

25th ALERT Workshop Session II: Railway Geomechanics Aussois – September 30th 2014

A simplified procedure for settlement analysis of ballasted tracks

Gabriele Della Vecchia, Federico Pisanò, Andrea Galli, Claudio di Prisco

in collaboration with

Some introductory remarks

20255 km of railway lines in Italy

Strategic lifeline both at national ad regional level

Some introductory remarks

- High technical/commercial **competition** with airlines, highways, and among railways operators
- Increasing **speed and weight** of trains
- Need for **cheaper** and more efficient railway tracks
- Need for **simpler** desing approaches
- Maintainance costs are often the most important part of railways management

Section of a railway track

Layered strip foundation, subject to complex dynamic loads.

Cyclic settlement accumulation, due to permanent sliding between grains, ratcheting phenomena and grain breakage

Section of a railway track

Layered strip foundation, subject to complex dynamic loads.

Cyclic settlement accumulation, due to permanent sliding between grains, ratcheting phenomena and grain breakage

Limit states

Differential settlement

(Sucker, 2002)

Insufficent drainage, pumping of fines

Local "buckling" of the track

(Indraratna et al., 2011)

Settlement computation: rigorous approach

FE analyses by employing advanced constitutive models specifically conceived for cyclic loads

High computational effort; difficult parameter calibration

Settlement computation: simplified approach

Simplified constitutive models, describing the accumulation of plastic strain

 \rightarrow Viscous equivalent approach

GLOBAL (Indraratna et al. 2000; Indraratna et al 2003): direct evaluation of the settlement as a function of number of cycles N

parameters do not have actually any physical meaning and depend both on structural mechanical properties and geometry and on the applied load

LOCAL

- FEM analyses on BVP
- Local constitutive relationship between strain and cycle number
- High number of parameters, sophisticated models
- Combination of "implicit" and "explicit" methods

LOCAL

HCA - "High Cyclic Accumulation Model" (Niemunis e Triantafyllidis, 2005)

$$\dot{\varepsilon}_{acc} = f_{ampl} \cdot \dot{f}_N \cdot f_e \cdot f_p \cdot f_Y \cdot f_\pi$$

effect of cycle amplitude

de
$$f_{ampl} = \min \left\{ \left(\frac{\varepsilon^{ampl}}{\varepsilon^{ampl}_{ref}} \right)^2; 100 \right\}$$

effect of confining pressure

$$f_p = e^{\left[-C_p\left(\frac{p}{pref}-1\right)\right]}$$

effect of cycle number

$$\dot{f}_N = \frac{C_{N1}C_{N2}}{1+C_{N2}N} + C_{N1}C_{N3}$$

effect of void index

$$f_{e} = \frac{(C_{e} - e)^{2}}{1 + e} \frac{1 + e_{ref}}{(C_{e} - e_{ref})^{2}}$$

 $C_{N1} = 0,0002 \ exp \ (-0,65 \ d_{50}) \ exp \ (0,91 \ U_c); \\ C_{N2} = 0,95 \ exp \ (0,33 \ d_{50}) \ exp \ (-0,90 \ U_c); \\ C_{N3} = 0,00003 \ exp \ (-0,69 \ d_{50}) \ exp \ (0,26 \ U_c);$

effect of stress level

$$f_Y = e^{(C_Y Y^{uv})}$$

$$C_{Y} = 2,6;$$

$$Y_{av} = \frac{Y-9}{Y_{c}-9};$$

$$Y_{c} = \frac{9-sin^{2}\varphi_{c}}{1-sin^{2}\varphi_{c}};$$

$$Y = \frac{27(3+\eta)}{(3+2\eta)(3-\eta)}$$

G. Della Vecchia, F. Pisanò, A. Galli, C. di Prisco

LOCAL

Tseng and Lytton (1989)

$$\varepsilon_p(N) = \left(\frac{\varepsilon_0}{\varepsilon_r}\right) e^{-\left(\frac{\rho}{N}\right)^{\beta}} \varepsilon_v$$

$$log\left(\frac{\varepsilon_{0}}{\varepsilon_{r}}\right) = -1,69867 + 0,09121w_{c} - 0,11921\sigma_{d} + 0,91219\log(E_{SG});$$

$$log(\beta) = -0,9730 - 0,0000278w_{c}^{2}\sigma_{d} + 0,017165\sigma_{d} - 0,00000338w_{c}^{2}\sigma_{\theta};$$

$$log(\rho) = 11,009 + 0,0000681w_{c}^{2}\sigma_{d} - 0,40260\sigma_{d} + 0,00000545w_{c}^{2}\sigma_{\theta};$$

LOCAL

Cumulative Damage Model (Ishikawa et al., 2004)

$$(\varepsilon_a)_{max} = \left(\frac{SR_d}{a1 \cdot (1 - a2 \cdot SR_s^{a2}) \cdot N_c^{a4}}\right)^{a5 \cdot N_c^{a6}}$$

 σ_d = deviatoric stress at the Ncth cycle σ_s = initial deviatoric stress σ_m = mean principal stress $a_1...a_6$ = model parameters

$$SR_{s} = \frac{\sigma_{s}}{(2\sigma_{m})}.$$
$$SR_{d} = \frac{\sigma_{d}}{(2\sigma_{m})}$$

12

Liu and Carter (2004)

 $\varepsilon_{p} = a \left(\frac{\Delta q}{q_{f} - \Delta q}\right) (lnN)^{b}$ "distance" from failure

Settlement computation: New simplified local model

a, b, c = model parameters to be calibrated

Settlement computation: New simplified local model

$$f_e = \left(\frac{(C_e - e)^2}{1 + e} \frac{1 + e_{ref}}{(C_e - e_{ref})^2}\right)$$

$$\begin{cases} \dot{\varepsilon}_{v} = \dot{\varepsilon}_{1} + 2 \dot{\varepsilon}_{3} \\ \dot{\varepsilon}_{d} = \frac{2}{3} (\dot{\varepsilon}_{1} - \dot{\varepsilon}_{3}) \end{cases}$$

update of void index

$$\varepsilon_v = -\frac{\Delta e}{1 + e_0}$$

۸ .

$$\dot{\varepsilon}_1 = \dot{\varepsilon}_{acc}$$

MMC flow rule

$$\frac{\dot{\varepsilon}_{v}^{acc}}{\dot{\varepsilon}_{d}^{acc}} = \frac{M_{C}^{2} - \eta^{2}}{2\eta} = d$$

$$\dot{\varepsilon}_{3} = -\sqrt{\frac{\dot{\varepsilon}_{acc}^{2}}{2 + (\frac{(2 + \frac{2}{3}d)}{(1 - \frac{2}{3}d)})^{2}}}$$

Computational approach: a depth-integrated stress path method

Example of application

Elastic solution by Matlab PDE tool (plane strain analysis, linear elasticity, static loads)

G. Della Vecchia, F. Pisanò, A. Galli, C. di Prisco

Example of application

G. Della Vecchia, F. Pisanò, A. Galli, C. di Prisco

G. Della Vecchia, F. Pisanò, A. Galli, C. di Prisco

Example of application

Total cumulated vertical settlement (and differential settlement along the sleeper)

G. Della Vecchia, F. Pisanò, A. Galli, C. di Prisco

Remarks and open issues...

Cyclic triaxial tests on ballast 0,07 Calibration of constitutive parameters a, b, c (Aursuadkij, 2009) increase of 0,06 confining 0,05 a=0.01 b=0.14 $(p_c = 10 \text{ kPa})$ Deformazioni assiali cumulate c=0.3pressure aur 1 a=0,035 b=0,14 c=0,3 $(p_c = 30 \text{ kPa})$ ur 2 0,04 a=0,11 b=0,14 c=0,3 $(p_c = 60 \text{ kPa})$ aur 3 a=0,1 b=0,14 c = 0,3 $(p_c = 60 \text{ kPa})$ aur 4 0,03 sp1 0,02 sp2 parameter "b" and parameter sp3 0,01 "a" is mainly "c" appear to be sp4 affected by independent of the 0 the confining confining pressure 10 1 100 1000 10000 100000 1000000 pressure Numero di cicli 0,07 increase of (Suiker et al., 2005) **Deformazioni Deviatoriche** 0,06 stress level •b1 0,05 -b2 Cumulate a=0,046 b=0,14 c=1 $(p_c = 68.9 \text{ kPa})$ 0,04 •b3 0,03 -b4 Ж sp1 0,02 Actually "a" and "c" seem to depend on a combination of sp2 confining pressure and cyclic stress level. 0,01 + sp3 Parameter "b" is apparently uniquely dependent on the 0 sp4 type of material 100 10000 1 1000000

Numero di Cicli

Vertical and horizontal stress increments

22

 E_{sub} = 100 MPa

 E_{sub} = 80 MPa

horizontal tensile stress

work in progress....