illustrated in the non-dimensional plane *-𝛾̇∗(being *= 𝜏
𝑑

𝑘𝑛
,  𝛾̇∗ =

𝛾̇ 𝑑√𝜌𝑝𝑑/𝑘𝑛 , whereas 𝜌𝑝 is the particle density. d the particle diameter and 𝑘𝑛 the 

stiffness of the spring describing the elastic interaction among particles). 

When the material is sufficiently loose and the shear rate sufficiently low (collisional 

regime in Figure 13), particles interact mainly through inelastic collisions, energy is 

mainly stored as kinetic fluctuating and the behaviour is fluid-like and the depends of 

 on  𝛾̇ is quadratic. When clusters are present in the system the regime is called cor-

related (Figure 14a). whereas, when the material is sufficiently rarefied, uncorrelated 

(Figure 14b). Within clusters, collisions are absent, but clusters fluctuate colliding 

against either other clusters or single particles. The correlation reduces the rate of 

dissipated energy, since the number of collisions reduce. 
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The regime is quasi-static, and, at steady state, the mechanical behaviour practically 

rate independent, when the granular material is sufficiently dense and the strain rate 

sufficiently small. In this regime, the behaviour of the material is solid-like and long 

lasting force chains are the predominant mechanism of interaction among particles 

and energy is stored mainly as elastic. 

If the shear rate is increased, the regime becomes hybrid with the simultaneous pres-

ence of collisions and force chains. The behaviour remains solid-like. The kinetic 

fluctuating energy stored is comparable with the elastic but remains lower. 

Finally, independently of the porosity value, if the shear rate is sufficiently high 

(Figure 13), the regime becomes inertial and shear stress, under simple shear condi-

tions, is proportional to shear strain rate: the behaviour is fluid-like and the stored 

elastic energy approximately coincides with the kinetic fluctuating one. 

 

 
 

Figure 13: Definition of regimes for dry granular materials under simple shear 

conditions where 𝜏 is the shear stress, 𝛾̇ is the shear strain rate, 𝜌𝑝 is the particle 

density, 𝑑 is the particle diameter and 𝑘𝑛 is the contact normal stiffness (from 

[Zer24]) 
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Figure 14: Definition of collisional regimes a) correlated and b) uncorrelated 

(from [Zer24]) 

 

In case of saturated conditions, according to the type of dependency, the regime 

may be (i) quasi-static, (ii) inertial, (iii) Newtonian or (iv) Bagnoldian (Figure 15): 

• both quasi-static and inertial regimes are defined as it is under dry condi-

tions; 

• Newtonian regime (characterized by a linear dependence of  on  𝛾̇) takes 

place for sufficiently small values of both solid concentration and shear 

rate. In this regime; 

• finally, for higher shear rates, Bagnoldiam regime, in which the shear 

stress is proportional to the square of the shear rate. occurs.  
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Figure 15: Definition of regimes for saturated granular materials under simple 

shear conditions where 𝜏 is the shear stress, 𝛾̇ is the deviatoric strain rate, 𝜌𝑝 is the 

particle density, 𝑑 is the particle diameter and 𝑘𝑛 is the contact normal stiffness 

(from [Zer24]) 

 

From an historical point of view, it is worth mentioning that constitutive ap-

proaches simulating quasi-static and rime independent mechanical behaviour of gran-

ular materials have been proposed in the geotechnical community, whereas models 

for fluid-like regimes have been developed in the hydraulic/physicist community (ki-

netic theories of granular gasses). These, in addition to void ratio dependency, account 

for the role of granular temperature [Gol08]: a scalar measure of particle velocity fluc-

tuations: 

 

                                                𝑇 =
1

3
〈|𝒖̌𝑷 ∙ 𝒖̌𝑷|〉                                          (19) 

 

where 𝒖̌𝑷 =  𝒖𝒑 − 𝒖𝒈 is the fluctuating velocity vector of each particle P, 𝒖𝒑  the 

particle velocity vector, 𝒖𝐺  the local mean velocity vector of the granular phase 

(𝒖𝑮  =  ⟨𝒖𝒑⟩, where symbol ⟨⟩ stands for the average at the macroscopic scale). 𝑇 is a 

statistical measure of material agitation.  

Only recently, unified constitutive models, suitable of describing the behaviour of 

granular materials under both quasi-static and dynamic conditions (e.g. [DK15, 

AME21, GPWW21]) have been proposed. In particular, the Milan research group 

([BdPV11, VdPB13, RdPV16, VMdP20, MRdP22, MZdP24] has proposed a multi-

phase multi-regime model based on: (i) the adoption of the two-phase mixture theory 

([TT60]) (ii) the elastic-plastic theory, (iii) the critical state concept, (iv) the kinetic 
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theory of granular gasses and (v) the assumption of an in-parallel response for colli-

sional and quasi-static contributions (Figure 16).  In particular, the total stress tensor 

is defined as follows (Figure 16): 

 

                                                 𝛔 = 𝛔𝑞𝑠 + 𝛔𝑐𝑜𝑙 + 𝛔𝑙                                                   (20) 

 

where  𝛔𝑞𝑠 and 𝛔𝑐𝑜𝑙  represent solid quasi-static and dynamic contributions, respec-

tively, whereas 𝛔𝑙 the liquid phase contribution. From an energetic perspective, the 

medium involves two storage mechanisms (springs and masses in Figure 16) and two 

dissipation mechanisms (frictional slider and dashpot in Figure 16). As grains are de-

formable, elastic energy is stored both in long-lasting force chains and during colli-

sions. The two central in series dashpots in Figure 16 simulate the material's response 

in the collisional regime: one simulates the energy dissipated by the system in case 

spheres were rigid, while the other, in parallel with a spring, incorporates the particle 

deformability.  

 

 

 
 

Figure 16 Rheological scheme of the multi-phase/multi-regime model  

 

The contribution of force chains 𝛔𝑞𝑠 is modelled by employing a non-associated 

anisotropic strain hardening elastic-plastic constitutive relationship, in which as state 

variables void ratio and fabric tensor have been chosen. The collisional contribution 

is instead modelled according to the kinetic theories of granular gasses. When this 

contribution prevails, the granular material behaves like a very compressible fluid, 

with a viscosity dependent on both void ratio 𝑒 and 𝑇. Under simple shear conditions, 

the constitutive relationship can be expressed as follows: 

 

                                                 σ𝑐𝑜𝑙 = 𝐹1(𝑒, 𝑇) 𝑇                                                   (21) 

 

                                                 τ𝑐𝑜𝑙 = 𝐹2(𝑒, 𝑇) 𝑇1/2 𝛾̇ ,                                                  (22) 

 

where 𝐹1 and 𝐹2 are non-linear functions, defined according to [BJ15], increasing 

with T and reducing with e, dependence typical for ideal gases, but not for incom-

pressible fluids, in which shear viscosity is due to intermolecular forces [LL80]. 
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As is schematically illustrated under triaxial conditions in Figure 17, in the solid-

like regime, total stress coincides with quasi-static contribution and belong to yield 

locus (Figure 17a); in the hybrid one, the two contributions are equivalent and total 

stress is outside the yield locus (Figure 17b). Finally, in the collisional regime (Figure 

17c), total stress practically coincides with the collisional one and yield locus shrikes 

into a point coinciding with the origin of the axes. 

 

 
 

Figure 17 schematic representation in the triaxial plane of solid-like (a), hybrid 

(b) and fluid-like (c) regimes  

 

Under saturated conditions, the mechanical behaviour of the mixture becomes 

more complex, since the liquid phase contribution must take into consideration 

([VMdP20, MZdP24]) (i) the deviation, near grains, of liquid streamlines from their 

original paths; (ii) the lubrication effect, occurring when two or more particles come 

close together, causing the liquid between them to be squeezed out due to the local 

increase in pressure; (iii) the damping effect of water on the fluctuating motion of 

particles.  

Under the assumption of no turbulence, 𝛔𝑙 is modelled according to a Newtonian 

rheology: 

 

                                                 𝝈𝑳 = 𝑢𝑤𝑰 + 2𝜂(𝑒)𝜺̇𝑳
𝒅                                                   (23) 

 

where 𝑢𝑤 is the isotropic pore pressure and 𝜂 the macroscopic viscosity, function 

of void ratio 𝑒 for the reasons summarised here above. For sufficiently large values of 

void ratio,  𝜂 →   𝜂0 (𝜂0 liquid molecular viscosity) according to the well-known Ein-

stein formula [Ein05]. 

7  Concluding remarks 

The time and rate dependency of geomaterials is due to various hydro/chemo/mechan-

ical processes occurring at the microscopic level. In this chapter, focussing on granu-

lar and cemented geomaterials, the authors have presented various strategies, in the 

framework of elastic-plastic theory, to theoretically capture and numerically simulate 
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material time dependence. Nowadays, the current research is aimed at justifying the 

time-dependent mechanical response by employing suitable upscaling approaches, 

useful for both conceiving constitutive assumptions and calibrating constitutive 

paramters.  
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The Chapter is devoted to the constitutive modelling of geo-materials based on Gener-
alized Plasticity Theory. The aim is to provide the reader with an overview of the gen-
eralized plasticity state parameter-based model to reproduce the hydro-mechanical
behavior of unsaturated soils. The proposed model is based on two pairs of stress-
strain variables and a suitable hardening law taking into account the bonding—
debonding effect of suction and degree of saturation.

1 Introduction

Constitutive modeling of unsaturated soils is a relatively new field compared to the
modeling of saturated soils. The effective stress principle is widely accepted to ex-
plain the fundamental behavior of saturated soils. In most testing devices, when pore
pressures are generated, they are measured and recorded to determine the effective
stress. The situation is different for unsaturated soils. Even today, researchers use
various alternative stress measures in their models. The initial efforts to understand
the behavior of unsaturated soils were made by Haines [Hai25] and Fisher [Fis26].
They examined an assembly of monodisperse spheres and the stabilizing interparticle
forces exerted by water menisci. From their results, it is possible to derive a relation-
ship, f(s), between the increments of stabilizing hydrostatic stress at a given suction
s and at zero suction.
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where Ts is the surface tension and R the radius of the spherical particles. There are
two limit cases when suction tends to zero and infinity. In the former, f(s) = 1 and in
the latter, when suction tends to infinity, f(s) = 3/2.

Bishop introduced a generalization of Terzaghi’s effective stress principle to explain
the mechanical behavior of unsaturated soils using a single stress variable.

σ′
ij = σij − pa · δij + χ · (pa − pw) · δij (2)

where σij is the total stress tensor, pa is the pore air pressure, pw is the pore water
pressure, pa−pw is the matrix suction s, δij is the Kronecker delta and χ is a parameter
varying between zero and one, which is often referred to as Bishop’s effective stress
parameter. The stress tensor can be decomposed into a net stress tensor (σ̄ij = σij −
pa) and the suction term.

Even though Bishop’s effective stress predicted the shear strength of unsaturated soils,
it could not reproduce collapse during wetting paths. This limitation prompted Bishop
and Blight to introduce the so-called bi-tensorial formulations based on net stress and
matric suction tensors. This bi-tensorial approach was employed in the first generation
of constitutive models for unsaturated soils. Alonso et al. [AGJ90] introduced a model
known today as the Barcelona Basic Model (BBM), which provided a framework for
understanding many fundamental aspects of unsaturated soil behavior.

The work of Houlsby [Hou97] who analyzed the work input to unsaturated granular
materials, demonstrated that two sets of work conjugated variables were necessary
to explain unsaturated soil behaviour. Therefore, a second generation of models for
unsaturated soils based both on the effective stress and suction was produced [Jom00].

In this chapter, we present a Generalized Plasticity constitutive model to reproduce
the main features of unsaturated soil behavior from a state parameter point of view
[MPM11]. The model is formulated using two sets of stress–strain variables, the
modified effective stress and suction as stress variables and the strain of solid skeleton
and degree of saturation as strain variables, coupling the hydraulic and the mechanical
behaviour of unsaturated soils within a Generalized Plasticity framework. The hard-
ening and softening effect due to the change of saturation conditions are expressed in
terms of the suction and degree of saturation using a bonding parameter.

2 Generalized Plasticity Framework

There are excellent texts and state of the art papers devoted to describing constitutive
models and their use in geotechnical engineering. We can mention the classic texts of
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Cambou and Di Prisco [CdP00], Zienkiewicz et al. [ZCP+99] among others, and the
references provided therein. In this chapter, we will focus on the Generalized Plastic-
ity models which can reproduce behaviour of geomaterials under both monotonic and
cyclic loading.

Generalized Plasticity Theory (GPT) introduced by [ZM84] and elaborated by Zienkie-
wicz and Pastor [ZLP85], [PZC90], as it provides a framework within which accu-
rate models can be developed to describe more relevant phenomena of soil behaviour
under monotonic and cyclic loading. Models within GPT have been developed for
bonded geomaterials and collapsible soils [FMPM+04], for saturated and unsaturated
soils [MMP11], [MPM11] and recently to anisotropic materials [GGMP24] based on
state parameter (MPZ model). The MPZ model has been integrated with an explicit
scheme within the u-pw formulation in finite element code GeHoMadrid to study sev-
eral boundary value problems such as marine foundations [MFMM+18], dynamic liq-
uefaction induced by earthquakes [MBLQ+21], and subsidence due to groundwater
withdrawal [FMEMea21] and with an implicit integration scheme in the finite element
code Plaxis to reproduce failures in mine tailing dams [LMS21], [LSM22].

Generalized Plasticity Theory introduces the dependence of the constitutive tensor
relating increments of stress and strain on the direction of the increment of stress via
a unit tensor n which discriminates the states of “loading” and “unloading”

dε = CL : dσ for n : dσe > 0 (3)
dε = CU : dσ for n : dσe < 0

where dσe is the increment of stress which would be produced if the behaviour were
elastic, dσe = De : dε , and De is the elastic constitutive tensor.

After imposing the condition of continuity between loading and unloading states, we
arrive to

CL = Ce +
1

HL
ngL ⊗ n (4)

CU = Ce +
1

HU
ngU ⊗ n

In above equations, subindices L and U refer to “loading” and “unloading”. The
scalars are called loading and unloading plastic modulii, and unit tensors give the
direction of plastic flow during loading and unloading.

The limit case n : dσe = 0, is called “neutral loading”, and with the assumption done
in equation 4, it can be seen that the response is continuous as:

dεL = CL : dσ = Ce : dσ (5)
dεU = CU : dσ = Ce : dσ

Manzanal, Pastor, Fernandez Merodo, Stickle, Navas, Yagüe & Mira 169
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The strain increment can be decomposed into two parts: elastic and plastic as:

dε = dεe + dεp (6)

with
dεe = Ce : dσ (7)

and
dεp =

1

HL/U
ngL/U ⊗ n : dσ (8)

The increment of strain for unsaturated behavior is assumed to be:

dε = Ce : dσ′ +
1

HL/U
· ngL/U ⊗ n : dσ′ +

1

Hb
· ngL/U · ds (9)

where the first two terms represent the elastic and plastic strains that have already
been described, and the last term represents the plastic strain developed during wet-
ting–drying cycles and σ′ is effective stress for unsaturated soil, which will be ex-
plained later.

The main advantage of the Generalized Plasticity Theory is that all ingredients can be
postulated without introducing any yield or plastic potential surface. Moreover, both
classical plasticity and Bounding Surface Plasticity models are special cases of the
GPT.

Therefore, to fully characterize the non-linear irreversible behavior of soils within
a generalized plasticity approach, the following items are necessary: (i) the elastic
constitutive tensor Ce ; (ii) the unit tensor n discriminating loading and unloading
conditions; (iii) the unit tensor describing the direction of plastic flow ngL/U in load-
ing and unloading; and (iv) the loading and unloading plastic modulusHL|U [PZL85],
[PZC90] and a suitable definition of effective stress σ′ for unsaturated soil behavior
[MPM11].

3 Principal aspects of unsaturated behaviour

The main features of unsaturated behaviour are the following:

Concerning the volumetric behaviour of unsaturated soils, the most important as-
pects are observed in a series of representative tests:

(i) Constant net confining stress p = (pa- pw) varying s tests (or the alternative constant
void ratio and variable suction), aiming to obtain relations between the Sr and s which
are referred to as water retention curves or soil water characteristic curves. Usually,
the results are plotted on the log s – Sr plane, and show, when drying, a primary
drying curve. Similarly, a primary wetting curve can be defined for soil which, starting
from zero saturation, is wetted. Both primary drying and wetting curves are different,
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i.e., the soil presents hydraulic hysteresis. This phenomenon is also observed when
applying drying-wetting cycles to unsaturated soils. Therefore, there exists hysteresis,
as primary drying and wetting curves differ. These two curves act as boundary curves
of all possible states of the soil, which in the wetting and drying path follows the
secondary branches. Also, the secondary branches present hysteresis, though smaller
and often are referred to as “scanning curves”. Even at very high suctions, there
exists a minimum or residual degree of saturation Sr0, which corresponds to adsorbed
water.These aspects will be illustrated in the next section.

In the primary drying branch, there is a point where the air breaks into the pores, which
is referred to as the air entry value sae. At suctions smaller than the air entry value, the
air distribution in the pores is called insular, and the air exists as insulated bubbles.
At much larger suction values, the structure tends to pendular, with water only in the
menisci. Khogo et al.[KNM94] have proposed an intermediate structure which takes
into account the pore and grain size distribution, for which they have proposed the
name diffuse.

Suitable laws for wetting-drying primary and intermediate curves have been proposed
[vGM80] in the past. It is important to notice that even if these tests are often referred
to as purely hydraulic, they present an important variation of effective stress, and what
it is observed is coupled hydro-mechanical behaviour.

(ii) Collapse tests decrease the suction by wetting the specimen of unsaturated soil,
while keeping the net stress constant. They are referred to as collapse because of
the sudden decrease of volume observed. It is important to notice that the effective
confining stress p′ = p − pa + s · Sr decreases as p̄ = p − pa is constant, and the
product s ·Sr decreases at the moment the collapse is observed. This observation is an
apparent paradox within the framework of plasticity-based only on effective stress, as
no plastic deformation should be observed when the stress path is directed towards the
interior of the yield surface, and indeed it leads to introducing bitensorial formulations.

(iii) Isotropic consolidation tests (varying net stress under constant suction), where it
can be observed that normal consolidation lines depend on the suction (higher suction
implies higher pre-consolidation stresses), which can be normalized by using the ce-
mentation variable [GGSV03]: ξ = f(s) · (1− Sr) where the function f(s) is the
ratio between the stabilizing pressure at a given suction s and at zero suction intro-
duced by Haines [Hai25] and Fisher [Fis26]. The normalization consists of relating
the void ratios at suction s and at saturation at a given effective confining pressure.

(iv) Isotropic mixed paths combining isotropic compression at constant suction and
wetting-drying cycles show a coupling between hydraulics and mechanic behaviour.
Indeed, a isotropic compression test after a wetting-drying cycle shows a smaller pre-
consolidation pressure than expected [VRJ00].

Concerning their shear behaviour, unsaturated soils show a non-linear increase of
strength with suction which has been explained in the past using expressions of the
type q = M · p̄ +Mss where the term Mss can be interpreted as a “cohesion”. This
kind of law does disagree that residual states should exhibit zero cohesion. It would
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be important to verify if using the effective stress introduced for unsaturated soils, it
would be possible to recover the CSL expression as q =M ·p′, whereM is the critical
state line in deviator stress vs mean effective stress plane. The uniqueness of the CSL
for unsaturated soils was studied in [Man08].

We can conclude that a Critical State based model for unsaturated soils should incor-
porate the following ingredients:

• The model should be formulated in terms of the effective stress tensor σ′
• Analysis of the work input to an unsaturated soil [Hou97] shows that, in addition

to effective stress and strain, there are two work conjugated variables, s and Sr

which must be taken into account when formulating a constitutive model. Use
of only the effective stress and strain results in severe limitations.

• The model should implement an accurate description of wetting-drying curves,
accounting for hysteresis and state parameter dependency. The two characteris-
tic values (i) air entry pressure and (ii) the residual degree of saturation related
to adsorbed water should be taken into account.

• In the case of classical plasticity models, the size of the yield surface controlled
by pc (known as yield stress or the pre consolidation pressure) depends on
both the volumetric plastic strain εpv and n · Sr (or s). For instance, Tamagnini
[Tam04] has proposed:

∂pc
∂εpv

=
1 + e

κ− λε
p
vpc (10)

∂pc
∂Sr

= −bpc (11)

Therefore, the yield surface will depend on the degree of saturation or the suc-
tion. This explains the collapse observed in isotropic compression tests.

Classical CS models not accounting for the second pair of work conjugated
variables (suction as stress variable and degree of saturation as strain variable)
will not be able to predict plastic volumetric collapse. Indeed, soil behaviour
depends on both effective stress ṕ and suction s (or Sr) and yield surfaces have
to be defined as functions of both variables.

• The Normal Consolidation Line is kept, with providing a suitable normalization
such as [GWK03] is used.

• The concept of Critical State Line is kept, but some modifications can be re-
quired to analyze and model experimental results, as it will be described later.
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4 Generalized Plasticity model for saturated and un-
saturated soils

4.1 State variables
The state of the material is characterized by a set of state variables {σ, e, ζmax, ξ, ξdev},
where e is the void ratio, ζmax is the maximum reached value of a mobilized stress
function and ξ is bonding parameter for unsaturated state to be defined later, and
ξdev =

∫
∥ ε̇pd ∥ is the accumulated deviatoric plastic strain. The function of state

variables ψ = e− ecs[p] is defined, where ecs[p] is the critical state void ratio

ecs = eΓ − λ∗
(

p

pref

)ζc

(12)

and eΓ, λ∗ and ζc are material parameters. p is the mean effective stress.

4.2 Effective stress
The model is formulated using two sets of stress–strain work conjugated variables
[Hou97] coupling the hydraulic and the mechanical behaviour of unsaturated soils
within a Generalized Plasticity framework. Stress variables are the effective stress
tensor and the matrix suction s, and Strain variables are the soil skeleton strain and
the degree of saturation. The effective stress is given by

σ′ij = σij − pa · δij + Sre · (pa − pw) · δij (13)

where σij is the total stress tensor, pa is the pore air pressure, pw is the pore water
pressure, pa − pw is the matrix suction s, δij is the Kronecker delta and Sre is the
relative degree of saturation which is given by

Sre =
Sr − Sr0

1− Sr0
(14)

where Sr0 is the residual degree of saturation. We found an important dispersion on
the experimental data even when we used the effective stress definition introduced by
Schrefler [Sch84] with a modified scalar factor of Bishop effective stress defined by
χ = Sr. The improvement obtained by using Sre in the effective stress definition can
be seen in Figure 1 which shows the predictive and experimental shear strength with
both approaches, χ = Sre and χ = Sr, for the experimental data described in Toll
[Tol90] and Sivakumar [Siv93].

4.3 Bonding variable
The first key component of this model is the function of the state variable (e) known
as the state parameter ψ, defined in the previous section and based on the critical state
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Figure 1: Comparison between predicted and experimental deviatoric stress for a)
kinyul gravel (Experimental data from [Tol90] and b) speswhite kaolin (Experimental
data from [Siv93].

line (CSL). For unsaturated soils, the CSL depends on suction, making it necessary to
define this dependency. The bonding variable ξ defined by [GGSV03], is related to
the ratio between the stabilizing pressure at a given suction s and at zero suction f(s),
as shown in equation 1 and degree of saturation Sr, introduced by Haines [Hai25] and
Fisher [Fis26]:

ξ = f(s) · (1− Sr) (15)

To relate CSL for saturated states and CLS for different suction, we link the values of
p′ at saturation and a given suction for a fixed void ratio:

p′unsatCS

p′satCS

= 1 + g (ξ) (16)

where

g (ξ) = a · [exp (b · ξ)− 1] (17)

and ξ is the bonding variable. The function g(ξ) depends on the degree of saturation
and suction and takes a zero value at saturation. The parameters a and b are calibrated
from experimental data as shown by [MPM11]. In Fig. 2, we have depicted the CSL
for saturated and unsaturated states on the plane and the normalization effect of the
function g(ξ).

Combining equations 16 and 17 with a suitable definition of a CSL for saturated states
will generalise the critical state line to unsaturated states. We provide in fig. 3 an
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Figure 2: CSLs for saturated and unsaturated state.

example using the experimental data described in Sivakumar [Siv93] which illustrate
the effectiveness of the proposed approach.

Spesw hite kaolin  

a)

0,8

0,9

1

1,1

1,2

10 100 1000
Effective stress, p´ [kPa]

Vo
id

 ra
tio

, e

s = 0
s = 100
s = 200
s = 300

b) 

0,8

0,9

1,0

1,1

1,2

10 100 1000
Effective stress, p´ [kPa]

Vo
id

 ra
tio

, e
 

s = 0
s = 100 normalized to saturated CSL
s = 200 normalized to saturated CSL
s = 300 normalized to saturated CSL

Figure 3: a) Critical state for speswhite kaolin at different suctions b) Normalization
of CSLs (Experimental data from [Siv93].

4.4 Formulation
Taking into account all experimental facts described above, it is possible to develop
a model within the Generalized Plasticity Theory developing the five ingredients that
we state in section 2 as follows:

Firstly, the direction of plastic flow, ng in the (p′, q) plane is postulated as:

nT
g = (ngv, ngs) (18)

with
ngv =

dg√
1 + d2g

(19)

ngs =
1√

1 + d2g

(20)
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where the dilatancy dg , which is defined as the ratio between the increments of plastic
volumetric and shear strain is given by:

dg =
d0
Mg
· (Mg · (mψ)− η) (21)

where d0 and m are model constants. ψ is the state parameter; η is the stress ratio and
Mg is the Critical State Line in the plot q – p′.

The loading-unloading discriminating relation n is obtained in a similar way:

nT = (nv, ns) (22)

with
nv =

df√
1 + d2f

(23)

ns =
1√

1 + d2f

(24)

where
df =

d0
Mf
· (Mf · (mψ)− η) (25)

In above equations,Mf could be material parameter as in the basic PZ model [ZCP+99]
or a function of void ratio [MPM11] as:

Mf

Mg
= h1 − h2 ·

(
e

ec

)β

(26)

where β , h1 and h2 are model constants. For granular materials, the ratio e
ec

varies
between emin

emax
and emax

emin
. When e

eCS
reaches its lower limit, Mf/Mf ratio is close to

one.

The third ingredient is the plastic modulus HL and Hb.

HL is defined for loading and unloading. During loading, we will assume:

HL = H0 ·
√
p′ · pa ·HDM ·Hf · (Hv +Hs) (27)

H0 has been assumed to depend on the state parameter. Here we have chosen the law:

H0 = H ′
0 · exp

[
−β′

0 (e/ec)
β
]

(28)
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where H ′
0 and β′

0 are additional model parameters and

Hf =

(
1− η

ηf

)4

(29)

In above equations, ηf acts as a limit for the possible states,

ηf =

(
1 +

1

α

)
Mf (30)

The volumetric and deviatoric components of the plastic modulus Hv are assumed to
be of the form:

Hv = Hv0 · [ηp − η] −→ ηp =Mg · exp (−βv · ψ) (31)

where Hv0 and βv are model parameters. It can be easily verified that ηp < Mg for
loose states while ηp > Mg for dense states, and Hs depends on the accumulated
deviatoric strain ξdev

Hs = β0β1 exp (−β0ξdev) (32)

where

dξdev = (dep : dep)
1/2 (33)

where dep is the increment of the plastic deviatoric strain tensor.

Finally, the plastic modulus Hb is given by

Hb = w (ξ) ·H0 ·
√
p′ · pa ·HDM ·Hf (34)

where HDM keeps track of the maximum stress level reached by the material:

HDM =

(
ζmax · Js

ζ

)γ

(35)

where

ζ = p′.

{
1−

(
1 + α

α

)
η

M

}1/α

(36)

and γ is a new material constant. Js is a discrete memory function incorporating the
effect of the suction and degree of saturation,

Js = exp (c.g (ξ)) (37)
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where c is a model parameter and g(ξ) is defined by equation 17 as a function of
the bonding parameter ξ. To illustrate the role of Js, we will consider the case of a
saturated soil consolidated at pc0 and then dried, its suction increasing from zero. We
have depicted in Figure 4 the variation of ζmax ·Js with the bonding parameter. It can
be interpreted within the framework of classical plasticity as the increase in size of the
yield surface with suction. The value of ζmax at saturated conditions can be obtained
by r0 · pSAT

cs where r0 is a material parameter and pSAT
cs is the mean effective stress

at a critical state. Indeed, this new parameter in equation 35 is equivalent to the OCR
used in classical plasticity models.

Figure 4: Effect of the bonding parameter on the hardening law.

w(ξ) incorporates the effect of the bonding parameter defined above.

w (ξ) =

{
−
{
1− exp [g (ξ)]

2
}2

1

}
(38)

The model is completed with a suitable hydraulic equation that considers both the
hydraulic hysteresis during a drying–wetting cycle and its dependency on past history.
We have chosen a modified version of the water retention curve proposed by Fredlund
& Xing [FX94]:

Sr = Sr0 + (1− Sr0) ·
{
ln

[
exp (1) +

(
eΩ · s
aw · p0

)n]}−m

(39)

where Ω, aw, n and m are model parameters, e is the void ratio and s the matrix
suction. The main wetting and drying curves are obtained by assuming different values
for aw,n and m.

Therefore, the non-linear irreversible behaviour of unsaturated soil can be fully char-
acterized within the Generalized Plasticity framework by adding a plastic modulus in
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wetting and drying paths Hb and a bonding parameter ξ to the State Parameter based
model [MMP11]. Coupling with a state-dependent WRC allows the reproduction of
the irreversible response in wetting–drying paths and the mechanical effect on the
hydraulic behaviour (Figure 5).
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Figure 5: Wetting and drying test.

In order to show the influence of the wetting - drying cycle on the mechanical soil
behaviour, we have chosen an experiment performed by Sharma [Sha98]. The test
consists of a constant suction isotropic compression loading/unloading cycle (a-b-c),
followed by wetting – drying cycle (c-d-e) and a second constant suction isotropic
reloading and unloading cycle (e-f-g). Figure 6 provides the model predictions and
experimental data on compacted bentonite - kaolin sample in (i) net confining pres-
sure vs void ratio, (ii) degree of saturation vs net stress (iii) degree of saturation vs
suction, and (iv) stress path followed during the test. Details about parameter calibra-
tion can be found in Manzanal [Man08].The parameters are reported in Manzanal et
al. [MPM11].

With the proposed model, it is also possible to reproduce an interesting case: the
effect of suction on the undrained behaviour of unsaturated fine-grained soil. We
have depicted in Figure 7 constant volume triaxial tests for different suctions. The
hardening effect can be observed due to increasing the suction on a loose sample,
which in saturated conditions (s = 0) arrives to liquefaction. If the soil is sheared at a
large initial suction (point A) at constant deviatoric stress, decreasing the suction, the
stress path will become unstable and fail catastrophically. This phenomenon has been
modelled by [BN11]. It is important to remark that this is just a qualitative example, a
complete analysis based on the method proposed by Darve et al. [DL00, DL01] being
necessary to understand the process fully.

The Generalized Plasticity unsaturated model was applied for evaluating the mechan-
ical behaviour of a natural volcanic silty soil from steep slopes [CMM+18]. Thus,
so-called wetting collapse and static liquefaction may occur during rainfall. Signifi-
cant issues are posed once the slides turn into flows with high destructive potential.
The model is calibrated for 37 saturated/unsaturated laboratory tests. Figure 8 shows
the performance of the model in wetting tests performed in Suction-controlled Oe-
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dometer (ESA), Standard Oedometer (ESL) and Suction-controlled Triaxial (UPS).
The parameters are reported in Cuomo et al. [CMM+18].

Figure 8: Model Performance in wetting tests performed in Suction-controlled Oe-
dometer (ESA), Standard Oedometer (ESL) and Suction-controlled Triaxial (UPS):
experimental versus numerical results in εv − p′ plane [CMM+18].

Regarding static liquefaction, the MPZ model has been implemented as a user model
of Plaxis to evaluate the vulnerability of the tailing dam to liquefaction [LMS21,
LSM22]. Figure 9 shows the stress paths of selected Gauss points for the three ac-
tions: a) surface load, b) toe contraction and c) raise in phreatic surface. For points A
to F, the resulting paths for both the surface load and the toe contraction are included,
whereas, for Point G located at the toe of the dam, only the stress path resulting from
the rise in the phreatic surface is shown. The so-called instability line was defined
by direct observation of the peak deviatoric stresses for points B, C, A, and F, and
it is only included to aid with the interpretation of the stress paths and delineate the
boundary between the zone of stable and unstable equilibrium. As the surface load
grows, points A, B, C, and E, located in the stable equilibrium zone at the right of the
instability line, experience an increase in shear stress until reaching a stress state at
the instability line.

5 Conclusions

This chapter provides an overview of the hierarchical and versatile formulation of
Generalized Plasticity Theory (GPT) developed by Zienkiewicz and Pastor in the mid-
dle of the eighties, along with the latest advancements based on state parameter mod-
eling (MPZ model):

(i) Extension of GPT to Unsaturated Behavior: The model integrates the Bishop effec-
tive stress and suction as stress variables, while using the strain of the solid skeleton
and degree of saturation as deformation variables. It also accounts for the void ratio
and hydraulic hysteresis effects on hydraulic behavior.
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Figure 9: Stress paths for different actions over a tailing dam.[LSM22].

(ii) Generalization of Critical State for Varying Suctions: A novel approach to the
critical state concept as a function of a bonding parameter is introduced, enabling the
extension of the state parameter concept to partially saturated soils. This allows the
model to accurately reproduce the stress-strain behavior of unsaturated soils across
different densities, confining pressures, and suctions using unified material constants.

For further details on the extended formulation and calibration, please refer to [Man08,
PMM+10, MMP11, MPM11].
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40:31–44, 1990.

[vGM80] van Genuchten MT. A closed-form equation for predicting the hy-
draulic conductivity of unsaturated soil. Science Society American
Journal, 44:892–898, 1980.

[VRJ00] J. Vaunat, E. Romero, and C. Jommi. An elastoplastic hydro-
mechanical model for unsaturated soils. In Rotterdam: Trento Italy
Tarantino, Mancuso Eds. Balkema, editor, Experimental evidence and
theoretical approaches in unsaturated soils., pages 121–138. 2000.

[ZCP+99] O.C. Zienkiewicz, A.H. Chan, M Pastor, B. A Schrefler, and T. Shiomi.
Computational Geomechanics. John Wiley & Sons, 1999.

[ZLP85] O. C. Zienkiewicz, K. H. Leung, and M. Pastor. Simple model for
transient soil loading in earthquake analysis. i: Basic model and its ap-
plication. International Journal for Numerical and Analytical Methods
in Geomechanics, 9:453–476, 1985.

[ZM84] O. C. Zienkiewicz and Z. Mroz. Generalized plasticity formulation
and applications to geomechanics. John Wiley & Sons, 1984.

Manzanal, Pastor, Fernandez Merodo, Stickle, Navas, Yagüe & Mira 185
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Coupling equations for variably saturated
geomaterials
A mathematical model for non-isothermal multiphase porous
materials: fundamentals and formulation

Bernhard A. Schrefler, Lorenzo Sanavia

Department of Civil Environmental and Architectural Engineering,
University of Padua, Italy

A mathematical model for a fully saturated and partially saturated non-isothermal
porous medium in dynamics is presented. The porous material is treated as a multi-
phase continuum with the pores of the solid skeleton filled by one or more fluids, e.g.
liquid water and gas phase, which may be either water vapour alone or a mixture
of dry air and water vapour. The governing equations at macroscopic level are de-
rived in a spatial setting using averaging theories from balance equations developed
at microscopic level. Finite kinematics is included in the model. The solid skeleton
of the medium can undergo large elastic or inelastic deformations described in the
framework of hyperelastoplasticity.

1 Introduction

This paper presents a mathematical model for a non-isothermal variably saturated
porous material developed within the Hybrid Mixture Theory in both the non-linear
geometric and material settings.

Mechanics of porous materials has a wide spectrum of engineering applications and
hence, in recent years, several porous media models and their numerical solutions have
appeared in the literature (see [Lew98], [Ocz99], [Boe00] for a comprehensive state
of the art). Most of these models are restricted to fluid saturated materials and have
been developed using small strain assumptions. Conditions of partial saturation are of
importance in engineering practice because many porous materials are in this natural
state or can reach this state during deformations. Some simple examples can be found
in soils or in concrete and in biological tissues, which can contain air or other gases
in the pores together with liquids. For soils, this is the case of the zones above the
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free surface, or of deep reservoirs of hydrocarbon gas. The partially saturated state
can also be reached during the deformation due, for instance, to earthquake in an earth
dam or during the particular case of strain localization of dense sands under globally
undrained conditions, where negative water pressures are measured and cavitation of
the pore water was observed [Var95], [Mok98]. Large strains also can be important.
They result when ultimate or serviceability limit state is reached, as for example dur-
ing slope instability or during the consolidation process in compressible clays. In
laboratory, this can be the case of drained or undrained biaxial tests of sands, where
axial logarithmic strains of the order of 0.12 – 0.15 are reached [Var95], [Mok98], or
the case of triaxial tests of peats, where axial strains of the order of 0.15 are measured.

In the model developed in this chapter, the porous medium is treated as an non-
isothermal multiphase continuum with the pores of the solid skeleton filled by water
and air. The governing equations at macroscopic level are derived in Section 2 in a
spatial setting in dynamics and are based on averaging procedures (Hybrid Mixture
Theory). This model follows from [Lew98], where the interested reader can find fur-
ther details and remarks. Solid displacements, temperature, water and gas pressures
are the primary variables. Water and gas are assumed to obey Darcy’s law. In the
partially saturated state, the degree of saturation and the relative permeability of water
and gas are dependent on the capillary pressure by experimental functions. Within
the formulation developed, the elasto-plastic behaviour of the solid skeleton can be
described by the multiplicative decomposition of the deformation gradient into an
elastic and a plastic part, as shown in the next chapter of this volume and, with more
details, in [San02]. In this case, the modified effective stress in partially saturated
conditions (Bishop like stress) in the form of Kirchhoff measure of the stress tensor
and the logarithmic principal strains are used in conjunction with an hyperelastic free
energy function. The effective stress state can be limited by a suitable yield surface.

As notation and symbols are concerned, bold-face letters denote tensors; capital or
lower case letters are used for tensors in the reference or in actual configuration. The
symbol ’·’ denotes the scalar product between two vectors (e. g. a · b = ai bi), while
the symbol ’:’ denotes a double contraction of (adjacent) indices of two tensors of
rank two or/and higher (e. g. c : d = cij dij , e : f = eijkl fkl). Cartesian co-ordinates
are used throughout the paper.

2 Mathematical model of thermo-hydro-mechanical be-
haviour of geomaterials

The full mathematical model necessary to simulate thermo-hydro-mechanical tran-
sient behaviour of fully and partially saturated porous media is developed in [Lew98]
using averaging theories following Hassanizadeh and Gray [Has79a], [Has79b], [Has80].
The underlying physical model, thermodynamic relations and constitutive equations
for the constituents, as well as governing equations are summarized in the following.

The partially saturated porous medium is treated as multiphase system composed of
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π = 1, . . . , k (k = 3) constituents with the voids of the solid skeleton (s) filled
with water (w) and gas (g) (see Figure 1). The latter is assumed to behave as an
ideal mixture of two species: dry air (non-condensable gas, ga) and water vapour
(condensable one, gw).

Figure 1: Averaging volume dv(x, t) of a three phase porous medium

2.1 Microscopic balance equations
At the microscopic level, the balance equation of any π-phase may be described by the
classical continuum mechanics. At the interfaces with other constituents, the material
properties and thermodynamic quantities may present step discontinuities (see e. g.
[Gra01] or [Sch02] for the jump conditions to be fulfilled). For a thermodynamic
property ψ, the balance equation within the π-phase may be written as [Has79a] and
[Has79b]

∂ρψ

∂t
+ div (ρψṙ)− div i− ρb = ρG (1)

where ṙ is the local value of the velocity field of the π-phase in a fixed point in space,
i is the flux vector associated with ψ, b the external supply of ψ and G is the net
production of ψ. Fluxes are positive as outflows. The thermodynamic property ψ for
the different balance equations and the values assumed by the quantities of (1) are
listed in Table 1 following [Has79b],

where E is the specific intrinsic energy, λ the specific entropy, tm the microscopic
stress tensor, q a heat flux vector, Φ the entropy flux, g the external momentum supply
related to gravitational effects, h the intrinsic heat source, S an intrinsic entropy source
and φ denotes an increase of entropy. The angular momentum balance equation has
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Table 1: Thermodynamic properties for the microscopic mass balance equations

Quantity ψ i b G
Mass 1 0 0 0

Momentum ṙ tm g 0
Energy E + 0.5ṙ · ṙ tmṙ− q g · ṙ+ h 0
Entropy λ Φ S φ

been omitted because the constituents are assumed to be microscopically non polar
(the interested reader is referred to [Ehl98] regarding a saturated or empty porous
media model with a polar solid skeleton).

Using spatial averaging operators [Has79a] defined over a representative elementary
volume R. E. V. (of volume dv(x, t) in the deformed configuration Bt ⊂ R3, see
Figure 1, where x is the vector of the spatial co-ordinates and t is the current time),
the microscopic equations are integrated over the R. E. V. giving the macroscopic
balance equations.
As a conseguence, at the macroscopic level the multiphase porous material results
modelled by a substitute continuum of volume Bt with boundary ∂Bt that fills the
entire domain simultaneously, instead of the real fluids and the solid which fill only
a part of it. In these substitute continuum each constituent π has a reduced density
which is obtained through the volume fraction ηπ(x, t) = dvπ(x, t)/dv(x, t) with
the constraint

k∑

π=1

ηπ = 1 (2)

where dvπ(x, t) is the π-phase volume inside the R. E. V. in the actual placement x.

In the present formulation heat conduction, vapour diffusion, heat convection, water
flow due to pressure gradients or capillary effects and latent heat transfer due to water
phase change (evaporation and condensation) inside the pores are taken into account.
The solid is deformable and non-polar, and the fluid, the solid, and the thermal fields
are coupled. All fluids are in contact with the solid phase. The constituents are as-
sumed to be isotropic, homogeneous, immiscible except for dry air and vapour, and
chemically non-reacting. Local thermal equilibrium between solid matrix, gas, and
liquid phases is assumed so that the temperature is the same for all the constituents.
The state of the medium is described by water pressure pw, gas pressure pg , tempera-
ture θ, and the displacement vector of the solid matrix u.

Before summarizing the macroscopic balance equations, we specify the kinematics
introducing the notion of initial and current configuration (Figure 2). In the following,
the stress is defined as tension positive for the solid phase, while pore pressure is
defined as compressive positive for the fluids.
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Figure 2: Initial and current configuration of a multiphase medium

2.2 Kinematic equations
At the macroscopic level the multiphase medium is described as the superposition of
all π-phases, whose material points Xπ with co-ordinates Xπ in the reference config-
uration Bπ

0 ⊂ R3 at time t = t0 can occupy simultaneously each spatial point x in the
deformed configuration Bt ⊂ R3 at time t. In the Lagrangean description of the mo-
tion in terms of material co-ordinates the position of each material point in the actual
configuration x is a function of its placement Xπ in a chosen reference configuration
Bπ

0 and of the current time t:

x = χπ(Xπ, t) (3)

with x = xπ , or it is given by the sum of the reference position Xπ and the displace-
ment uπ = (Xπ, t) at time t

x = Xπ + uπ(Xπ, t) (4)

In (3), χπ(Xπ, t) is a continuous and bijective motion function (deformation map) of
each phase because the Jacobian Jπ of each motion function

Jπ = det
∂χπ(Xπ, t)

∂Xπ > 0 (5)
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is restricted to be a positive value. The deformation gradient Fπ(Xπ, t) is defined as

Fπ = Gradπχπ(Xπ, t) (6)

where the differential operator ‘ Gradπ’ denotes partial differentiation with respect to
the reference position Xπ . Hence, from (5), Jπ = detFπ .

The velocity and the acceleration of each constituent are given as

Vπ =
∂χπ(Xπ, t)

∂t
, Aπ =

∂2χπ(Xπ, t)

∂t2
(7)

Due to the non-singularity of the Lagrangean relationship (3), the existence of its
inverse function leads to the description of the motion in terms of spatial co-ordinates:

Xπ = (χπ)−1(x, t) (8)

The inverse (Fπ)−1(x, t) of the deformation gradient is given by

(Fπ)−1 = gradXπ(x, t) (9)

where the differential operator ‘grad’ is now referred to spatial co-ordinates x. The
spatial parametrization of the velocity is given by

vπ = vπ(x, t) = Vπ ◦ (χπ)−1 (10)

where ‘◦’ denotes the composition of functions. The parametrization of the spatial
acceleration is related to the spatial velocity by the application of the chain rule to
(10):

aπ = aπ(x, t) =
∂vπ

∂t
+ (gradvπ)vπ = Aπ ◦ (χπ)−1 (11)

Since the individual constituents follow in general different motions, different material
time derivatives must be formulated. For an arbitrary scalar-valued function fπ(x, t),
its material time derivative following the velocity of the constituents π is defined by
[Lew98]

Dπfπ

Dt
=
∂fπ

∂t
+ grad fπ · vπ (12)
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where fπ(x, t) must be substituted by fπ(x, t) in case of vector or tensor valued
function fπ(x, t). Thus, aπ = Dπvπ/Dt.

In the theory of multiphase materials it is common to assume the motion of the solid
as a reference and to describe the fluids in terms of motion relative to the solid. This
means that a fluid relative velocity and the material time derivative with respect to the
solid are introduced. The solid motion can be described both in terms of material or
spatial co-ordinates. The second approach is now presented because the most natural
numerical formulation of the elasto-plastic initial-boundary-value problem is based on
the weak form of the balance equations in the spatial setting.

The fluid relative velocity vπs(x, t) in spatial parametrization or diffusion velocity is
given by

vπs(x, t) = vπ(x, t)− vs(x, t) (13)

and the material time derivative of fπ(x, t) with respect to the moving solid phase (s)
is given by

Dsfπ

Dt
=

Dπfπ

Dt
+ grad fπ · vsπ with vsπ = −vπs (14)

For the section closure, the spatial velocity gradient ls(x, t) of the solid will be re-
called, which is defined as the gradient of the velocity (10) with respect to spatial
co-ordinates, i. e.

ls = gradvs =
∂Fs

∂t
(Fs)−1 = ds +ws (15)

where ds(x, t) and ws(x, t) are the symmetric and the skew-symmetric part of ls(x, t),
also called spatial rate of deformation tensor and spin tensor, respectively.

All strain measures and strain rates for each constituent follow similarly to classical
non-linear continuum mechanics, but are not reported here because they are not useful
for the approach developed in the sequel (see e. g. [Mar83]).

2.3 Mass balance equations
The averaged macroscopic balance equation for the solid phase is

Dsρs
Dt

+ ρs divvs =
∂ρs
∂t

+ div (ρs vs) = 0 (16)
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where vs(x, t) is the mass averaged solid velocity, ρs(x, t) is the averaged density
of the solid related to the intrinsic averaged density ρs(x, t) by the volume fraction
ηs(x, t).

For the generic π-phase the relationship between the averaged density and the intrinsic
averaged density is

ρπ(x, t) = ηπ(x, t) ρπ(x, t) (17)

where the intrinsic density ρπ(x, t) is also named real or true density in the so-called
Theory of Porous Media, e. g. [Boe00].

The mass balance equation for the liquid water is

Dwρw
Dt

+ ρw divvw =
∂

∂t
(nSw ρ

w) + div (nSw ρ
w vw) = ρw e

w (18)

where ρw ew(x, t) is the quantity of liquid water per unit time and volume lost through
evaporation. The corresponding equations for dry air and water vapour are, respec-
tively,

Dgaρga
Dt

+ ρga divvga =
∂

∂t
(nSg ρ

ga) + div (nSg ρ
ga vga) = 0 (19)

Dgwρgw
Dt

+ ρgw divvgw =
∂

∂t
(nSg ρ

gw) + div (nSg ρ
gw vgw) = ρgw e

gw (20)

where n(x, t) is the porosity of the medium, defined as

n =
dvw + dvg

dv
=

dvvoids

dv
= 1− ηs (21)

and Sw and Sg are the water and gas degrees of saturation. The following relationships
hold:

ηw = nSw with Sw =
dvw

dvw + dvg
,

ηg = nSg with Sg =
dvg

dvw + dvg

(22)

with the saturation constraint Sw + Sg = 1. The right-hand side of (18) and (20) sum
to zero.
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2.4 Linear momentum balance equations
The linear momentum balance equations for the solid and the π-fluid are

div ts + ρs (g − as) + ρs t̂
s = 0 (23)

and

div tπ + ρπ (g − aπ) + ρπ (e
π + t̂π) = 0 (24)

respectively, where tπ(x, t) is the partial Cauchy stress tensor defined via the con-
stitutive equation presented in Section 2.7. t̂π(x, t) accounts for the exchange of
momentum due to mechanical interaction with other phases, ρπ aπ for the volume
density of the inertial force, ρπ g for the volume density of gravitational force, and
eπ(x, t) takes into account the momentum exchange due to averaged mass supply or
mass exchange between the fluid and the gas phases and the change of density. The
linear momentum balance equations of the multiphase medium are subjected to the
constraint [Lew98]:

k∑

π=1

ρπ (e
π + t̂π) = 0 (25)

2.5 Angular momentum balance equation
All the phases are considered microscopically non-polar and hence at macroscopic
level the angular momentum balance equation states that the partial stress tensor is
symmetric [Lew98]:

tπ = (tπ)T (26)

and that the sum of the coupling vectors of angular momentum between the phases
vanishes.

2.6 Energy balance equation and entropy inequality
The energy balance equation for the π-phase may be written as [Lew98]

ρπ
DπEπ

Dt
= tπ : dπ + ρπ h

π − divqπ + ρπ R
π (27)
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where ρπ Rπ represents the exchange of energy between the π-phase and other phases
of the medium due to phase change and mechanical interaction, qπ is the internal heat
flux, hπ results from the heat sources, and dπ is the spatial rate of the deformation
tensor. Eπ accounts for the specific internal energy of the volume element.

The entropy inequality for the mixture, useful for the development of the constitutive
equations [Sch02] is

∑

π

(
ρπ

Dπλπ

Dt
+ ρπ e

π λπ + div
qπ

θπ
− ρπ h

π

θπ

)
≥ 0 (28)

where θπ is the absolute temperature, λπ is the specific entropy of the constituent π,
and eπλπ the entropy supply due to mass exchange.

2.7 Constitutive equations

The momentum exchange term ρπ t̂
π of the linear momentum balance equations of

the fluids can be expressed as [Lew98]

ρπ t̂
π
= −µπ (ηπ)2 k−1 vπs + pπ grad ηπ with π = g, w (29)

Here, k = krπ kπ , where kπ(x, t) = kπ(ρπ, ηπ, T ) is the intrinsic permeability ten-
sor of dimension [L2] depending, in the isotropic case, on the porosity of the medium;
krπ(Sπ) is the relative permeability parameter and µπ is the dynamic viscosity. The
relative permeability is a function of the π-phase degree of saturation Sπ and is deter-
mined in laboratory tests (see e. g. [Lew98], [Ocz99] and [Cha22]).

The partial stress tensor in the fluid phase of the linear momentum balance equations
(24) is related to the macroscopic pressure pπ(x, t) of the π-phase

tπ = −ηπ pπ 1 (30)

where 1 is the second order unit tensor.

From the entropy inequality it can also be shown that the spatial solid stress tensor
ts(x, t) of the linear momentum balance equations (23) is decomposed as follows:

ts = ηs (tse − ps 1) (31)

and that the effective Cauchy stress tensor σ′(x, t), which is responsible for all major
deformation in the solid skeleton, is
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σ′ = ηs tse (32)

In (31), tse(x, t) is the dissipative part [Gra91], [Gra01] or effective stress tensor of
the solid phase, while ps(x, t) is the equilibrium part, also called solid pressure, with
ps = Sw p

w + Sg p
g .

From the previous equations, it follows that the total Cauchy stress tensor σ = ts +
tw + tg can be written in the usual form used in soil mechanics

σ = σ′ − (Sw p
w + Sg p

g) 1 (33)

or in terms of pg(x, t) and the capillary pressure, pc(x, t), using equation (37) and
the saturation condition Sw + Sg = 1.

The elasto-plastic behaviour of the solid skeleton at finite strain can be based on the
multiplicative decomposition of the deformation gradient Fs(Xs, t) into an elastic
and plastic part originally proposed by Lee [Lee69] for crystals (see e. g. [San02] for
details concerning also the numerical algorithm):

Fs = Fse Fsp (34)

This decomposition states the existence of an intermediate stress free configuration
and its validity has been suggested for cohesive-frictional soils by Nemat-Nasser
[Nem83], where the plastic part of the deformation gradient is viewed as an inter-
nal variable related to the amount of slipping, crushing, yielding, and, for plate like
particles, plastic bending of the granules comprizing the soil.

The pressure pg(x, t) is given in the sequel. For a gaseous mixture of dry air and
water vapour, the ideal gas law is introduced because the moist air is assumed to be a
perfect mixture of two ideal gases. The equation of state of perfect gas (the Clapeyron
equation) and Dalton’s law applied to dry air (ga), water vapour (gw) and moist air
(g), yield:

pga = ρgaRθ/Ma , pgw = ρgw Rθ/Mw (35)

pg = pga + pgw , ρg = ρga + ρgw (36)

In the partially saturated zones, water is separated from its vapour by a concave menis-
cus (capillary water). Due to the curvature of this meniscus, the sorption equilibrium
equation gives, at equilibrium, the capillary pressure equation, i.e. the relationship be-
tween the capillary pressure pc(x, t) and the gas pg(x, t) and water pressure pw(x, t)
[Gra91]:
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pc = pg − pw (37)

The equilibrium water vapour pressure pgw(x, t) can be obtained from the Kelvin-
Laplace equation:

pgw = pgws(θ) exp

(
pcMw

ρw Rθ

)
(38)

where the water vapour saturation pressure pgws, depending only upon the temperature
θ(x, t), can be calculated from the Clausius-Clapeyron equation or from an empirical
correlation.

The saturation Sπ(x, t) is an experimentally determined function of the capillary pres-
sure pc and the temperature θ:

Sπ = Sπ(p
c, θ) (39)

The equation of state for the liquid water can be written as

ρw = ρw0 exp[−βwθ + Cw(p
w − pw0)] (40)

where the superscript zero indicates an initial steady state at standard conditions; βw is
the thermal expansion coefficient and Cw the compressibility coefficient. This equa-
tion can be simplified by retaining the first order terms of the series expansion obtain-
ing

ρw = ρw0[1− βwθ + Cw(p
w − pw0)] (41)

and

1

ρw0

Dwρw

Dt
=

1

Kw

Dwpw

Dt
− βw

Dwθ

Dt
(42)

where Kw = C−1
w is the bulk modulus of the liquid water.

For the binary gas mixture of dry air and water vapour, Fick’s law gives the following
relative velocities vπ

g = vπ − vg (π = ga, gw) of the diffusing species:

198 Coupling equations for variably saturated geomaterials

ALERT Doctoral School 2024



vga
g = −MaMw

M2
g

Dg grad
(
pga

pg

)
= −vgw

g (43)

where Dg is the effective diffusivity tensor and Mg is the molar mass of the gas
mixture:

1

Mg
=
ρgw

ρg
1

Mw
+
ρga

ρg
1

Ma
(44)

2.8 Initial and boundary conditions
For model closure it is necessary to define the initial and boundary conditions. The
initial conditions specify the full fields of gas pressure, water pressure, temperature,
displacements, and velocity:

pg = pg0 , pw = pw0 , θ = θ0 , u = u0 , u̇ = u̇0 at t = t0 (45)

The boundary conditions can be imposed values on ∂Bπ or fluxes on ∂Bq
π , where the

boundary is ∂B = ∂Bπ∪∂Bq
π . The imposed values on the boundary for gas pressure,

water pressure, temperature, and displacements are as follows:

pg = p̂g on ∂Bg , pw = p̂w on ∂Bw ,

θ = θ̂ on ∂Bθ , u = û on ∂Bu for t ≥ t0
(46)

The (volume average) flux boundary conditions for dry air and water species con-
servation equations and the energy equation to be imposed at the interface between
the porous media and the surrounding fluid (the natural boundary conditions) are the
following:

(
ρga vg − ρg vgw

g

)
· n = qga on ∂Bq

g(
ρgw vg + ρw vw + ρg vgw

g

)
· n = βc (ρ

gw− ρgw∞ ) + qgw+ qw on ∂Bq
c

− (ρw vw ∆hvap − λeff ∇ θ) · n = αc (θ − θ∞) + qθ on ∂Bq
θ

(47)

for t ≥ t0, where n(x, t) is the vector perpendicular to the surface of the porous
medium, pointing towards the surrounding gas, ρgw∞ (x, t) and θ∞(x, t) are, respec-
tively, the mass concentration of water vapour and temperature in the undisturbed gas
phase distant from the interface, αc(x, t) and βc(x, t) are convective heat and mass
transfer coefficients, while qga(x, t), qgw(x, t), qw(x, t), and qθ(x, t) are the im-
posed dry air flux, imposed vapour flux, imposed liquid flux, and imposed heat flux,
respectively.
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The traction boundary conditions for the displacement field related to the total Cauchy
stress tensor σ(x, t) are

σ n = t̄ on ∂Bq
u (48)

where t̄(x, t) is the imposed Cauchy traction vector.

3 General field equations

The macroscopic balance laws are now transformed and the constitutive equations in-
troduced to obtain the general field equations, which are suitable to be implemented
in a finite element code. These equations are now summarized for sake of complete-
ness. The interested reader may refer to [Lew98] for the step by step derivation of the
equations of this Section.

- Mass balance equation of the solid:

(1− n)
ρs

Dsρs

Dt
− Dsn

Dt
+ (1− n) divvs = 0 (49)

- Mass balance equation of the water species (liquid water and water vapour):

[
ρw
(
1− n
Ks

S2
w +

nSw

Kw

)
+ ρgw

1− n
Ks

SgSw

]
Dspw

Dt
+ nSg

Ds

Dt
ρgw − βswg

Dsθ

Dt

+

[
(1− n)
Ks

Sg(ρ
gwSg + ρwSw)

]
Dspgw

Dt
− div

[
ρg
MaMw

Mg
2 Dg grad

(
pgw

pg

)]

+

[
1− n
Ks

(ρgwSgp
c + ρwSwp

w − ρwSwp
c) + n(ρw − ρgw)

]
DsSw

Dt

+ (ρgwSg + ρwSw) divvs + div (nSw vws) + div (nSg v
gs) = 0 (50)

with βswg = βs(1 − n)(Sgρ
gw + ρwSw) + nβwρ

wSw, where βs and βw are the
thermal expansion coefficient for the solid grains and the liquid water.
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- Mass balance equation of the dry air:

1− n
Ks

SgSw
Dspw

Dt
+
nSg

ρga
Dsρga

Dt
+

1− n
Ks

S2
g

Dspga

Dt

−
(
1− n
Ks

Sgp
c + n

)
DsSw

Dt
− 1

ρga
div
[
ρg
MaMw

Mg
2 Dg grad

(
pga

pa

)]

+
1

ρga
div (nSgρ

ga vgs)− βs(1− n)Sg
Dsθ

Dt
= 0 (51)

- Enery balance equation of the mixture:

(ρCp)eff
∂θ

∂t
+
(
ρwC

w
p vw + ρgC

g
pv

g
)
· grad θ

− div(χeff grad θ) = −ṁ∆Hvap (52)

with (ρCp)eff = ρsC
s
p+ρwC

w
p +ρgC

g
p , χeff = χs+χw+χg and ∆Hvap the latent

heat of evaporation.

- Linear momentum balance equations of the mixture:

divσ + ρ (g − as)− nSwρ
w(aws + vws · gradvw)

− nSgρ
g(ags + vgs · gradvg) = 0 (53)

in which ρ = (1− n)ρs + nSwρ
w + nSgρ

g is the density of the mixture.

- Linear balance equation of the fluids:

nSπ v
π = −k krπ

µπ
(grad pπ − ρπ (g − as − aπs) (54)

4 Conclusions

A mathematical formulation for the thermo-hydro-mechanical behaviour of variably
saturated porous material has been presented. This model is suitable for the numerical
discretisation via the finite element method, as will be shown in the contributions ”A
finite element model for variably saturated geomaterials” and ”Finite element anal-
ysis of non-isothermal multiphase porous media in quasi-statics and dynamics” of
this volume. For the interested reader, further details of the use of the model in en-
vironmental geomechanics and soil dynamics can be found in the textbooks [Lew98],
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[Ocz99] and [Cha22] and in the references contained in. Moreover, a thermodynamic
framework of the model is developed in [Sch02], where interfacial phenomena be-
tween the constituents are taken into account. The extension of the model presented
here for the simulation of concrete structure at high temperature is developed, e.g.,
in [Gaw03]. The development of the model which considers the air dissolved in the
liquid water and its desorption at lower water pressures in quasi-statics loading con-
ditions is presented in [Gaw09]. The model illustrated in this chapter can also be
derived from the more advanced averaging theory TCAT - Thermodynamically Con-
strained Averaging Theory and its references listing the journal papers on this topic
[Gra14].
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A finite element model for variably saturated
geomaterials
A space and time discretisation for a multiphase porous material
model at large elasto-plastic strain

Lorenzo Sanavia, Bernhard A. Schrefler

Department of Civil Environmental and Architectural Engineering,
University of Padua, Italy

A finite element formulation for an isothermal saturated and partially saturated
porous medium undergoing large elastic or inelastic deformations is presented. This
model is derived from the general thermo-hydro-mechanical model for porous materi-
als developed in the previous contribution from the authors to this volume. The porous
medium is treated as a multiphase continuum with the pores of the solid skeleton filled
by water and air, this last one at constant pressure. The governing equations at macro-
scopic level are derived in a spatial setting. Solid grains and water are assumed to
be incompressible at the microscopic level for simplicity. The consistent linearisation
of the fully non linear coupled system of equations is derived. A spatial finite element
formulation of the governing equations conclude this chapter.

1 Introduction

This paper presents the finite element model for a saturated and partially saturated
porous material capable to sustain large elastic or elasto-plastic strains, extending the
previous work of Sanavia et al. [San02a], [San02b].

The porous medium is treated as an isothermal multiphase continuum with the pores of
the solid skeleton filled by water and air, this last one at constant pressure (passive air
phase assumption). This pressure may either be the atmospheric pressure or the cavita-
tion pressure (isothermal monospecies approach). Quasi-static loading conditions are
considered. The governing equations at macroscopic level are described in Section 2
in a spatial setting. This model follows from the general thermo-hydro-mechanical
model developed in [Lew98], which is described in the contribution ”Coupling equa-
tions for variably saturated geomaterials” from the authors to these lecture notes.
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Solid displacements and water pressures are the primary variables. The solid grains
and water are assumed to be incompressible at microscopic level. The elasto-plastic
behaviour of the solid skeleton is described by the multiplicative decomposition of the
deformation gradient into an elastic and a plastic part, as shown in Section 3. The
generalized effective stress in partially saturated conditions (Bishop like stress) in the
form of Kirchhoff measure of the stress tensor and the logarithmic principal strains
are used in conjunction with an hyperelastic free energy function. The effective stress
state is limited by the von Mises or the Drucker-Prager yield surface for simplicity.
Water is assumed to obey Darcy’s law. In the partially saturated state, the water degree
of saturation and the relative permeability are dependent on the capillary pressure by
experimental functions. The spatial weak form of the governing equations, the tempo-
ral integration of the mixture mass balance equation, which is time dependent because
of the seepage process of water, and the consistent linearization are described in Sec-
tions 4, 5, and 6, respectively. In particular, the generalized trapezoidal method is used
for the time integration. Finally, the finite element discretization in space is obtained
by applying a Galerkin procedure in the spatial setting, using different shape functions
for solid and water (see Section 7). The interested reader is referred to [San02b] for
all the computational details.

2 Balance equations for an isothermal variably satu-
rated medium

In this section the macroscopic balance equations of the simplified model that we
shall use in the sequel are obtained. In this model, the main features are that wa-
ter pressure and solid displacements are chosen as the primary variables and that the
elastoplastic behaviour of the solid skeleton is developed in the framework of the hy-
perelastoplasticity. Moreover, it permits to outline the main guidelines used in modern
computational mechanics.

The following assumptions are now introduced in the general model previously pre-
sented:

• All the processes are isothermal. This means that the energy balance equation
is no more necessary and the phase changed are neglected.

• Gas phase is assumed to remain at constant pressure and flows without resis-
tance in the partially saturated zone ([Ocz99], [Cha22]). This means that the
mass balance equations for dry air and vapour are neglected. The gas pressure
may either be the atmospheric pressure or the cavitation pressure at a certain
temperature (e. g. the ambient temperature). The first case is a common as-
sumption in soil mechanics because in many cases occurring in practice the
air pressure is close to the atmospheric pressure as the pores are interconnected
[Ocz99], [Cha22]. The second case can be derived from the experimental obser-
vations [Mok98] and the obtained model is also called Isothermal Monospecies
Approach, which can be used to simulate cavitation at localization in initially
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water saturated dense sands under globally undrained conditions, as first devel-
oped in [Sch96] for the geometrically linear case. In fact, in this situation, ne-
glecting air dissolved in water, only two fluid phases are present after cavitation:
liquid water and water vapour at cavitation pressure, which is then considered
constant and is neglected because of its small value.

• At the micro level, the porous medium is assumed to consist of incompressible
solid and water constituents. The averaged intrinsic density ρπ(x, t) (π = s, w)
is hence constant, while the averaged density ρπ(x, t) can vary due to the
volume fraction ηπ(x, t). Consequently, the density of the mixture ρ(x, t)
(12) and the porosity n(x, t) can change during the deformation of the porous
medium.

• The process is considered as quasi-static, so the solid and fluids accelerations
are neglected.

The formulation in terms of spatial co-ordinates is now presented.

2.1 Mass balance equation
Taking into account the incompressibility constraint of the solid and water constituents
in eq. (16) and eq. (18) of [Sch02], the mass balance equation for the solid and water
phases becomes

∂

∂t
(1− n) + div [(1− n)vs] = 0 (1)

∂

∂t
(nSw) + div (nSw vw) = 0 (2)

where the definition of the phase average density ρπ(x, t) = ηπ(x, t) ρπ(x, t), (π =
s, w) has been introduced, thus eliminating the intrinsic (constant) average density
ρπ(x, t). Using the concept of the material time derivative, (1) is rewritten as

Ds

Dt
(1− n) + (1− n) divvs = 0 (3)

where the classical relationship

divvs =
DsJs

Dt
(Js)−1 (4)

can be introduced for the solid deformation [Mar83]. The time integration of (3) gives
the evolution law for the porosity n(x, t) related to the determinant Js(Xs, t) of the
deformation gradient Fs(Xs, t):
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n = 1− (1− n0) (Js)−1 (5)

where n0(Xs) is the porosity in the reference configuration at t = t0 (or initial poros-
ity). Because of the relation ηs(x, t) = 1− n(x, t), (5) can be rewritten as

ηs = ηs0 (J
s)−1 (6)

where ηs0(X
s) is the solid volume fraction in the reference configuration at t = t0.

The sum of the mass balance equation of the two constituents (1) and (2) produces the
following mass balance equation for the mixture under consideration:

∂

∂t
(1− n+ nSw) + div [(1− n) vs + nSw vw] = 0 (7)

Introducing the water velocity relative to the solid, i. e. vws = vw − vs and the def-
inition of material time derivative with respect to the solid, the mixture mass balance
equation (7) becomes

n
Ds

Dt
(Sw) + Sw divvs + div (nSw vws) = 0 (8)

The term nSw vws(x, t) represent the filtration water velocity. The water velocity
relative to the solid is related to the water pressure by the linear momentum balance
equation for water phase, which gives Darcy’s law (15), as will be demonstrated in the
sequel.

In case of fully saturated conditions, Sw = 1 and hence the previous equation is
reduced to the one of the saturated model.

2.2 Linear momentum balance equations in statics
Neglecting the inertial term in eq. (23) and eq. (24) of [Sch02], the linear momentum
balance equations in statics for the solid and water constituents are respectively

div ts + (1− n) ρs g + (1− n) ρs t̂s = 0 (9)

div tw + nSw ρ
w g + nSw ρ

w (t̂w + ew) = 0 (10)

The equilibrium equations for the mixture
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div (ts + tw) + ρg = 0 (11)

is obtained by summation of (9) and (10), taking into account the constraint (25) of
[Sch02].

In (11), ρ(x, t) is the density of the mixture:

ρ = (1− n) ρs + nSw ρ
w (12)

and ts+tw = σ is the total Cauchy stress, which can be decomposed into the effective
and pressure (equilibrium) parts following the principle of effective stress

σ = σ′ − Sw p
w 1 (13)

where σ′(x, t) is the modified effective Cauchy stress tensor, also called General-
ized or Bishop’s like or Schrefler’s stress tensor in soil mechanics. The equilibrium
equations of the mixture in terms of total Cauchy stress assumes the form

divσ + ρg = 0 (14)

Using the constitutive equation (29) of [Sch02] for nSw ρ
w t̂

w
and the definition of

tw (eq.(30) of [Sch02]), the linear momentum balance equation for water (10) gives
Darcy’s law

nSw vw = −k krw

µw
(grad pw − ρw g) (15)

for the water, where krw = krw(x, t) is the relative permeability which is an experi-
mentally determined function of the capillary pressure. This law is valid for the trans-
port of the fluid in slow phenomena when the thermal effects are negligible. Moreover,
the equilibrium equation for the fluid pressures (pc = pg−pw) is simplified as follows
because of the assumption on the gas phase

pc ∼= −pw (16)

which states that capillary pressures can be approximated as pore water tractions.
Hence, the water pressure can change sign, which means that a partially saturated
zone is developing in the porous medium. The effect of the capillary pressure on the
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stiffness of the medium is taken into account by the constitutive laws for Sw(p
c) and

krw(pc).

As a consequence of the above assumptions, the independent fields of the model are
the solid displacements u(x, t) and the water pressure pw(x, t).

In case of fully saturated conditions, Sw = 1 and krw = 1 and hence (12), (13), and
(15) are reduced to those of the saturated model.

3 Constitutive equations

The constitutive equations necessary for the model are those related to the solid skele-
ton and the water in the partially saturated zones. In particular, the structure of the
developed model can describe the elasto-plastic behaviour of the solid skeleton at
finite strain based on the multiplicative decomposition of the deformation gradient
Fs(Xs, t) into an elastic and plastic part

Fs = Fse Fsp (17)

In the following, the treatment of the isotropic elasto-plastic behaviour for the solid
skeleton based on the product formula algorithm proposed for the single phase mate-
rial by Simo [Sim98] will be briefly summarized for the interested readers. Experi-
enced readers or non interested readers may wish to turn directly to Section 4. The
geometrically linear case can be found e. g. in [Lew98] and [Ocz99]. The spatial
formulation is used in this section, accordingly to [San02b] is now presented. The
interested reader can refer to [San02b] also for the Lagrangian counterpart in terms of
material coordinates.

In this section, the superscript ‘ s ’ will be neglected and the symbol ‘ · ’ will be used
for the material time derivative with respect to the solid skeleton instead of Ds/Dt (as
well as in the remaining part of the chapter).

The effective Kirchhoff stress tensor τ ′(x, t) = Jσ′(x, t) and the logarithmic prin-
cipal values of the elastic left Cauchy-Green strain tensor ϵA(x, t) are used. In the
present sub-section also the prime ‘ ′ ’ for the effective stress tensor will be neglected.
The yield function restricting the stress state is developed in the form of von Mises
and Drucker-Prager for simplicity, to take into account the behaviour of clays under
undrained conditions and the dilatant/contractant behaviour of dense or loose sands,
respectively. The return mapping and the consistent tangent operator can be devel-
oped, solving the singular behaviour of the Drucker-Prager yield surface in the zone
of the apex using the concept of multisurface plasticity (see [San02b]).

The elastic behaviour of the solid skeleton is assumed to be governed by an hypere-
lastic free energy ψ(x, t) function in the form
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ψ = ψ(be, ξ) (18)

dependent on the elastic left Cauchy-Green strain tensor be(x, t) = Fe(Fe)−1 and
the internal strain like variable ξ(x, t), the equivalent plastic strain. The second law
of thermodynamics yields, under the restriction of isotropy, the constitutive relations

τ = 2
∂ψ

∂be be , q = −∂ψ
∂ξ

(19)

and the dissipation inequality

−1

2
τ :

[
(Lv b

e) (be)−1
]
+ q ξ̇ ≥ 0 , (20)

where Lv b
e = ḃe− l be−be lT is the Lie derivative of the elastic left Cauchy-Green

strain tensor be(x, t).

The evolution equations for the rate terms of the dissipation inequality (20) can be de-
rived from the postulate of the maximum plastic dissipation in the case of associative
flow rules

−1

2
Lv b

e = γ̇
∂F

∂τ
be (21)

ξ̇ = γ̇
∂F

∂q
, (22)

subjected to the classical loading-unloading conditions in Kuhn-Tucker form:

γ̇ ≥ 0, F = F (τ , q) ≤ 0, γ̇ F = 0 (23)

where γ̇ is the plastic multiplier and F = F (τ , q) the isotropic yield function.

Simple examples for the yield functions are those of Drucker-Prager and von Mises
with linear isotropic hardening, in the form, respectively, of

F (p, s, ξ) = 3αF p+ ∥s∥ − βF
√

2

3
(c0 + h ξ) (24)

and
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F (s, ξ) = ∥s∥ −
√

2

3
(σ0 + h ξ) (25)

in which p = 1
3 (τ : 1) is the mean effective Kirchhoff pressure, ∥s∥ is the L2-norm

of the deviator effective Kirchhoff stress tensor τ , c0 is the initial apparent cohesion
of the Drucker-Prager model, αF and βF are two parameters related to the friction
angle ϕ of the soil,

αF = 2

√
2
3 sinϕ

3− sinϕ
, βF =

6 cosϕ

3− sinϕ
, (26)

h the hardening/softening modulus, and σ0 is the yield stress in the von Mises law.

Remarks: In the present contribution, the effect of the capillary pressure pc on the
evolution of the yield surface is not taken into account. The interested reader can
refer to [Lew98] for a constitutive relationship function of the effective stress and the
capillary pressure and to the chapter in this volume by Manzanal et al. Moreover,
other models are also cited in the last chapter of this volume.

3.1 Algorithmic formulation
The problem of the calculation of be, ξ and τ is solved by an operator split into an
elastic predictor and plastic corrector [Sim98]. The calculation of the trial elastic state
(•)tr is based on freezing the plastic flow at time tn+1. The [be

n+1]
tr is hence the

push forward of be
n by means of the relative deformation gradient fn+1, i.e.

[be
n+1]

tr = fn+1b
e
nf

T
n+1 (27)

with ξtrn+1 = ξn , where ∆un+1 is the incremental displacement in the time interval
[tn, tn+1].
The same value can also be obtained from the reference configuration by the push
forward of [Cp

n]
−1 by means of Fn+1

[be
n+1]

tr = Fn+1[C
p
n]

−1FT
n+1 (28)

The corresponding trial elastic stress is obtained from the hyperelastic free energy
function as
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τ tr
n+1 = 2

[
∂ψ

∂beb
e

]

be
=[be

n+1]
tr

= 2
∂ψ

∂be

∣∣∣∣∣
be

=[be

n+1]
tr

[be
n+1]

tr (29)

If this trial state is admissible, it does not violate the inequality F tr
n+1 ≤ 0 and the

stress state is hence already computed.

Otherwise the return mapping or plastic corrector algorithm is applied to satisfy the
condition Fn+1 = 0. Since during this phase the spatial position is held fixed, the
evolution equation for the elastic left Cauchy-Green strain tensor can be computed as
in [San02b] and

be
n+1
∼= exp

(
−2∆γ ∂F

∂τ

) ∣∣∣∣∣
n+1

[be
n+1]

tr. (30)

can be derived. It should now be noted that be
n+1 commutes with τn+1 due to the

assumption of isotropy and that [be
n+1]

tr and its principal axis are held fixed during
the return mapping; the spectral decomposition of [be

n+1]
tr,be

n+1 and τn+1 can hence
be written with the same eigenbases

[be]tr =

3∑

A=1

[λtrAe]
2ntr

A ⊗ ntr
A be =

3∑

A=1

[λAe]
2ntr

A ⊗ ntr
A

τ =
3∑

A=1

τAn
tr
A ⊗ ntr

A

(31)

Using (31) the product formula (30) can be written in principal values in the form

[λAe]
2 = exp

(
−2∆γ ∂F

∂τA

) ∣∣∣∣
n+1

[λtrAe]
2. (32)

Taking the logarithm of (32) the fundamental additive decomposition of the log strain
measure in elastic and plastic parts is obtained [Sim98]

εtrAen+1
= εAen+1 +∆γ

∂F

∂τA

∣∣∣∣∣
n+1

(33)

in which εAe are the principal logarithmic elastic strain εAe = lnλA. This is a very im-
portant consequence of the utilised model because it permits to use the return mapping
of the elasto-plasticity developed for the linear case [Sim98]. From the knowledge of
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∆γ the equivalent plastic strain is computed by the backward Euler integration of eq.
(22)

ξn+1
∼= ξn +∆γ

∂F

∂q

∣∣∣∣∣
n+1

(34)

The principal Kirchhoff stress components are then computed by the hyperelastic con-
stitutive law

τA = 2λAe
∂ψ

∂λAe
=

∂ψ

∂εAe
(35)

where the free energy ψ = ψ̂(εAe, ξ) is now written as function of the principal
elastic logarithmic strain components and the equivalent plastic strain (for isotropic
linear hardening).

The return mapping algorithm for the Drucker-Prager model with non-associated vol-
umetric/deviatoric plastic flow is presented in [San02b], where a special treatment of
the corner region using the concept of multi-surface plasticity is also formulated.

4 Weak form: Variational approach

The weak form of the spatial governing equations presented in the previous section
is now derived obtaining the variational equations formally equivalent to the initial-
boundary-value problem given by the governing equation and the boundary condi-
tions. This means that the governing equations (7) and (11) are multiplied by inde-
pendent weighting functions that vanish on the boundary in which Dirichlet boundary
conditions are applied and are then integrated over the spatial domain B with bound-
ary ∂B. The linear momentum balance equation of the binary porous media (11) is
hence weighted on the domain by the test function δus corresponding to the solid
displacement (or virtual displacement) in the form

∫

B

(divσ + ρg) · δus dv = 0 ∀ δus (36)

Applying partial integration and Green’s theorem in the form (e. g. [Mar83])

∫

B

divσ · δus dv = −
∫

B

σ : grad δus dv +
∫

∂B

t̄ · δus ds (37)
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to the divergence part of (36) and taking into account the boundary conditions, this
equation is transformed into the weak form

−
∫

B

(σ′ − Sw p
w1) : grad δus dv +

∫

B

ρg · δus dv+

∫

∂B

t̄ · δus ds = 0 ∀ δus

(38)

where the effective stress principle (13) has been introduced. Using the relation
div δus = grad δus : 1, the previous weak form is transformed into

−
∫

B

σ′ : grad δus dv +
∫

B

Sw p
w div δus dv +

∫

B

ρg · δus dv+

∫

∂B

t̄ · δus ds = 0 ∀ δus

(39)

The weak form of the mixture mass balance equation (7) is obtained in a similar way,
introducing Darcy’s law (15) and using the test function δpw corresponding to pw (or
virtual water pressure):

∫

B

n
Ds

Dt
(Sw) δp

w dv +
∫

B

Sw divvs δpw dv+

∫

B

div
[
k krw

µw
(− grad pw + ρw g)

]
δpw dv = 0 ∀ δpw

(40)

Applying Green’s theorem to the last integral term of the previous equation, the fol-
lowing is obtained

∫

B

n
Ds

Dt
(Sw) δp

w dv +
∫

B

Sw divvs δpw dv+

∫

B

[
k krw

µw
(grad pw − ρw g)

]
· grad δpw dv+

∫

∂B

qw δpw ds = 0 ∀ δpw

(41)
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where qw(x, t) is the water flow draining through the surface ∂B.

Remarks: It can be observed that the weak forms (39) and (41) are very similar to
those of the geometrically linear theory, e. g. [Lew98], by substituting the deformed
integration domain B with the undeformed one B0. Moreover, in the small strain
theory divvs = ε̇ : 1, where ε is the small strain tensor of the solid skeleton, while in
finite strain divvs = J̇s/Js. In the small strain theory the additive decomposition of
the strain tensor ε in elastic εe and plastic εp parts is also possible, thus rendering the
computation of the constitutive tangent operator in the linearization of the weak form
particularly easy.

5 Time discretization

Time integration of the weak form of the mass balance equation (41) over a finite time
step ∆t = tn+1 − tn is necessary because of the time dependent terms divvs and
DsSw/Dt .

The generalized trapezoidal method is used here, as shown for instance in [Lew98]
and in the second chapter of this volume by Pastor and coworkers. Because of the
dependence of the integration domain on time, we rewrite the weak forms (39) and
(41) with respect to the undeformed domain as follows:

∫

B0

(τ ′ − Js Sw p
w 1) : grad δus dV −

∫

B0

ρ0 g · δus dV−

∫

∂B0

T̄ · δus dA = 0 ∀ δus

(42)

∫

B0

Js SW divvs δpw dV +

∫

B0

[
Js k krw

µw
(grad pw − ρw g)

]
· grad δpwdV+

∫

∂B0

Qw δpw dA+

∫

B0

JsN
Ds

Dt
(SW ) δpw dV = 0 ∀ δpw

(43)

where τ ′ is the modified effective Kirchhoff stress tensor and T̄ = PN and Qw =
N SW V̄

ws·N are, respectively, the traction vector and the water flow computed with
respect to the undeformed configuration. The form of (42) and (43) is also useful for
the subsequent linearization because it will be easily performed with respect to the
undeformed (fixed) domain.

Equation (43) is now rewritten at time tn+1 using the relationships
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J̇s
n+β =

Js
n+1 − Js

n

∆t
, (Ṡw)n+β =

Swn+1 − Swn

∆t
(44)

(·)n+β = (1− β) (·)n + β(·)n+1 = (·)n + β [(·)n+1 − ( · )n] (45)

with β ∈ [0, 1], obtaining

∫

B0

(Sw)n+β

(
Js
n+1 − Js

n

)
δpw dV −∆t

∫

B0

(
Js vD · grad δpw

)
n+β dV +

∫

B0

(Js n)n+β [Swn+1 − Swn] δp
w dV + ∆t

∫

∂B0

Qw
n+β δp

w dA = 0 ∀ δpw
(46)

where vD = −k krw/µw ( grad pw − ρw g) is Darcy’s velocity of the water.

The weak form of the linear momentum balance equation (42) is directly written at
time tn+1 because it is time independent

∫

B0

[(τ ′ − Js Sw p
w 1) : grad δus] n+1 dV −

∫

B0

ρ0n+1
g · δus dV −

∫

∂B0

T̄n+1 · δus dA = 0 ∀ δus

(47)

Linearized analysis of accuracy and stability suggest the use of β ≥ 1
2 . In the exam-

ples section, implicit one-step time integration has been performed (β = 1).

The weak forms (46) and (47) represent a non-linear coupled equations system where
the non-linearities are introduced by the finite kinematics and the constitutive laws.

6 Consistent linearization

The non-linear equation system (46) and (47) can be written in the following compact
form

G(χ, η) = 0 , with χ = (χs, pw) T and η = (δus, δp
w) T (48)
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where χs(Xs, t) is the motion function (deformation map) of the solid. For its nu-
merical solution, iterative methods have to be employed and the linearization at χ̄ is
hence necessary

G(χ̄, η, ∆u) ∼= G(χ̄, η) + DG(χ̄, η) ·∆u ∼= 0 (49)

where ∆u = (∆us, ∆p
w)T and DG ·∆u = d

dαG(χ̄+ α∆u)|α=0 is the directional
derivative or Gateaux derivative of G at χ̄ in the direction of ∆u (e. g. [Mar83, Wri93]
for single-phase material). Since the equation system G is composed of the weak form
of the linear momentum balance equation (GLBE) and of the mass balance equation
(GMBE), then

DG ·∆u =

[
DGLBE ·∆us +DGLBE ·∆pw

DGMBE ·∆us +DGMBE ·∆pw

]
(50)

Using the symbol (·)k+1
n+1 to indicate the current iteration in the current time step, the

linearization on the configuration (·)kn+1 is written as

DGk
n+1 ·∆uk+1

n+1 = −Gk
n+1 (51)

and the solution vector u = (us, p
w)T is then updated by the incremental relationship

uk+1
n+1 = uk

n+1 +∆uk+1
n+1 (52)

For an efficient numerical performance of the scheme (51), the consistent linearization
is applied [Wri93] in which the linearization of the integrated constitutive equation
plays a central role (this concept was first pointed out in [Sim85] for the geometrically
linear case).

The linearization of (46) and (47), performed in the undeformed configuration B0 and
then pushed forward in the deformed configuration B, gives the following result:

• For the equilibrium equations:
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∫

B

(
grad δus : c

ep : sym (grad∆us) + σ′ : gradT δus grad∆us

)
dv+

∫

B

Sw p
w grad δus :

(
gradT∆us − div∆us 1

)
dv−

∫

B

ρw Sw δus · g div∆us dv −
∫

B

(
pw

∂Sw

∂pw
+ Sw

)
div δus ∆p

w dv

(53)

• For the mass balance equation (in case of isotropic permeability):

∫

B

δpw
(
1 + Swn+β + β∆Sw

)
div∆us dv+

β∆t

∫

B

k krw

µw
grad δpw · grad∆pw dv+

β∆t

∫

B

grad δpw ·
[(

1− n
k

∂k

∂n
+ 1

)
k krw

µw
(grad pw −

− ρw g) div∆us

]
dv−

β∆t

∫

B

grad δpw ·
[
2 k krw

µw
sym (grad∆us) grad pw

]
dv+

β∆t

∫

B

grad δpw ·
(
k krw

µw
ρw grad∆us g

)
dv+

β∆t

∫

B

k

µw

∂krw

∂pw
grad pw · grad δpw∆pw dv−

∫

B

δpw
(β∆J + Jn+β nn+β)

J

∂Sw

∂pc
∆pw dv

(54)

In the directional derivative DGLBE ·∆us the term

∫

B

(
grad δus : c

ep : sym (grad∆us) + σ′ : gradT δus grad∆us

)
dv (55)

contains cep, the spatial constitutive operator following the linearization of the com-
puted effective stress
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cepn+1 =
3∑

A=1

3∑
B=1

aepABn+1
(ntr

A ⊗ ntr
A)⊗ (ntr

B ⊗ ntr
B) +

2
3∑

A=1

τAn+1
c
tr(A)
n+1

(56)

It is useful to remark that in (56) only the second order tensor aep = ∂τA/∂ε
tr
B de-

pends on the specific model of plasticity and the structure of the return mapping al-
gorithm in principal stretches, while the tensors ctr(A)

n+1 and ntr
A ⊗ ntr

A are independent
of the specific plastic model in use. Moreover, it is easy to proof that the moduli aep

have a form identical to the algorithmic elasto-plastic tangent moduli of the infinitesi-
mal theory [Sim98]. The expression for ctr(A)

n+1 can be obtained by linearization of the
eigenbases dyadic ntr

A ⊗ ntr
A in the spatial setting:

c
tr(A)
n+1 =

∂(ntr
A ⊗ ntr

A)

∂g
(57)

where g is the spatial metric, or by pull-back [Mar83] of ntr
A ⊗ ntr

A, subsequent to
linearization in the material setting and then by push-forward of the linearization in
spatial setting.

The expressions for the algorithmic moduli aep of the Drucker-Prager model with
non-associated volumetric/deviatoric plastic flow are derived in [San02b], where a
special treatment of the apex region of the Drucker-Prager model using the concept
of multi-surface plasticity is also derived. Hereafter, the algorithmic moduli aep for
the non-apex zone are recalled for sake of completeness

aepn+1 = c1K1⊗ 1+ 2G

[
I− 1

3
1⊗ 1

] [
1− 2G∆γn+1

||strn+1||

]

−6αQKG

c2
1⊗ ntr

n+1 −
6αFKG

c2
ntr
n+1 ⊗ 1

−4G2

[
1

c2
− ∆γn+1

||strn+1||

]
ntr
n+1 ⊗ ntr

n+1

(58)

where the coefficients c1 and c2 are

c1 =

[
1− 9αFαQK

c2

]

c2 = 9αFαQK + 2G+ βFh

√
2

3
[1 + 3α2

Q]
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7 Finite element discretization in space

The suitable spatial finite element formulation is derived by applying the well known
Galerkin procedure, in which the weighting functions are approximated by the same
shape functions used to approximate the driving variables (isoparametric finite el-
ements). This means that the geometry Xs, the current configuration x, the dis-
placement field us, the water pressure pw, the incremental generalized displacement
∆u = (∆us, ∆p

w)T and the variations η = (δus, δp
w)T , are interpolated within

a finite element by the same type of functions. In the present setting, different shape
functions are chosen for quantities associated respectively to the solid and the fluid,
thus satisfying the LBB condition (Ladyzhenskaya-Babuška-Brezzi condition) for the
locally undrained case. Standard procedures have been applied, following any text
books on FEM. With respect to the small strain case, the discretization of the spa-
tial form of the linearized system of equations is made taking into account that each
quantity is referred to the spatial co-ordinates x, instead of the co-ordinates of the un-
deformed configuration Xs. The solid displacement us(x, t) and the water pressure
pw(x, t) are hence expressed in the whole domain by global shape function matrices
Nu(x) and Nw(x) and the nodal value vectors ū(t) and p̄(t):

u = Nuū , pw = Nwp̄ (59)

The linearized system of equations (51) in matrix form can be expressed as

[
KT +Kgeom

sw −csw Qsw

Qws − β∆tQgeom
sw β∆tH

][
∆ū
∆p̄

]
= −

[
Gu

Gp

]
(60)

which is non-symmetric (details concerning the implementation as well as the matrices
and the residuum vectors of (60) will be described in a future paper). Owing to the
strong coupling between the mechanical and the pore fluid problem, a monolithic
solution of (60) is preferred using a Newton scheme.

8 Conclusions

A finite element formulation for the hydro-mechanical behaviour of variably saturated
porous materials has been presented. This model is obtained as a result of a research
in progress on the thermo-hydro-mechanical model for multiphase geomaterials un-
dergoing large inelastic strains. For the interested reader, further finite element models
as well as the corresponding numerical codes can be found in [Lew98], [Ocz99] and
[Cha22].
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Solid mechanics problems in general, and specifically in the case of geomaterials, are
very often significantly non linear. Although linear numerical models may be used as
rough approximations to the problem solution, non linearities are very often too signif-
icant to be neglected. To solve these problems special non linear strategies are neces-
sary. A series of non linear analysis techniques are presented in the context of the finite
element method. These techniques are based on the Newton-Raphson method, a very
well known root finding algorithm. The most typical versions of the method are ini-
tially presented: full Newton-Raphson with load control, modified Newton-Raphson,
quasi Newton methods and Newton-Raphson with displacement control. The final
sections of this chapter introduce two non-standard versions of the method including
advanced techniques that can overcome convergence problems in special situations:
Arc-length control and line searches.

1 Introduction

Solid mechanics problems in general, and specifically in the case of geomaterials, are
very often significantly non linear. Although linear numerical models may be used
as rough approximations to the problem solution, non linearities are very often too
significant to be neglected. Under those circumstances it is therefore difficult to remain
satisfied with a solution based on a linear model. To solve these problems special non
linear strategies are necessary. Since different type of non linearities require different
strategies and there is no such thing as a generally valid non linear algorithm it is
advisable to include several types of non linear algorithms in the model covering the
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most usual type of non linear situations. There are several very good texts that cover
this topic extensively, such as Bathe [Bat96], Belytschko, Liu and Moran [BLM00],
Crisfield [Cri91] and [Cri97], Simo and Hughes [SH98]and Zienkiewicz and Taylor
[ZT89].

The non linearities in a problem may have different causes. A first attempt to classify
these causes would divide them into two big groups : geometrical and material non
linearities. Geometrical non linearities arise when some of the geometrical parameters
of the model change during the loading process. A typical example of this would be
a buckling problem where small displacement theory ceases to be valid and large
displacement theory is required. Another example of geometrical no linearity is a
contact problem where boundary conditions change during the loading process. On
the other hand material non linearities arise when some of the constitutive parameters
of the model change during the loading process. Typical examples of this include non
linear elastic, elastoplastic or viscoplastic material behaviour, damage models, etc.

Numerical solution of non linear problems requires as expected many more operations
than linear problems. Special numerical techniques are necessary not only to reach a
solution but also to do so in an efficient manner.

Traditionally, non linear finite element problems have been solved using the Newton-
Raphson method in any of its different versions. It is therefore the basic tool that
virtually every non linear finite element program should include. However, there are
many different ways to implement this algorithm and often the ”typical” or ”standard”
versions of the Newton-Raphson method are not sufficient to solve certain problems.
Although which techniques may be referred to as ”standard” and which may not is
a subjective matter an attempt to do so will be made in this book. This chapter ini-
tially presents the so called standard techniques such as the following versions of
the Newton-Raphson method: load control, displacement control, modified Newton
Raphson methods and Quasi Newton methods.

However, ”standard” non linear analysis techniques as the ones initially presented in
this chapter are often not sufficient to solve a specific problem. An example of this
are limit load problems with a strongly descending post-peak behavior. In such cases,
special nonlinear analysis techniques are necessary. The final sections of the chapter
will be devoted to advanced or nonstandard techniques such as arc-length control and
line searches.

2 The Newton-Raphson method

The Newton-Raphson method, also called Newton’s method is a classical one dimen-
sional root-finding algorithm [PTVF92]. Assuming the problem is stated as finding
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the value or values of x such that the following equation is satisfied:

f(x) = 0

the main distinguishing feature of this method from other root-finding methods is the
fact that it requires the evaluation of both the function f(x) and the derivative f ′(x)
in each iteration. The method consists in geometrical terms of extending the tangent
line at a current point xi until it crosses zero, then setting the next guess xi+1 to the
abscissa of that zero crossing as sketched in figure 1:

xi+1 = xi −
f(xi)

f ′(xi)
(1)

Algebraically the method derives from the Taylor expansion series in the neighbor-
hood of a point:

f(x+ δ) = f(x) + f ′(x)δ +
1

2
f ′′(x)δ2 + ...... (2)

Given xi such that f(xi) ̸= 0 and using a two term expansion based on (2), a value
xi+1 = xi + δ is looked for such that:

f(xi + δ) = f(xi) + f ′(xi)δ = 0 (3)

Solving for δ:

δ = − f(xi)

f ′(xi)

Correcting xi with the value δ of to obtain xi+1 would lead to expression (1).

It is also possible to use this type of analysis to obtain an estimate of the iterative error
ε. Expressing xi+1 xi in terms of the root x and iterative errors εi+1 and εi:

xi+1 = x+ εi+1

xi = x+ εi

and substituting these expressions into equation (1) a relationship between consecutive
iterative errors is obtained:

εi+1 = εi −
f(xi)

f ′(xi)
(4)

Estimating f(xi) and f ′(xi) through Taylor series expansions in the neighbourhood
of the root x and taking into account that f(x) = 0 we obtain:

f(xi) = f(x+ εi) = f(x) + f ′(x)εi +
1

2
f ′′(x)ε2i + ...... ≃ f ′(x)εi +

1

2
f ′′(x)ε2i
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f ′(xi) = f ′(x+ εi) = f ′(x) + f ′′(x)εi + ...... ≃ f ′(x) + f ′′(x)εi

Substituting these expressions into equation (1):

εi+1 = εi −
f(xi)

f ′(xi)
= εi −

f ′(x)εi + 1
2f

′′(x)ε2i
f ′(x) + f ′′(x)εi

=
εi(f

′(x) + f ′′(x)εi)− f ′(x)εi − 1
2f

′′(x)ε2i
f ′(x) + f ′′(x)εi

(5)

= − f ′′(x)ε2i
2(f ′(x) + f ′′(x)εi)

≃ −ε2i
f ′′(x)
2f ′(x)

Equation (5) is a recursive expression between consecutive iterative errors saying that
the ”new” iterative error εi+1 is proportional to the square of the ”old” one. In other
words, the Newton-Raphson procedure converges quadratically. This is a very power-
ful feature of this procedure, but in order to preserve it we have to make sure we use a
good estimate of f ′(xi). Frequently, rough estimates of f ′(xi) are used and quadratic
convergence is lost.

Figure 1: One dimensional Newton-Raphson method.
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Figure 2: The Newton-Raphson method in Finite Elements.

Figure 3: (a) Linear problem (b) Non linear problem.
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2.1 The Newton-Raphson method in a finite element context
The use of the Newton-Raphson procedure is not limited to one dimensional problems
as the one presented at the beginning of this section. The procedure is perfectly appli-
cable to multidimensional problems such as the ones arising from the application of
the finite element method.

Let us consider a solid mechanics problem defined in a domain Ω to be solved through
a displacement formulation of the finite element method based on small deformation
theory. Let us assume also that the problem is non linear, that is, the relationship
between force and displacement is, in graphical terms of the type sketched in figure
3.b as opposed to a linear relationship of the type presented in figure 3.a. In figure
3.b, as the loading process advances and additional gauss points in different elements
enter the non linear range the curve becomes less and less steep. In more rigorous
and mathematical terms, the objective of the problem could be stated as finding a
displacement vector u such that the following set of equations is satisfied:

Ae=1,nelem

[∫

Ωe

BTσ(ϵ(u))dΩe

]
−fext = 0 (6)

where :

Ae=1,nelem= Assembly operator to obtain global variables from element variables.

fext = Global external force vector
∫
Ωe

BTσ(ϵ(u))dΩe =Element internal force vector

B = Matrix relating deformations and displacement in the following way: ϵ = Bu

σ = Stress vector. The relationship between σ and ϵ is non linear

Equation (20) may be also expressed in a more compact form as :

Ψ(u) = 0

with Ψ(u) = Residual force vector = Ae=1,nelem

[∫
Ωe

BTσ(ϵ(u))dΩe

]
−fext

The problem, as stated is a non linear problem in u and as such, an iterative procedure
should be used to solve it. Using the Newton-Raphson to do so a displacement state
uo may be assumed to exist such that Ψo = Ψ(uo) ̸= 0. A new displacement state
un = uo + δu is looked for such that Ψn = Ψ(un) = 0. Using a two term Taylor
expansion as in the one dimensional case:

Ψn = Ψo +
∂Ψ

∂u
δu = Ψo +Ktδu = 0 (7)

where :
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∂Ψ

∂u
=

∂(Ae=1,nelem

[∫
Ωe

BTσ(ϵ)dΩe

]
)

∂u
= Ae=1,nelem

[∫

Ωe

BT ∂σ(ϵ)

∂u
dΩe

]

= Ae=1,nelem

[∫

Ωe

BT ∂σ(ε)

∂ε

∂ε

∂u
dΩe

]
= Ae=1,nelem

[∫

Ωe

BTDepBdΩe

]
= Kt

Expression (21) would lead to the following linear equation set:

Ktδu = −Ψo

Solving for δu :
δu = −K−1

t Ψo

In this format the problem is load controlled, that is external forces fext are fixed and
displacements u are the unknowns. In this context, the Newton-Raphson procedure is
usually applied in an incremental fashion, that is, the load vector fext is divided into
increments. The iterative procedure sketched in figure 2, is applied at each increment,
in the following way:

1) Let us assume a displacement state uA exists such that ΨA= 0.This means the
internal forces f intA are in equilibrium with external forces fextA . Pressumably
this state was reached by a Newton-Raphson procedure which converged after
several iterations. The convergence condition was:

∥ΨA∥
∥fextA ∥

=

∥∥fextA − f intA

∥∥
∥fextA ∥

< tol (8)

where ∥∥ is the vector norm operator and tol is a tolerance factor previously
defined by the analyst.

2) We are now looking for displacements uB associated to a load vector fextB . The
next load increment to be applied is therefore fextB − fextA . Since we know uA

we are really looking for a displacement corrector ∆u such that:

uB = uA +∆u

Our first predictor for ∆u will come from solving the following linear equation
system:

fextB − fextA = K1δu1

where K1 is the stiffness matrix at A, that is K1 = KA
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3) Once δu1 has been obtained, and the displacement vector updated u1 = uA +
δu1 the internal force vector f int1 (u1) is evaluated. To do so stresses at all Gauss
points will have to be integrated to compute the following integral:

f int1 (u1) =

∫
BTσ(ϵ(u1))dΩ

4) The next step is to evaluate the residual force vector G1 to check whether the
convergence test is satisfied or not:

∥Ψ1∥
∥fextB ∥

=

∥∥fextB − f int1

∥∥
∥fextB ∥

< tol (9)

If the previous condition is satisfied the iterative process ends at this point.

5) If the convergence test is not satisfied a new stiffness matrix K2 will have to be
obtained based on the new displacement state u1 to solve the following system
of equations:

−Ψ1 = K2δu2

In general K2 will be different from K1 since most likely there will be Gauss points
that were elastic for uA but have become plastic for u1. The iterative procedure will
continue until at the ith iteration f inti is evalueated and the convergence condition
∥fext

B −f int
i ∥

∥fext
B ∥ satisfied.

Norm operators used to evaluate the convergence condition can be defined in different
ways. Typically the square root of the sum of squares is used:

∥v∥ =
√
v2i

but other definitions may be used such as:

∥v∥ =Max(vi)

In the present version of the Newton-Raphson algorithm the convergence criterion was
based on the norm of the residual force vector, but other criterions may be used. One
of the most frequently used criteria, apart from the residual force one, is the iterative
displacement correction:

∥δui∥
∥∆ui∥

< tol

where δui is the iterative displacement correction and ∆ui is the incremental dis-
placement correction, both corresponding to the ith iteration:

∆ui = ∆ui−1+δui

ui = uA +∆ui
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Finally, another frequently used convergence criterion is the residual energy:

∆ui·Ψi

∆ui·fext
< tol

As in the previous criterion the i subindex refers to the ith iteration

Although the most usual criterion is the residual force, it is advisable to use an ad-
ditional criterion, typically the iterative displacement, and stop the iterative process
when both criteria are satisfied.

The version of the Newton-Raphson method presented here corresponded to a single
field static problem. The method can of course be applied in a more general context
to multifield or time dependent problems. For example non linear equations a general
problem formulated in displacements and pressures would be stated as:

Ψ(u,p) =

{
Ψu(u,p)
Ψp(u,p)

}
= 0

or in a more compact manner:
Ψ(x) = 0

with:

x =

{
u
p

}

The general Newton-Raphson equation would now be:

Ψn = Ψo +
∂Ψ

∂x
δx = Ψo + Jδx = 0 (10)

with:

δx =

{
δu
δp

}
J =

[
∂Ψu

∂u
∂Ψu

∂p
∂Ψp

∂u
∂Ψp

∂p

]

If the problem were both mixed and time dependent, with first time derivatives, we
would have:

Ψn+1(un+1, u̇n+1,pn+1, ṗn+1) =

{
Ψu(un+1, u̇n+1,pn+1, ṗn+1)
Ψp(un+1, u̇n+1,pn+1, ṗn+1)

}
= 0

Assuming a time integration scheme of the following type:

un+1= un+1(un, u̇n,∆u̇n)
u̇n+1 = u̇n+1(u̇n,∆u̇n)
pn+1 = pn+1(pn, ṗn,∆ṗn)
ṗn+1 = ṗn+1(ṗn,∆ṗn)
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the Newton-Raphson equation would now be:

Ψn+1,n = Ψn+1,o +
∂Ψ

∂x
δx = Ψo + Jδx = 0 (11)

with:

δx =

{
δ(∆u̇n)
δ(∆ṗn)

}
J =

[
∂Ψu

δ(∆u̇n)
∂Ψu

δ(∆ṗn)
∂Ψp

δ(∆u̇n)
∂Ψp

δ(∆ṗn)

]
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2.2 Modified Newton-Raphson

Figure 4: Modified Newton-Raphson method.

An alternative version of the method presented in the previous section is the method
known as modified Newton-Raphson. The difference between this version and the
previous one is that the stiffness matrix is only updated at the beginning of each in-
crement or at least much less frequently than once every iteration. A single update
per increment would imply, in graphical terms that tangents for consecutive iterations
are paralel as seen in the sketch of the algorithm presented in figure 4. This updat-
ing strategy saves many numerical operations both at the element and global levels.
Assuming a classical Gauss LU decomposition solver is being used a full Newton-
Raphson would require a decomposition and a backsubstitution every iteration while
the modified version would only require a single decomposition at the beginning of
each increment and a back substitution at every iteration. This refers only to global
level operations. If in addition to these, we consider the operations required to update
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the element stiffness matrices the computational cost per iteration is reduced very sig-
nificantly.

On the other hand, assuming the tolerance factor is the same, the convergence speed
would be slower, so the number of iterations required to converge for the modified
Newton-Raphson is higher than for the full version.

2.3 Quasi Newton methods

Figure 5: Quasi Newton methods.

Another very well known family of algorithms arising from the Newton-Raphson
method is that of the secant or Quasi-Newton methods. In this type of algorithm
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the displacement of each iteration is obtained based on a secant approximation of the
displacements from the two previous iterations as seen in figure 5. From the algorith-
mic point of view this implies that the new stiffness matrix should satisfy the so called
secant condition:

Ψ(ui)−Ψ(ui−1) = Ki(ui − ui−1) (12)

or in a more compact manner:
ri = Kiδi

where:
ri = Ψ(ui)−Ψ(ui−1) δi = ui − ui−1

The stiffness matrix of each iteration is computed in a recursive fashion from the
previous iteration’s stiffness matrix. There are many ways to do this. The simplest
way is through a rank one update such as:

Ki = Ki−1 +
(ri −Ki−1δi)v

T

vT δi
(13)

where vT δi ̸= 0. It is straightforward to check that expression (13) satisfies the secant
condition (12). A first version of this algorithm is due to Broyden [Bro65] taking
v = δi thus obtaining:

Ki = Ki−1 +
(ri −Ki−1δi)δ

T
i

δTi δi

A disadvantage of this method is that assuming Ki−1 was symmetric, this type of
update for Ki would not preserve Ki−1’s symmetry. Davidon’s version [GIH80] of
the algorithm does preserve matrix symmetry by making v = ri − Ki−1δi, thus
obtaining:

Ki = Ki−1 +
(ri −Ki−1δi)(ri −Ki−1δi)

T

(ri −Ki−1δi)T δi

It is also possible to make Rank-two updates such as the one due to Davidon, Fletcher
and Powell usually known as DFP [DM77] and the one due to Broyden, Fletcher,
Goldfarb and Shanno usually known as BFGS [DM77], both of which preserve sym-
metry and positive definiteness.

An important advantage of quasi Newton methods is that apart from the computational
cost saved on the stiffness matrix updating, as just shown, it is also posible to save
on system solving through the so called inverse update. Through this scheme it is
only necessary to perform matrix decomposition on the first iteration. The concept of
inverse update is based on the classical matrix algebra formula known as Sherman and
Morrison’s:

(A+ bcT )−1 = A−A−1bcTA−1

1 + cTA−1b
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where b and c are arbitrary vectors. The inverse update for Davidon’s method based
on Sherman and Morrison’s formula is:

K−1
i = K−1

i−1 +
(δi −K−1

i−1ri)(δi −K−1
i−1ri)

T

(δi −K−1
i−1ri)

T ri

or in more compact fashion:

K−1
i = K−1

i−1 + aiwwT (14)

where:
w = δi −K−1

i−1ri ai =
1

wT ri

Inverse updating does not preserve matrix sparsity. It is therefore necessary, if advan-
tage is to be taken from this feature, to solve the equation system by matrix-vector
multiplication using expression 14 in a recursive fashion down to the first iteration:

K−1
i = K−1

0 +

i∑

k=1

akvkv
T
k

where:
vi = δi −K−1

0 ri −
∑i−1

k=1
akvkv

T
k ri

A large number of quasi-Newton updates may cause an ill conditioned iteration ma-
trix. It is therefore recommended to restart the iteration procedure either using the
initial stiffness matrix K0 or obtaining a new stiffness matrix [GIH80]. Details on
rank two inverse updates may be obtained in [GIH80] and [DM77].
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2.4 Displacement control

Figure 6: Limit load problem.

Non linear constitutive models such as those associated to elastic-perfectly plastic be-
haviour will frequently give rise to force-displacement diagrams such as the one in
figure 6. In this case the load control presented at the beginning section 2.1 would
obviously not converge. In such cases a displacement control would solve the prob-
lem. The first step would be to partition the problem into a first part including active
degrees of freedom and a second part corresponding to restricted degrees of freedom.
Thus, the global vectors would be of the following type:

Ψ(u
1
,u2) =

{
Ψ1(u

1
,u2)

Ψ2(u
1
,u2)

}
u =

{
u1

u2

}
fext =

{
0

fext,2

}
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This means that u1 and fext,2 would be the unknowns and u2 would be given.

A1
e=1,nelem

[∫
BTσ(ϵ(u

1
,u2))dΩe

]
= 0 (15)

A2
e=1,nelem

[∫
BTσ(ϵ(u

1
,u2))dΩe

]
−fext,2 = 0 (16)

whereA1
e=1,nelem is the assembly operator associated to the active degrees of freedom

and A2
e=1,nelem is the one corresponding to the restricted degrees of freedom. The

jacobian of this equation set would be:

J =

[
∂Ψ1

∂u1
∂Ψ1

∂u2

∂Ψ2

∂u1
∂Ψ2

∂u2

]
=

[
K11 K12

K21 K22

]

1) Let us assume a displacement state uA exists such that ΨA= 0.This means the
internal forces f intA are in equilibrium with external forces fextA . Pressumably
this state was reached by a Newton-Raphson procedure which converged after
several iterations.

2) We are now looking for displacements u1
B = u1

A + ∆u1 associated to a given
displacement vector u2

B = u2
A +∆u2. Displacement increment ∆u2 is given,

∆u1 is unknown and it should be such that:

Ψ(u1
B ,u

2
B) = 0

Since fext,2 are reactions, and are also unknowns, the solution strategy should
be to solve the first Ψ1(u1

B ,u
2
B) = 0 obtaining ∆u1 and substituting ∆u1

and ∆u2 into Ψ2(u1
B ,u

2
B) = 0 would automatically produce fext,2.Our first

predictor for ∆u1shall be called ∆u1
1 and will come from solving the following

equation system:

Ψ1
1= Ψ1

A +
[
K11 K12

]{ ∆u1
1

∆u2
1

}
= 0

In other words:
K11

1 ∆u1
1 = −K12

1 ∆u2
1

where K11
1 and K12

1 are stiffness matrices at stress state A

3) Once ∆u1
1 has been obtained, and displacement vectors updated through u1

1 =
u1
A + ∆u1

1 and u2
1 = u2

A + ∆u2
1, internal force vectors f int,11 (u1

1,u
2
1) and

f int,21 (u1
1,u

2
1) are evaluated. To do so stresses at all Gauss points will have to

be integrated to compute the following integrals:

f int,11 (u1
1,u

2
1) = A1

e=1,nelem

[∫

Ωe

BTσ(ϵ(u1
1,u

2
1))dΩe

]
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f int,21 (u1
1,u

2
1) = A2

e=1,nelem

[∫

Ωe

BTσ(ϵ(u1
1,u

2
1))dΩe

]

Since fext,2 are reactions it will also be necessary to update them:

fext,21 = f int,21 (u1
1,u

2
1) (17)

4) The next step is check whether the convergence test is satisfied or not:

∥Ψ1∥
∥fext1 ∥

=

∥∥fext1 − f int1

∥∥
∥fext1 ∥

< tol (18)

It is interesting to remark that only Ψ1
1 contributes to Ψ1 since Ψ2

1 is 0 due to equation
(17) and only reactions stored in fext,21 contribute to fext1 .If the convergence condition
is satisfied the iterative process ends at this point.

5) If the convergence test is not satisfied a new stiffness matrix K11
2 will have to be

obtained based on the new displacement state u1 to solve the following system
of equations:

−Ψ1
1 = K11

2 δu
1
2

The iterative procedure will continue until at the ith iteration f inti is evaluated
and the convergence condition satisfied

convergence is lost.

2.5 Implementation of the Newton-Raphson method in a FEM
code

Implementation of the Newton-Raphson method in a simple finite element code would
require an algorithmic program structure of the type shown in figure 7. Of course,
there are different ways to do this, and the structure of a non linear finite element
program does not have to reproduce exactly the one shown in figure 7. But the main
ingredients are the ones shown there, and in any case the one presented there is a very
typical non linear finite element program structure.

One of the main aspects of the program structure is a double loop consisting of an
iterative loop nested inside an incremental loop. The incremental loop refers to loading
increments in which the total external load is divided. The iterative loop is strictly
speaking the Newton-Raphson procedure.
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Figure 7: Non linear finite element program structure based on the Newton-Raphson
method
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It shall be assumed that the linear equation solving algorithm used is of the direct type,
and more specifically a sparse Gauss LU decomposition, which is very frequently used
in the finite element comunity. In this context, a complete equation solving procedure
typically includes matrix decomposition and backsubstitution. As a consequence of
this assumptions, the stiffness matrices and internal force vectors at the element level,
have to be assembled into the corresponding global matrices and vectors. From the
point of view of computational cost the iterative loop is divided into three main parts:

1) Computation of the global stiffness matrix. This task includes computation of
tangent stiffness at each gauss point, element level integration of the stiffness
matrix, and assemblage into global stiffness matrix

2) Linear equation system solving.

3) Computation of internal force vector. This task includes stress integration at
each gauss point, element level integration of internal force vector and assem-
blage into global internal force vector.

Control variables are introduced in the iterative loop to decide whether a new stiffness
matrix should be computed and assembled and to decide whether both matrix decom-
posidion and back substituion or just the latter of these tasks should be performed.
These decisions depend on whether the present iteration is the first one or not, and on
the algorithm used is a full or a modified Newton-Raphson. If the algorithm were a
quasi Newton a few changes would have to be made in the stiffness matrix updating
and linear equation solving tasks.

Finally, the iterative loop includes a convergence test to check whether convergence
has beeen reached or on the contrary the iterative process should continue.
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3 The Arc-length method

The simplest version of the Newton-Raphson method applied to the finite element
method in the context of deformable solid mechanics is usually known as load control.
These terms refer to the fact that at the beginning of each step the load level is fixed.
Having fixed the value of the load vector an iterative process is carried out to compute
the displacements at the nodes. This iterative process ends when equilibrium between
internal and external forces is satisfied. This version of the Newton-Raphson method
was presented in the previous chapter.

Figure 8: Limit load problem with descending post peak behaviour.

However, in problems that exhibit a force-displacement diagram such as the one of
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figure 8, this type of algorithm is not adequate since the limit load or upper bound of
this curve is not known a priori. If the load control method were used to solve one of
such problems, since the value of the limit load is not known a priori, and the load level
at the beginning of each step is increased up to a certain level, a step would ultimately
be reached where the value of the load vector would be higher than the limit load.
At this point it would be impossible to make the iterative process converge because
the norm of the residual forces would always have a finite value. In graphical terms,
assuming that the solution at each step is obtained by intersection of the curve and a
horizontal line drawn at the level of the fixed load value, if this value were higher than
the limit load there would be no such intersection.

Following one step further this graphical type of reasoning, one would expect that fix-
ing the displacement level instead of the force level would be a satisfactory solution for
the figure 8 type of problems. However, this is only so for some limit load problems.
In an elastoplastic material type context only in problems exhibitting a positive, zero
or very slightly negative material hardening coefficient, would a displacement control
approach be adequate. This is so because this type of graphical reasoning is only a 2D
approximation of a problem which is really multidimensional and is therefore difficult
to explain on a piece of paper.

The arc-length control is an interesting alternative method to overcome limit points in
problems such as the one presented in figure 8.This method is based on a mixed type
of control including forces and displacements.

Figure 9: (a) Snap through problem (b) Snap back problem.
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Until the arc-length control appeared, standard techniques based on load or displace-
ment control, were able at best to overcome limit points with some difficulties and
very frequently simply failed to do so and the process stalled slightly before the limit
point. With arc-length control it is possible to overcome limit points in an automatic
fashion both for snap-through (figure 9.a) and snap-back (figure 9.b) situations.

Very often, limit points constitute the beginning of structural collapse. One could,
therefore, pose the following question: What is the use of obtaining the force-displacement
diagram after the collapse of the structure has taken place?. Crisfield [Cri91] produces
several answers to this question:

1) It is possible that the point identified as a limit point is not such, and is only a local
maximum. The only way to confirm that a point is really a limit point is to overcome
it. Frequently, when using standard techniques such as load and displacement control,
as the process approaches the limit point serious convergence problems appear. Given
impossibility to overcome such points with standard techniques, the assumption is
frequently made that convergence problems are caused by the existence of a limit
point.

2) It is possible the the point produces only the collapse of a substructure and not
the global structural collapse. Some times it is also important to know whether the
collapse is brittle or ductile or to investigate the stress state of different structural
components.

The arc-length control consists basically of the following steps :

1) The starting point is the standard set of N equilibrium equations which may be
expresssed as:

fint(u)− λfext = 0

Where :

N = Number of degrees of freedom of the system

u = N component vector representing displacements of the system.

λ =Scalar representing the system load level.

fint = N component vector containing internal forces of the system =

Ae=1,nelem

[∫

Ωe

BTσ(ϵ(u))dΩe

]

fext= N component vector containing external forces of the system .
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2) A length restriction is enforced on a norm based on a combination of the dis-
placement and external force incremental vectors.

∆uT∆u+∆λ2φ2fTextfext = ∆l2 (19)

where:

∆u = Present incremental displacement vector.

∆λ = Present incremental load level factor

φ = A constant with a value set at the beginning of the computations. This factor
controls the relative importance of the displacement and external force vectors in the
restriction. Further comments will be made on this value in the following sections

There are many versions of the arc-length method. Although the method was orig-
inally introduced by Riks[Rik79],[Rik72] and Wempner [Wem71], in the following
sections the version due to Crisfield [Cri91] will be presented. One of the main differ-
ences between the original versions and Crisfield’s is that in the former the restriction
is enforced at the same time as the equations yielding a N+1 dimension unsymmetric
equation system while in the latter the restriction is enforced after solving a symet-
ric equation system with N unknowns. This, of course, is assuming the N dimension
original equilibrium equation system is symetric. Symmetry is evidently a very impor-
tant issue from the point of view of computational cost.The preservation of symmetry
of the global equation system reduces significantly the number of operations and the
CPU time.

3.1 Analytical description of the method

Before introducing the arc-length method we shall define the residual force vector Ψ
as :

Ψ(u,λ) = fint(u)−λfext = Ae=1,nelem

[∫

Ωe

BTσ(ϵ(u))dΩe

]
−λfext (20)

This vector represents a measure of the degree of convergence of the iterative process.
Given the scalar λ representing the external force factor along with the displacements
u, and residual force Ψ(u,λ) vectors, the problem consists in finding the displacement
and load factor corrections δu and δλ such that the new residual force vector will be
zero.

Ψn = Ψo +
∂Ψ

∂u
δu+

∂Ψ

∂λ
δλ = Ψo +Ktδu− fextδλ = 0 (21)

Subindices ”o” and ”n” refer to the old and new situation respectively, or in other
words before and after the present iteration.. It is easy to prove from equation (20)
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that :

∂Ψ

∂u
=
∂(Ae=1,nelem

[∫
Ωe

BTσ(ϵ)dΩe

]
)

∂u
= Ae=1,nelem

[∫

Ωe

BT ∂σ(ϵ)

∂u
dΩe

]

= Ae=1,nelem

[∫

Ωe

BT ∂σ(ε)

∂ε

∂ε

∂u
dΩe

]
= Ae=1,nelem

[∫

Ωe

BTDepBdΩe

]
= Kt

∂G

∂λ
= fext

One must keep in mind that δu and δλ are iterative corrections while ∆u and ∆λ that
will appear in further developments along this section, are incremental corrections
that come from the accumulation of iterative corrections starting at the beginning of
the increment.

Solving for δu in equation (21):

δu = −K−1
t (Ψo−δλfext)

δu = −K−1
t Ψo + δλK−1

t fext = δu+ δλδut (22)

As one may see in equation (22) δu coincides with the classical displacement iterative
correction while the term δλδut allows the procedure to adapt to limit points through
a small change in δλ.

It is now possible to update incremental displacements and load factors:

∆un = ∆uo + δu =∆uo + δu+ δλδut

∆λn = ∆λo + δλ (23)

Enforcing the restriction from equation (19) :

(∆uT
n∆un+∆λ2nφ

2fTextfext) = ∆l2 (24)

and substituting equation (23) into (24) :

a1δλ
2 + a2δλ+ a3 = 0 (25)

where:
a1 = δuT

t δut + [φ2fTextfext] (26)

a2 = 2δuT
t (∆uo + δu) + [2∆λoφ

2fTextfext] (27)

a3 = (∆uo + δu)T (∆uo + δu)−∆l2 + [∆λ2oφf
T
extfext] (28)

246 Computational plasticity (I): non linear analysis techniques

ALERT Doctoral School 2024



The next step now is to solve (25) for δλ and choose one of the two possible solutions.
The most usual criterion to do so is to choose the δλ such that the resulting ∆un

is closest to ∆uo, or in other words the angle between them is the smallest. It is
therefore necessary to compute the cosine of this angle based on the scalar product.
The procedure to make the choice can therefore be expressed as :

∆u1
n = ∆uo + δu1=∆uo + δu+ δλ1δut

∆u2
n = ∆uo + δu2=∆uo + δu+ δλ2δut

cos θ1 =
∆uo ·∆u1

n

∥∆uo∥ ∥∆u1
n∥

cos θ2 =
∆uo ·∆u2

n

∥∆uo∥ ∥∆u2
n∥

choosing δλi such that cos θi = max(cos θ1, cos θ2).

The scheme of the procedure is presented in figure 10

An aspect of the procedure which has not been covered yet the computation of ∆λ y
∆l at the beginning of the increment. Assuming φ = 0, the usual way to procede is to
fix the value of ∆λ at the beginning of the first increment and compute the equivalent
value of ∆l based on the restriction:

∆uT
1 ∆u1 = ∆l2

∆u1 = K−1
t ∆λ1fext = ∆λ1δut

}
=⇒ ∆l = ∆λ1

√
δuT

t δut

The subindex of ∆λ1 and ∆u1 refers to the first iteration of of the increment. For
the first iteration of increments different from the first one, the order of the procedure
would be the contrary, that is obtaining ∆λ1 from ∆l:

∆λ1 = sign
∆l√
δuT

t δut

(29)

The value of variable sign in equation 29 will be decided based on the following
criterion:

a) If δuT
t Ktδut > 0⇒ before limit point⇒ sign = +1

b) If δuT
t Ktδut < 0⇒ after limit point ⇒ sign = −1
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Figure 10: The arc-length method.
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Fixing the value of ∆l in equation (29) is the same type of decision as fixing the
value of load steps in a classical load control analysis. Although it is a decission
which should be based on the experience of the analyst it is clear that the size of
the step should diminish as the loading process advances, since the degree of non
linearity usually increases with the loading factor. Although it requires additional
programming, usually the best solution is to establish some sort of automatic time
stepping algorithm, based on error estimation or some other criterion. Crisfield [Cri91]
presents in his text a very simple time stepping algorithm which will in many cases
solve the problem in a satisfactory manner. The algorithm is based on the concept of
”desirable number of iterations”. If in the previous increment the number of itereations
required to converge has been ”too high” the length of the present increment should be
smaller.If in the previous increment the number of itereations required to converge has
been ”too small” the length of the present increment should be bigger. This, of course,
requires for the analyst to establish what is a ”desirable number of iterations” based
on his/her computational experience. Following these ideas, the expression controling
the step length would be:

∆lj = ∆lj−1
Id
Ij−1

where:

∆lj = length of present increment

∆lj−1 = length of previous increment

Id = Desirable number of iterations, based on experience, usually around 5.

Ij−1 = Number of iterations of previous increment.

3.2 Alternative versions

3.2.1 Spherical versus cylindrical arc-length

The arc-length method as presented in the previous section is usually known as spher-
ical arc-length. The term spherical refers to the fact that restriction (19) includes both
forces and displacements. It is a restriction applied in a multidimensional space of
forces and displacements, and therefore a spherical restriction. When φ = 0, the re-
striction includes only displacements, and is therefore referred to as cylindrical. In
fact, the latter version is much more frequently used because it is simpler and the
spherical arc-length does not have significant advantages. In equations 26,27 and
28, coefficients for the cylindrical versions may by obtained by omitting the terms in
brackets.

Although they will not be covered in detail, one should mention that there are ”linear”
versions for both cylindrical and spherical arc-length. These versions are linear in the
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sense that the arclength restriction is only enforced in an approximate fashion. Using
a 2D graphical explanation, a linear approximatiom woul be to obtain the intersection
between the tangent to a circumference arc and the force-displacement while the full
arc-length restriction would be to obtain the intersection between the said circumfer-
ence arc and the force-displacement curve.

3.2.2 Modified versus full Newton-Raphson

The arc-length method may be implemented following either a full Newton-Raphson
algorithm where stiffness matrix is updated at every iteration or a modified Newton-
Raphson where the stiffnes matrix is only updated at the first iteration of each incre-
ment. The first alternative is obviously more powerful and converges faster but each
iteration is computationally more expensive. In spite of the latter disvantage it is usu-
ally more reliable than the modified alternative. The updating of vector δut is done at
the same time as Kt is updated, at each iteration for the full Newton-Raphson and at
the beginning of the increment for the modified version.

3.2.3 A displacement control type version of the arc-length method

One the possible versions of the arc-length method, due to Batoz [BD79], is similar
although not equivalent to a displacement control. The method consists in applying
the the length restriction to a specific degree of freedom, that is:

∆l2 = ∆u2i

where subindex i refers to the degree of freedom which is being controlled.

This method has the limitation of requiring the certainty that the specific degree of
freedom chosen for control varies monotonically during the loading process. This
means that it will always have to increase or decrease during the the loading process.
The possibility exists that no such degree of freedom exists in the model, that is, all
the degrees of freedom in the model swith from an increasing to a decreasing pattern
or viceversa. That would be the case in a ”snap-back” problem.

3.2.4 Bathe-Dvorkin version

An interesting version of the arc-length method was formulated by Bathe and Dvorkin
[BD83] that consists in using a restriction based on a constant external work along the
increment. This means that the external work is computed in the firs iteration of the
increment according to the following expression:

∆l = ∆W = (λ+
1

2
∆λp)f

T
ext∆up = ∆λp(λ+

1

2
∆λp)f

T
extδut
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and is forced to remain constant during the subsequent iterations:

(λo +
1

2
δλ)fTextδu = (λo +

1

2
δλ)(fTextδu+ δλfTextδut) = 0

where λo is the load factor in the previous iteration. This restriction gives rise to sec-
ond degree equation in δλ, as in the standard arc-length. The difference between this
version and the standard arc-length lies in the fact that in this case the roots of the sec-
ond degree equation are guaranteed to be real. This is why some authors recommend
to switch to the Bathe-Dvorkin version when the Crisfield version yields complex
solutions.

4 Line search methods

As seen in previous sections the Newton-Raphson procedure is based on an iterative
process in which the displacement vector correction is:

δu = −K−1
t Ψ

where Ψ is the residual force vector. The line-search method is based on the idea that
the optimum prediction for the new displacement vector un is not obtained by simply
adding the displacement correction vector δu to the old displacement vector uo but
according to the following expression:

un = uo + ηδu (30)

where η is a new parameter obtained by minimization of a certain potential function
ϕ :

ϕn(η + δη) = ϕo(η) +
∂ϕ

∂η
δη + ... = ϕo +

∂ϕ

∂u

∂u

∂η
δη + ...

The minimization condition for ϕ in terms of η is:

∂ϕ

∂η
= 0

In the case of non linear elastic problems ϕ is taken as the total potential energy which
may be precisely define from solid mechanics point of view. This choice is consis-
tent with the classical variational approach to a non linear elastic problem as a total
potential energy minimization problem. In this context it is possible to prove that the
previous equation may be expressed as:

∂ϕ

∂u

∂u

∂η
= Ψ(η)T δu = 0
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or similarly as:

δ(η) =
∂ϕ

∂η
= δuTΨ(η) = 0 (31)

Strictly speaking this approach can not be used with problems such as elastoplasticity
in a materially non linear context. However, for this type of problems it is possible to
use an algorithm with an energy approach such as line search, with a potential function
of which it is known that the derivative with respect to the displacement vector ∂ϕ

∂u is
the residual force vector Ψ. Following this approach and according to equation (31)
it is possible to define δ0 as δ(η = 0) according to the following expression:

δ0 = δ(η = 0) = δuTΨ(η = 0) = δuTΨ0 = −ΨT
0 K

−1
t Ψ0 = −δuTKtδu

Although the strict minimization condition is the one expressed in (31) from a numer-
ical point of view it is more interesting to enforce a lax or non strict minimization
condition such as :

|r(η)| =
∣∣∣∣
δ(η)

δ0

∣∣∣∣ < β (32)

where β is a constant fixed by the analyst usually between 0.1 and 0.5. To solve
equation (32) the following steps are necessary:

1o) Obtain δ0 = δuTΨ0. where Ψ0 is available from the previous iteration.

2o) Compute δ1 = δ(η = 1).

3o) Obtain:

η2 =
−η1δ0
δ1 − δ0

(33)

Equation (33) comes from performing a linear interpolation of the value η2
between η0 and η1 by enforcing δ(η2) = 0.

4o) δ2 = δ(η2) is obtained

5o) Check if δ2 satisfies or not the non strict minimization condition
∣∣∣ δ(η)δ0

∣∣∣ < β

6o) If the answer is :

a) Yes : the line search algorithm has ended and displacemnts are updated
according to equation (30)

b) No : Return to step 3 obtaining η3 = −η2δ0
δ2−δ0

and continuing with the
iterative process until convergence is reached.

As one may see from the described procedure, each iteration in a line search algorithm
requires an additional update of the internal force vector, with computational cost
that this implies. This is why a non strict line search with a few iterations is usually
performed instead of strict minimation line search. The computaional cost of the latter
would be prohibitive.
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4.1 Combination of arc-length and line-search

The application of the line search method in combination with arc-length has also
been treated by Crisfield [Cri97]. The combination of these two algorithms implies the
application of equation minimization condition (31) to the total iterative displacement
in equation (22), that is:

δ = (δu+ δλδut)
TΨ(λ, η) = 0 (34)

The problem is that every time equation (33) is applied in search of a new value for η
that approximately satisfies equation (34) the arc-length condition ceases to be satis-
fied. This means that a new value for δλ has to be obtained such that:

(∆u0 + η(δu+ δλδut))
T (∆u0 + η(δu+ δλδut)) = ∆l2 (35)

This gives rise to an additional iterative procedure nested in the algorithm presented in
the previous section. As expected equation (35) ends up in a second degree equation
in δλ with similar coefficients to (26),(27) and (28) but including η . The additional
iterative procedure consists in:

1) Application of equation (33).η is obtained.

2) Solution of problem (35). A new value for δλn is obtained.

If ( |δλn−δλo|
|δλo| < tolerancia)⇒ End of the iterative process.

Else⇒ return to step 1

References

[Bat96] KJ Bathe. Finite element Procedures. Prentice Hall, New Jersey, 1996.

[BD79] J. L. Batoz and G. Dhatt. Incremental displacement algorithms for non lin-
ear problems. International Journal for Numerical and Analytical Meth-
ods in Engineering, 14:1262–1266, 1979.

[BD83] KJ Bathe and EN Dvorkin. On the automatic solution of nonlinear finite
element equations. Computers and Structures, 17:871–879, 1983.

[BLM00] T Belytschko, WK Liu, and B Moran. Non-linear Finite Elements for
Continua and Structures. Wiley, 2000.

[Bro65] CG Broyden. Mathematics of Computation, volume 19. 1965.

[Cri91] MA Crisfield. Non-linear Finite Element Analysis of Solids and Structures.
Volume 1: Essentials. John Wiley and Sons, 1991.

[Cri97] MA Crisfield. Non-linear Finite Element Analysis of Solids and Structures.
Volume 1: Advanced Topics. John Wiley and Sons, 1997.

Mira & Pastor 253

ALERT Doctoral School 2024



[DM77] J. E. Dennis and J. More. Quasi newton methods: motivation and theory.
SIAM Review, 19:46–89, 1977.

[GIH80] M. Geradin, S. Idelsohn, and M. Hogge. Non linear structural dynam-
ics via newton and quasi newton methods. Nuclear Engineering Design,
58:339–348, 1980.

[PTVF92] WH Press, SA Teukolsky, WT Vetterling, and BP Flannery. Numerical
recipes in FORTRAN. Cambridge University Press,2nd ed, 1992.

[Rik72] E. Riks. The application of newton’s method to the problem of elastic
stability. Journal of Applied Mechanics, 39:1060–1069, 1972.

[Rik79] E. Riks. An incremental approach to the solution of snapping and buckling
problems. International Journal for Solids Structures, 15:529–551, 1979.

[SH98] J. Simo and T. Hughes. Computational inelasticity. Springer, 1998.

[Wem71] G. A. Wempner. Discrete approximations related to non linear theories of
solids. International Journal for Solids Structures, 7:1581–1599, 1971.

[ZT89] O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method, volume
1 and 2. McGraw-Hill, 4th edition, 1989.

254 Computational plasticity (I): non linear analysis techniques

ALERT Doctoral School 2024



Computational plasticity (II):
numerical integration of elastoplastic
constitutive equations
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This chapter presents an overview of some of the most widely used numerical pro-
cedures for the integration of elastoplastic constitutive equations in the context of
non–linear Finite Element analysis. The first part of the chapter is devoted to the for-
mulation of the evolution equations and the discussion of the stress–point algorithms
for infinitesimal plasticity. The second part focuses on the evolution equations of finite
deformation multiplicative plasticity and the corresponding stress–point algorithms.
Both the implicit Backward Euler method – based on a two–stage procedure with
an elastic predictor problem and a plastic corrector problem – and explicit adaptive
schemes with substepping and error control are covered for both infinitesimal and
finite deformation plasticity models. This chapter was first published in the lecture
notes of the 2021 ALERT School “Constitutive Modelling in Geomaterials”.

1 Introduction

In recent years the parallel development of: i) advanced constitutive theories for the
mechanical behavior of geomaterials, ii) robust and accurate numerical methods for
the solution of partial differential equations, and iii) powerful computer architectures,
has led to a radical change in the analysis of geotechnical problems, notably in some
areas such as the design of deep excavations or the analysis of complex soil–structure
interaction problems where traditional design methods – based on the classical dis-
tinction between “failure” and “deformation” problems – are not able to capture the
most relevant aspects of the soil–structure system behavior.

A common and almost universal feature of the constitutive models proposed for geo-
materials – from those which have now became a standard design tool in geotechnical
practice to the ones which were mainly developed for research purposes – is the fact
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that they are cast in incremental form. Rather than providing the state of stress associ-
ated to a specific state of strain, they define the evolution laws for the state variables.
Therefore, the quantitative evaluation of the mechanical effects of a given “load”, be
it an imposed stress increment, strain increment or a combination of both, requires
the solution of an initial value problem, consisting in the integration of the constitu-
tive equation along the assigned loading path, with prescribed initial conditions. As
this task cannot be performed analytically, except in very special cases, the develop-
ment of a numerical algorithm for this purpose is a crucial part of any computational
procedure for the solution of non–linear problems in geomechanics.

More specifically, in the application of numerical methods – such as the finite Element
method – to the solution of a non–linear initial/boundary value problem, the following
general strategy is usually adopted, see [SH98]:

1. from the original system of governing partial differential equations (PDEs), a
non–linear system of algebraic balance equations is obtained by the introduc-
tion of appropriate space and time discretizations. Such a system is typically
solved by adopting an incremental–iterative approach;

2. for any given global iteration, the discretized equilibrium equations generate in-
cremental motions, which, in turn, are used to determine the incremental strain
history by purely kinematic relationships;

3. for a given strain increment, updated values of the state variables are obtained by
integrating numerically the constitutive equations at the local level, with given
initial conditions; for their local scope, the procedures employed for this task
are typically referred to as stress–point algorithms;

4. the discrete balance equations are then checked for convergence, and if the con-
vergence criterion is not met, the iteration process is continued by returning to
step (2).

As first pointed out by Hughes [Hug84], the integration of the constitutive equation at
the local level – i.e., step (3) – represents the central problem of computational plastic-
ity, since it corresponds to the main role played by the constitutive equation in actual
computations. There are of course many other important computational ingredients in
the overall procedure, but they are particular to the type of solution strategy employed,
and involve the constitutive theory only in a limited way, if at all. Moreover, the pre-
cision with which the constitutive equations are integrated has a direct impact on the
overall accuracy of the analysis.

Since the early works on metal plasticity, summarized in [Hug84], a number of funda-
mental treatises have been published on this subject. Among them we cite the books
of Simo and Hughes [SH98], de Souza Neto et al. [dPO11] and the chapter written by
Simo [Sim98] for the Handbook of Numerical Analysis.

In this chapter, we present an overview of some of the most widely used stress–point
algorithms for the integration of classical and advanced plasticity models for soils,
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reflecting our personal experience in this field. After a brief description of the no-
tation (Sect. 2), in Sect. 3 we address the main problem of computational plasticity
for the case of infinitesimal deformations, summarizing the evolution equations to be
integrated and the different numerical procedures for their integration, separating ex-
plicit adaptive strategies with error control based on Runge–Kutta methods and the
implicit Backward–Euler algorithm, which has now become a standard in computa-
tional plasticity. The evolution equations for finite deformation multiplicative plastic-
ity and the corresponding explicit, semi–implicit and implicit integration algorithms
are presented in Sect. 4. In both Sect. 3 and 4, particular attention is paid to the defini-
tion and the computation of the consistent tangent stiffness matrix, which guarantees
the asymptotic quadratic convergence of the Newton–Raphson method when it is used
for the iterative solution of the discrete equilibrium equations.

2 Notation

In the following, all stresses and stress–related quantities are effective, unless oth-
erwise stated. The sign convention of continuum mechanics (traction and extension
positive) is adopted throughout. Both direct and index notations will be used to repre-
sent vector and tensor quantities according to convenience. In direct notation, vectors
and second–order tensors will be represented by boldface italic fonts. Boldface italic
fonts and blackboard bold fonts – such as ce and Ce – are used to represent fourth–
order tensors, according to convenience. Following standard practice, for any two
vectors v,w ∈ R3, the dot product is defined as: v · w := viwi, and the dyadic
product as: [v⊗w]ij := viwj . Accordingly, for any two second–order tensors X,Y ,
X · Y := XijYij and [X ⊗ Y ]ijkl := XijYkl. The quantity ∥X∥ :=

√
X ·X

denotes the Euclidean norm of the second order tensor X , unless otherwise stated.

3 Stress–point algorithms for infinitesimal plasticity

3.1 Evolution equations
The evolution equations of the theory of infinitesimal plasticity are briefly summarized
below. Let ϵ be the strain tensor and q be the vector (of dimension nint) of the internal
state variables accounting for the effects of the previous loading history. Also, let:

E :=
{
(σ, q)

∣∣∣ f (σ, q) ≤ 0
}

(1)

be the elastic domain, defined through a suitable yield function f(σ, q) = 0. Taking
into account the usual additive decomposition of the strain rate tensor, ϵ̇, into an elastic

Tamagnini & Oliynyk 257

ALERT Doctoral School 2024



(ϵ̇e) and a plastic (ϵ̇p) part, we have:

σ̇ = De [ϵ̇− ϵ̇p] (2)

ϵ̇p = γ̇
∂g

∂σ
(σ, q) (3)

q̇ = γ̇h(σ, q) (4)

subject to the following Kuhn–Tucker complementarity conditions:

γ̇ ≥ 0 , f(σ, q) ≤ 0 , γ̇f(σ, q) = 0 (5)

which state that plastic processes (γ̇ > 0) can occur only for states on the yield surface,
and to the consistency condition:

γ̇ḟ = γ̇

(
∂f

∂σ
· σ̇ +

∂f

∂q
· q̇
)

= 0 (6)

requiring that the state of the material remains on the yield surface (f = 0) whenever
plastic loading occurs. Eq. (2) is the elastic constitutive equation of the material in
incremental form. The fourth–order tensor De is the elastic tangent stiffness of the
material. Eq. (3) provides the flow rule for the plastic strain rate, defined in terms of
the plastic potential function g = ĝ(σ, q). The non–negative scalar γ̇ is the plastic
multiplier. The evolution of the internal variables q is provided by the hardening law
(4), in which h is a prescribed hardening function.

From the consistency condition (6) the following expression for the plastic multiplier
is obtained:

γ̇ =
1

Kp

〈
∂f

∂σ
·Deϵ̇

〉
(7)

in which:

Kp :=
∂f

∂σ
·De ∂g

∂σ
+Hp > 0 Hp := −∂f

∂q
· h (8)

Substituting the expression (7) for the plastic multiplier in eqs. (3) and (4), we obtain:

σ̇ = Depϵ̇ q̇ = Hpϵ̇ (9)

where:

Dep := De − H (γ̇)

Kp

(
De ∂g

∂σ

)
⊗
(
∂f

∂σ
De

)
(10a)

Hp :=
H (γ̇)

Kp
h⊗

(
∂f

∂σ
De

)
(10b)

where H (x) is the Heaviside step function, equal to one if x > 0 and zero otherwise,
and Kp is provided by eq. (8)1.
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3.2 State update

Let I =
⋃N

n=0 [tn, tn+1] be a partition of the time interval of interest into time steps.
It is assumed that at time tn ∈ I the state of the material (σn, qn) is known at any
quadrature point in the adopted finite element discretization. Also, let:

{ϵi : i = 0, 1, . . . , n+ 1}
be the prescribed history of ϵ up to time tn+1. The computational problem to be
addressed is the update of the state variables:

σ
(k)
n+1 → σ̂

(
ϵ
(k)
n+1;σn, qn

)
(11)

q
(k)
n+1 → q̂

(
ϵ
(k)
n+1;σn, qn

)
(12)

for a given increment ∆ϵ
(k)
n+1 := ϵ

(k)
n+1−ϵn, relative to the global iteration (k), through

the integration of the system of ordinary differential equations (ODEs) (2)–(5) or (9)
provided by the elastoplastic constitutive equations. Note that the evolution prob-
lem defined by eqs. (2)–(5) belongs to the category of the so–called stiff differential–
algebraic systems – see [HW91] for details – for which implicit methods are ideally
suited. In the evolution problem governed by eqs. (9), the algebraic constraint posed
by eqs. (5) has been linearized by imposing the consistency condition and then re-
moved. This format is therefore best suited for the application of explicit methods.

Whenever the existence of a free energy function ψ = ψ (ϵe) can be postulated, the
stress tensor is linked to the elastic strain tensor by the relation:

σ(ϵe) =
∂ψ

∂ϵe
(ϵe) (13)

and thus can be considered a dependent quantity. As such, σ can be replaced in the
set of state variables by the elastic strain tensor ϵe. The evolution equations (11) and
(12) can then be recast in the following format:

ϵ
e(k)
n+1 → ϵ̂e

(
ϵ
(k)
n+1; ϵ

e
n, qn

)
(14)

q
(k)
n+1 → q̂

(
ϵ
(k)
n+1; ϵ

e
n, qn

)
(15)

3.3 Consistent linearization of the stress update algorithm
In a standard finite element context, the starting point for the solution of a static equi-
librium problem is the weak form of the balance of momentum equation, which, for
the problem at hand, is stated as follows. Find the unknown function u(x) such that,
for any test function (variation) η(x) satisfying homogeneous boundary conditions on
the appropriate part of the boundary, the following non–linear functional equation is
satisfied:

G (u,η) =

∫

Ω

∇sη · σ (u) dV −
∫

Ω

ρη · b dV −
∫

Γt

η · t dA = 0 (16)
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In the above equation, non–linearity stems from the non–linear dependence of the
stress tensor on u induced by the constitutive equation. The iterative solution via
Newton’s method of the non–linear algebraic problem resulting after the introduction
of a standard finite element discretization, requires the linearization of the non–linear
functional G with respect to the independent field u:

DuG
(
u
(k)
n+1,η

) [
δu

(k)
n+1

]
=

∫

Ω

{
∇sη ·

(
D̃
)(k)
n+1
∇s (δu)

(k)
n+1

}
dV (17)

in which:
(
D̃
)(k)
n+1

:=
∂σ

(k)
n+1

∂ϵ
(k)
n+1

(18)

The fourth–order tensor D̃
(k)

n+1 is the so–called consistent tangent stiffness matrix to
the update procedure defined by eqs. (11) and (12) or (14) and (15), i.e., by the stress–
point algorithm, see [ST85]. This quantity heavily depends on the adopted integration
algorithm, and its accurate evaluation is crucial to achieve the quadratic convergence
when using Newton–Raphson method to solve iteratively the global discrete equilib-
rium equations.

3.4 Explicit adaptive methods
Starting from the pioneering work of Sloan [Slo87], a significant amount of work has
been devoted to the development of explicit stress–point algorithms for infinitesimal
plasticity, based on the use of Runge–Kutta methods of various order. The key point in
the application of classical methods to the solution of the differential–algebraic evo-
lution problem posed by eqs. (2)–(4) and (5) is the removal of the algebraic constraint
by its linearization through the consistency condition (6), in order to obtain the system
of ODEs of eqs. (9).

Due to their conditional stability, explicit integration methods have been developed in
connection with adaptive time–stepping strategies employing variable substep sizes.
Adaptive time–stepping is usually implemented in two possible ways, see [SB92b]:

a) by comparing the solutions obtained with the same time step size with two ex-
plicit methods of different order (embedded Runge–Kutta methods);

b) by comparing the solutions obtained with the same algorithm using different
step sizes (typically, a single step of size h and two consecutive steps of size
h/2).

Methods of the first group have been used in the works of Sloan and coworkers
[Slo87, SB92a, SAS01, PSS08] and Tamagnini et al. [TVCD00]. A method of the
second group based on the repeated use of the simple Forward Euler algorithm has
been adopted by Fellin, Ostermann and Mittendorfer [FO02, FMO09]. In the fol-
lowing, we will focus our attention on these last two works, which, differently from
the others mentioned, address the point of computing the consistent tangent stiffness
matrix as a part of the integration algorithm.
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3.4.1 Substepping, time rescaling and consistent linearization

Again, let I =
⋃N

n=0 [tn, tn+1] be a partition of the time interval of interest [t0, tfin]
into time steps of amplitude ∆tn+1 = tn+1 − tn. When the material behavior is
rate–independent, it is possible to rescale the time axis by introducing the following
non–dimensional time factor:

T =
(t− tn)

(tn+1 − tn)
=

(t− tn)
∆tn+1

T ∈ [0, 1] (19)

The (unit) non–dimensional time increment can then be divided in m substeps of size:

∆Tk+1 = Tk+1 − Tk =
tk+1 − tk
∆tn+1

provided that:
m∑

k=1

∆Tk = 1 (20)

Considering that, during the time step [tn, tn+1] the strain rate is assumed constant,
we can write:

ϵ̇ =
∆ϵn+1

∆tn+1

dϵ

dT
= ϵ̇

dt

dT
= ∆ϵn+1 (21)

and thus rewrite the evolution equations (9) as:

dσ

dT
= Dep(σ, q)∆ϵn+1 = ξ(σ, q,∆ϵn+1) σ

∣∣
T=0

= σn (22a)

dq

dT
= Hp(σ, q)∆ϵn+1 = η(σ, q, ,∆ϵn+1) q

∣∣
T=0

= qn (22b)

where the strain increment ∆ϵn+1 is to be considered a given data. As indicated by
eq. (18), the consistent tangent stiffness emerging from the linearization of the algo-
rithm employed to integrate eqs. (22) in the interval [0, 1], with the initial conditions
given in eqs. (22a)2 and (22b)2, measures the changes in the updated value of σ (i.e.,
σn+1) for an infinitesimal change of the prescribed strain increment, that is:

D̃n+1 =
∂σn+1

∂ϵn+1
=

∂σn+1

∂∆ϵn+1
(23)

where the superscript (k) has been dropped to ease the notation. By deriving eqs. (22)
with respect to ∆ϵn+1 we obtain:

d

dT

(
∂σ

∂∆ϵn+1

)
=
∂ξ

∂σ

∂σ

∂∆ϵn+1
+
∂ξ

∂q

∂q

∂∆ϵn+1
+

∂ξ

∂∆ϵn+1
(24a)

d

dT

(
∂q

∂∆ϵn+1

)
=
∂η

∂σ

∂σ

∂∆ϵn+1
+
∂η

∂q

∂q

∂∆ϵn+1
+

∂η

∂∆ϵn+1
(24b)

By setting:

D̃ =
∂σ

∂∆ϵn+1
G̃ =

∂q

∂∆ϵn+1
(25)
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eqs. (24) provide the following evolution equations for D̃ and G̃:

dD̃

dT
=
∂ξ

∂σ
D̃ +

∂ξ

∂q
G̃+Dep D̃

∣∣
T=0

= 0 (26a)

dG̃

dT
=
∂η

∂σ
D̃ +

∂η

∂q
G̃+Hp G̃

∣∣
T=0

= 0 (26b)

The ordinary differential equations (22) and (26), integrated over the dimensionless
time interval [0, 1] with the prescribed initial conditions, will yield, at the end of the
integration process (T = 1), the updated values of the state variables (σn+1, qn+1).
The final integrated value of D̃ at T = 1 will be the tangent stiffness consistent
with the numerical integration algorithm adopted to solve the evolution problem. This
approach to the consistent linearization of the integration algorithm has been proposed
by Fellin and Ostermann [FO02].

In view of the analytical difficulties in computing the derivatives of the functions ξ
and η with respect to σ and q for realistic constitutive models, Fellin and Ostermann
suggest to replace the RHS of eqs. (26a) and (26b) with the following approximation,
obtained by numerical differentiation:

dD̃kl

dT
≃ 1

ϑ

{
ξ
(
σ + ϑD̃kl, q + ϑG̃kl,∆ϵn+1 + ϑĨkl

)
− ξ (σ, q,∆ϵn+1)

}
(27a)

dG̃kl

dT
≃ 1

ϑ

{
η
(
σ + ϑD̃kl, q + ϑG̃kl,∆ϵn+1 + ϑĨkl

)
− η (σ, q,∆ϵn+1)

}

(27b)

for k = 1, 2, 3 and l = 1, 2, 3, with the initial conditions:

D̃kl

∣∣
T=0

= 0 G̃kl

∣∣
T=0

= 0 ∀ (k, l) = 1, 2, 3 (28)

In eqs. (27) and (28), the quantities D̃kl, G̃kl and Ĩkl are defined as:

D̃kl :=
∂σ

∂∆ϵkl,n+1
G̃kl :=

∂q

∂∆ϵkl,n+1
Ĩkl = (δikδjl)ei ⊗ ej (29)

If Voigt notation is adopted to represents second–order and fourth–order tensors, with
the following index mapping:

(ij)/(kl) 11 22 33 12 23 31

α/β 1 2 3 4 5 6

then the quantities in eq. (29) can be interpreted as the β–th column vectors of the
Voigt matrices D̃, G̃ and Ĩ , this last being the Voigt representation of the fourth–
order identity tensor.
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3.4.2 Adaptive time integration

Let the unknowns of the evolution problem – σ, q, D̃ and G̃ – be collected into a
single vector:

y =
{
σT , qT , D̃

T

11, D̃
T

22, . . . D̃
T

31, G̃
T

11, G̃
T

22, . . . , G̃
T

31

}T

(30)

in which the stress σ and the eventual tensorial internal variables collected in q are
represented in Voigt notation as 6–dimensional vectors and the matrices D̃ and G̃
are stored columnwise. Then, the ODEs of eqs. (22) and (27) can be recast in the
following standard format:

dy

dT
= f(y) T ∈ [0, 1] y

∣∣
T=0

= y0 (31)

in which the vector f collects the RHSs of eqs. (22) and (27). Eq. (31) could be in-
tegrated by means of different adaptive explicit algorithms with error control, such as
Forward Euler with Richardson extrapolation [FO02, FMO09], or various types of em-
bedded Runge–Kutta schemes of different orders [Slo87, TVC00, SAS01]. Here, we
discuss in detail the implementation of the second–order adaptive substepping scheme
based on the simple Forward Euler method coupled with Richardson extrapolation,
first proposed by Fellin and Ostermann [FO02], for its good properties of simplicity,
robustness and accuracy.

Let [Tk, Tk+1] ∈ [0, 1] a generic substep of size ∆Tk+1, and let yk the known value
of y at the beginning of the step. Using the Forward Euler method, the following first
approximation to yk+1 is obtained:

v = yk +∆Tk+1f(yk) (32)

A second approximation to yn+1 is obtained by applying the Forward Euler method
to two steps of size ∆Tk+1/2:

w = yk +
∆Tk+1

2
f(yk) +

∆Tk+1

2
f

{
yk +

∆Tk+1

2
f(yk)

}
(33)

both v and w are first–order approximations to yk+1 but a straightforward Taylor
expansion shows that:

yn+1 = 2w − v +O(∆T 2
k+1) (34)

i.e., the difference 2w − v is a second–order approximation to the local solution.

The norm:

EST := ∥w − v∥max ∥w − v∥max := max
i=1,...,ny

∣∣∣∣
wi − vi
si

∣∣∣∣ (35)

with si a suitable scaling factor, is an asymptotically correct estimate for the local
integration error of w. Setting the quantity TOL as the user–supplied tolerance, the
comparison between TOL and EST provides an indicator of the accuracy of the
numerical integration procedure and an estimate of the optimal substep to be used. In
particular:
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a) If EST < TOL: the substep is accepted, with yk+1 given by eq. (34). The
next substep size can be increased according to the relation:

∆Tk+2 = ∆Tk+1 min

{
rI ,max

(
rD, 0.9

√
TOL

EST

)}
(36)

b) If EST ≥ TOL: the substep is rejected, and the integration step repeated with
a smaller substep size given by:

∆Tk+1 ← ∆Tk+1 min

{
rI ,max

(
rD, 0.9

√
TOL

EST

)}
(37)

In eqs. (36) and (37), the coefficient 0.9 multiplying the square root of TOL/EST is a
“safety factor” accounting from the approximation introduced in the error estimation,
while rI and rD represent the maximum increase and decrease in the step size allowed.
Typically they are set to rI = 2.0 and rD = 0.2.

3.4.3 Drift correction and other computational aspects in explicit integration

When using explicit integration algorithms, the updated state variables (σk+1, qk+1)
may violate the consistency condition, so that:

fk+1 = f(σk+1, qk+1) > FTOL

with FTOL a prescribed error tolerance for the consistency condition. This situation,
which corresponds to a stress state σk+1 outside the final yield surface, is commonly
known in computational plasticity as yield surface drift. The reason for this pathology
is that, in explicit methods, the algebraic constraint imposed by eq. (5)2 is linearized,
and thus enforced in a weak form. The extent of this violation depends on the ac-
curacy of the integration scheme, so it could be reduced by adopting stringent error
tolerances on the adaptive substepping scheme. Nonetheless, in order to prevent error
accumulation, it is highly recommendable to implement a drift correction algorithm
at the end of each substep, particularly for complex constitutive models.

Different types of drift correction algorithms have been proposed in literature. A
detailed discussion on the advantages and drawbacks of some of the more widely
used strategies for drift correction, focusing on their application to plasticity models
developed for soils, can be found in the works of [PG85, SAS01].

In addition to drift correction, the adoption of explicit integration methods in clas-
sical plasticity – where there is a non–smooth transition between elastic and plastic
behavior along a predefined stress–path – requires particular attention for those time
integration steps which:

a) start from an elastic state and – if elastic response is maintained for the entire
step – end outside the current yield surface;
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b) start from a plastic state (on the current yield surface) and crosses the yield
surface once before ending up on a new plastic state;

c) start from an elastic state and end on another elastic state, crossing the yield
surface twice during the path from the initial to the final state.

Situations of type (a) are quite common, particularly when relatively large integration
steps are used. Situations of type (b) may occur in presence of relatively small elastic
domains – e.g., in models for sands with rotational hardening, where the yield surface
is a cone with a small opening. Both these issues have been addressed in [SAS01].
Situations of type (c) may occur when the yield surface is non–convex. While the
opportunity of adopting a non–convex yield surface is questionable on both theoretical
and experimental grounds, the treatment of this case has been effectively addressed by
Pedroso et al. [PSS08].

3.5 Implicit Generalized Backward Euler method
Implicit algorithms based on the concepts of operator split and closest point projection
return mapping, as discussed for example in [SH87, SG91], have been applied to
computational geomechanics in a number of works, among which we mention [BL90,
Bor91, ARS92, MWA97, JS97].

The starting point for this approach is the exploitation of the additive structure of
the governing equations of the differential–algebraic problem eqs. (2)–(5) to split the
update processes into two consecutive steps, as detailed in the following section.

3.5.1 Operator split and product formula algorithm

The constitutive equation of infinitesimal plasticity are amenable to the elastic–plastic
operator split of the original problem of evolution, into an elastic predictor problem
and a plastic corrector problem, as shown in Tab. 1 [SH87, SH98]. Note that in Tab. 1,
exploiting the existence of a free energy function and thus of the elastic constitutive
equation (13), the elastic constitutive equation in rate–form has been replaced by the
additive split of the strain rate: ϵ̇e = ϵ̇− ϵ̇p.

Starting from this operator split, a product formula algorithm is constructed as follows.
First, the elastic predictor problem is solved and a so–called trial elastic state is ob-
tained. Then, the constraints (5) are checked for the trial state, and if they are violated,
the trial state is taken as the initial condition for the plastic corrector problem.

3.5.2 Problem 1: elastic predictor

From the physical point of view, the elastic predictor problem can be derived from
the original problem of evolution by freezing the plastic flow (i.e., setting γ̇ = 0), and
taking an incremental elastic step which ignores the constraints placed on the stress
state by the yield function. The solution of the predictor stage (trial state) in terms of
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Global Elastic predictor Plastic corrector

Evolution eqs.

ϵ̇ = ∇s(u̇) ϵ̇ = ∇s(u̇) ϵ̇ = 0

ϵ̇e = ϵ̇− γ̇ ∂g
∂σ

ϵ̇e = ϵ̇ ϵ̇e = −γ̇ ∂g
∂σ

q̇ = γ̇h q̇ = 0 q̇ = γ̇h

Initial conds.
ϵe(tn) = ϵen ϵe(tn) = ϵen ϵe

∣∣∣
(γ̇=0)

= ϵe,trn+1

q(tn) = qn q(tn) = qn q
∣∣∣
(γ̇=0)

= qtr
n+1

Constraints

f(σ, q) ≤ 0

γ̇ ≥ 0

f(σ, q)γ̇ = 0

none

f(σ, q) ≤ 0

γ̇ ≥ 0

f(σ, q)γ̇ = 0

Table 1: Operator split of the evolution problem of infinitesimal plasticity, formulated
in terms of strain rates.

elastic strains is given by the following geometric update:

ϵe,trn+1 = ϵen + ϵn+1 − ϵn (38)

As for the internal variables, since they do not change during an elastic process, the
trivial solution for their trial values is:

qtr
n+1 = qn (39)

Finally, the trial state of stress is obtained from ϵe,trn+1 by a simple function evaluation:

σtr
n+1 :=

∂ψ

∂ϵe
(
ϵe,trn+1

)
(40)

At the end of the elastic predictor stage, the trial state is checked for consistency with
the yield locus. If:

f trn+1 := f
(
σtr

n+1, qn

)
≤ 0

the trial state satisfies the constraints imposed by the Kuhn–Tucker conditions. The
process is then declared elastic and the trial state represents the actual final state of the
material. If, on the contrary, f trn+1 > 0, the process is declared plastic, and consistency
is restored by solving the plastic corrector problem.
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3.5.3 Problem 2: plastic corrector

If f trn+1 > 0, the trial state lies outside the yield locus, and thus violates the constraints.
Consistency is then restored by solving the plastic corrector problem, which takes
place at fixed total strain (ϵ̇ = 0). Since the objective of the plastic corrector stage
is to map the trial state back to the yield surface, the algorithms performing such task
are commonly referred to as return mapping algorithms.

Typically, the plastic corrector problem is solved numerically by integrating the cor-
responding system of ODEs by an implicit Backward Euler scheme, taking the trial
state as the new initial condition:

ϵen+1 = ϵe,trn+1 −∆γn+1

(
∂g

∂σ

)

n+1

(41)

qn+1 = qn +∆γn+1hn+1 (42)

As ∆γn+1 > 0, the constraints of eq. (5) reduce to:

fn+1 = f(σn+1, qn+1) = 0 (43)

Equations (41)–(43) provide a system of 7 + nint non–linear algebraic equations in
the 7 + nint unknowns ϵen+1, ∆γn+1, and qn+1, which can be solved iteratively by
Newton’s method, at the Gauss point level.

Let:
xn+1 :=

{
ϵeTn+1 qT

n+1 ∆γn+1

}T

∈ R7+nint (44)

be a vector containing the the unknowns of the problem and

x̃n+1 :=
{
ϵeTn+1 qT

n+1

}T

so that: xn+1 =
{
x̃T
n+1 ∆γn+1

}T

The return mapping equations (41)–(43) require the vanishing of the following resid-
ual vector:

Rn+1 (xn+1) :=





rϵn+1

rqn+1

fn+1





:=





−ϵen+1 + ϵe,trn+1 −∆γn+1Qn+1

−qn+1 + qtr
n+1 +∆γn+1hn+1

fn+1





= 0 (45)

where Qn+1 = (∂g/∂σ)n+1. The steps required for the iterative solution of eq. (45)
via Newton’s method are outlined in Tab. 2.

A first difficulty in applying the procedure outlined in Tab. 2 is that Step 3 requires
the inversion of a (7 + nint) × (7 + nint) square matrix. By observing that the last
component of the residual vector R

(j)
n+1 does not depend on ∆γn+1, the resulting

linearized system of equation can be reduced in size by one via static condensation.
However, the inversion of the resulting tangent operator in closed form can still be
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1. Initialize:

ϵen+1 = ϵe,trn+1 qn+1 = qtr
n+1 ∆γn+1 = 0

2. Check for convergence:

IF:





∥∥∥rϵ(j)n+1

∥∥∥ < TOLϵ ·
∥∥ϵe,trn+1

∥∥
∥∥∥rq(j)n+1

∥∥∥ < TOLq ·
∥∥qtr

n+1

∥∥

f
(j)
n+1 < TOLf





THEN exit, ELSE:

3. Find update at local iteration (j):

δx
(j)
n+1 = −

[(
∂R

∂x

)(j)

n+1

]−1

R
(j)
n+1

4. Update state variables and plastic multiplier:

x
(j+1)
n+1 = x

(j)
n+1 + δx

(j)
n+1

5. Set: j ← j + 1, GO TO 2.

Table 2: Iterative solution of the plastic corrector problem.
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very difficult, especially in presence of a large number of internal variables (i.e., in the
case of anisotropic hardening models). In the most difficult cases, this problem can
be solved by resorting to symbolic computation tools (as, e.g., MATHEMATICA) or by
numerical methods, as in [TCN02].

Another classical problem in the application of the implicit Backward Euler algorithm
to complex, three–invariants plasticity models lies in the need of computing the sec-
ond gradients of the plastic potential function ∂2g/∂σ ⊗ ∂σ and the derivatives with
respect to σ and q of the hardening function h. In the most complex situations, this
task can be performed by resorting to numerical differentiation, as suggested, e.g., in
[PFRFH00].

3.5.4 Formulation of the corrector step in principal elastic strain space

A considerable simplification in the application of the implicit Backward Euler algo-
rithm to complex plasticity models can be obtained in the case of isotropic–hardening
plasticity, by formulating the return mapping stage in principal elastic strain space. By
exploiting the spectral decomposition of the tensors Qn+1, ϵen+1 and ϵe,trn+1, eq. (41)
transforms into:

3∑

A=1

(ϵeA)n+1 n
(A)
n+1 ⊗ n

(A)
n+1 =

3∑

A=1

(
ϵe,trA

)
n+1

n
(A),tr
n+1 ⊗ n

(A),tr
n+1 −

∆γn+1

3∑

A=1

(
∂g

∂σA

)

n+1

n
(A)
n+1 ⊗ n

(A)
n+1 (46)

in which n
(A)
n+1 and n

(A),tr
n+1 are the A–th unit eigenvectors of ϵen+1 and ϵe,trn+1. Then, it

follows at once that:
n

(A)
n+1 = n

(A),tr
n+1 (47)

and:

(ϵeA)n+1 =
(
ϵe,trA

)
n+1
−∆γn+1

(
∂g

∂σA

)

n+1

(48)

for A = 1, 2 or 3. Note that, as the trial elastic strain is known, so are its princi-
pal directions. Therefore, the only unknown quantities to be determined remain the
three principal elastic strains (ϵeA)n+1, the nint internal variables qn+1 and the plastic
multiplier ∆γn+1. Introducing for convenience the following vector notation:

ϵ̂e :=





ϵe1

ϵe2

ϵe3





ϵ̂e,tr :=





ϵe,tr1

ϵe,tr2

ϵe,tr3





σ̂ :=





σ1

σ2

σ3





Q̂ :=





∂g/∂σ1

∂g/∂σ2

∂g/∂σ3





(49)
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the return mapping problem in principal elastic strain space can be recast as follows:

ϵ̂en+1 = ϵ̂e,trn+1 −∆γn+1Q̂n+1 (50a)

qn+1 = qtr
n+1 +∆γn+1hn+1 (50b)

fn+1 := f(σ̂n+1, qn+1) = 0 (50c)

The iterative solution of the return mapping equations (50) follows a scheme similar to
that in Tab. 2. The number of equations to be solved is now reduced by 3. Moreover,
only the evaluation of the (3× 3) matrix:

∇∇g =
∂2g

∂σ̂ ⊗ ∂σ̂ (51)

is now required to compute the tangent operator ∂R/∂x.

3.5.5 Consistent tangent stiffness

One of the advantages of the proposed algorithm is the possibility of evaluating the
consistent tangent operators in closed form, as shown in the following.

In the global iteration process, any (infinitesimal) variation in the total strain increment
induces, by definition, an equal variation in the trial elastic strain:

dϵ = dϵe,tr (52)

where the subscript n + 1 and the superscript (k) have been omitted to ease the no-
tation. Moreover, the return mapping equations associate to each trial elastic strain
a well defined elastic strain tensor, obtained as a result of the local iteration process.
Therefore, for an infinitesimal variation of ϵe,tr(k)n+1 one has:

dϵe = L dϵe,tr (53)

On the other hand, from the hyperelastic constitutive equation, we have:

dσ =

(
∂2ψ

∂ϵe ⊗ ∂ϵe
)
dϵe = De dϵe = DeL dϵe,tr = Ξ dϵe,tr (54)

By virtue of the definition (18) and of the identity (52), the tensor Ξ is the required
consistent tangent stiffness tensor. Differentiation of the return mapping equations
(45) yields:

A dx̃ = T dϵe,tr − d(∆γ)U (55)

where:

dx̃ :=
{
dϵeT dqT

}T

A :=


I +∆γAσD

e +∆γAq

−∆γBσD
e Iq −∆γBq


 (56)
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T :=
[
I 0T

q

]T
U :=

{
QT ,−hT

}T

(57)

Aσ :=
∂Q

∂σ
=

∂2g

∂σ ⊗ ∂σ Aq :=
∂Q

∂q
=

∂2g

∂σ ⊗ ∂q (58)

Bσ :=
∂h

∂σ
Bq :=

∂h

∂q
(59)

and Iq and 0q are the identity matrix in Rnint and the zero (nint × 6) matrix. The
variation in the plastic multiplier d(∆γ) can be evaluated by enforcing the consistency
condition df (k)n+1 = 0. Defining:

P := De ∂f

∂σ
W :=

∂f

∂q
V :=

{
P T ,W T

}
(60)

the consistency condition reads:
V dx̃ = 0 (61)

Solving eq. (55) for dx̃, substituting the result in eq. (61) and solving for d(∆γ), the
plastic multiplier increment is obtained as:

d(∆γ) =
1

V ·
[
A−1

]
U

V ·
[
A−1

]
T dϵe,tr (62)

From eqs. (55) and (62) we obtain:

dσ = De dϵe = DeT T dx̃

=

{
DeT T

[
A−1 − (A−1U)⊗ (V A−1)(

V ·A−1U
)

]
T

}
dϵe,tr (63)

By comparing eq. (63) with (54) the expression for the consistent tangent stiffness
tensor follows:

D̃
(k)

n+1 = Ξ
(k)
n+1 = DeT T

[
A−1 − (A−1U)⊗ (V A−1)(

V ·A−1U
)

](k)

n+1

T (64)

Note that the consistent tangent stiffness is, in general, non symmetric, even in the
case of associative flow rule (f ≡ g).

4 Stress–point algorithms for finite deformation
multiplicative plasticity

4.1 Evolution equations
The evolution equations of finite deformation multiplicative plasticity for isotropic
materials are briefly summarized below, see [OT21] for details. Let the deformation

Tamagnini & Oliynyk 271

ALERT Doctoral School 2024



gradient F be multiplicatively decomposed into an elastic part F e and a plastic part
F p:

F = F eF p (65)

Recalling the expression for the spatial velocity gradient l = ∇v = Ḟ F−1 and
defining accordingly the the elastic and plastic velocity gradients as:

le := Ḟ
e
F e−1 L

p
:= Ḟ

p
F p−1 lp := F eL

p
F e−1 (66)

it is easy to show that:
l = le + lp (67)

i.e., the multiplicative decomposition of the deformation gradient is consistent with
an additive split of the spatial velocity gradient. From the spatial elastic and plastic
velocity gradients, le and lp, the elastic and plastic rates of deformation and spins can
be defined as:

de := sym (le) we := skw (le) (68)

dp := sym (lp) wp := skw (lp) (69)

In the following, consistently with the assumption of material isotropy, we will assume
that the plastic spin wp is always equal to zero, and lp = dp, as in [Sim98].

Then let us assume that the material possesses a free energy function per unit reference
volume of the form:

ψ = ψ(be) = ψ̄(C
e
) = ψ̂(λe1, λ

e
2, λ

e
3) (70)

where be be the left elastic Cauchy–Green strain tensor, C
e

is the right elastic Cauchy–
Green strain tensor, and λeA, with A = 1, 2, 3 are the principal elastic stretches, eigen-
values of F e. The Kirchhoff stress tensor is linked to the elastic strains by the follow-
ing alternative hyperelastic constitutive equations:

τ = 2
∂ψ

∂be
be τ = 2F e ∂ψ̄

e

∂C
eF

eT (71)

To incorporate irreversible behavior, let us assume the existence of an elastic domain:

E :=
{
(τ , q)

∣∣∣ f (τ , q) ≤ 0
}

(72)

defined via a suitable yield function f(τ , q) depending on Kirchhoff stress and a vec-
tor q (of dimension nint) of scalar internal variables, accounting for the effects of the
previous loading history.

Adopting the left elastic Cauchy–Green tensor be and the internal variables q as the
main state variables, the problem of evolution of non–associative multiplicative plas-
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ticity can be cast in the following form:

ḃ
e
= lbe + belT + Lv[b

e] (73)

dp = γ̇
∂g

∂τ
(74)

Lv[b
e] = −2 sym (dpbe) = −2γ̇ ∂g

∂τ
be (75)

q̇ = γ̇h(τ , q) (76)

where Lv[b
e] is the Lie derivative of be, γ̇ ≥ 0 is the plastic multiplier, g(τ , q) is the

plastic potential and h is the hardening function for the internal variables q. Note that
the Kirchhoff stress tensor, appearing as an argument of the yield function f and of the
plastic potential g, can be considered a derived quantity by virtue of the constitutive
equation (71)1.

The yield function f and the plastic multiplier γ̇ are subjected to the Kuhn–Tucker
complementarity conditions:

γ̇ ≥ 0 f(τ , q) ≤ 0 γ̇f(τ , q) = 0 (77)

as well as to the consistency condition:

γ̇ḟ = γ̇

(
∂f

∂τ
· τ̇ +

∂f

∂q
· q̇
)

= 0 (78)

requiring that the state of the material remains on the yield surface (f = 0) whenever
plastic loading occurs (γ̇ > 0).

Eq. (73) shows that the rate of change of the elastic left Cauchy–green tensor is the
sum of two contributions, the second of which – the Lie derivative of be – is associated
to the development of plastic deformations. Eq. (74) is the non–associative flow rule
for the plastic rate of deformation dp, while eq. (75) provides the link between de and
the Lie derivative of be. The evolution equation for the internal variables q is provided
by the non–associative hardening law (76).

Differentiating the hyperelastic constitutive equation (66)2 and taking into account
that:

d = de + dp de = F e−T

(
1

2
˙

C
e
)
F e−1 we = w −wp = w

the following expression for the Jaumann rate of Kirchhoff stress is obtained:

∇
τ= a

e (d− dp) = a
e

(
d− γ̇ ∂f

∂τ

)
(79)

where:
a
e
ijkl = c

e
ijkl + τikδjl + τilδjk (80)
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and:

c
e
ijkl = C

e
ABCDF

e
iAF

e
jBF

e
kCF

e
lD C

e
ABCD = 4

∂2ψ̄e

∂CAB∂CCD

(81)

Substituting eqs. (76) and (79) in eq. (78) – after noting that

∂f

∂τ
· τ̇ =

∂f

∂τ
· ∇τ

since, by isotropy, τ and ∂f/∂τ commute – and solving for the plastic multiplier, the
following expression for γ̇ is obtained:

γ̇ =
1

K̂p

〈
∂f

∂τ
· aed

〉
(82)

in which:
K̂p :=

∂f

∂τ
· ae ∂g

∂τ
− ∂f

∂q
· h > 0 (83)

The elastoplastic constitutive equation in rate–form then reads

∇
τ = a

epd a
ep = a

e − H (γ̇)

K̂p

(
a
e ∂g

∂τ

)
⊗
(
a
e ∂f

∂τ

)
(84)

where aep is the elastoplastic continuum tangent stiffness of the material and H (x)
is the Heaviside step function, equal to one if x > 0 and zero otherwise.

4.2 State update

Let I =
⋃N

n=0 [tn, tn+1] be a partition of the time interval of interest into time steps.
It is assumed that at time tn ∈ I the state of the material (ben, qn) is known at any
quadrature point in the adopted finite element discretization. Also, let:

{F i : i = 0, 1, . . . , n+ 1}

be the prescribed history of F up to time tn+1. The computational problem to be
addressed is the update of the state variables:

b
e(k)
n+1 → b̂

e
(
F

(k)
n+1; b

e
n, qn

)
(85)

q
(k)
n+1 → q̂

(
F

(k)
n+1; b

e
n, qn

)
(86)

for a given deformation gradient F (k)
n+1, through the integration of the system of ODEs

(73)–(77) provided by the elastoplastic constitutive equations. Note that the evolution
problem defined by (73)–(77) belongs to the category of the so–called stiff differential–
algebraic systems due to the algebraic constraints of eqs. (77) – see [HW91] for de-
tails. At the end of the update process, the Kirchhoff stress tensor τn+1 at time tn+1

can be evaluated from ben+1 by means of the hyperelastic constitutive equation (71)1.
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4.3 Consistent linearization of the stress update algorithm
In a standard finite element context, the starting point for the solution of a static equi-
librium problem is the weak form of the balance of momentum equation, which, for
the problem at hand, is stated as follows. Find the unknown deformation φn+1 =
X + un+1 such that, for any test function (variation) η satisfying homogeneous
boundary conditions on the appropriate part of the boundary, the following non–linear
functional equation is satisfied:

G (φn+1,η) = G int(φn+1,η)− G ext
n+1 =

∫

B
τ (φn+1) · (∇η) dV − G ext

n+1 = 0 (87)

The iterative solution via Newton’s method of the non–linear algebraic problem re-
sulting after the introduction of a standard finite element discretization, requires the
linearization of the non–linear functional G with respect to the independent field φn+1

in the direction δu:

DuG int(φ
(k)
n+1,η)[δu] =

∫

B

{
∇sη · (c̃)(k)n+1∇sδu

}
dV

+

∫

B

{
τ
(k)
n+1 · (∇δu)T (∇η)

}
dV (88)

in which:
c̃ijkl = C̃ABCDF

e
iAF

e
jBF

e
kCF

e
lD (89)

and:

C̃
(k)

n+1 =

(
2
∂S

∂C

)(k)

n+1

with S := F−1τF−T C := F TF (90)

In eq. (88), the fourth–order tensor c̃ is the so–called spatial algorithmic tangent stiff-
ness tensor, obtained from the material algorithmic tangent stiffness tensor C̃ by the
pull–back operation (89). This last quantity represents the variation of the updated
second Piola–Kirchhoff stress tensor S(k)

n+1 associated to the infinitesimal change of
the right Cauchy–Green deformation tensor C(k)

n+1 induced by the infinitesimal pertur-

bation of the deformation field δu. As such, the tensor C̃
(k)

n+1 is strongly dependent on
the adopted integration algorithm [ST85]. Its accurate evaluation is crucial to achieve
the quadratic convergence when using Newton–Raphson method to solve iteratively
the global discrete equilibrium equations.

4.4 IMPLEX algorithm
In finite–deformation plasticity, explicit methods have not been so widely used as
in infinitesimal plasticity. Notable exceptions are represented by the works of refs.
[SO85, RFPH97, BRB16]. More recently, Monforte et al. [MCC+19] extended the

Tamagnini & Oliynyk 275

ALERT Doctoral School 2024



IMPLicit–EXplicit (IMPLEX) algorithm proposed by Oliver et al. [OHC08] to in-
crease the robustness and efficiency of classical fully–implicit return mapping algo-
rithms to finite deformations. Applications of the IMPLEX method to computational
geomechanics problems are reported in [MCC+19, MGA+21, OCT21, HS21].

The basic structure of the IMPLEX algorithm consists in a two–step solver:

1. Extrapolation step: the boundary–value problem is computed using an extrapo-
lated value of the plastic multiplier increment.

2. Correction step: the final converged state is computed at each integration point
using the displacement field obtained in Step 1. The resulting final plastic mul-
tiplier is then used for the next extrapolation step.

In a typical time step [tn, tn+1] ∈ I, the extrapolation step updates the state variables
to their so–called IMPLEX values:

(b̃
e

n+1, q̃n+1)

obtained through explicit integration of the evolution equations by assuming a constant
plastic multiplier increment:

∆̃γn+1 =
∆tn+1

∆tn
∆γn

To obtain an explicit update for be, we observe that eq. (66)2 provides an evolution
equation for F p in the form:

Ḟ
p
= L

p
F p =

{
F e−1

(
γ̇
∂g

∂τ

)
F e

}
F p (91)

By adopting an explicit exponential mapping to integrate the evolution equation (91)
we have:

F p
n+1 = exp

{
∆γn+1F

e−1
n

(
∂g

∂τ

)

n

F e
n

}
F p

n (92)

from which, replacing ∆γn+1 with the known extrapolated plastic multiplier ∆̃γn+1,
we finally obtain, after some algebra:

b̃
e

n+1 = fn+1 exp

{
−∆̃γn+1

(
∂g

∂τ

)

n

}
ben exp

{
−∆̃γn+1

(
∂g

∂τ

)

n

}T

fT
n+1 (93)

where fn+1 = F n+1F
−1
n = 1 +∇nun+1 is the relative deformation gradient. The

details of the derivation of eq. (93) are provided, for example, in [OCT21]. Using
the elastic constitutive equation (71)1, the derived Kirchhoff stress τ̃n+1 = τ (b̃

e

n+1)
is then obtained. Analogously, from the evolution equations (76), the following IM-
PLEX values for the internal variables are obtained:

q̃n+1 = qn + ∆̃γn+1hn (94)
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According to eq. (94), the IMPLEX internal state variables depend only on known
quantities, while b̃

e

n+1 and τ̃n+1 depend also on the unknown displacement field at
the end of the step, un+1. This field is determined by solving the global discretized
equilibrium equations. In solving the global equilibrium problem, the global stiffness
matrix coming from the linearization of the internal force vector can be computed us-
ing the elastic tangent stiffness tensor of eq. (81), since the plastic flow is independent
of the displacement field.

Once the extrapolation step is completed, the correction step is performed at constant
spatial configuration (i.e., constant un+1) to determine more accurate values of the
state variables at the end of the step (ben+1, qn+1). In the original IMPLEX method
[OCW+07] this step is carried out by implicit numerical integration of the evolution
equations. In the method proposed by [MCC+19], an explicit adaptive scheme with
substepping and error control is adopted to update the left elastic Cauchy–Green tensor
and the internal variables. For a typical substep [tk, tk+1] ∈ [tn, tn+1] we thus have:

bek+1 = fk+1 exp

{
−∆γk+1

(
∂g

∂τ

)

k

}
bek exp

{
−∆γk+1

(
∂g

∂τ

)

k

}T

fT
k+1 (95)

and:
qk+1 = qk +∆γk+1hk (96)

The plastic multiplier appearing in the above equations is provided by the explicit
integration of eq. (82):

∆γk+1 = ∆tk+1γ̇k =
1

(K̂p)k

(
∂f

∂τ

)

k

· ae
k∇s

k (∆uk+1) (97)

where ∇s
k (∆uk+1) is the symmetric part of the spatial gradient of the displacement

increment within the substep. The final value of the plastic multiplier at the end of the
step (t = tn+1) is then used for the extrapolation stage of the next computational step.

4.5 Implicit Generalized Backward Euler method
Until the beginning of the ‘80, computational methods for finite deformation elasto-
plasticity relied on models based on the additive decomposition of the rate of defor-
mation tensor, see [OT21] in this volume. Therefore, they remained restricted to small
elastic strains. Early works on computational applications of finite deformation plas-
ticity models based on the multiplicative decomposition of the deformation gradient
are presented, e.g., in [AD79, SO85, Sim85]. For the case of isotropic plasticity, a
very important contribution has been given by the work of Simo [Sim92] where he
advocated the use of principal elastic logarithmic strains as primary state variables, in
connection to an hyperelastic characterization of the elastic behavior of the material,
to formulate an implicit Backward Euler elastic predictor–plastic corrector algorithm
with the same structure of the corresponding integration scheme of infinitesimal plas-
ticity. Applications of this approach to computational geomechanics are reported in
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Global Elastic predictor Plastic corrector

Evol. eqs.

ḟ = lf ḟ = lf ḟ = 0

ḃ
e
= lbe+belT−2γ̇ ∂g

∂τ
be ḃ

e
= lbe + belT ḃ

e
= −2γ̇ ∂g

∂τ
be

q̇ = γ̇h q̇ = 0 q̇ = γ̇h

Init. conds.
be(tn) = ben be(tn) = ben be

∣∣∣
(γ̇=0)

= be,trn+1

q(tn) = qn q(tn) = qn q
∣∣∣
(γ̇=0)

= qtr
n+1

Constr.

f(τ , q) ≤ 0

γ̇ ≥ 0

f(τ , q)γ̇ = 0

none

f(τ , q) ≤ 0

γ̇ ≥ 0

f(τ , q)γ̇ = 0

Table 3: Operator split of the evolution problem of multiplicative plasticity, formu-
lated in terms of elastic deformation rates.

the works of [SM93, BT98, CAS98, SSS02, OT20]. In the remainder of this sec-
tion, we focus on this class of stress–point algorithms following closely the work of
[OT20].

4.5.1 Operator split and product formula algorithm

For the implicit numerical integration of the evolution equations (73)–(77), we pro-
ceed as in the case of infinitesimal plasticity by adopting the operator split shown in
Tab. 3, suggested by the additive structure of the evolution problem.

Again, computational strategy is to solve the elastic predictor problem first, with initial
conditions provided by (ben, qn), obtaining the so–called trial solution (be,trn+1, q

tr
n+1).

Then, if the constraints posed by the complementarity conditions are violated, solve
the plastic corrector problem using the trial solution as initial conditions. The attrac-
tiveness of this strategy stands in the geometric interpretation which can be given to
each Problem, as detailed below.

4.5.2 Problem 1: elastic predictor

The evolution equations of the elastic predictor problem are obtained from the original
problem by assuming that no dissipative processes take place (γ̇ = 0) and ignoring
the constraint placed on the state variables by the yield function.

278 Computational plasticity (II): numerical integration of elastoplastic constitutive
equations

ALERT Doctoral School 2024



From a geometric point of view, during the elastic predictor stage, the update of the
current configuration from Sn to Sn+1 takes place at fixed intermediate configuration
(modulo a rigid body rotation), with F p,tr

n+1 = F p
n. Thus we have:

F n+1 = fn+1F n = F e,tr
n+1F

p
n ⇒ F e,tr

n+1 = fn+1F
e
n (98)

From this last result and the (trivial) evolution equation for q of the elastic predictor
problem (see Tab. 3), the complete trial state is obtained:

be,trn+1 = fn+1b
e
nf

T
n+1 qtr

n+1 = qn (99)

Then, the trial Kirchhoff stress is evaluated via the hyperelastic constitutive equation
(71)1 as τ tr

n+1 = τ (be,trn+1).

It is worth noting that, due to its formulation in terms of kinematics, the elastic pre-
dictor problem can be solved exactly. The trial value of be at the end of the step is just
the geometric update (actually, the push–forward) of ben to the current configuration
Sn+1 via the relative deformation gradient.

4.5.3 Problem 2: plastic corrector

If the trial state satisfies the constraint posed by the Kuhn–Tucker conditions, i.e.:

f trn+1 := f
(
be,trn+1, q

tr
n+1

)
≤ 0

then the trial state provides the exact update of the material state sought after. Oth-
erwise, the intermediate configuration needs to be modified in order to restore the
consistency with the yield surface:

fn+1 = f
(
ben+1, qn+1

)
= 0 (100)

where ben+1 and qn+1 are the solution of the differential–algebraic plastic corrector
problem. Since ḟ = 0 in this case, the plastic corrector problem is formulated on a
fixed current configuration Sn+1.

The numerical solution of the plastic corrector problem is typically obtained by adopt-
ing an implicit strategy such as the Backward Euler method. In particular, the structure
of the evolution equation for be suggest the use of the following exponential approxi-
mation, see [Sim92]:

ben+1 = exp

{
−2∆γn+1

(
∂g

∂τ

)

n+1

}
be,trn+1 (101)

where ∆γn+1 is the increment of the plastic multiplier associated to the plastic defor-
mations, to be determined as part of the solution.

Finally, using the Backward Euler algorithm to integrate the evolution equation for q,
we obtain:

qn+1 = qtr
n+1 +∆γn+1hn+1 = qn +∆γn+1hn+1 (102)
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In principle, the system of (6 + nint + 1) non–linear algebraic equations (101) and
(102) can be solved to provide the unknowns ben+1, qn+1 and ∆γn+1. However, as
first shown by Simo [Sim92], the solution of the plastic corrector problem can be
significantly simplified by exploiting the isotropy of the material response, as shown
in the following.

4.5.4 Plastic corrector problem in principal logarithmic elastic strains space

Due to the assumption of material isotropy, the tensor (∂g/∂τ )n+1 has the same
principal directions of τ and hence of ben+1, due to eqs. (70) and (71)1. Therefore,
the spectral decomposition of the tensors ben+1, (∂g/∂τ )n+1 and be,trn+1 appearing in
eq. (101) read:

ben+1 =
3∑

A=1

(
λeA,n+1

)2
n

(A)
n+1 ⊗ n

(A)
n+1 (103a)

(
∂g

∂τ

)

n+1

=
3∑

A=1

(
∂g

∂τA

)

n+1

n
(A)
n+1 ⊗ n

(A)
n+1 (103b)

be,trn+1 =

3∑

A=1

(
λe,trA,n+1

)2
n

(A),tr
n+1 ⊗ n

(A),tr
n+1 (103c)

where the quantities λe,trA and n(A),tr denote the trial principal elastic stretches (eigen-
values of F e,tr) and the unit eigenvectors of be,tr, respectively, while the scalars
∂g/∂τA are the derivatives of the plastic potential functions with respect to the prin-
cipal values of τ .

Rewriting eq. (101) as:

exp

{
2∆γn+1

(
∂g

∂τ

)

n+1

}
ben+1 = be,trn+1 (104)

and incorporating the spectral decompositions (103), it easy to show that:

a) the principal directions of ben+1 coincide with the (known) principal directions
of be,trn+1:

n
(A)
n+1 = n

(A),tr
n+1 (A = 1, 2, 3) (105)

b) the principal values of the three tensors ben+1, (∂g/∂τ )n+1 and be,trn+1 are related
by the following equations:

(
λeA,n+1

)2
= exp

{
−2∆γn+1

(
∂g

∂τA

)

n+1

}(
λe,trA,n+1

)2
(106)

with A = 1, 2, 3.
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The result in eq. (106) is particularly relevant since, taking the natural logarithm of
both sides, we obtain:

εeA,n+1 = εe,trA,n+1 −∆γn+1

(
∂g

∂τA

)

n+1

(107)

where:

εe,trA,n+1 := ln(λe,trA,n+1) εeA,n+1 := ln(λA,n+1)

Introducing the following vector notation:

ε̂e,tr :=





εe,tr1

εe,tr2

εe,tr3





ε̂e :=





εe1

εe2

εe3





Q̂ :=





∂g/∂τ1

∂g/∂τ2

∂g/∂τ3





The system of algebraic equations governing the return mapping problem formulated
in principal logarithmic elastic strains space takes the following form:

ε̂en+1 = ε̂e,trn+1 −∆γn+1Q̂n+1 (108a)

qn+1 = qn +∆γn+1hn+1 (108b)

fn+1 = f
(
ben+1, qn+1

)
= 0 (108c)

This set of (3+nint+1) non–linear algebraic equations can be solved using Newton’s
method to obtain the updated state at the end of the step and the plastic multiplier
increment, as shown in Tab. 4.

As noted by [Sim92], the use of the exponential algorithm in connection with the
choice of formulating the plastic corrector problem in principal logarithmic elastic
strain space leads to an algebraic system of equations which are formally similar to
the Generalized Backward Euler algorithm of infinitesimal plasticity, see eqs. (50).

4.5.5 Consistent tangent stiffness

By differentiating the expression for τn+1 provided by the spectral decomposition of
Tab. 4, the following expression for the spatial consistent tangent stiffness tensor c̃ of
eq. (89) is obtained (see [Sim98]):

c̃ =
3∑

A=1

3∑

B=1

d̂AB mA ⊗mB −
3∑

A=1

2τA mA

+
∑

A̸=B

{
τA(λ

e,tr
B )2 − τB(λe,trA )2

(λe,trA )2 − (λe,trB )2

}
MAB (109)
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1. Determine the trial principal elastic stretches λe,trA,n+1 and the principal eigen-

vectors n(A),tr
n+1 via the spectral decomposition of be,trn+1.

2. Set:
n

(A)
n+1 = n

(A),tr
n+1

for A = 1, 2, 3.

3. Solve the system of nonlinear algebraic equations:

Rε := −ε̂en+1 + ε̂e,trn+1 −∆γn+1Q̂n+1 = 0

Rq := −qn+1 + qn +∆γn+1hn+1 = 0

Rf := −f
(
ben+1, qn+1

)
= 0

via Newton’s method, to obtain the updated state variables at the end of the
step.

4. Recover ben+1 and τn+1 using the spectral decomposition and the hyperelastic
constitutive equation:

beA,n+1 = exp
(
2εeA,n+1

)
ben+1 =

3∑

A=1

beA,n+1,n
(A)
n+1 ⊗ n

(A)
n+1

τA,n+1 =

(
∂ψ

∂εeA

)

n+1

τn+1 =
3∑

A=1

τA,n+1,n
(A)
n+1 ⊗ n

(A)
n+1

Table 4: Solution strategy for the plastic corrector problem of isotropic multiplicative
plasticity.
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where:

mA := n(A) ⊗ n(A) mAB := n(A) ⊗ n(B) mBA := n(B) ⊗ n(A)

M (AB) := mAB ⊗mAB +mAB ⊗mBA

The quantities d̂AB in eq. (109), defined as:

d̂AB :=
∂τA

∂εe,trB

(110)

are the components of the (3×3) matrix d̂ := ∂τ̂/∂ε̂e,tr of tangent moduli in principal
strain space. In presence of repeated eigenvalues for be,tr, the third term on the RHS
of eq. (109) becomes singular. The singularity can be easily eliminated as shown in
[Ogd84], Ch. 6.

For the case at hand, the exact calculation of the matrix d̂ is possible only if, during
the current time step, the loading process is elastic. When the plastic deformations
occur, the Kirchhoff stress tensor is a function of ben+1 which is determined numeri-
cally via the algorithm of Tab. 4. In such conditions, the evaluation of d̂ requires the
linearization of the integration algorithm and proceeds as follows.

In terms of principal values of Kirchhoff stresses and principal elastic logarithmic
strains, the hyperelastic constitutive equation reads:

τA =
∂ψ̂

∂εeA,n+1

or, in vector format τ̂ =
∂ψ̂

∂ε̂e
(111)

where τ̂ := {τ1, τ2, τ3}T . From this equation we have:

d̂
(k)

n+1 =

(
∂τ̂

∂ε̂e

)(k)

n+1

(
∂ε̂e

∂ε̂e,tr

)(k)

n+1

= (D̂
e
)
(k)
n+1

(
∂ε̂e

∂ε̂e,tr

)(k)

n+1

(112)

where:

(D̂
e
)
(k)
n+1 :=

(
∂τ̂

∂ε̂e

)(k)

n+1

=

(
∂2ψ̂

∂ε̂e ⊗ ∂ε̂e
)(k)

n+1

(113)

is the (3×3) elastic tangent stiffness matrix in principal directions. Now, let us define:

x
(k)
n+1 :=





(ε̂e)
(k)
n+1

q
(k)
n+1

∆γ
(k)
n+1





K̂
e(k)

n+1 :=
[
D̂

e
0(3×nint) 0(3×1)

](k)
n+1

(114)

as the vector of unknown state variables and plastic multiplier increment, and a aux-
iliary matrix containing the elastic stiffness matrix, eq. (112)2 can be rewritten in the
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following alternative form:

d̂
(k)

n+1 = K̂
e(k)

n+1

(
∂x

∂ε̂e,tr

)(k)

n+1

(115)

The derivative ∂x/∂ε̂e,tr measures the variation in the converged solution of the iter-
ative algorithm used to solve the plastic corrector problem for an infinitesimal change
in the relative displacement gradient fn+1, and thus in ε̂e,trn+1. This quantity can be
obtained by linearizing the plastic corrector problem equations of Tab. 4.

Let:

x
(k),tr
n+1 :=





(ε̂e,tr)
(k)
n+1

qn

0





R
(k)
n+1 :=





−ε̂en+1 + ε̂e,trn+1 −∆γn+1Q̂n+1

−qn+1 + qn +∆γn+1hn+1

−f
(
ben+1, qn+1

)





(116)

be the vector of trial values for the problem unknowns and the residual vector of the
plastic corrector problem. Then, let:

g
(k)
n+1 := x

(k),tr
n+1 −R

(k)
n+1 =





(ε̂e)
(k)
n+1 +∆γ

(k)
n+1 (Q̂

∗
)
(k)
n+1

q
(k)
n+1 −∆γ

(k)
n+1h

(k)
n+1

f
(k)
n+1





(117)

be the difference between x
(k),tr
n+1 and the residual vector R(k)

n+1 of eq. (116), i.e., the
only part of the residual vector which actually depends on the problem unknowns.
Then the governing equations of the plastic corrector problem in Tab. 4 can be recast
as follows:

g
(
x
(k)
n+1

)
= x

(k),tr
n+1 (118)

Deriving both sides of eq. (118) with respect to ε̂e,tr, we have:

(
∂g

∂x

)(k)

n+1

(
∂x

∂ε̂e,tr

)(k)

n+1

=

(
∂xtr

∂ε̂e,tr

)(k)

n+1

(119)

Noting that:

(
∂g

∂x

)(k)

n+1

= −
(
∂R

∂x

)(k)

n+1

= −J (k)
n+1 (120)

(
∂xtr

∂ε̂e,tr

)(k)

n+1

=





I3

0(nint+1×3)



 =: T (121)

284 Computational plasticity (II): numerical integration of elastoplastic constitutive
equations

ALERT Doctoral School 2024



and considering that the Jacobian matrix J
(k)
n+1 is non–singular if the plastic corrector

problem is well–posed, we obtain:

(
∂x

∂ε̂e,tr

)(k)

n+1

= −
(
J−1

)(k)
n+1

T (122)

and, finally:

d̂
(k)

n+1 = −K̂e(k)

n+1

(
J−1

)(k)
n+1

T (123)

The evaluation of the RHS of eq. (123) is relatively easy as the inverse of the Jacobian
matrix needs to be computed for the iterative solution of the local plastic corrector
problem.
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This chapter presents a mathematical and a numerical model for the analysis of the 

thermo-hydro-mechanical (THM) behavior of multiphase deformable porous mate-

rials in both quasi-statics and dynamics. The fully coupled governing equations are 

developed within the Hybrid Mixture Theory. To analyze the THM behavior of soil 

structures in the low frequency domain, e.g. under earthquake excitation, the u-p-T 

formulation is invoked by neglecting the relative acceleration of the fluids and their 

convective terms. The standard Bubnov-Galerkin method is applied to the governing 

equations for the spatial discretization, whereas the generalized Newmark scheme is 

used for the time discretization. The final non-linear and coupled system of algebra-

ic equations is solved by the Newton method within the monolithic approach. The 

formulation and the implemented solution procedure are validated through the com-

parison with other finite element solutions. Moreover, the issue of spurious mesh 

sensitivity in strain localization analysis is addressed by employing visco-plastic and 

non-local theories and some numerical results where shear bands develop are pre-

sented. 

1 Introduction 

The analysis of the dynamic response of multiphase porous media has many applica-

tions in civil engineering. Onset of landslides due to earthquakes and/or rainfall and 

the seismic behavior of dams are examples where inertial forces cannot be neglect-

ed. Moreover, there are situations where it is important to consider also the effect of 

Sanavia, Cao & Lazari 289

ALERT Doctoral School 2024



temperature variation. It is the case of fast catastrophic landslides, where the me-

chanical energy dissipated in heat inside the slip zone may lead to vaporization of 

the pore water creating a cushion of zero friction, which may accelerate the move-

ment of the landslides [Var02]. Another interesting case is the seismic analysis of 

deep nuclear waste disposal. 

Many authors have developed models for the analysis of the dynamic behavior of 

multiphase porous media in isothermal conditions. A state of art can be found in 

Zienkiewicz et al. [Zie99] and Schanz [Sch09]. Recently, Nenning and Schanz 

[Nen10] presented an infinite element for wave propagation problems; Heider et al. 

[Hei11] analyzed a numerical solution of dynamic wave propagation problems in 

infinite half spaces with incompressible constituents and Albers [Alb10] analyzed 

wave propagation problems in saturated and partially saturated porous media. 

 

This work presents a formulation of a fully coupled model for deformable multi-

phase geomaterials in dynamics including thermal effects. The model is derived 

introducing the u-p-T (displacements, pressures, temperature) formulation in the 

multiphase model developed in Lewis and Schrefler [Lew98], in which the relative 

acceleration of the fluids and their convective terms have been neglected following 

[Cha88], [Zie99], [Cha22]. This reduced model is valid for low frequency problems, 

as in earthquake engineering, [Cha88], [Zie99], [Cha22]. The standard Galerkin 

method is applied to the governing equations for the spatial discretization, while the 

generalized Newmark scheme is used for the time discretization. The final non-

linear set of equations is solved by the Newton method with a monolithic approach.  

The model has been implemented in the finite element code COMES-GEO, 

[Gaw96], [Lew98], [San06], [San08], [San09], [Gaw09], [Gaw10], [San12] and has 

been validated through the comparison with analytical or finite element quasi-static 

or dynamic solutions. In addition, the present contribution deals with the elimination 

of spurious mesh sensitivity problems in strain localization simulation of multiphase 

geomaterials, under the scope of realistic modeling of the shear zone thickness in 

geotechnical applications. Visco-plasticity and non-local theories are employed and 

implemented in COMES-GEO code to eliminate mesh dependency in strain locali-

zation even in the case of weakly rate-sensitive materials (i.e. dense sand) [LSS15], 

[Laz16]. 

2 Macroscopic balance equations 

The full mathematical model necessary to simulate the thermo-hydro-mechanical 

behavior of partially saturated porous media in dynamics was developed within the 

Hybrid Mixture Theory (HMT) by Lewis and Schrefler [Lew98], using averaging 

theories according to Hassanizadeh and Gray [Has79a], [Has79b], [Has80], [Gra91]. 

See also [Ocz99] or [Cha22]. This model can be derived from the more advanced 

averaging theory TCAT - Thermodynamically Constrained Averaging Theory 

[Gra14] and its references listing the journal papers on this topic, or, as an introduc-

tion, the chapter of the Alert Doctoral School 2015 by Gray and Miller [Gra15]. 
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The variably saturated porous medium is treated as a multiphase system composed 

of solid skeleton (s) with open pores filled with liquid water (w) and gas (g). The 

latter, is assumed to behave as an ideal mixture of dry air (non-condensable gas, ga) 

and water vapor (condensable gas, gw). At the macroscopic level the porous material 

is modeled by a substitute continuum of volume  with boundary B that simultane-

ously fills the entire domain, instead of the real fluids and the solid which fill only a 

part of it. In this substitute continuum each constituent  has a reduced density 

which is obtained through the volume fraction (x,t) = dv(x,t) / dv(x,t), where dv is 

the volume of the average volume element (representative elementary volume, 

REV) of the porous medium and dv is the volume occupied by the constituent  in 

dv. x is the vector of the spatial coordinates and t the current time.  

The solid is deformable and non-polar and the fluids, solid and thermal effects are 

coupled. All fluids are in contact with the solid phase. In the model, heat conduction 

and heat convection, vapor diffusion, (liquid) water flow due to pressure gradients or 

capillary effects and water phase change (evaporation and condensation) inside the 

pores are taken into account. 

In the partially saturated zones the liquid water is separated from its vapor by a con-

cave meniscus (capillary water). Due to the curvature of this meniscus, the sorption 

equilibrium equation [Gray91] gives the relationship pc=pg-pw between the capillary 

pressure pc(x,t) (also known as matrix suction), gas pressure pg(x,t) and liquid water 

pressure pw(x,t). This expression is approximated in dynamics; it is used here be-

cause of lack of experimental results. In the following, pore pressure is defined as 

compressive positive for the fluids, while stress is defined as tension positive for the 

solid phase.  

The state of the medium is described by gas pressure pg(x,t), capillary pressure 

pc(x,t), temperature T(x,t) and displacements of the solid matrix u(x,t) [San06]. The 

balance equations are developed in geometrically linear framework and are written 

here at the macroscopic level. 

For sake of completeness the equations of the model are only summarized in this 

chapter; the interested reader is refereed to [Cao16] for more details regarding the 

development of the mathematical model and its finite element implementation. Di-

rect notation is adopted. Boldface letters denote vector or tensors and lightface italic 

letters are used for scalar quantities. 

 

After neglecting the relative velocity and acceleration of the fluids in the governing 

equations of Lewis and Schrefler [Lew98], a set of balance equations for the whole 

multiphase medium is obtained as follows. 

 

The linear momentum balance equations of the mixture in term of the generalized 

effective Cauchy’s stress ′(x,t) [Lew98], [Nut08] takes the form 

 

 ( )  − − + = 1 g a
g c s

wdiv p S p    (1) 

 

where  1 s w g

w g
n nS nS   = − + +  is the mass density of the overall medium, 

Sw(x,t) is the degree of saturation of the liquid water n(x,t) is the porosity and Sg(x,t) 
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is the degree of saturation of the gas, with Sw+ Sg=1. ( , )s t x  is the density of the 

solid grains, ( , )w t x  is the density of liquid water and ( , )g t x  is the density of the 

gas phase. g is the gravity acceleration vector, 1 is the second order identity tensor 

and ( , )s ta x  the acceleration of the solid phase. The form of Eq. (1) assumes incom-

pressible grains, which is common in soil mechanics. In order to consider compress-

ible grains, the Biot coefficient should be set in front of the solid pressure (this be-

comes important when dealing with rock and concrete). The total stress of equation 

(1), using saturation as weighting functions for the partial pressures, was introduced 

in [Sch84] using volume averaging for the bulk materials and is thermodynamically 

consistent, e.g. [Gra91]. 

 

The mass balance equations for the dry air and the liquid water and its vapor are, 

respectively: 

 

 

( )

div grad div grad

div 0

rg gw
ga g g g gaa w

gg 2 g

g

ga s ga ga ga

g g w s g

M Mk p
p

M p

S nS nS 1 n S T

  


    

    
 − + +        

    

+ + − − − =

k
g D

v

 (2) 

 

and 

 

  

( ) ( )

( )

div grad div grad

div grad div

0

   
− + + − +   

   
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k k
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where k (x,t) = k(x,t)1 is the intrinsic permeability tensor of the porous matrix in 

water saturated condition [m2], which is assumed to be isotropic, kr(x,t) is the fluid 

relative permeability parameter and (x, t) is the dynamic viscosity of the fluid [Pa 

s], with  = w, g. Kw is the bulk modulus of the liquid water. sw = [1-n]s[Sggw + 

wSw], with s(x, t) the cubic thermal expansion coefficient of the solid. gw
gD (x) is 

the effective diffusivity tensor of water vapor in the gas phase contained within the 

pore space, and Ma, Mw and Mg(x,t) are the molar mass of dry air, liquid water and 

the gas mixture

1

11
−
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w

g
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g
MM

M






 , respectively. These equations contain 

the mass balance equation of the solid phase,  
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1

1 div 0
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
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+ − =

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s sn
n

t
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which has been introduced to eliminate the time derivative of the porosity. 

 

The enthalpy balance equation for the multiphase medium is: 

 

  

( ) ( )

( )

( )

div grad div grad div

grad grad grad

0

 
 − − +  − −   

 

 
   + − + + − +    

 

 + −  +  − −  = 
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g g

rw
w w w s
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w w w g g g g
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w

ff
w

k
p H T S H

k k
C p C p T

nS
C T p H T H n S H

K

   


   
 

    

 (4) 

 

where ( )
effpC (x,t) is the effective thermal capacity of the porous medium, w

pC (x,t) 

and g
pC (x,t) are the specific heat of water and gas, respectively, and eff(x,t) is the 

effective thermal conductivity of the porous medium. The last term of Equation (4) 

considers the contribution of the evaporation and condensation.  

In equations (2)-(4) the advective fluxes have been described using Darcy’s law for 

liquid water and gas, while the diffusion of vapor in the gas phase has been modeled 

with Fick’s law.  

A recent development of a model which considers the air dissolved in the liquid 

water and its desorption at lower water pressures in quasi-statics loading conditions 

is presented in [Gaw09].  

It should be noted that the quasi-static version of the model is obtained by neglecting 

the terms in boxes in the above equations [San06]. 

3  Constitutive relationships 

For the gaseous mixture of dry air and water vapor, the ideal gas law is introduced. 

The equation of state of perfect gas (Clapeyron’s equation) and Dalton's law are 

applied to dry air (ga), water vapor (gw) and moist air (g) 

 

 /ga ga

ap TR M= ,  /gw gw

wp TR M= ,  
gwgag ppp += ,  g ga gw  = +  (5) 

 

In the partially saturated zones, the equilibrium water vapor pressure pgw(x,t) can be 

obtained from the Kelvin-Laplace equation, where the water vapor saturation pres-

sure, pgws(x,t), depending only upon the temperature, can be calculated from the 

Clausius-Clapeyron equation or from an empirical correlation.  

The saturation degree Sw(x,t) and the relative permeability kr(x,t) are experimentally 

determined functions dependent on capillary pressure and temperature (e.g. [Fra08] 

for Sw).  
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The bulk density of liquid water that is dependent on the temperature is modeled 

using the relationship proposed by Furbish [Fur97].  

The liquid water viscosity, dry air and water vapor viscosity, and the latent heat of 

evaporation are also temperature dependent relationships [Gaw12]. 

 

The solid skeleton is assumed elastic, elasto-plastic or elasto-viscoplastic, homoge-

neous and isotropic in the numerical simulations described in Section 5. Its mechan-

ical behavior is described within the classical rate-independent elasto-plasticity 

theory for geometrically linear problems or in the framework of elasto-visco-

plasticity. The latter implies a time-delayed inelastic response of the material, which 

is accordingly referred to as rate-sensitive or time-dependent and is adopted herein 

to eliminate the spurious mesh dependency in strain localization simulations.  

The yield function restricting the effective stress state ′(x,t) is developed in the 

form of Drucker-Prager model for simplicity, with linear isotropic softening and 

non-associated plastic flow to take into account the post-peak and dilatant behavior 

of dense sands.  

 

For the rate-independent elastoplastic model, the return mapping and the consistent 

tangent operator for the Jacobian matrix, are developed in [San06], where the singu-

lar behavior of the Drucker-Prager yield surface in the zone of the apex is solved by 

using the multi-surface plasticity theory (following the formulation developed in 

[San02] for isotropic linear hardening/softening and volumetric-deviatoric non-

associative plasticity in case of large strain elasto-plasticity).  

 

The Drucker-Prager yield function with linear isotropic hardening/softening has 

been used for both elasto-plastic and elasto-visco-plastic models, in the form 

 

 ( )  2
03

, , 3 F FF p p c h   = + − +s s  (6) 

 

in which  1 :
3

= σ 1p  is the mean effective Cauchy pressure, s  is the L2 norm of 

the deviator part of the effective Cauchy stress tensor ′(x,t), c0(x) is the initial ap-

parent cohesion, F(x) and F(x) are two material parameters related to the friction 

angle  (x) of the soil,  

 

 
2
3

sin 6cos
2

3 sin 3 sin
= =

− −
F F

 
 

 
 (7) 

 

h(x) the hardening/softening modulus and (x t) the equivalent (visco-)plastic 

strain.  

 

To take into account the effect of capillary pressure and temperature on the evolu-

tion of the yield surface, the interested reader can refer, for example, to the chapter 

by Manzanal et al. of this book and [Fra08], [Bol05] for capillary dependent consti-

tutive relationships in isothermal or non-isothermal conditions, respectively.  
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For the elasto-viscoplastic model, the Perzyna model [Per63] is adopted and the 

return mapping scheme along with the consistent tangent operator is developed in 

[Laz16]. Moreover, the non-local elasto-viscoplastic model is used to obtain mesh 

insensitive results even in case of weakly rate-sensitive materials (i.e. dense sand), 

for which classical visco-plasticity cannot achieve a mesh independent solution 

[dPIA02]. The non-local model introduces a characteristic length directly related to 

the shear band width and when this internal length approaches zero, the (local) elas-

to-viscoplastic model is regained. More details for the analytical formulation and the 

numerical treatment can be found in [LSS15], [Laz16] and will briefly described 

below. 

3.1 Elasto-plasticity 

The mechanical behaviour of the solid skeleton is assumed to be governed by the 

Helmholtz free energy ψ  function in the form  

 

 ( )eψ=ψ ,ξε  (8) 

 

dependent on the small elastic strain tensor, 
e( ,t)ε x , and the internal strain-like 

scalar hardening variable, xξ( ,t) , i.e., the equivalent plastic strain. The second law 

of thermodynamic yields, under the restriction of isotropy, the constitutive relations 

 

 e

ψ
=

ε





σ ,  





ψ
q = -

ξ  (9) 

 

and the remaining dissipation inequality 

 

 0 : - qξe
 σ ε  (10) 

 

where ( )q ,tx  is the stress-like internal variable accounting for the evolution of the 

yield locus in the stress space. The evolution equations for the rate terms of the dis-

sipation inequality (10) can be derived from the postulate of the maximum plastic 

dissipation in the case of associative flow rules [Sim98]  

 

 and
F

- γ


=


ε ε
σ

e 
=



F
ξ γ

q  (11) 

 

subjected to the classical loading-unloading conditions in Kuhn-Tucker form 

 

 γ 0    0F( ,q) σ    0γF =  (12) 
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where ( ),γ tx  is the continuum consistency parameter and =F F( ,q)σ the isotropic 

yield function (Equation 6). 

Algorithmic formulation for elasto-plasticity 

The problem of the calculation of 
e
ε , ξ  and σ is typically solved by an operator 

split into an elastic predictor and plastic corrector [SH98]. The calculation of the 

trial elastic state (•)tr
 is based on freezing the plastic flow at time n+1t . The [ ]n+1

e tr
ε  is 

hence obtained from the load step by means of [ ] =n+1 n+1

e tr
ε ε . The corresponding trial 

elastic state is obtained from the hyperelastic free energy function as 

 

 
e

n+1

tr

tr

n+1 e

ψ
=

ε  =
 

 
   ε ε

σ
e

, 
tr
n+1

tr

n+1

ψ
q =

ξ
 =

 
  

 (13) 

 

If this trial state is admissible, it does not violate the inequality 

( ) 0 = tr tr tr

n+1 n+1 n+1F F ,qσ  and the stress state is hence already computed. Otherwise 

the return mapping or plastic corrector algorithm is applied to compute  n+1γ  satis-

fying the consistency condition 0n+1F =  . 

From the knowledge of  n+1γ  the equivalent plastic strain is computed by the back-

ward Euler integration of Equation (9)2  

 

 


= + 


 n+1 n n+1

n+1

F
γ

q  (14) 

 

The Cauchy stress components are then computed by the hyperelastic constitutive 

law Equation (9)1 with the free energy ˆ
eψ=ψ( ,t)ε  written as function of the princi-

pal elastic strain components and the equivalent plastic strain (for isotropic linear 

hardening) is 

   ( )ˆ + + + + +
2 2 2 2 2

1ε 2ε 3ε 1ε 2ε 3ε

L 1
ψ = ε ε ε G ε ε ε + hξ

2 2
 (15) 

where L and G are the elastic Lame’ constants and h the linear hardening modulus. 

3.2 Local elasto-viscoplasticity 

The total strain rate in an elasto-viscoplastic material is additively decomposed into 

an elastic and a viscoplastic strain rate: 
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e vp

= +ε ε ε  (16) 

 

where the superimposed dot denotes time derivative. Considering linear elasticity, 

the stress rate is related to the strain rate via the following constitutive relation: 

 

 ( )e vp
:= −σ D ε ε  (17) 

 

where De(x) is the fourth-order elastic tensor and double dots “:” denote the doubly 

contracted tensor product.   

In the viscoplastic model proposed by Perzyna [Per63] (which from this point on 

will be referred as local to distinguish from non-local), the viscoplastic strain rate is 

directly linked to the yield function through the viscous nucleus, Φ(x, t). The time 

dependency is introduced by modifying the flow rule and by abolishing the con-

sistency rule.  

The plastic potential defines the direction of the viscoplastic strain rate tensor while 

the yield function influences its modulus by means of the viscous nucleus. The vis-

cous nucleus quantifies the “overstress” (i.e. f(σ') > 0) and the choice of its form 

determines the regularizing effect of the viscoplastic model.  

The choice of the viscous nucleus is fundamental in determining the temporal mate-

rial mechanical response [Laz19], which is well described also in the chapter by di 

Prisco et al. of this book. The simplest choice is to assume that Φ is linearly depend-

ent on f as follows: 

 

N

vp

0

g
γ Φ

'

 
  
 


=


ε

σ

f

f
 (18) 

 

with f(x, t) being the yield function, f0 introduced as a reference fixed value making 

the viscous nucleous dimensionless, γ(x) is a fluidity parameter which depends on 

the viscosity η(x) of the material (γ =1/η), N(x) is a calibration parameter (N ≥ 1) 

and g(x, t) is the viscoplastic potential function, “<•>” are the McCauley brackets. 

Associative flow is obtained by g = f. 

 

Invoking the viscoplastic model of Perzyna with the plastic potential function and 

applying the chain rule of partial differentiation, the flow rule specifies to: 

 

 ( )vp g p g
γΦ : :

p

    
= +

      

 
 
 

s
ε

σ s σ
f  (19) 

and leads to: 

  vp

gλ α= +ε 1 n  (20) 

 

where n = s / ǁsǁ is the unit normal field. 
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Accordingly, the equivalent viscoplastic strain rate is defined in terms of the visco-

plastic strain rate, as follows: 

 

 vp vp
 = ε  (21) 

 

and considered the definition of the Euclidean norm of a second order tensor, one 

obtains: 

 ( ) ( ) ( )  ( )
1/2

vp

g g gγΦ α : α γΦ 3α 1 = + + = +1 n 1 nf f  (22) 

Integration algorithm 

In displacement-based finite element method the update of stress takes place at 

Gauss points. Assuming that at time tn the value of total and viscoplastic strains is 

known, the stress state is known as well. Then, suppose that an increment in total 

strain (Δε) is given which drives the state to time tn+1 = tn + Δt. The incremental 

strain, Δε = εn+1 − εn, is used to update the stress at time tn+1. A trial and error strain 

driven process is adopted, in which an elastic trial step is first assumed by freezing 

the viscoplastic flow to distinguish between elastic and viscoplastic loading 

 

  
vp, trial vp vp, trial vp

         n+1 n n+1 n ξ ξ= =ε ε  (23) 

 

Then, the trial stress is tested to see if it is inside or outside the yield surface: 

 

tr el, tr vp

n+1 n n+1 n+1 np p Ktr Ktr( ) =  +  = −ε ε ε
  

  

tr el, tr vp

n+1 n n+1 n+1 n2G 2G( )= +  = −s s e e e  (24) 

( )tr tr tr vp

n+1 n+1 n+1 n3α p β 2 / 3 c hξ=  + − +sf ff   

 

If it falls within or is on the yield surface the process is elastic and the trial state (•) tr 

represents the actual final state of the material. Otherwise, the process is viscoplastic 

and the viscoplastic strain increment is computed by integrating Equation (20) with 

the unconditionally stable Backward Euler scheme: 

 

  vp vp

n+1 n n+1 g n+1Δλ α += +ε ε 1 n  (25) 

 

The unit normal nn+1 is determined exclusively in terms of the trial elastic 

stress [SH98]: 
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tr

n+1 n+1
n+1 tr

n+1 n+1

= =
s s

n
s s

 (26) 

 

In the absence of the consistency rule, the inelastic multiplier is directly 

computed as: 

 
tr

n+1
n+1

20
g g

Δλ
η 2

9α α K 2G β h 3α 1
3Δ

=

+ + + +f f

f

f

t

 (27) 

 

Subsequently, from the knowledge of Δλn+1, the components of the stress 

tensor and the equivalent viscoplastic strain can be updated: 

tr

n+1 n+1 n+1 gp p 3KΔλ α =  − ,   tr

n+1 n+1 n+1 n+12GΔλ= −s s n  (28) 

tr

n+1 n+1 n+1 n+1 n+1 g n+1 n+1p 3KΔλ α 2GΔλ =  + =  − −σ 1 s σ 1 n ,   ( )vp vp 2

n+1 n n+1 gξ ξ Δλ 3α 1= + +  

 

Finally, the algorithmic procedure is completed with the derivation of the algorith-

mic (consistent) viscoplastic tangent moduli  

 

 

g gvp n+1 n+1 n+1
n+1 trialel,trial

n+1n+1
n+1

2n+1 n+1 n+1 n+1

trial
n+1 n+1 n+1n+1

9α α K 6KGα2GΔλ
= = 1 K + 2G 1

d d

6KGα Δλ1
4G

d d

   
 −  − −       

 
 −  − − 
 
 

f

f

σ s
C 1 1 Ι 1

ssε

s s s
1

s s ss

  

 

where  

 

 
2

g g

η 2
d 9α α K 2G β h 3α 1

Δt 3

0
f f

f
= + + + +   

 

From the previous expression of the parameter d it can be inferred that the visco-

plastic modulus tends to the elastoplastic limit [San06] as viscosity η tends to zero. 

More details can be found in [Laz15], [Laz16].  

It should be noted that in viscoplasticity, ‘the use of consistent tangent moduli is not 

only desirable but also necessary’ as remarked in [J90]. This necessity stems from 

the fact that in viscoplastic models a continuum tangent stiffness operator does not 

exist, as a result of abolishing the consistency condition which prevents a direct 

incremental relationship to be established between the stress and the total strain 

increments.   

 

Sanavia, Cao & Lazari 299

ALERT Doctoral School 2024



Table 1: Numerical algorithm for local Perzyna model [Laz15]. 

1. Compute trial elastic state 

tr vp

n+1 n+1 np Ktr( ) = −ε ε
 
;
  

tr vp

n+1 n+1 n2G( )= −s e e  

2. Check viscoplastic flow potential 

( )tr tr tr vp

n+1 n+1 n+1 n= 3α p + β 2 / 3 c hξ − +sf ff  

IF: tr

n+1 0f  → elastic step → tr

n+1 n+1(•)Set   (•) =  & EXIT 

else go to 3 

3. Compute Δλn+1: 

 

tr

n+1
n+1

20

Δλ
η 2

9α α K 2G β h 3α 1
3Δ

f g f g

f

f

t

=

+ + + +

 

4. Update viscoplastic strain and stress 

( )vp vp

n+1 n n+1 n+1Δλ αg= + +ε ε 1 n  

( )vp vp 2

n+1 n n+1 gξ ξ Δλ 3α 1= + +  

n+1 n+1 n+1p =  +σ 1 s  

5. Compute consistent viscoplastic tangent moduli  

3.3 Non-local elasto-viscoplasticity 

Non-local approach is introduced next because in case of weakly rate-sensitive ma-

terials (such as dense sand) artificial viscosities have to be chosen to obtain objec-

tive finite element results. To ensure a regularized numerical solution physically 

based and following [dPI02], the local viscoplastic model of Perzyna presented in 

section 3.2 is expanded with respect to the non-local approach. 

Following Jirásek [Jir02] in non-local approach, a certain variable is substituted with 

its non-local counterpart obtained by weighted averaging over a spatial neighbor-

hood of each point under consideration. If f(x) is a “local” field, the corresponding 

non-local field is defined as: 

 

 ( ) v
ˆ α , d( ) = f x x ξ ξ  (29) 
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where α(x, ξ) is a given non-local weight function of the point under consideration 

located at x and the neighboring (or distributing) points located at ξ and V is the 

volume of the entire body.  

For an infinite body the weight function depends only on the distance r = ǁx − ξǁ and 

can be expressed as α(x, ξ) = α0(ǁx − ξǁ) where α0 is a function of r. For a finite body, 

the weight function is usually adjusted such that the non-local field corresponding to 

a constant local field remains constant even in the vicinity of a boundary. This is 

guaranteed if the weight function satisfies the normalizing condition: 

 

 v α , d = 1   V( )   x ξ ξ x  (30) 

 

This condition can be achieved by imposing that the weight function is expressed 

by: 

 
( )
( )

0

0v

α
α( , ) =

α d 

x - ξ
x ξ

x - ζ ζ
 (31) 

where α0 is the basic weight function. 

Key points for the formulation and implementation of an integral non-local approach 

are the shape function for the averaging, the non-local variable and its discretization. 

In the following, these factors are discussed in detail. 

Basic shape function 

The weight function always contains at least one parameter with the dimension of 

length which incorporates, in the simplest possible way, information about the mi-

crostructure and controls the size of the localized plastic zone [Jir03]. Herein, a 

Gaussian weighting function with a bounded support is selected: 

 

2

0

2 ( )
exp    if R

α ( ) = l

0                              if > R

−

−

 −
− 

−

      



x ξ

x ξ

x ξ

x ξ  (32) 

 

where R is the interaction radius representing a parameter linked to the internal 

length l. 

Non-local variable 

In non-local theories, an internal length enters as a material parameter by allowing a 

dependency on the so-called non-local variables in the constitutive equations. A 

non-local variable is a weighted average of the local variable over all the material 

points in the body, and the length parameter determines how the value of the varia-

ble at a certain point is weighted. The way non-locality is introduced into the consti-
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tutive equations is dominant because an inappropriate treatment of the non-local 

variable, may lead to instability of the numerical analysis. 

Herein, inspired by [dPI03], the yield function is chosen to be the non-local variable. 

Choosing yield function as the non-local variable ( )f̂ , the viscous nucleus and con-

sequently the viscoplastic flow rule are modified: 

 

 ( )vp gˆ= γΦ f



ε

σ'
 (33) 

Discretization of the non-local variable 

The non-local variable of Equation 29 evaluated using Gauss quadrature. The 

Gaussian integration process allows the spatial integrals of a polynomial to be re-

placed with finite sums over a discrete set of integration points. In each element we 

perform Gauss integration  

 

 
( )

( )
=1 1

=1 1

ω α det ( )
ˆ ( ) =

ω α det

el n
e e e e

j i j j j
e j=

el n
e e e

j i j j
e j=

f

f

− 

− 

x ξ J ξ

x

x ξ J
i

 (34) 

 

in which i is the integration point under consideration, j is the jth Gauss point of 

element e; el is the total number of elements inside the interaction volume defined 

by a sphere centered at x with radius R, n is the number of Gauss points of this ele-

ment inside the interaction volume; ω and J are, respectively, the weight and Jacobi-

an matrix at Gauss point j of element e. 

Integration algorithm 

The algorithmic treatment of the non-local approach and its implementation can be 

divided in two main steps. 

In the first step the factors
e

jω , 
e

jJ  and ( )e

i jα −x ξ of Equation (34) are computed. 

These factors depend on the finite element mesh itself and not on the material model 

considered. Therefore, this step is applied only once at the beginning of the analysis 

and the values of the calculated factors can be reused in the subsequent iterations, 

whenever the non-local formulation is activated. This fact has twofold advantage as 

it allows for non-local extension to more sophisticated yield criteria and in addition 

reduces significantly the computational burden. Moreover, carrying out integration 

over the whole domain with a relatively small value for the internal length l, may 

lead to the summation of zero values. This is because in such a case, the sphere of 

influence of the weighting function is only in the closest neighborhood of the re-

garded integration point. To prevent such an inefficient strategy, at the beginning of 

the calculation, the set of elements, which have an influence on the non-local quanti-
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ty, are determined by calculating the distance between the respective points and 

comparing the distance with some reference value, which depends on the internal 

length. In the second step the non-local quantity and the integration of the non-local 

elasto-viscoplastic constitutive equations are computed. In non-local context an 

implicit scheme is difficult to be applied, as the integration of the constitutive equa-

tions is no longer a local stage [Str96]. For this purpose an explicit integration 

scheme is adopted only for the integration of non-local viscoplastic constitutive 

equations (whereas the rest of the algorithm operates implicitly) and the non-local 

values at the current time step are calculated from the local values of the previous 

time step.  

 

Table 2: Flowchart of the non-local implementation in COMES-GEO code [Laz16]. 
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Due to its explicit nature, the stability of the algorithm is maintained using a rela-

tively small time step.  Using forward Euler method for the integration of Equation 

(33) one obtains: 

 

  vp vp

n+1 n n+1 g nΔλ α += +ε ε 1 n  (35) 

 

in which the increment of the inelastic multiplier is obtained by integrating the non-

local version of plastic multiplier: 

 

 ( )n+1 n

0

Δt
Δλ

η 
f

f
=  (36) 

Having computed Δλ , strain and stresses can be updated. Since this procedure uses 

the local values of the previous time step for the calculation of non-local values at 

the current time step, the local variable has to be stored and ensure that this infor-

mation will be available in the next time step. In fact the local yield function, f, is a 

column matrix that collects the local values at all Gauss points.  

Table 2 summarizes the algorithm of non-local formulation, which extends the local 

stress update of the viscoplastic model of Perzyna. 

4 Spatial and time discretization 

The finite element model is derived by applying the Galerkin procedure for the spa-

tial integration and the generalized Newmark method for the time integration of the 

weak form of the balance equations (1)-(4) [Lew98], [Zie99], [Zie00].  

In particular, after spatial discretization within the isoparametric formulation, the 

following non-symmetric, non-linear and coupled system of equations is obtained: 

 

 

g c g c

gg gc gT gu gg gc gT g

g c g c

cg cc cT cu cg cc cT c

g c g c

Tg Tc TT Tu Tg Tc TT T

T g c

uu ug uc u
'dW - + =

 + − + + − − =

 + + + − + + =


− − + − − + + =


+
 

C p C p C T C u K p K p K T f

C p C p C T C u K p K p K T f

C p C p C T C u K p K p K T f

M u B K p K p f

 (37) 

 

where the displacements of the solid skeleton u(x,t), the capillary pressure pc(x,t), 

the gas pressure pg(x,t) and the temperature T(x,t) are expressed in the whole domain 

by global shape function matrices Nu(x), Nc(x), Ng(x), NT(x) and the nodal value 

vectors ( ) ( ) ( ) ( ), , ,c gt t t tu p p T .  

Following the Generalized Newmark Method, equations (37) are rewritten at time 

t(n+1). The elements of the matrices Cij, Kij and the vectors fi are given in [San15]. 
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In this study, the generalized Newmark time integration scheme [Zie00] is applied to 

the non-linear equation system (8) and a non-linear system of algebraic equations is 

obtained, in which the unknowns are  =    
 

g cp , p , T ,X u . The non-linear 

system is solved by Newton-Raphson method, thus obtaining the equation system 

that can be solved numerically (written below in a compact form) as: 

 

 ( )
1

1

1 1
i
n

i i

n n

+

+

+ +


  −

 X

G
X G X

X
 (38) 

with the symbol ( ) 1
1

+
+•

i
n  to indicate the current iteration (i+1) in the current time step 

(n+1) and where G X is the Jacobian matrix. 

Owing to the strong coupling between the mechanical, thermal and the pore fluids 

fields, a monolithic solution of (38) is preferred. 

5  Finite element simulations 

This section addresses the numerical validation of the model previously derived and 

presents an application studying a biaxial strain localization test and a slope stability 

test. 

Different tests have been simulated, aiming at validate:  

a) the wave propagation in a solid material (Equation (1) restricted to single 

phase solid material),  

b) the isothermal water saturated model (Equations (1) and (3) with Sw=1),  

c) the isothermal variably saturated model (Equations (1), (2) and (3)) and  

d) the non-isothermal water saturated model (Equations (1), (3) and (4) with 

Sw=1).  

Analytical solutions are available in [Slu92] and [Boe93] for the first two tests re-

spectively, while the numerical results from tests c) and d) have been compared with 

the numerical solution of the corresponding quasi-static models because of the lack 

of analytical solutions. Some representative results of tests c) and d) are illustrated 

here. 

5.1 Drainage of liquid water from initially water saturated soil 

column 

This numerical test is based on an experiment performed by Liakopoulos [Lia65] on 

a column 1 meter high (Figure 1) of Del Monte sand and instrumented to measure 

the moisture tension at several points along the column during its desaturation due to 

gravitational effects. Before the start of the experiment, water was continuously 

added from the top and was allowed to drain freely at the bottom through a filter, 

until uniform flow conditions were established. Then the water supply was ceased 

and the tensiometer readings were recorded. The finite element simulation is per-
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formed with the two-phase flow model in isothermal conditions. For the numerical 

calculation, a two-dimensional problem in plane strain conditions is solved; the 

spatial domain of the column is divided into 20 eight-node isoparametric finite ele-

ments of equal size. Furthermore, nine Gauss integration points were used. The 

material parameters are listed in [Gaw96], as well as the description of the boundary 

conditions and the equations for the saturation-capillary pressure and the relative 

permeability of water-capillary pressure relationships. 

This problem has been solved considering single or two-phase flow mainly in quasi-

static condition (e.g. [Gaw96]); a finite element solution in dynamics was presented 

in [Sch98]. The initial hydro-mechanical equilibrium state is obtained via a prelimi-

nary quasi-static solution. 
The comparison between the dynamic and the quasi-static solution is plotted in Fig-

ures 2 to 4, where the profiles for liquid water pressure, liquid water saturation and 

vertical displacement along the column are plotted. Since the inertial loads are neg-

ligible in the experiment, the finite element solution in dynamics gives almost the 

same results of the quasi-static model [Gaw96], [Gaw09]. 

 

 

Figure 1: Geometry and finite element discretization of the sand column. 

 

a) b)   

Figure 2: Profiles of capillary pressure versus height: a) dynamic solution; b) com-

parison between the quasi-static and the dynamic solution. 

0,1 m

1 m

0,1 m

1 m

0,1 m

1 m

306 Finite element analysis of non-isothermal multiphase porous media in
quasi-statics and dynamics

ALERT Doctoral School 2024



 

a)  b)  

Figure 3: Profiles of liquid water saturation degree versus height: a) dynamic solu-

tion; b) comparison between the quasi-static and the dynamic solution. 

 

a)  b)  

Figure 4: Profiles of vertical displacement versus height: a) dynamic solution; b) 

comparison between the quasi-static and the dynamic solution. 

5.2 Numerical validation of the non-isothermal water saturated 

model 

This problem deals with a water saturated thermo-elastic consolidation [Abo85], 

simulating a column, 7 m high and 2 m wide, of a linear elastic material subjected to 

an external surface load of 10 kPa and to a surface temperature jump of 50 K above 

the initial temperature of 293.15 K (Figure 5). The material parameters used in the 

computation are summarized in [San08]. The liquid water and the solid grain are 

assumed incompressible for the quasi-static analysis, whereas the compressibility of 

the liquid water is taken into account in the dynamic analysis. The initial and bound-

ary conditions are described in [San08]. Plane strain condition is assumed. The spa-

tial domain is discretized with eight-node isoparametric elements; nine Gauss points 

are used. 

The solution of the finite element model presented in this work is compared with the 

quasi-static solution [San08] and is plotted in Figures 6 and 7. The results show that 

the dynamic solution is faster than the quasi-static one at the beginning of the analy-

sis, and that the dynamic solution reaches the quasi-static one at the steady-state. 
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Figure 5: Description of the non-isothermal water saturated test. 

 

a) b)  

Figure 6: Temperature time history for node 319 up to the steady state solution (a) 

and in the first period (b) highlighted in a). 

 

a)  b)  

Figure 7: a) Capillary pressure time history for node 319 and b) vertical displace-

ment time history for node 399. 

 

𝑓(𝑡) = 10 kPa 

∆𝑡 = 50 K 
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5.3 Globally undrained biaxial compression test 

A plane strain compression test of initially water saturated dense sand in globally 

undrained conditions is simulated here with the model developed in the previous 

sections. This case was solved in [San06] in quasi-static conditions and is inspired 

by the experimental work of Mokni and Desrues [Mok98], in which cavitation of the 

liquid water was experimentally observed at localization.  

A sample of 34 cm height and 10 cm width is compressed with imposed vertical 

displacement applied to the top surface at a velocity of 3.6 mm/s (Figure 8). Vertical 

and horizontal displacements are constrained at the bottom surface; the boundary of 

the sample is impervious and adiabatic. 

The mechanical behavior of the solid skeleton is simulated using the elasto-plastic 

Drucker-Prager constitutive model (with isotropic linear softening and non-

associated plastic flow) summarized in Section 3. At time t= 0 seconds, the initial 

conditions for the domain are the hydrostatic water pressure, the gas pressure at 

atmospheric value and a temperature of 293.15 K. Gravity acceleration is taken into 

account; the initial stress state in equilibrium with the initial conditions and thermo-

hydro boundary conditions is computed with the corresponding quasi-static model 

[San06]. The geomechanical characteristics of the dense sand are given in [San06]. 

Figures 9 and 10 show the contour plots at 13 seconds of the following thermo-

hydro-mechanical variables: equivalent plastic strain, volumetric strain, capillary 

pressure, liquid water saturation and relative humidity. Positive volumetric strains 

are observed inside the dilatant shear bands (Figure 9b), inducing a liquid water 

pressure drop up to the development of capillary pressures (Figure 10a) desaturating 

the plastic zones (Figure 10b) because of the phase change of the liquid water into 

vapor due to cavitation (Figure 10c). 

 

 

Figure 8: Finite element discretization and boundary conditions of the biaxial com-

pression test. 
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a) b)  

Figure 9: Numerical solution at 13 s: a) equivalent plastic strain, b) volumetric 

strain. 

 

a) b) c)  

Figure 10: Numerical solution at 13 s: a) capillary pressure, b) liquid water satura-

tion, c) relative humidity. 

 

To study the independence of shear band width from the finite element size in dy-

namics, e.g. [Sch96], [Sch99], [Zha99] and [Sch06], test runs with meshes of 85, 

340 and 1360 elements have been carried out. In this case, the analysis of the finite 

element results [Cao16] shows that the peak value of the equivalent plastic strain 

and, as a consequence, of the volumetric strain, the capillary pressure, the water 

vapor pressure and the relative humidity are sensitive to mesh refinement and a 

regularization scheme would be needed as expected, because the internal length 
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scale given by the liquid water motion [Zha99] is not sufficient to regularize the 

numerical solution.  

The effect of the local and non-local elasto-viscoplastic model of Perzyna in the 

regularization of this mesh dependency problem is illustrated in Figure 11. 

 

 

Figure 11: Numerical results for (a) local viscoplasticity with η=30s, (b) local visco-

plasticity with η=10s, (c) non-local viscoplasticity with η=10s, l=0.01m and (d) non-

local viscoplasticity with η=10s, l=0.02m, for two meshes (10x34 and 20x68 respec-

tively). 

 

The influence of the viscosity parameter, η, is clearly depicted for the local elasto-

viscoplastic model. In the case of η=30s, a regularized solution is obtained for both 

meshes: the shear band width remains unaltered upon mesh refinement and the peak 

value of equivalent viscoplastic strain coincides for the two meshes. However, con-

sidering a less rate-sensitive material with η=10s (and as approaching the elasto-

plastic solution), the regularizing effect of the local elasto-viscoplastic model is lost 
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and the contour of the more refined mesh reveals strong mesh-sensitivity (Figure 

11b). In this case, the non-local elasto-viscoplastic model proves to be sufficient to 

regularize the finite element solution for the given material parameters and the shear 

band propagates for internal length value, l=0.01m (Figure 11c). Moreover, in the 

case of internal length value l=0.02m (Figure 11d), the width of the shear band in-

creases accordingly to the l value for both meshes adopted. In Figure 12 the numeri-

cal solution for the liquid phase is presented in terms of capillary pressure and water 

saturation. The results are presented for the case of non-local elasto-viscoplastic 

model, and mesh independency is apparent also for the fluid part. It is evident that 

pore water decreases up to the development of capillary pressure, accompanied by 

desaturation in the strain localization zones. It is noted that at the same time water 

pressure decreases below the vapor saturation pressure and the phase change of the 

liquid water to vapor occurs. A more detailed presentation and analysis of the influ-

ential parameters of the problem, such the loading velocity, the value of permeabil-

ity and the interaction of the internal lengths (introduced by viscosity and non-

locality) can be found in [Laz15]. 

 

 

Figure 12: Non-local approach: Capillary pressure and water degree of saturation 

contours for (a) 10x34 mesh and (b) 20x68 mesh, in case of l=7.5mm and η=10s.    

5.4 Slope stability test 

A slope stability problem, inspired by [Re01], is presented to demonstrate the effec-

tiveness of the regularization techniques presented in Section 3 towards strain local-

ization simulation of geomaterials. The dimensions and boundary conditions of the 

problem are shown in Figure 13 whereas the soil parameters considered in the anal-

ysis can be found in [Laz16]. The initial stress field is given by geostatic stress state 

and drained conditions are imposed. Then, a downward displacement with a con-
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stant rate of 10-3 m/s is applied to a length of 4m on the top slope surface (Figure 

13). Two meshes with 400 and 1600 eight node quadrilateral isoparametric elements 

are used to analyze the problem.  

 

Figure 13: Slope stability problem. Geometry and boundary conditions. 

 

Figure 14: Equivalent (visco)plastic strain contours as calculated using the elas-

toplastic model (a, d), the local elasto-viscoplastic model (b, e) and the non-local 

elasto-viscoplastic model (c,f ) for a mesh of 400 elements (a), (b) and (c) and for a 

mesh of 1600 elements (d), (e) and (f), respectively. 
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The analyses are performed using: the elastoplastic model, the local elasto-

viscoplastic model of Perzyna with viscosity η=100s and the non-local elasto-

viscoplastic model with an internal length of l=0.8 m. The results from these models 

are shown in Figure 14 in terms of equivalent (visco-) plastic strain. The failure 

initiates in the element just to the right of the applied force and propagates in a man-

ner dependent on the angle of friction. When the elastoplastic constitutive model is 

used to solve this initial boundary value problem, a classical mesh dependent numer-

ical solution is observed with the model being unable to simulate the failure process 

of the slope when the mesh is refined (Figure 14d). As is shown in Figure 14b, e 

when the elasto-viscoplastic formulation of Perzyna is adopted, even if the number 

of elements is increased, the shear band formation is not affected by the element 

size. However, the peak value of the viscoplastic strain field depends on the element 

size of the mesh (Figure 14e). Finally, the non-local elasto-viscoplastic model is able 

to predict a clearly defined shear band independently of the mesh adopted (Figure 

14f). 

6  Conclusions 

A model for the analysis of the thermo-hydro-mechanical behavior of porous media 

in dynamics was developed. Starting from the generalized mathematical model de-

veloped in [Lew98] for deforming porous media in non-isothermal conditions, the u-

p-T formulation was derived following [Zie99] and [Cha22]. The validity of such an 

approximation is limited to low frequencies problems [Zie99] and [Cha22], as in 

earthquake engineering. In this formulation, the relative accelerations of the fluids 

and the convective terms related to these accelerations are neglected. 

The numerical model was derived within the finite element method: the standard 

Bubnov-Galerkin procedure [Zie00] was adopted for the discretization in space, 

while the implicit and unconditionally stable generalized Newmark procedure was 

applied for the discretization in time [Zie00] or the chapter by Pastor in this volume. 

The model was implemented in the finite element code Comes-Geo [Lew98], 

[Gaw96], [San06], [San08], [San09], [Gaw09], [Gaw10]. The formulation and the 

implemented solution procedure were validated through the comparison with litera-

ture benchmarks, finite element solutions or analytical solutions. In this work, com-

parison between the finite element solution in dynamics and the corresponding qua-

si-static solution is presented by studying the non-isothermal consolidation in a 

water saturated column and the drainage of liquid water in an initially water saturat-

ed soil column. 

This work extends the model developed in [Sch98] to non-isothermal conditions and 

removes the passive air phase assumption of the multiphase porous media model in 

dynamics developed in [Zie99] and [Gaw98]. 

The efficiency of the soil constitutive models in terms of regularized performance 

has been illustrated using numerical examples of an undrained biaxial test and a 

slope failure problem. The numerical results indicate that only by using the applied 
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regularization techniques the location and the propagation of the shear zone is relia-

bly simulated in a mesh independent manner. 
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