THE EFFECT OF GEOMETRICAL DISPOSITION OF IMPERMEABLE MEMBRANES ON THE SUBGRADE SERVICE LIFE OF RAIL TRACK EMBANKMENTS

M. O. Ciantia J. Pérez-Romero J. Vaunat M. Arroyo
eco-Friendly And Sustainable slab TRACK for high-speed lines
OUTLINE

INTRODUCTION
 *Overview of the problem and objectives

AASHTO INDICATIONS
 American Association of State Highway and Transportation Officials
 * Long term, environmental induced traffic irreversible deformations

2D HYDRO-THERMAL ANALYSES
 *Geometrical positioning of impermeable membranes
 *Embankment dimensions
 *Water table depth
 *Climate

LONG TERM EMBANKMENT DEFORMATION
 Fatigue based environmental induced irreversible deformations

CONCLUSIONS
High speed train tracks

Ballastless vs Ballasted track

- Ballastless track (example)
 - Continuous slab of concrete (like a highway structure) with the rails supported directly on its upper surface (using a resilient pad)
 - Advantages of Ballastless tracks (Michas, 2012):
 - Less maintenance and longer life time
 - High stability and efficient load redistribution
 - Higher precision during construction
 - Good design for high speed trains > 300 km/h
 - Reduction of vegetation maintenance costs
Lifetime embankment deformation

$\text{S}_U = \text{Bed settlement}$

$\text{S}_E = \text{Embankment settlement}$

$\text{S}_V = \text{Traffic load settlement}$

TOTAL settlement = $\text{S}_U + \text{S}_E + \text{S}_V$
Embankment deformation

Embankment settlement
Bed settlement
TOTAL settlement

Traffic load settlement

Embankments substructure superstructure

construction time

service time

t₀

t_service

time → ∞
OBJECTIVE:
LONG TERM EMBANKMENT SETTLEMENT

1. Embankment settlement due to self weight + environmental loads

2. Embankment settlement due to traffic loads + environmental loads

HOW??
Uncoupled TH - M analyses based on the AASHTO indications
\[\varepsilon_v(N) = \varepsilon_v^0 \beta_1 \left(\frac{\varepsilon_0}{\varepsilon_r} \right) e^{-\left(\frac{\rho}{N} \right)^\beta} \]

\[\log \beta = -0.61119 - 0.017638 W_c \]

\[\log \left(\frac{\varepsilon_0}{\varepsilon_r} \right) = 0.5 \left[e^{(\rho)^\beta} a_1 + e^{(\rho/10^9)^\beta} a_9 \right] \]

\[\rho = 10^9 \left(\frac{C_0}{\left(1 - (10^9)^\beta \right)} \right)^{\frac{1}{\beta}} \quad C_0 = \ln \left(\frac{a_1}{a_9} \right) \]
AASHTO: Fatigue based calculation -2

\[\varepsilon_v(N) = \varepsilon_v^0 \beta_1 \left(\frac{\varepsilon_0}{\varepsilon_r} \right) e^{-\left(\frac{\rho}{N} \right)^\beta} \]

\[\log \beta = -0.61119 - 0.017638 W_c \]

\[\log \left(\frac{\varepsilon_0}{\varepsilon_r} \right) = 0.5 \left[e^{(\rho)^\beta} a_1 + e^{(\rho/10^9)^\beta} a_9 \right] \]

\[\rho = 10^9 \left(\frac{C_0}{(1-10^9)^\beta} \right)^\frac{1}{\beta} \quad C_0 = \ln \left(\frac{a_1}{a_9} \right) \]

SEPARATE MECHANICAL ANALYSIS

EMPIRICAL

\[W_c = 51.712 \left[\left(\frac{E_r}{2555} \right)^{\frac{1}{0.64}} \right]^{-0.3586*GWT^{0.1192}} \]

\[\log \frac{M_R}{M_{R_{opt}}} = a + \frac{b - a}{1 + EXP \left(\frac{\ln \frac{b}{a} + k_m \cdot (S - S_{opt})}{a} \right)} \]

NUMERICAL

HYDRO-THERMAL NUMERICAL ANALYSES

CODE_BRIGHT

environmental boundary conditions
\[\varepsilon_v (N) = \varepsilon_0^0 \beta_1 \left(\frac{\varepsilon_0}{\varepsilon_r} \right) e^{-\left(\frac{\rho}{N} \right)^\beta} \]

\[\log \beta = -0.61119 - 0.017638 W_c \]

\[\log \left(\frac{\varepsilon_0}{\varepsilon_r} \right) = 0.5 \left[e^{\rho^\beta} a_1 + e^{(\rho/10^9)^\beta} a_9 \right] \]

\[\rho = 10^9 \left(\frac{C_0}{\left(1 - (10^9)^\beta \right)} \right)^{1/\beta} \]

\[C_0 = \ln \left(\frac{a_1}{a_9} \right) \]

\[W_c = 51.712 \left(\frac{E_r}{2555} \right)^{0.64} \]

\[\log \frac{M_R}{M_{R_{opt}}} = a + \frac{b - a}{\ln \exp \left(\frac{\ln -b}{a} \right)} \]

Moço Ferreira T. & Fonseca Teixeira (2012)

Numerical

Empirical

\[W_c = 0.3586 \cdot GWT^{0.192} \]
INTRODUCTION
AASHTO INDICATIONS
2D HYDRO-THERMAL ANALYSES
LONG TERM DEFORMATION
CONCLUSIONS

T-H MODEL: Geometrical specifications

Diagram showing the geometrical specifications of a hydro-thermal model with various layers and markers. The diagram includes labeled sections and markers for detailed analysis.
M MODEL: Calculating ε_v

Introduction

- AASHTO Indications
- 2D Hydro-Thermal Analyses
- Long Term Deformation
- Conclusions

<table>
<thead>
<tr>
<th>Numero fase</th>
<th>Visualización</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Calculating ε_v

Self-weight

$$\varepsilon_v$$

Traffic

$$\varepsilon_v$$
T-H MODEL: CODE_BRIGHT

ATMOSPHERE:

At soil surface:

Heat exchange:
- Solar radiation (+)
- Radiation re-emitted by the atmosphere (+)
- Radiation re-emitted by the soil (-)
- Heat convected by evapotranspiration (in particular latent heat) (-)
- Heat convected by liquid water (+/-)
- Heat convected by air

Water exchange:
- Precipitation (+)
- Runoff (-)
- Evapotranspiration (-)

Air exchange:
- Flow due to change in atmospheric pressure
- Strongly enhanced by aerodynamics effects
SOIL:

- Sensible Heat
- Latent Heat
- Radiation
- Precipitation
- Evaporation
- Runoff
- Gas Flux

Mass balance of heat (including conductive, diffusive and advective fluxes)

Mass balance of water (including liquid water and vapour)

Mass balance of air (including dry air and dissolved air)

Stress equilibrium
INTRODUCTION

AASHTO INDICATIONS

2D HYDRO-THERMAL ANALYSES

LONG TERM DEFORMATION

CONCLUSIONS

T-H MODEL: Materials

Grain Size Distribution

Track Bed Layer

Subgrade

Embankment (Nucleous)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Track bed layer</th>
<th>Subgrade</th>
<th>Nucleus C</th>
<th>Nucleus B</th>
<th>Nucleus A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength and stiffness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E'</td>
<td>MPa</td>
<td>50</td>
<td>50</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>ν</td>
<td>-</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>ϕ'</td>
<td>-</td>
<td>33</td>
<td>33</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>c'</td>
<td>kPa</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Permeability K</td>
<td>m/s</td>
<td>2.5 E-04</td>
<td>2.1 E-04</td>
<td>2.0 E-8</td>
<td>2.0 E-9</td>
</tr>
<tr>
<td>Plasticity Indices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LL</td>
<td>%</td>
<td>NP</td>
<td>NP</td>
<td>37.6</td>
<td>37.6</td>
</tr>
<tr>
<td>LP</td>
<td>%</td>
<td>NP</td>
<td>NP</td>
<td>23.0</td>
<td>23.0</td>
</tr>
<tr>
<td>IP</td>
<td>%</td>
<td>NP</td>
<td>NP</td>
<td>14.6</td>
<td>14.6</td>
</tr>
<tr>
<td>Modified Proctor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G_s</td>
<td>-</td>
<td>2.65</td>
<td>2.65</td>
<td>2.65</td>
<td>2.65</td>
</tr>
<tr>
<td>γ_{dry} (PM)</td>
<td>g/cm3</td>
<td>2.0</td>
<td>2.0</td>
<td>1.78</td>
<td>1.78</td>
</tr>
<tr>
<td>w_{opt} (PM)</td>
<td>%</td>
<td>18.2</td>
<td>18.2</td>
<td>29.9</td>
<td>29.9</td>
</tr>
<tr>
<td>CBR (PM)</td>
<td>-</td>
<td>25</td>
<td>25</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Sr (PM)</td>
<td>%</td>
<td>80.6</td>
<td>80.6</td>
<td>90.6</td>
<td>90.6</td>
</tr>
<tr>
<td>Suction (PM)</td>
<td>kPa</td>
<td>20</td>
<td>50</td>
<td>150</td>
<td>150</td>
</tr>
</tbody>
</table>
T-H MODEL: Boundary Conditions #1

WEATHER

S. Sebastián

Antequera
INTRODUCTION

AASHTO INDICATIONS

2D HYDRO-THERMAL ANALYSES

LONG TERM DEFORMATION

CONCLUSIONS

T-H MODEL: Boundary Conditions #1

WEATHER

Antequera

S. Sebastián
T-H MODEL: Boundary Conditions #2
IMPERMEABLE GEOMEMBRANES
INTRODUCTION
AASHTO INDICATIONS
2D HYDRO-THERMAL ANALYSES
LONG TERM DEFORMATION
CONCLUSIONS

Type of NUCLEOUS #1

NU_A
10 years 2 years
2E-10 m/s

NU_B
10 years 5 years
2E-9 m/s

NU_C
10 years 5 years
2E-8 m/s

2 years

5 years

10 years
Type of NUCLEOUS #2

PERMEABILITY

2E-10 m/s

2E-9 m/s

2E-8 m/s
EMBANKMENT DIMENSIONS

INTRODUCTION

AASHTO INDICATIONS

2D HYDRO-THERMAL ANALYSES

LONG TERM DEFORMATION

CONCLUSIONS
T-H MODEL: Typical Results
INTRODUCTION

AASHTO INDICATIONS

2D HYDRO-THERMAL ANALYSES

LONG TERM DEFORMATION

CONCLUSIONS

T-H + M MODEL: Long term embankment irreversible deformations

\[\delta_a (N) = \beta_1 \left(\frac{\varepsilon_0}{\varepsilon_r} \right) \left(\frac{\rho}{N} \right)^\beta \left(\varepsilon_v h \right) \]

\[\log \beta = -0.61119 - 0.017638 W_c \]
T-H + M MODEL: Long term geomembrane positioning #1
T-H + M MODEL: Long term geomembrane positioning #2
T-H + M MODEL: Long term geomembrane positioning #3
INTRODUCTION

AASHTO INDICATIONS

2D HYDRO-THERMAL ANALYSES

LONG TERM DEFORMATION

CONCLUSIONS

T-H + M MODEL: Long term geomembrane positioning #4
10 year self weight and traffic load env-induced settlement
NEW WAY OF PREDICTING THE ATMOSPHERIC INDUCED LONG TERM DEFORMATION OF EMBANKMENTS:

AASHTO INDICATIONS (FATIGUE CALCULATION) + TH FEM ANALYSES

PARAMETRIC STUDY:

1. GEOMETRICAL DISPOSITION OF IMPERMEABLE MEMBRANES
2. PHREATIC LEVEL
3. SIZE OF THE EMBANKMENT
4. CLIMATE

FURTHER RESEARCH

1. MEMBRANES AT THE BASE
2. FULLY COUPLED THM FEM ANALYSES
Thanks for the attention
QUESTIONS?