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What is your constitutive home?

Ubi patria ibi bene
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Embarcation pour Barodesie
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The exotic island of Barodesy
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Packing

You don’t need to take with you

yield surface

plastic potential

normality rule

. . .
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Empirical basis of barodesy: Experiments by Goldscheider
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Empirical basis of barodesy: Experiments by Goldscheider
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Versuche von Goldscheider1
True triaxial tests

Probe

1M. Goldscheider. Grenzbedingung und Fließregel von Sand. Mechanics
Research Communications, 3:463-468, 1976
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1. Goldscheider rule

Prop. strain paths (PεP): ε1 : ε2 : ε3 = const.
Prop. stress paths (PσP): σ1 : σ2 : σ3 = const.

T = 0 (σ = 0): PεP  PσP

ε₂

ε₁
.

.

ε1

ε2 ε₂

ε₁
.

.
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2. Goldscheider rule

T 6= 0

ε₂

ε₁
.

.
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ε2 σ₂

σ₁σ1

σ2
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Modelling Goldscheider’s 1st rule

Proportional strain paths starting from T = 0 are:

volume-decreasing ( ’consolidations’), trD< 0

volume -preserving (’isochoric’ or ’undrained’), trD= 0

volume -increasing, trD> 0 (not feasible with cohesionless
sand!)
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Modelling Goldscheider’s 1st rule

R: tensor with the direction of a proportional stress path.

How depends R on the direction D0(= D/|D|) of the
corresponding proportional strain path?

How can we determine the relation R(D0)?

Consolidations are mapped into the octant with σi < 0.

 σ1σ2σ3 < 0
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Modelling Goldscheider’s 1st rule

With σi = µRi (D) = µR(Di )

we obtain:

R(D1)R(D2)R(D3) < 0 for trD = D1 + D2 + D3 < 0 (1)

 R(D1)R(D2)R(D3) is function of D1 + D2 + D3

Recall: f (x1)f (x2) = f (x1 + x2) f (x) = exp(ax)

 exponential mapping:

R(D) = − exp(aD0) (2)
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R-cone

Equation (2) maps consolidations into a cone with appex at T = 0

Its boundary (corresponds to paths with trD = 0):

critical state surface

The intersection of the R-cone with a plane trT = const can be
derived from equation (2):

For isochoric deformations (trD0 = 0) we eliminate D0 from (2):

D0 =
1

a
ln(−R) . (3)
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Modelling Goldscheider’s 1st rule

trD0 = 0 ln(−R1R2R3) = 0 or R1R2R3 = −1.

|D0| = 1  (lnR1)2 + (lnR2)2 + (lnR3)2 = a2

For PP holds: T = µR, 0 < µ <∞,  R = T/µ 1

(
ln

T1
3
√
T1T2T3

)2

+

(
ln

T2
3
√
T1T2T3

)2

+

(
ln

T3
3
√
T1T2T3

)2

= a2 .

(4)

Equation (4) is homogeneous of the zero-th degree in T  conical
surface in σ-space with apex at T = 0.

Its intersection with a plane trT =const practically coincides with
the curve obtained by Matsuoka & Nakai:

(T1 + T2 + T3)(T1T2 + T1T3 + T2T3)

T1T2T3
= const . (5)

1T1T2T3 = −1/µ3  µ = −1/ 3
√
T1T2T3.
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R-cone

deviatoric plane

Cross section of the R-cone with a deviatoric plane.
Numerically obtained with equ. (2).
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Modelling Goldscheider’s 1st rule

Equation (2) can be calibrated if we know φc :

Kc :=
1− sinϕc

1 + sinϕc
.

Evaluating the relation R2/R1 = Kc with equ. (2)  :

a =

√
2

3
lnKc (6)

Better simulations can be obtained with a := c1 exp(c2ε) and

c1 =
√

2
3 lnKc .

This modification does not affect undrained proportional strain
paths.

Thus, equation (2) reads now:

R(D) = − exp(c1 · exp(c2ε) ·D0) (7)
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Modelling Goldscheiders 2nd rule

Adding to R a term proportional to T will incorporate also rule 2
without breaking rule 1.
Rule 2 states that if we start from T 6= 0 and apply a constant D,
the stress will asymptotically approach the line T = µ R0:

σ
1

σ
2

T ∆T

R
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Modelling Goldscheiders 2nd rule

Thus, Ṫ will fulfil the equation T + Ṫ ∆t = µR0.

This equation can also be written as

Ṫ = f̂ R0 + ĝ T . (8)

To preserve homogeneity of the 1st degree with respect to D,
f̂ and ĝ must be homogeneous of the 1st degree with respect to D.

It proves that

f̂ := f · ε̇ · h(σ)

ĝ := g · ε̇ · h(σ)/σ

with ε̇ := |D|,
is the best choice  
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Barodesy

The full constitutive equation:

Ṫ = h(σ) · (f R0 + gT0) · ε̇ . (9)

Abbreviations: σ := |T|, ε := trD0, ε̇ := |D|
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The name ’Barodesy’

The name ’barodesy’ is motivated by the fact that granular
materials gain their stiffness (δέσις = bond, hence stiffening,
hardening) from externally applied pressure (βάρoς).

The names ’barodesy’ and ’barodetic’ are proposed for granular
materials to distinguish them from what traditionally is denoted as
’elastic’ or ’plastic’.
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Limit states and peaks

Limit states: Ṫ = 0, i.e.
 

yield

f R0 + gT0 = 0 (10)

 

tensorial equation

R0 = −T0 (11)

scalar equation

f + g = 0 (12)
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Limit states and peaks

The other possibilities

1 R0 = −T0 and f − g = 0,

2 f = 0 and g = 0

can be excluded, because

1 R always points to the compression octant, and

2 f and g cannot vanish simultaneously
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Limit states and peaks

Equation (11) can be interpreted as flow rule:
It contains a stress-dilatancy relation for peak states.

A simple way to fulfill equation (12) for limit states is to set

f + g = ε+ c3(ec − e) (13)

ec : critical void ratio.

Critical limit states: ε = 0 and e = ec

Peak limit states: ε > 0 and e < ec .
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Consolidations

Sand: low compressibility at monotonic compression (jamming)
 experimental results on consolidations are meagre.

Barodesy leads to interesting results merely by reasoning.

(This is an example of how a theory can shed light into questions
that can be hardly answered by experiment.)
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Consolidations

For consolidations: T0 = R0. Hence, equation (9)  

Ṫ = h T0 (f + g) ε̇ (14)

For proportional paths: Ṫ = σ̇T0, hence equation (9) reduces to

σ̇ = h (f + g) ε̇ , (15)

Using equation (13) (f + g = ε+ c3(ec − e)) and

ε ε̇ =
trD

ε̇
ε̇ = trD =

ė

1 + e
, (16)

we obtain for consolidations:

σ̇ = h [ε+ c3(ec − e)] · 1

ε
· ė

1 + e
. (17)

or
de

dσ
=

1 + e

1 + c3
ec−e
ε

· 1

h
(18)
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Ṫ = h T0 (f + g) ε̇ (14)
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Consolidations

Equation (18) expresses compressibility at consolidations.

h expresses the stress-dependence of stiffness.

Stiffness increases with σ but should not vanish for σ = 0.

emin: lower bound of e.

emin and emax are prescribed by the geometry of the granulate, if
we exclude grain crushing.

(they do not necessarily coincide with the conventionally obtained
ones).

These requirements can be fulfilled e.g. by the function

h = −c4 + c5σ

e − emin
. (19)

e → emin for σ →∞  e ≥ emin.
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Consolidations

The fraction in equation (17)

ec − e

ε
(20)

deserves particular attention.

It implies that compressibility depends also on dilatancy ε.

We distinguish between dense (e < ec) and loose (e > ec) sand.

Dense sand has a tendency to loosening and loose sand has a
tendency to get denser  a loose sand is more compressible than a
dense one. In accordance, equation (18) implies:

compressibility of dense sand increases with increasing ε

compressibility of loose sand decreases with increasing ε

(Increasing ε means increasing deviatoric part of deformation).
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Consolidations

Distinguish between the following compression lines e(σ):

red: hydrostatic compession

blue: compression with a large deviatoric component,

D =

 −2 0 0
0 0.7 0
0 0 0.7

 (21)

green: critical state line, ec(σ)

starting at a

dense state: e = 0.75 < ec0(= 0.90)

loose state: e = 0.95 > ec0(= 0.90)
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Consolidations with various deviatoric parts
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Compression curves calculated with barodesy, calibrated as shown
in Section ?? (natural and semilogarithmic plots). Note that these

curves are not affine.
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Consolidations with various deviatoric parts

Deviatoric part increases the compressibility of contractant sand.
Deviatoric part decreases the compressibility of dilatant sand.

Interesting implication of equation (18) is obtained when the
denominator vanishes:

This is obtained for a particular void ratio e = ê, that depends on
ε.

For this void ratio, the slope de/dσ becomes vertical, and for
e > ê this slope becomes negative.
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”Isochoric consolidations”

Special case of equation (18) for e → ec and ε→ 0:

The fraction then reads 0/0.

The compression curve is then the Critical State Line (CSL).

To determine the value of the fraction in the limit, we check,
which limit transition prevails.

The transition e → ec can occur before the transition ε→ 0, and
thus prevails.

 
lim

e→ec ,ε→0

ec − e

ε
= 0 (22)

Introducing into equation (18)  differential equation for the CSL:

dσ

dec
= − c4 + c5σ

(1 + ec)(ec − emin)
(23)
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The compression curve is then the Critical State Line (CSL).

To determine the value of the fraction in the limit, we check,
which limit transition prevails.

The transition e → ec can occur before the transition ε→ 0, and
thus prevails.
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”Isochoric consolidations”

Integration  equation of the CSL :

ec(σ) =
emin + B

1− B
(24)

with the abbreviation

B :=
ec0 − emin

ec0 + 1

(
c4 + c5σ

c4

)− 1+emin
c5

. (25)

ec0: critical void ratio at σ = 0.
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Critical State Line
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Barodetic constitutive equation

Final step: partitioning equation (13) into f and g .
A possibility is:

f = ε+ c3ec (26)

g = −c3e (27)

Hence, barodetic constitutive equation for sand reads:

◦
T= −c4 + c5σ

e − emin

[
(ε+ c3ec)R0 − c3eT

0
]
ε̇ , (28)

where R is given be equation (7) and ec is given by equation (24) .
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Barodetic constitutive equation in MATLAB

nrmD = norm(D,’fro’); D0 = D/nrmD; trD0 = trace(D0);
nrmT = norm(T,’fro’); T0 = T/nrmT;
c1 = c1*exp(c5*trD0);
R = -expm(c1*D0); nrmR = norm(R,’fro’); R0 = R/nrmR;
h = -(c3+c4*nrmT)/ (e-emin);

B = (ec0-emin)/(ec0+1)*((c3+c4*nrmT)/c3)(̂-(1+emin)/c4);
ec = (emin + B)/(1-B);
f = trD0 + c2*ec ; g = -c2*e ;
Tp = h * ( f * R0 + g * T0) * nrmD ;
end
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Calibration

Calibration is difficult because neither the experimental results nor
the constitutive relation mirror perfectly the reality.

At that, experimental results are burdened by errors.

Therefore, calibration means optimization.

Also for barodesy, an optimized calibration procedure is still
missing.

Here: only rough estimation of the material constants for Hostun
sand:

c1 ≈ −1.05, c2 ≈ −2.3, c3 ≈ 28, c4 ≈ 465 kPa, c5 ≈ 1.
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Limit cycles and shake-down

Constitutive relations ”of the rate type” are ODE and may exhibit
limit cycles or cyclic orbits.

Equation 9 exhibits limit cycles at cyclic loading (’shake-down’).

This means that stress cycles lead asymptotically to cyclic changes
of void ratio.

In case of e.g. oedometric deformation (but not for conventional
triaxial tests), this implies also cyclic strain, i.e. strains due to
cyclic stress are bounded, i.e. they do not increase to infinity.

Prof. Dimitrios Kolymbas, Universität Innsbruck Barodesy - A new perspective of hypoplasticity



Limit cycles and shake-down

Constitutive relations ”of the rate type” are ODE and may exhibit
limit cycles or cyclic orbits.

Equation 9 exhibits limit cycles at cyclic loading (’shake-down’).

This means that stress cycles lead asymptotically to cyclic changes
of void ratio.

In case of e.g. oedometric deformation (but not for conventional
triaxial tests), this implies also cyclic strain, i.e. strains due to
cyclic stress are bounded, i.e. they do not increase to infinity.

Prof. Dimitrios Kolymbas, Universität Innsbruck Barodesy - A new perspective of hypoplasticity



Limit cycles and shake-down

Constitutive relations ”of the rate type” are ODE and may exhibit
limit cycles or cyclic orbits.

Equation 9 exhibits limit cycles at cyclic loading (’shake-down’).

This means that stress cycles lead asymptotically to cyclic changes
of void ratio.

In case of e.g. oedometric deformation (but not for conventional
triaxial tests), this implies also cyclic strain, i.e. strains due to
cyclic stress are bounded, i.e. they do not increase to infinity.

Prof. Dimitrios Kolymbas, Universität Innsbruck Barodesy - A new perspective of hypoplasticity



Limit cycles and shake-down

Constitutive relations ”of the rate type” are ODE and may exhibit
limit cycles or cyclic orbits.

Equation 9 exhibits limit cycles at cyclic loading (’shake-down’).

This means that stress cycles lead asymptotically to cyclic changes
of void ratio.

In case of e.g. oedometric deformation (but not for conventional
triaxial tests), this implies also cyclic strain, i.e. strains due to
cyclic stress are bounded, i.e. they do not increase to infinity.

Prof. Dimitrios Kolymbas, Universität Innsbruck Barodesy - A new perspective of hypoplasticity



Limit cycles and shake-down

Constitutive relations ”of the rate type” are ODE and may exhibit
limit cycles or cyclic orbits.

Equation 9 exhibits limit cycles at cyclic loading (’shake-down’).

This means that stress cycles lead asymptotically to cyclic changes
of void ratio.

In case of e.g. oedometric deformation (but not for conventional
triaxial tests), this implies also cyclic strain, i.e. strains due to
cyclic stress are bounded, i.e. they do not increase to infinity.

Prof. Dimitrios Kolymbas, Universität Innsbruck Barodesy - A new perspective of hypoplasticity



Limit cycles and shake-down

Consider cyclic oedometric loading:
If σ1 is periodically changed between a lower and an upper limit,
then σ2, which is bounded, will also become cyclic, i.e. a limit cycle
will eventually be obtained in the stress space.

Cyclic stress, asymptotically obtained with strain cycles of
infinitesimally small amplitude, is related with the void ratio ě,
which can be called the cyclic void ratio.
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which can be called the cyclic void ratio.

Prof. Dimitrios Kolymbas, Universität Innsbruck Barodesy - A new perspective of hypoplasticity



Limit cycles and shake-down

Consider cyclic oedometric loading:
If σ1 is periodically changed between a lower and an upper limit,
then σ2, which is bounded, will also become cyclic, i.e. a limit cycle
will eventually be obtained in the stress space.

Cyclic stress, asymptotically obtained with strain cycles of
infinitesimally small amplitude, is related with the void ratio ě,
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Limit cycles and shake-down

We consider strain cycles with infinitesimal amplitude with the
constitutive relation 9 and denote with ”+” and ”−” loading and

unloading, respectively. At a limit cycle must hold: Ṫ
+

= −Ṫ−.
Hence, the condition for cyclic response reads:

(f +R0+ + f −R0−) + 2gT0 = 0 . (29)

This is a relation between the direction of the strain amplitude, D,
the cyclic void ratio ě and the stress σT0, around which the stress
oscillation occurs. Eliminating T0 from equation 29 yields:

T0 =
−1

2g
(f +R0+ + f −R0−) . (30)
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unloading, respectively. At a limit cycle must hold: Ṫ
+

= −Ṫ−.
Hence, the condition for cyclic response reads:

(f +R0+ + f −R0−) + 2gT0 = 0 . (29)

This is a relation between the direction of the strain amplitude, D,
the cyclic void ratio ě and the stress σT0, around which the stress
oscillation occurs. Eliminating T0 from equation 29 yields:
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Limit cycles and shake-down

With this equation and the condition |T0| = 1 we can determine
for a given D0 the stress direction T0 of the corresponding cyclic
state and also the pertaining cyclic void ratio ě(σ).
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Figure : Evolution of void ratio with small stress cycles. Blue:
oedometric stress cycles, red: simple-shear stress cycles
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Stress paths for PεP
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Response envelopes
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Simulation of oedometer test
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Simulation of drained triaxial test
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Simulation of undrained triaxial test
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Simulation of cyclic undrained triaxial test
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Simulation of undrained simple shear test
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Simulation of drained simple shear test
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Simulation of drained simple shear test
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END

Thank you!
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