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Brasilia residual tropical soil
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PELLETS OF HIGHLY COMPACTED BENTONITE
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Pancrudo quartzitic
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Barcelona red silty clay. MIP wet and dry of optimum



» Microstructure

» Effective stress fields and
constitutive modelling

» Local equilibrium of suction



> Microstructure



= Pore size and grain size distribution. Non-plastic glacial till
= A widely different distribution of pore sizes for a given grain size
distribution, even for a non-plastic material
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Dry density, p, (kN/m3)

= Stress-strain behaviour of compacted silty sand under

saturated conditions

= Strength, undrained loading
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Ae/Alog D

= Collapse behaviour of statically compacted low plasticity
Barcelona silty clay
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= Saturated Permeability
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= Silty clay. Kneading compaction
= Strong microstructural effects. Permeability not explained by void ratio



Dry specific weight (y d/ yw)

= Boom clay. As compacted conditions
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= A map of the microstructural parameter of Boom clay, statically compacted
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» Effective stress fields and
constitutive modelling



Bishop, 1959
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X: S ;fractional areas fluid-sol

Common stress fields in
constitutive modelling

a) Net stress + suction (Fredlund&Morgenstern, 1977)

O =0-— Py =0

°* S=Py~ Py

b) “Intergranular stress”+ suction (Loret & Khalili,
2000; Jommi, 2000...)
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Attempts to include microstructure to predict
strength and stiffness:

= Vanapalli et al, 1996

= Khalili and Khabbaz, 1998

= Romero and Vaunat, 2000

= Toll and Ong, 2003

= Tarantino and Tombolato, 2005
= Jotisankasa et al, 2009



» The microstructural parameter

@ Volume of micropores €, (=E )
—Sm

Total pore volume e

Y, = 13.7 KN/m3; w = 15%




= Microstructural parameter,
degree of saturation and
“effective” suction

S =SS




= Effective degree of saturation and effective stress

0'=0-p,+S’s

e :<Sr _Em> (+) =056 +}|)
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(Alonso, Pereira, Vaunat, Olivella, 2010)



" The effective degree of saturation
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" The effective degree of saturation
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e

4

Sr _Em
1-¢€,,

€
T

0.6

Effective degree of saturation, S

I
0.4 0.6
Degree of saturation, Sy

0.8

1.0

€
r

Effective degree of saturation, S

Smoothing function

0 0.2 0.4 0.6 0.8 1.0
Degree of saturation, S;

Gesto et al, 2011



Strength: Tests on Canadian glacial till, w, = 35.5%; w, = 16.8% (Vanapalli et al., 1996)
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Stiffness: Low plasticity Jossigny silt. Oedometer tests
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(Test results reported by Vicol, 1990)



Microstructural Parameter of different soils.
Identified by indirect tests (stiffness, strength)

TS O g | Plasity

Decomposed tuff, Fredlure al. (1996) 0.02 1.03 Non plastic
Vallfornés dam core, Alonso (1998) 0.25 2.0 Non plastic

Sion silt, Geiseet al. (2006) 04 25 IP=8.7%
Jossigny silt, Vicol (1990) 056 35 18%
Glacial till, Vanapalliet al. (1996) 0.64 4.2 18.7%

Boom clay §,=13.7 kN/n¥), Romero 042 44 28.8%
(1999)
Boom clay §,=16.7 kN/n¥), Romero 063 6.4 28.8%
(1999)

(Alonso et al, 2010)



= Bishop’s effective stress parameter and the effective degree of
saturation
(o values in red curves)
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Let us define unsaturated soil behaviour in terms of two
independent stress fields:

» Constitutive stress: 0 =0 — Pyt §rS

» Effective suction: S = §rS

Change of
notation!

(Alonso, Pinyol, Gens, 2010)




= [sotropic stress states

e Compressibility: Elastic: de® = —/?@
P
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Suction controlled tests do not provide A |, even if the
microstructural void ratio is known and assumed to be
constant, because void ratio is changing during loading and
effective suction is thereby varying continuously!
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Effect of increasing void ratio on
effective degree of saturation for a
constant degree of saturation: Effective
suction decreases

Effect of decreasing effective suction
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Compression lines

= Compressibility decreases with effective suction
= Effective suction decreases during loading because void ratio

reduces
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Yielding for isotropic states (LC): — = =
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Estimated experimental compression curves of compacted Barcelona
silty clay in the range 0-8 MPa of vertical stress and model predictions
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Measured and calculated collapse strains of samples DD and WD
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Effective suction (MPa)

Initial LC yield curves of samples DD and WD

In terms of constitutive stress and In terms of net stress

effective suction A and suction
1.0 - =

0.8 -

0.6 ‘<
o
2
| o 2
=
3
0.4 7
1 |
0.2
0 | | | 0 I |
0 1 2 3 0 2 3
Constitutive mean preconsolidation Net mean preconsolidation stress (MPa)

stress (MPa)



Deviatoric stess (MPa)
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» Local equilibrium of suction




Volumetric strain
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= Micro enclosed by Macropores
* Flow through Macropores —> a(n,\,, Sy ) -0 EﬂkM U, ) =fy_m
= Micro/aggregates: N BVP’s

= Boundary condition: S, P

= Water mass balance: — a(nerm) -0k, 0¢,.)=0

= Flow through Macropores: kM - kiM (el\/l )krM (SrM)

= Flow through micropores km = kim(em)krm(srm)
= Wetting WR branches:

= Elastoplastic behaviour: 1000
. 100
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= Two similar loading-wetting paths imposed to a

pellet sample py =1.3Mg /m’

Fast wetting. Liquid injection 2> 4
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" Modelling the fast wetting test
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" Modelling the slow wetting test

—0.06

|
o
o
g

|

Vertical strain
|
o
(e
T

[J Exp. data

- Simulation

O= sy
— S

2 %
ol =
A (=
= T ———
= 1= Fast flooding
3 = (water injected)
m _—

0.12

0017171 T 71

0 500 1000

Time (Hours)



CONCLUDING REMARKS

» Extreme variety of unsaturated soils




CONCLUDING REMARKS

» Extreme variety of unsaturated soils
» A variety of deformation mechanisms




CONCLUDING REMARKS

» Extreme variety of unsaturated soils

» A variety of deformation mechanisms

» |s there any thing in common?  The concept of
water energy (suction)




CONCLUDING REMARKS

» Extreme variety of unsaturated soils

» A variety of deformation mechanisms

» |s there any thing in common?  The concept of
water energy (suction)

» The relevance of soil microstructure




CONCLUDING REMARKS

» Extreme variety of unsaturated soils

» A variety of deformation mechanisms

» |s there any thing in common?  The concept of
water energy (suction)

» The relevance of soil microstructure

» Challenge: Introduce microstructure and its
evolution into constitutive modelling




CONCLUDING REMARKS

» Extreme variety of unsaturated soils

» A variety of deformation mechanisms

» |s there any thing in common?  The concept of
water energy (suction)

» The relevance of soil microstructure

» Challenge: Introduce microstructure and its
evolution into constitutive modelling

» One way explored: Inserting microstructure into the
definition of “effective stresses”. It may lead to
simple but powerful models




CONCLUDING REMARKS

» Extreme variety of unsaturated soils

» A variety of deformation mechanisms

» |s there any thing in common?  The concept of
water energy (suction)

» The relevance of soil microstructure

» Challenge: Introduce microstructure and its
evolution into constitutive modelling

» One way explored: Inserting microstructure into the
definition of “effective stresses”. It may lead to
simple but powerful models

» Equilibrium of local suction not always guaranteed




THANK YOU!



