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FROM MICRO TO MACRO 
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› Energy considerations at micro-scale 
- energy scaling (e.g. with grain sizes) 
-  rate of dissipation via redistribution of strain energy  

› Statistical homogenisation 
- use of grainsize distribution for averaging strain energy 
- simplified grainsize distribution via scalar Breakage   

› Use thermodynamics to derive macro-scale 
constitutive laws 
 

PROPOSED PHILOSOPHY 



 

Grain size, d (log scale)

Pe
rc

en
t f

in
er

: %
 

dM

100

80

60

40

20

0

ultimate 
distribution, Fu 

dm

initial 
distribution, F0

current 
distribution, F

Bt

Bp

B=Bt/Bp

BREAKAGE DEFINITION 
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FRACTIONAL BREAKAGE 
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equivalence hypothesis 

p(B,d ) = p0 (d )(1−B)+ pu(d )B

Coop et al., 2004 



STATISTICAL HOMOGENISATION 

5/24 

energy scaling 

    

Ψ ≡ (1−ϑB)ψr (state)
Ψ ≡ p(B, x)ψ(x, state)dx∫
= p(B, x) fψ (x)dx∫( ) ⋅ψr (state)

Force chains in compacted granular assemblies using DEM:  
(left) bi-modal distribution (dlarge=10.dsmall), and (right) uniform distribution (by size).  



STATISTICAL HOMOGENISATION 
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energy scaling 
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Force chains in compacted granular assemblies using DEM:  
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Ψ ≡ (1−ϑB)ψr (state)
Ψ ≡ p(B, x)ψ(x, state)dx∫
= p(B, x) fψ (x)dx∫( ) ⋅ψr (state)



THERMODYNAMICS STRESSES 
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EB = −
∂Ψ
∂B

=Ψ0 −Ψu

breakage energy – breakage 
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σ ij =
∂Ψ
∂εij

e

stress – elastic strain 

and residual breakage energy 

EB 

EB
* = EB (1−B) =Ψ−ΨuResidual Breakage Energy: 

E*B=EB(1-B) 
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BREAKAGE CRITERION 
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( ) 0E)B1(EE,By c
2

BBB ≤−−=             Ec = critical breakage energy 

EB = ∂Ψ /∂B pcr =
2KEc

ϑ
p = ∂Ψ /∂εv

e Ψ = 1
2 (1−ϑB)Kεv

e2and                         so e.g. when 

EB
* = EB (1−B)

breakage 
criterion: EBδB = δEB

*

δB = δλ ∂yB
∂EB



ONSET OF BREAKAGE 
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connection to established theory 
 

unbroken grains (dB = 0) broken grains (dB > 0)
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(a) fracture propagation in tensioned    
     brittle solids (left: before, right: after)
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(b) fracture propagation in compressed 
      brittle granular-agglomerates (left: before, right: after)

p(d) =	
  p0(d) dp(d) =	
  p0(d)(1-dB)+pu(d)dB

fracture mechanics 

ϑ
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KEp 2

=

a
EGc

cr π
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breakage mechanics 

Ec = critical breakage energy constant 
ϑ  = normalised surface area 
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MODES OF DISSIPATION 
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Dv

(a) (b) 

Active: dissipation by freeing surface energy 

Passive: redistribution of locked-in strain energy 

Passive: Configurational dissipation (volumetric plastic dissipation) 

(a) 

compression 

(b) 

DB = EBδB

Active: plastic dissipation (Coulomb/distortional                                  )   

Passive: breakage/abrasion 

Dd ≡Mp !εs
p ≥ 0

DB = EBδB

distortion 



STUDENT MODEL 
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dissipation, yield, flow, and critical state (1st go) 

EB

Ec
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q
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Φ≡ DB
2 +Dd

2 +Dv
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Ψ = 1
2 (1−ϑB) Kεv
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critical 
state 
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MULTI-COMPONENT THEORY 
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effect on crushing strength 
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yielding pressure against the 
(strong) quartz mass fraction 

breakage evolution in the weak (calcareous) and 
strong (quartz) phases , against pressure 



CEMENTED BREAKAGE MECHANICS 
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Bi-mixture of grains (breakage) and cement (damage) 



CEMENTED BREAKAGE MECHANICS 

14/24 

Bi-mixture of grains (breakage) and cement (damage) 



UNSAT BREAKAGE MECHANICS 
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Bi-mixture of grains (mechanics) and partial saturation (hydro) 

Ψ ≡ (1−ϑMB)ψr (εij
e )+ (1+ϑHB)ψr (Sr )W ≡σ ij

" !εij −φs !Sr



‘NON-UNIQUE CRITICAL STATE’ 
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The problem (phenomenologically)  

The reason (micromechanically)  

[1] Finno-Rechenmacher (2003) [2] Bandini-Coop (2012) [3] Lade-Yamamuru (1996) 

dilation breakage critical 
state 



POROSITY AND STRAINS 
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!φ e = −c(1−φ) !εv
e

!φ p = −(1−φ) !εv
p

c = (2νg )
−1φ

!εv
p = −

!φ
(1−φ)

and !φ e = 0( )νg = 0

νg = 0.5 !εv = −
!φ

(1−φ)
soil mechanics( )

!εv
e!εv

p



RELATIVE POROSITY 
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τ =
φmax (B)−φ

φmax (B)−φmin (B)

(Youd, 1973) 

(Youd, 1973) 

φmax 

φmin 

φ 



NEGATIVE WORK AND DISSIPATION 
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Φ≡ DB
2 +Dφ

2 +Ds
2

+rBDB + rφDφ

DB =
EBEC

(1−B)cos(ω)
!B2
!B

Dφ =
EBEC

(1−B)sin(ω)
Eφ

EB

!φ

Ds =Mp!εs
p

rB = γτ cos(ω)
rφ = γτ sin(ω)

Eφ
!φ

EB
!B
= tan(ω)

during breakage B>0: 

Dissip. via pore collapse	


Dissip. via breakage	

 = tan(ω) 



MODEL OF BREAKAGE AND POROSITY 
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MODEL OF BREAKAGE AND POROSITY 
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γτ

!B = 2λ F 1−B
EBEC

cos2(ω) !φ = 2λF 1−B
EBEC

EB

Eφ

sin2(ω)!εp
s = 2λ q

Mp( )2

F ≡ FCS =
EB

Ec

(1−B)−γτ = 0

elastic 
potential 

critical state 
‘for humans’ 



MODEL OF BREAKAGE AND POROSITY 
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‘non-unique’ critical state 



MODEL OF BREAKAGE AND POROSITY 
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‘non-unique’ critical state 
Tests by Bandini-Coop (2012): 

only ‘free’ 
parameter 



CONCLUSIONS 
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› Micro to Macro via energy scaling and redistribution, 
and statistical homogenisation 

› Breakage mechanics used to get GSD in space and 
time 

› Porosity is internal variable (not total plastic strain!) 
› Clearer link of porosity rate to strain rate 
› Introducing relative porosity dependent on GSD  
› Predicting critical state, preconsolidation pressure, 
yield surface and wetting collapse rather than 
imposing them 


