# **BREAKAGE MECHANICS**

### statistical constitutive approach from micro to macro



Alessandro Arghya Tengattini

Das



Chunshun Zhang



Giang Nguyen



Giuseppe **Buscarnera** 



Miles Rubin

FACULTY OF **ENGINEERING & INFORMATION TECHNOLOGIES** 

#### Itai Einav

PARTICLES AND GRAINS LABORATORY SCHOOL OF CIVIL ENGINEERING





# FROM MICRO TO MACRO

## PROPOSED PHILOSOPHY

- > Energy considerations at micro-scale
  - energy **scaling** (e.g. with grain sizes)
  - rate of dissipation via redistribution of strain energy
- > Statistical homogenisation
  - use of grainsize distribution for averaging strain energy
  - simplified grainsize distribution via scalar **Breakage**
- >Use thermodynamics to derive macro-scale constitutive laws





## FRACTIONAL BREAKAGE

## equivalence hypothesis





# STATISTICAL HOMOGENISATION

energy scaling

$$\Psi \equiv \int p(B, x)\psi(x, state)dx$$
$$= \left(\int p(B, x)f_{\psi}(x)dx\right) \cdot \psi_{r}(state)$$

$$\Psi = (1 - \vartheta B)\psi_r(state)$$



Force chains in compacted granular assemblies using DEM: (left) bi-modal distribution ( $d_{\text{large}}=10.d_{\text{small}}$ ), and (right) uniform distribution (by size).



# STATISTICAL HOMOGENISATION

energy scaling

$$\Psi = \int p(B, x)\psi(x, state) dx$$
  
=  $\left(\int p(B, x)f_{\psi}(x) dx\right) \cdot \psi_{r}(state)$   $\Psi = (1 - \vartheta B)\psi_{r}(state)$ 



Force chains in compacted granular assemblies using DEM: (left) bi-modal distribution ( $d_{\text{large}}=10.d_{\text{small}}$ ), and (right) uniform distribution (by size).



# THERMODYNAMICS STRESSES

### and residual breakage energy



**Residual Breakage Energy**:  $E_B^* = E_B(1-B) = \Psi - \Psi_u$ 



## **BREAKAGE CRITERION**





# **ONSET OF BREAKAGE**

#### connection to established theory





## MODES OF DISSIPATION

# compression





7



<u>Active:</u> dissipation by freeing surface energy

(a) <u>Passive:</u> redistribution of locked-in strain energy

$$\Big\} D_B = E_B \delta B$$

(b) <u>Passive</u>: Configurational dissipation (volumetric plastic dissipation)  $D_{y}$ 

# distortion

<u>Active</u>: plastic dissipation (Coulomb/distortional  $D_d \equiv Mp \left| \dot{\varepsilon}_s^p \right| \ge 0$ ) <u>Passive</u>: breakage/abrasion  $\longrightarrow D_B = E_B \delta B$ 



## STUDENT MODEL

#### dissipation, yield, flow, and critical state (1<sup>st</sup> go)





## **MULTI-COMPONENT THEORY**

## effect on crushing strength

$$\begin{split} &\sum_{i=1}^N f^{(i)} = 1 \\ &p^{(i)}(D) = p_0^{(i)}(D)(1-B^{(i)}) + p_u^{(i)}(D)B^{(i)} \end{split}$$

$$\Psi = \sum_{i=1}^{N} \psi_r^{(i)}(\varepsilon) f^{(i)}(1 - \vartheta^{(i)} B^{(i)})$$
$$\Phi_B = \sum_{i=1}^{N} f^{(i)} E_B^{(i)} \delta B^{(i)} \ge 0$$



yielding pressure against the (strong) quartz mass fraction

breakage evolution in the weak (calcareous) and strong (quartz) phases , against pressure



## **CEMENTED BREAKAGE MECHANICS**

**Bi-mixture of grains (breakage) and cement (damage)** 





## **CEMENTED BREAKAGE MECHANICS**

#### **Bi-mixture of grains (breakage) and cement (damage)**

| Parameters <sup>a</sup>                   | Adamswiller | Bentheim    | Calcarenite |
|-------------------------------------------|-------------|-------------|-------------|
| $G_{\rm g}$ and $G_{\rm c}$               | 3200 MPa    | 7588 MPa    | 75,500 kPa  |
| $\overline{K}_{g}$ and $\overline{K}_{c}$ | 20,000      | 42,000      | 3470        |
| M                                         | 1.5         | 1.7         | 1.62        |
| E <sub>BC</sub>                           | 2.6 MPa     | 3.85 MPa    | 15 kPa      |
| EDC                                       | 1.6 MPa     | 3.0 MPa     | 18 kPa      |
| с                                         | 40 MPa      | 60 MPa      | 300 kPa     |
| $\omega_B$                                | <b>40</b> ° | <b>70</b> ° | <b>78</b> ° |





## **UNSAT BREAKAGE MECHANICS**

**Bi-mixture of grains (mechanics) and partial saturation (hydro)** 





# 'NON-UNIQUE CRITICAL STATE'

### The problem (phenomenologically)



### The reason (micromechanically)





## **POROSITY AND STRAINS**



## **RELATIVE POROSITY**



THE UNIVERSITY OF



# **NEGATIVE WORK AND DISSIPATION**



 $r_B = \gamma \tau \cos(\omega)$ 

 $r_{\phi} = \gamma \tau \sin(\omega)$ 

$$\Phi = \sqrt{D_B^2 + D_{\phi}^2 + D_s^2} + r_B D_B + r_{\phi} D_{\phi}$$

$$D_B = \frac{\sqrt{E_B E_C}}{(1 - B) \cos(\omega)} \frac{\dot{B}^2}{\langle \dot{B} \rangle}$$

$$D_{\phi} = \frac{\sqrt{E_B E_C}}{(1 - B) \sin(\omega)} \frac{E_{\phi}}{E_B} \dot{\phi}$$

$$D_{s} = Mp \dot{\varepsilon}_s^p$$

$$during breakage \dot{B} > 0:$$

$$\frac{E_{\phi} \dot{\phi}}{E_B \dot{B}} = \tan(\omega)$$

$$\frac{D_{issip. via \text{ pore collapse}}{Dissip. via \text{ breakage}} = \tan(\omega)$$



dissipation, yield, flow, and critical state (2<sup>nd</sup> go)





dissipation, yield, flow, and critical state (2<sup>nd</sup> go)





## 'non-unique' critical state





#### 'non-unique' critical state





- Micro to Macro via energy scaling and redistribution, and statistical homogenisation
- Breakage mechanics used to get GSD in space and time
- > Porosity is internal variable (not total plastic strain!)
- > Clearer link of porosity rate to strain rate
- Introducing relative porosity dependent on GSD
- Predicting critical state, preconsolidation pressure, yield surface and wetting collapse rather than imposing them