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TECHNICAL NOTE

Rotational hardening with and without anisotropic fabric at critical state

Y. F. DAFALIAS! and M. TAIEBAT†

The question of zero or non-zero anisotropic fabric at critical state for clays is a debatable issue. The
present note addresses a way to model either eventuality by proposing a novel rotational hardening
rule for clay plasticity constitutive modelling. Various conditions are derived on the model constants
such that some basic requirements are satisfied, among them the uniqueness of the critical state line
and prevention of excessive rotation of the plastic potential and yield surfaces in stress space.
Schematic and real data simulations illustrate the performance of the new rotational hardening rule.

KEYWORDS: anisotropy; clays; constitutive relations; plasticity

INTRODUCTION
This work is motivated by the critique of a reviewer of a
recent work by Dafalias & Taiebat (2013) investigating rota-
tional hardening (RH) in clay plasticity, who argued that
during critical state failure there must be no anisotropic fabric
due to continuous generation and destruction of such fabric.
Anisotropic fabric is macroscopically manifested by the value
of the RH variable, which measures the rotation of the yield
surface (YS) and plastic potential surface (PPS) in stress
space. Zero anisotropic fabric implies the zeroing of the RH
variable at critical state, hence, a non-rotated PPS/YS. Fabric
anisotropy for clays is abundant in nature and is encountered
in all cases of natural deposition under K0 gravity consolida-
tion. The question, therefore, is not if such anisotropic fabric
exists, but whether it persists at critical state failure, an event
not amenable to easy experimental verification because of the
elusiveness of reaching, maintaining and measuring under
critical state conditions. Exceptions are virtual numerical
experiments by discrete-element method on granular soils
where strong anisotropic fabric has been measured when
critical state is reached (Fu & Dafalias, 2011).

The authors subscribe to the existence of anisotropic
fabric at critical state, but recognising the debatable nature
of this issue, they provide the means to model by use of an
appropriate RH rule both eventualities of zero or non-zero
anisotropic fabric at critical state. The present work is a
natural accompaniment to the work by Dafalias & Taiebat
(2013) and materialises a proposition made at the very end
of the foregoing reference; hence, it is recommended to be
read in conjunction with it.

BASIC EQUATIONS
The expression of the PPS and YS for associative flow

rule in the triaxial p, q space is (Dafalias, 1986)

g ¼ f ¼ (q# pÆ)2 # (M2 # Æ2)p( p0 # p) ¼ 0 (1)

where the critical state stress ratio M , Æ (RH variable) and
p0 (size) are illustrated in Fig. 1. For Æ ¼ 0 equation (1)
yields the classical modified Cam Clay (MCC) model
(Burland, 1965). For non-associative flow rule, equation (1)
defines the PPS while the YS is obtained by substitution of
N 6¼ M for M , a scheme first proposed by Jiang & Ling
(2010). With ! ¼ q=p, the M and N acquire the values M c,
N c when ! . Æ (compression-like), and M e, N e when
! , Æ (extension-like). The various constitutive relations are
given in Dafalias & Taiebat (2013) and the use of super-
script ! will denote an equation number associated with the
foregoing reference to distinguish it from equations of the
current work. The methodology is applicable to any expres-
sion that allows for the PPS/YS to rotate and expand.

The RH rule is a rate evolution equation of Æ, which can
be cast in the form

_Æ ¼ Lh icpat

p

p0

Æb(!)# Æ½ % (2)
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Fig. 1. Schematic diagram of the anisotropic yield and plastic
potential surfaces in the p–q space; reproduced from Dafalias &
Taiebat (2013)

PPS:   g = (q −α p)2 − (M 2 −α 2 )p(p0 − p) = 0

YS:   f = (q −α p)2 − (N 2 −α 2 )p(p0 − p) = 0

M = Mc   and N = Nc  when η>α

M = Me   and N = Ne  when η <α

Fabric Variable α  common to YS and PPS
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  YS	
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  to	
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  N=M	
  	
  
(Wheeler	
  et	
  al.,	
  2003)	
  

to compare these simulations with the observed behaviour to
select the most appropriate value for the parameter µ. The
most suitable experimental tests would be ones involving
significant rotation of the yield curve. A simple example, for
a soil with significant initial anisotropy, would be an isotro-
pic consolidation test. Comparisons of observed and
predicted behaviour could then be made in terms of the ob-
served pattern of straining. Another type of test that would
be well-suited to this task would be undrained shearing in

triaxial extension, as suggested by Pestana and Whittle
(1999).

In practice, performing suitable laboratory tests and then
undertaking model simulations with different values of µ for
each deposit may not be feasible. Zentar et al. (2002b) sug-
gested, however, that the value of µ for a particular soil will
normally lie in the range 10/λ to 15/λ. With µ in this range,
the model predicts that an anisotropic natural soil must be
subjected to an isotropic stress approximately three times

© 2003 NRC Canada
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Fig. 7. Initial yield curves for other soft clays: (a) Winnipeg clay (after Graham et al. 1983); (b) Marjamäki clay (after Länsivaara
1996); (c) Bothkennar clay (after Smith et al. 1992); (d) Mexico City clay (after Diaz-Rodriguez et al. 1992).
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Fig. 3. Comparisons of yield surfaces for natural clays.

Fi^ng	
  YS	
  of	
  AMCC	
  to	
  data	
  with	
  N>M,	
  N=M,	
  N<M	
  	
  
(Jiang	
  and	
  Ling,	
  2010)	
  	
  



Forms	
  of	
  RotaDonal	
  Hardening	
  (RH)	
  

Generic	
  form:	
  
	
  
Loading	
  index	
  (plas&c	
  mul&plier):	
  	
  	
  	
  

Bounding	
  a/ractor:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  towards	
  which	
  	
  	
  	
  	
  	
  converges	
  under	
  fixed	
  	
  
	
  
Dafalias	
  (1986)	
  :	
  	
  
	
  
Dafalias	
  and	
  Taiebat	
  (2013):	
  	
  
	
  
Dafalias	
  and	
  Taiebat	
  (2014):	
  
	
  
Non	
  generic	
  form:	
  (Wheeler	
  et	
  al,	
  2003)	
  

 
α =  < L > cpat

p
p0

[αb (η)−α ]           η = q
p

αb (η)
 L ~ ε p : ε p

α  η

αb (η) =
η
x

αb (η) = ± M
z
(1− exp[−s |η |

M
])

αb (η) =η m 1− |η |
M

⎛
⎝⎜

⎞
⎠⎟
n

+ α c

M
exp −µ |η |

M
−1⎛

⎝⎜
⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟

↵̇ = µ[(
3⌘

4
� ↵) < "̇p

v > +�(
⌘

3
� ↵)|"̇p

d|]



where L in Macauley brackets h i is the plastic multiplier
obtained from the consistency condition _f ¼ 0, pat is the atmo-
spheric pressure for non-dimensionalisation of the model con-
stant c which controls the pace of evolution of Æ, and Æb(!) is
a bounding/attractor stress-ratio quantity towards which the
RH variable Æ tends under constant stress ratio ! loading;
_Æ ¼ 0 when Æ ¼ Æb(!): The definition of Æb(!) is the key to
characterising the RH. Not all RH rules can be brought into
the form of equation (2), as in Wheeler et al. (2003) and given
by equation (7)". The form of equation (2) was used with two
different choices of the function Æb(!) described by equations
(6)" and (8)". The common characteristic of these two choices
was that at critical state the value of Æ ¼ Æc ¼ Æb(M) was
non-zero, implying the existence of anisotropic fabric. Thus,
the debatable issue of possible zero value of anisotropic fabric
at critical state was not addressed.

A NOVEL PROPOSITION
Within the framework of equation (2), a third choice for

Æb(!) is proposed in terms of two independent equations,
one for j!j < M and one for j!j > M as follows

Æb(!) ¼ !
Æc

M
þ m 1$ j!j

M

! "n
" # !

for j!j < M (3)

Æb(!) ¼ !
Æc

M
exp $" j!j

M
$ 1

# $! "
for j!j > M (4)

with m, n and " positive model constants. Equation (3) yields
Æb(0) ¼ 0 and Æb(M) ¼ Æc, and equation (4) yields
Æb(M) ¼ Æc and Æb(1) ¼ 0; thus, continuity is obtained at
! ¼ M : The non-zero Æc , M is the manifestation of aniso-
tropic fabric at critical state, hence, zero such fabric is
materialised simply by setting Æc ¼ 0 in equations (3) and
(4), in which case Æb(!) ¼ 0 for all j!j > M : While it will be
shown that the ratio Æc=M must be the same for compression
and extension for uniqueness of the critical state line (CSL),
the M in the brackets [ ] will be M c or Me for ! . 0 or
! , 0, respectively. Based on the requirement
(dÆb=d!)j!¼M ¼ (Æc=M)(1$ ") , 0 that yields " . 1, equa-
tion (4) defines an exponential decay of Æb(!) from Æc to 0 as
j!j varies from M to 1, conveying the plausible assumption
that the value of maximum anisotropic fabric reached under
constant ! loading, expressed by Æb(!), diminishes with
increasing plastic dilation which is proportional to M2 $ !2

according to the flow rule associated with equation (1). Fig. 2
illustrates equations (3) and (4) by plotting Æ=M against !=M
under the assumption that Æ ¼ Æb(!), for various combination
of parameters m, n and "; Fig. 2(a) refers to the choice
Æc ¼ 0 and Fig. 2(b) to the choice Æc ¼ 0.5ÆK0

, with ÆK0
the

value of Æ under K0 consolidation. The figure caption ex-
plains the choice of parameters in regards to relations pre-
sented in the sequel. Comparison with data is seen to be good
for compression but unsatisfactory for extension, as also
observed for other RH rules (Dafalias & Taiebat, 2013).

The exponential decay of Æb(!) for j!j > M can be
applied to several other RH rules including the ones ex-
pressed by equations (6)", (7)" and (8)" and their associated
values of Æc, and answers a pending question as to what the
RH rule might be for j!j > M : One can write equations (3)
and (4) as a single equation for Æb(!) resulting from the
addition of their right-hand sides with simultaneous deletion
of the term Æc=M from equation (3) and use of Macauley
brackets h i in lieu of brackets [ ] in both.

Generalisation of the RH rule of equations (2) and (3)
from triaxial to multiaxial stress space involves the replace-
ment of Æb and Æ by their deviatoric tensor-valued counter-
parts, substitution of ! by the stress-ratio tensor r ¼ s=p,

with s the stress deviator, and of j!j by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(3=2)tr r 2

p
with tr

denoting the trace, and appropriate dependence of M and Æc

on the Lode angle Ł related to r :

CONDITIONS ON MODEL PARAMETERS
Equations (3) and (4), in conjunction with equation (2),

have provided a straightforward answer to the modelling of
zero (Æc ¼ 0) or non-zero (Æc 6¼ 0) anisotropic fabric at
critical state and beyond. However, there are conditions to
be imposed on the various constants, in order to avoid some
pitfalls that are not immediately apparent, and satisfy such
requirements as prevention of excessive PPS/YS rotation and
uniqueness of CSL. It is instructive for future reference to
find the Æb max for 0 < ! < M by setting equal to zero the
derivative of equation (3) with respect to ! and solving it
for ! ¼ !9 to obtain

!9

M
¼ mþ Æc=M

m(1þ n)

! "1=n

(5)

which upon substitution in equation (3) yields

Æb max

M
¼ n

m1=n

mþ Æc=M

1þ n

! "(1þn)=n

(6)

For Æc ¼ 0, equation (6) yields Æb max =M ¼ nm=
(1þ n)(1þn)=n: Because of Æc=M , 1 and " . 1 that implies
exponential decay, the Æb max of equation (6) is maximum
for all !: While Æc=M is the same for compression and
extension, the M in the left-hand side of equation (6) must
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Fig. 2. Equilibrium values of Æ=M ¼ Æb=M for radial stress paths
at various !=M : Symbols are the experimental data for Otaniemi
clay (Wheeler et al., 2003) and lines are the plots obtained from
equations (3) and (4) with Æc ¼ 0 and Æc ¼ 0.5ÆK0

: The M ¼ 1.1
and for each chosen value of n, the m is calculated from equation
(10) by substitution of the aforementioned values of Æc,
! ¼ !K0

¼ 0.67 as measured for Otaniemi clay, and
Æb ¼ ÆK0

¼ 0.3909 as calculated from equation (9)" with
kk ¼ 0.04, º ¼ 0.44: Inequalities (7), (8) and (9) are checked, and
for the case of Æc 6¼ 0, " is calculated from equation (11)
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equation (11), in conjunction with equation (9), suffices for
their determination.

Constant-stress-ratio loading
In the previous subsection, the imposition of a specific

constant-strain-rate ratio eventually turns out to also be-
come a constant stress ratio. A conjugate approach would
be to load at various constant stress ratios !, calculate the
resulting equilibrium values of Æ, and if experimental data
are available for the latter, use them to calibrate the
foregoing RH parameters of the first kind, namely x, ", z
and s.

In Wheeler et al. (2003) such an approach was followed,
whereby the experimental data for the equilibrium values of
Æ were obtained indirectly by best-fitting measured yield
points using equation (1). This provided Fig. 6 of Wheeler
et al. (2003), with plots of Æ/M against !/M for Otaniemi
clay. On the other hand, setting _Æ ¼ 0 yields the following
equilibrium values of Æ according to the chosen RH rule,
where equation (5) yields the same results as equation (6),
and is not referred to.

For equation (6)

Æ ¼ Æb ¼
!
x

(12a)

For equation (7)

Æ ¼ root of 8"(3Æ" !)(!" Æ)" 3(3!" 4Æ)(M2 " !2)

¼ 0 for ! , M and Æ ¼ !
3

for ! . M

(12b)

For equation (8)

Æ ¼ Æb ¼ #
M

z
1" exp "s

!j j
M

! "# $
(12c)

In Fig. 2 both the experimental data reported in Wheeler
et al. (2003) and the theoretical plots of Æ/M against !/M as
calculated from equations (12a), (12b) and (12c) are plotted
in three separate diagrams for two values of the RH param-
eters, as reported in the figure captions. It can be seen that
the RH rules given by equations (6) and (7) provide a
reasonably good fit to the data for triaxial compression via
the corresponding equations (12a) and (12b), respectively,
with appropriate choice of the parameters x and ", where
the better fitting of equations (7) and (12b) is weighted
against the simplicity of equations (6) and (12a). Observe
first in Fig. 2(b) the interesting feature that equation (12b)
provides, namely a decreasing value of Æ/M for increasing
!/M in the vicinity before !/M ¼ 1. Second, observe for
both equations (12a) and (12b) the unlimited increase of Æ/
M when !/M . 1; the consequences of this will be analysed
in the sequel. By contrast, in comparison the RH rule of
equation (8) provides, via equation (12c), the best fit, with
monotonically increasing Æ/M with !/M, but also a bounded
Æ/M , 1 for any value of !/M. In fact, the exponential
dependence of x on !, which leads to the derivation of
equation (8) from equation (6), was made in order to
address the fitting of the foregoing plots in Fig. 6 of Wheel-
er et al. (2003). None of equations (12) fits the data
satisfactorily in extension. From Fig. 2 one can make a
choice of the parameters x, ", z and s that best fits the
results in compression. Such a choice of RH parameters
may not correspond exactly to that based on fitting the K0

condition in the previous section, but it is expected to come
close to it.

Loading to critical state and uniqueness of CSL
From the constitutive modelling perspective, critical state

is reached when at the critical stress ratio ! ¼ !c ¼ M one
has @g/@p ¼ 0. Hence the rate of p0 is zero, according to
equation (4), and simultaneously the RH variable Æ reaches
a critical state value Æc, and does not evolve any further,
thus yielding a zero plastic modulus from the consistency
condition _f ¼ 0: The question that arises is whether such a
combination of !c and Æc guarantees a unique CSL in e–
ln p space, irrespective of the loading history and mode of
shearing (triaxial compression, extension, or anything in
between).

Consider first the case of an associative flow rule, and set
! ¼ !c ¼M in the analytical expression of PPS/YS given in
the text just before equation (1), to obtain straightforwardly
for the critical state values pc, qc and Æc the relations

pc

p0

¼ 1

2
1þ Æc

M

! "
(13)

and qc ¼Mpc: Here pc and qc are shown in Fig. 1; M
assumes the value Mc in triaxial compression, and "Me in
triaxial extension; and, if loading is in extension, Æc , 0. It
follows from equation (13) that, in reference to a unique
NCL represented by the evolution of p0 in e–ln p space as
described by equation (4), the location of the corresponding
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Fig. 2. Equilibrium values of Æ/M for radial stress paths at
various !/M: (a) equation (12a); (b) equation (12b); (c) equation
(12c). Symbols are experimental data for Otaniemi clay (Wheeler
et al., 2003), and lines are based on different RH rules (M 1.1).
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qc

p

q

pc p0

q0 = αp0

CSL

0

Mc

η

α

Me

At η = M  ⇒α b (M ) = α c  
For N = M  and N ≠ M  one has
pc

p0

= 1
2

(1+ α c

M
)   

pc

p0

= 1− (α c / N )2

1+ (M / N )2 − 2(M / N )(α c / N )
  

If  (α c / M ) is same for all Lode angles
the ratio (pc / p0 ) is fixed and defines
unique CSL in e-p space in regards 
to a unique Normal Consolidation Line (NCL) p0  versus e

NOTE :   α c / N =  (α c / M )(M / N )

 



SpecificaDon	
  of	
  Unique	
  CSL	
  by	
  Various	
  RH	
  Rules	
  

Recall   pc
p0

= 1
2

(1+ α c

M
) → Unique CSL if α c

M
 independent of Lode Angle

(i)   RH of Dafalias (1986):                              α c

M
= 1
x

(ii)  RH of Wheeler et al (2003):                      α c

M
= 1

3

(iii) RH of Dafalias and Taiebat (2013):          α c

M
= 1
z

1− exp −s( )⎡⎣ ⎤⎦  

(iv) RH of Dafalias and Taiebat (2014):           α c

M
:  input

NOTE :  If α c = 0→ pc
p0

= 1
2

  (MCC)
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literature), and draws attention to what must be done to
avoid and/or correct them; the details of the corresponding
equations may differ for other choices, but their essence will
be the same. One example is that any RH eventually yields
a critical state value Æc for the RH variable; equation (4) in
conjunction with equation (2) provides a plausible answer to
what the RH can be when loading continues at j!j . M , an
issue usually not investigated or discussed.

Finally, the main question of isotropic or anisotropic
fabric at critical state has the potential to become divisive
among constitutive modellers because the classical critical
state theory does not explicitly answer this question. Possi-
bly a set of carefully designed experiments can provide the
answer in the near future; for example, if one reaches
critical state and then unloads and reloads along the hydro-
static axes p, the existence of deviatoric plastic strain rate
will be a manifestation of such critical state anisotropy and
may constitute a means to back-calculate it. Until then
the present work provides a way to model either eventuality.
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c RH parameter for equation (2)

f ¼ 0 yield surface
g ¼ 0 plastic potential

K0 coefficient of earth pressure at rest
M critical state stress ratio in p–q plane

Mc M in compression
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n RH parameter for equation (3)
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p0 size of yield surface along p-axis
q deviatoric stress
r deviatoric stress-ratio tensor
Æ rotational hardening variable in p–q space
Æb bound of Æ in p–q space
ÆK0

value of Æ under K0 loading
" strain
! stress ratio

!K0
value of ! under K0 loading
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Fig. 3. Schematic representation of simulations for (a) undrained
stress path and (b) stress–strain curves in triaxial compression
and extension after K0 consolidation using the corresponding
input parameters of Table 1

Table 1. Model parameters

Parameters M c Me N c
# º k % Æc m n $

Values for Fig. 3 1.18 0.86 0.90 0.063 0.009 0.25 0 0.613 9 0
Values for Fig. 4 (LCT) 1.18 0.86 0.90 0.063 0.009 0.25 0.23y 0.412 9 19

# N e ¼ (Me=Mc) 3 N c:
† 0.5ÆK0

¼ 0.23:
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where L in Macauley brackets h i is the plastic multiplier
obtained from the consistency condition _f ¼ 0, pat is the atmo-
spheric pressure for non-dimensionalisation of the model con-
stant c which controls the pace of evolution of Æ, and Æb(!) is
a bounding/attractor stress-ratio quantity towards which the
RH variable Æ tends under constant stress ratio ! loading;
_Æ ¼ 0 when Æ ¼ Æb(!): The definition of Æb(!) is the key to
characterising the RH. Not all RH rules can be brought into
the form of equation (2), as in Wheeler et al. (2003) and given
by equation (7)". The form of equation (2) was used with two
different choices of the function Æb(!) described by equations
(6)" and (8)". The common characteristic of these two choices
was that at critical state the value of Æ ¼ Æc ¼ Æb(M) was
non-zero, implying the existence of anisotropic fabric. Thus,
the debatable issue of possible zero value of anisotropic fabric
at critical state was not addressed.

A NOVEL PROPOSITION
Within the framework of equation (2), a third choice for

Æb(!) is proposed in terms of two independent equations,
one for j!j < M and one for j!j > M as follows

Æb(!) ¼ !
Æc

M
þ m 1$ j!j

M

! "n
" # !

for j!j < M (3)

Æb(!) ¼ !
Æc

M
exp $" j!j

M
$ 1

# $! "
for j!j > M (4)

with m, n and " positive model constants. Equation (3) yields
Æb(0) ¼ 0 and Æb(M) ¼ Æc, and equation (4) yields
Æb(M) ¼ Æc and Æb(1) ¼ 0; thus, continuity is obtained at
! ¼ M : The non-zero Æc , M is the manifestation of aniso-
tropic fabric at critical state, hence, zero such fabric is
materialised simply by setting Æc ¼ 0 in equations (3) and
(4), in which case Æb(!) ¼ 0 for all j!j > M : While it will be
shown that the ratio Æc=M must be the same for compression
and extension for uniqueness of the critical state line (CSL),
the M in the brackets [ ] will be M c or Me for ! . 0 or
! , 0, respectively. Based on the requirement
(dÆb=d!)j!¼M ¼ (Æc=M)(1$ ") , 0 that yields " . 1, equa-
tion (4) defines an exponential decay of Æb(!) from Æc to 0 as
j!j varies from M to 1, conveying the plausible assumption
that the value of maximum anisotropic fabric reached under
constant ! loading, expressed by Æb(!), diminishes with
increasing plastic dilation which is proportional to M2 $ !2

according to the flow rule associated with equation (1). Fig. 2
illustrates equations (3) and (4) by plotting Æ=M against !=M
under the assumption that Æ ¼ Æb(!), for various combination
of parameters m, n and "; Fig. 2(a) refers to the choice
Æc ¼ 0 and Fig. 2(b) to the choice Æc ¼ 0.5ÆK0

, with ÆK0
the

value of Æ under K0 consolidation. The figure caption ex-
plains the choice of parameters in regards to relations pre-
sented in the sequel. Comparison with data is seen to be good
for compression but unsatisfactory for extension, as also
observed for other RH rules (Dafalias & Taiebat, 2013).

The exponential decay of Æb(!) for j!j > M can be
applied to several other RH rules including the ones ex-
pressed by equations (6)", (7)" and (8)" and their associated
values of Æc, and answers a pending question as to what the
RH rule might be for j!j > M : One can write equations (3)
and (4) as a single equation for Æb(!) resulting from the
addition of their right-hand sides with simultaneous deletion
of the term Æc=M from equation (3) and use of Macauley
brackets h i in lieu of brackets [ ] in both.

Generalisation of the RH rule of equations (2) and (3)
from triaxial to multiaxial stress space involves the replace-
ment of Æb and Æ by their deviatoric tensor-valued counter-
parts, substitution of ! by the stress-ratio tensor r ¼ s=p,

with s the stress deviator, and of j!j by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(3=2)tr r 2

p
with tr

denoting the trace, and appropriate dependence of M and Æc

on the Lode angle Ł related to r :

CONDITIONS ON MODEL PARAMETERS
Equations (3) and (4), in conjunction with equation (2),

have provided a straightforward answer to the modelling of
zero (Æc ¼ 0) or non-zero (Æc 6¼ 0) anisotropic fabric at
critical state and beyond. However, there are conditions to
be imposed on the various constants, in order to avoid some
pitfalls that are not immediately apparent, and satisfy such
requirements as prevention of excessive PPS/YS rotation and
uniqueness of CSL. It is instructive for future reference to
find the Æb max for 0 < ! < M by setting equal to zero the
derivative of equation (3) with respect to ! and solving it
for ! ¼ !9 to obtain

!9

M
¼ mþ Æc=M

m(1þ n)

! "1=n

(5)

which upon substitution in equation (3) yields

Æb max

M
¼ n

m1=n

mþ Æc=M

1þ n

! "(1þn)=n

(6)

For Æc ¼ 0, equation (6) yields Æb max =M ¼ nm=
(1þ n)(1þn)=n: Because of Æc=M , 1 and " . 1 that implies
exponential decay, the Æb max of equation (6) is maximum
for all !: While Æc=M is the same for compression and
extension, the M in the left-hand side of equation (6) must
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Fig. 2. Equilibrium values of Æ=M ¼ Æb=M for radial stress paths
at various !=M : Symbols are the experimental data for Otaniemi
clay (Wheeler et al., 2003) and lines are the plots obtained from
equations (3) and (4) with Æc ¼ 0 and Æc ¼ 0.5ÆK0

: The M ¼ 1.1
and for each chosen value of n, the m is calculated from equation
(10) by substitution of the aforementioned values of Æc,
! ¼ !K0

¼ 0.67 as measured for Otaniemi clay, and
Æb ¼ ÆK0

¼ 0.3909 as calculated from equation (9)" with
kk ¼ 0.04, º ¼ 0.44: Inequalities (7), (8) and (9) are checked, and
for the case of Æc 6¼ 0, " is calculated from equation (11)
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Under Ko⇒  η=ηK0
= 3(1− K0 )

1+ 2K0

 and  α =αK0
 given by:

For G = ∞ ⇒        αK0
=
ηK0

2 + [3(1− (κ / λ))]ηK0
−Mc

2

3(1− (κ / λ))
    (Dafalias, 1986)                                       

For also κ = 0 ⇒  αK0
=
ηK0

2 + 3ηK0
−Mc

2

3
                 (Wheeler et al, 2003) 

NOTE:  The value of αK0
 is INDEPENDENT of the RH rule used

 



CalibraDon	
  of	
  RH	
  parameters	
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  loading	
  

(i)   RH of Dafalias (1986):           x =
ηK0

αK0

(ii)  RH of Wheeler et al (2003):   β =
3(3ηK0

− 4αK0
)(Mc

2 −η2
K0

)
8(3αK0

−ηK0
)(ηK0

−αK0
)

(iii) RH of Dafalias and Taiebat (2013): αK0
= ± M

z
1− exp −s

|ηK0
|

M
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥  

(iv)  RH of Dafalias and Taiebat (2014): αK0
=ηK0

α c

M
+m

|ηK0
|

M
⎛
⎝⎜

⎞
⎠⎟

n⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

NOTE :  K0  fitting does not guarrantee the correct fitting 
              under other constant η  loading
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Fig. 4. Comparison of data and simulations for undrained triaxial tests on either (a), (b) isotropically consolidated
(CIUCE) or (c), (d) K0-consolidated (CK0UCE) samples of LCT at different overconsolidation ratios. Experimental
data of LCT (Gens, 1982) are represented by hollow and solid symbols for triaxial compression and extension,
respectively, and simulations by the RH of equations (2), (3) and (4) using the corresponding input parameters of
Table 1 are represented by continuous lines
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  SimulaDon	
  of	
  LCT	
  Clay	
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  N<M	
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  and	
  Taiebat,	
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N<M	
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  Loading	
  SimulaDon	
  of	
  LCT	
  Clay	
  with	
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  Simplest	
  RH	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (Dafalias,	
  1986)	
  

The last statement invites the question: why is it neces-
sary to use RH, if an isotropic model without RH can
provide better predictions when N ¼M, and equally good
predictions when N , M after isotropic consolidation? First
and foremost, an isotropic model simulation cannot even
approach the correct value of K0 consolidation, as has
always been observed. For example, in the current case,
considering the general equations given before equation (9)
for ! ¼ (M2 " !2)=[2(!" Æ)] ¼ [1" (k=º)]E one can set
Æ ¼ 0 and E ¼ 3=2 for the isotropic case and K0-induced
strain ratio E, and based on the values of M ¼Mc, k and º
given in Table 1 for LCT clay calculate ! ¼ !K0

¼ 0.4596,
from which one obtains K0 ¼ (3 " !K0

)/(2!K0
+ 3) = 0.35 –

a far cry from the measured value K0 ¼ 0.4634 shown in
Table 2. Note that the choice N , M for a YS different from
the PPS for the isotropic model does not change the fore-
going calculation of K0 at all, because the latter depends
exclusively on the PPS and not on the YS. Along this line
of weakness of the isotropic model in accounting for the K0

value is also its weakness in accounting for the response
shown in Fig. 4 under fixed stress ratio ! loading. The
underlying reason is that the isotropic model does not
possess the adjustability of orientation of the PPS/YS due to
RH, which is of cardinal importance in accounting correctly
for the plastic strain-rate direction under anisotropic loading.
One additional weakness of the isotropic model is that, upon
shearing in extension after K0 consolidation, the YS (non-
rotated but augmented in size) will induce a much larger
straight-line undrained stress path downwards than with RH,
thus strongly overshooting the shear stress at critical state in

extension. The omission of RH may improve predictions
after isotropic consolidation for N ¼ M, but is unable to
account accurately for soil response under anisotropic condi-
tions created by anisotropic loading (non-zero stress ratio !)
for either N ¼M or N , M.

Undrained shearing data and simulations after K0 consoli-
dation are shown in parts (c) and (d) for N ¼M and in parts
(g) and (h) for N , M in Figs 5, 6, and 7 for the three RH
rules. The overall simulative capability of all three RH rules
is comparable, with the simulations again improving dramat-
ically for the choice N , M by lowering the shear stress
level at critical state in both compression and extension, for
the same reason as before, namely that the YS becomes
flatter when N , M. Therefore it is again not the RH that is
responsible for the poor simulations when N ¼M. In fact it
is interesting that the simulations are not that far apart for
the three RH rules, despite the fact that each RH rule leads
to a different critical state value Æ ¼ Æc and location of a
unique (for each RH) CSL, in accordance with equations
(14a), (14b) and (14c). The reason is that the effect of a
little more or less rotation of the YS at critical state is
diminished because of the flat shape of the YS, on which
the undrained stress path must lie, in the neighbourhood of
! ¼M. The falling stress after a peak value in undrained
triaxial compression loading following K0 consolidation can
be simulated to some extent only for the case N , M, and
this simulation is related not to RH but to the non-associa-
tivity of the flow rule. Such falling stress cannot possibly be
attributed to destructuration, because the soil samples were
remoulded.
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Fig. 5. Comparison of data and simulations for undrained triaxial tests on either isotropically consolidated (CIUCE) or K0 –consolidated
(CK0UCE) samples of LCT at different OCR values: (a, b) CIUCE, N M; (c, d) CK0UCE, N M; (e, f) CIUCE, N < M; (g, h) CK0UCE,
N < M. Experimental data for LCT (Gens, 1982) are represented by hollow and solid symbols for triaxial compression and extension
respectively; simulations using RH of equation (6) are represented by continuous lines
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Does	
  RH	
  for	
  sands	
  suffices	
  to	
  characterize	
  fabric	
  ?	
  
Answer:	
  take	
  α=0;	
  yet	
  sand	
  can	
  have	
  anisotropic	
  fabric	
  

by	
  means	
  of	
  deposiDon	
  =>	
  needs	
  a	
  Fabric	
  Tensor	
  	
  



	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  CONCLUSION	
  	
  	
  
The	
  RH	
  variable	
  α	
  is	
  the	
  macroscopic	
  manifestaDon	
  of	
  fabric	
  in	
  clays.	
  Its	
  
evoluDon	
  towards	
  a	
  unique	
  CS	
  value	
  guarantees	
  uniqueness	
  of	
  CSL	
  in	
  e-­‐p	
  space	
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NOTE	
  1:	
  	
  	
  With	
  the	
  excepDon	
  of	
  Dafalias/Taiebat	
  (2014),	
  all	
  other	
  RH	
  rules	
  provide	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  necessarily	
  non-­‐zero	
  anisotropic	
  fabric	
  at	
  CriDcal	
  State	
  	
  	
  
NOTE	
  2:	
  	
  	
  The	
  NO’s	
  can	
  be	
  corrected	
  

	
  


