

# COUPLING BETWEEN MECHANICAL STATE AND PERMEABILITY FOR CONCRETE

Mohamad Dandachy

3SR, University of Grenoble, France



#### Mohamad Dandachy

Alert Geomaterials 4/10/2016

## Introduction & context



- Sealing has to be guaranteed for 40 years.
- Diffuse damage (microcracking) and/or localized (macrocracking)
- Estimation of the evolution of transfer properties (structural durability analysis)

## **Objectif:**

Propose/validate numerical tools to predict/estimate leakage rate in a cracked structure.

Alert Geomaterials 4/10/2016

## Numerical modelling



Here we focus on studying the effect of mechanical damage on the permeability of concrete.

## **Mohamad Dandachy**

## Alert Geomaterials 4/10/2016

Introduction and context

onclusions

# Outline

## - Bibliography

- Hydro-mechanical modelling
- Application: Brazilian test
- Conclusions
  - Perspectives



# *Effect of the mechanical load on the permeability of concrete*

[Hearn 1999] [Aldea 2000] [Picandet 2001, 2009] [Biparva 2005] [Choinska 2007] [Dal Pont 2011 (HDR)] [Rastiello 2014]



## Phase 1

- Low evolution of sample permeability
- Permeability governed by Darcy's law

$$k_m = \mu \frac{Q}{A} \left(\frac{\Delta P}{\Delta x}\right)^{-1}$$

Phase 2

- •high permeability evolution
- •Crack connectivity

## Phase 3

- Permeability increased by 3 orders of magnitude
- Governed by Poiseuille's law

$$k_P = \frac{[u]^2}{12\alpha}$$

lpha :crack roughness, turtuosity and bridging

 Difficulty to perform the coupling during the three phases with the same model

## Mohamad Dandachy

## Discussion on the correction factor $\alpha$

[Hearn 1999] [Aldea 2000] [Picandet 2001, 2009] [Biparva 2005] [Choinska 2007] [Dal Pont 2011 (HDR)] [Rastiello 2014]



a) Correction factor versus mean crack aperture [Rastiello et al. 2014]

b) fracture permeability estimation via the experimentally corrected parallel plates model

Correction factor is adopted in the numerical simulations

#### **Mohamad Dandachy**

#### Alert Geomaterials 4/10/2016

## Continuous modelling: damage model

## Isotropic damage model

## Local model

$$arepsilon_{eq} = \sqrt{\sum_{i=1}^3 < arepsilon_i >_+}$$
 Mazars 1986

## Nonlocal integral model Pijaudier-Cabot and Bažant 1987

- Can be applied at the scale of the structure.
- Simple, time cost is reasonable and accurate mechanical description.
- Crack opening can be calculated.
- No need before mechanical description information about the crack.

## Stress based nonlocal model

Giry et al. 2011

$$\phi_0(\boldsymbol{x}, \boldsymbol{s}) = \exp\left(-\left(\frac{4\|\boldsymbol{x} - \boldsymbol{s}\|^2}{l_c^2}\right)\right) \qquad \phi_0(\boldsymbol{x}, \boldsymbol{s}) = \exp\left(-\left(\frac{4\|\boldsymbol{x} - \boldsymbol{s}\|^2}{l_c^2(\boldsymbol{x}, \boldsymbol{\sigma}_{prin}(\boldsymbol{s}))}\right)\right)$$
$$\overline{\varepsilon_{eq}}(\boldsymbol{x}) = \frac{\int_{\Omega} \phi_0(\boldsymbol{x}, \boldsymbol{s}) \cdot \varepsilon_{eq}(\boldsymbol{s}) d\boldsymbol{s}}{\int_{\Omega} \phi_0(\boldsymbol{x}, \boldsymbol{s}) d\boldsymbol{s}}$$

**Mohamad Dandachy** 

## Alert Geomaterials 4/10/2016

## Coupling between permeability and mechanical state (Continuous approach) [Pijaudier-Cabot et al, JEM (2009)]

(For each element i)

$$\log K_i = D \log K_P + (1 - D) \log K_D$$

Poiseuille's Permeability: (Mean Permeability of a cracked element)

$$K_P = \xi \frac{(\lambda l_c)^3}{12l_e} (F^{-1}(D) - Y_{D0})^3$$

$$F^{-1}(D) = Y_{D0} - \frac{\ln(1-D)}{B_t}$$

 $\xi$  : correction factor for Poiseuille's Law (Roughness, Turtuosity, etc..)

Picandet's Permeability: (Permeability of a microcracked element)

$$K_D = K_0 f(D) = K_0 \exp\left((\alpha D)^{\beta}\right)$$

*K*<sub>0</sub> : Permeability of a sound material

- $\alpha$ ,  $\beta$ : Fitted parameters
- D : Damage Field

8/25

## Mohamad Dandachy

#### Introduction and context

nclusions

# Outline

- Bibliography
- Hydro-mechanical modelling
- Application: Brazilian test
- Conclusions
  - Perspectives



ibliography

onclusions

## Coupling by means of two approaches



FC approach can be directly applied once the mechanical problem is solved.

SD approach requires crack tracking and crack opening assessment

10/25

**Mohamad Dandachy** 

## Coupling by means of two approaches

Fully continuous approach

Semi discrete approach

Diffuse damage

 $k_D^e = k_0 f(D^e) = k_0 \exp\left((\alpha D^e)^{\beta}\right)$  Picandet et al. 2001

 $D^e \leq l$  (l = 0,15 for instance)

Localized damage (Poiseuille  $k_P^e$ )

$$k_P^e = \frac{(l^e)^{2-\gamma_r}}{12\beta_r} (\varepsilon_{n^e} - \varepsilon_{D0})^{3-\gamma_r}$$

 $\gg 3 \mathcal{R} \mathcal{E}_n^e : Maximum principal strain$ 

- $\varepsilon_{D0}$ : Strain at first crack initiation
- $l^e$  : Average length of the FE ( $\sqrt[3]{V^e}$ )
  - $\xi = f([u], \beta_r, \gamma_r)$  Rastiello et al. 2014

 $\boldsymbol{K}_{m}^{e} = (k_{D}^{e})^{1-D} \times (\boldsymbol{K}_{\boldsymbol{P}}^{e})^{D}.$ 

• 
$$k_P^e = \frac{\left[u_n^e\right]^{3-\gamma_r}}{12 \ l^e \ \beta_r}$$

• Crack path (Topological search, **Bottoni et al. 2015**)

$$[u_{\mathbf{n}^{\mathbf{e}}}^{e}]_{strong} = \frac{(\varepsilon_{FE} * \emptyset)(x_0) \int_{\Gamma} \emptyset(x_0 - x) ds}{\emptyset(0)}$$
  
Dufour et al. 2008

Sum of fluxes 
$$\mathbf{Q} = \mathbf{Q}_{bulk} + \mathbf{Q}_{crack}$$

$$\boldsymbol{K}_{m}^{e} = \boldsymbol{k}_{D}^{e}\boldsymbol{I} + \boldsymbol{k}_{P}^{e}\boldsymbol{R}^{\mathrm{T}}(\boldsymbol{I} - \boldsymbol{n}^{e} \otimes \boldsymbol{n}^{e})\boldsymbol{R}$$

11/25

### **Mohamad Dandachy**

#### Introduction and context

onclusions

12/25

# Outline

- Bibliography
- Hydro-mechanical modelling
- Application: Brazilian test Physical experiment FE simulation
- Conclusions
- Perspectives

## Physical experiment (Hydro-mechanical behaviour) (Controlled by COD)



Gas permeability of mortar under splitting test determined when partially unloaded. Dufour 2007 (HDR)

### 13/25

#### **Mohamad Dandachy**

Conclusions

Perspectives

## Physical experiment (Crack opening assessment)



3D effect seen on the cracking patterns due to geometrical effect.

14/25

### **Mohamad Dandachy**

#### Introduction and context

onclusions

# Outline

- Bibliography
- Hydro-mechanical modelling
- Application: Brazilian test Physical experiment FE simulation
- Conclusions
- Perspectives





Mohamad Dandachy

Introduction and context

Bibliography

Numerical coupling between transport and mechanical properties

onclusions

Perspectives

0

= 0.88

17/25

## Calibration of 3D mechanical model

## Arc-length control by maximum strain

(Force-Disp snap back)

**Mohamad Dandachy** 



## Alert G

Alert Geomaterials 4/10/2016

**NLSB** damage

NL damage

## **Damage Profiles**

**NLSB model** 

S<sub>b</sub> : surface with larger diameter



 The 3D simulation highlights the damage (crack) propagation in the longitudinal direction.

#### **Mohamad Dandachy**

#### Alert Geomaterials 4/10/2016

onclusions

## Crack opening assessment



Mohamad Dandachy

## Local and structural permeabilites calculation







• Q is computed and 
$$k_m = \mu \frac{Q}{A} \left(\frac{\Delta P}{\Delta x}\right)^{-1}$$

. .

20/25

#### Mohamad Dandachy

## Coupling between permeability and mechanical state



- L. Damage (permeability) stabilizes around 1 and do not evolves when unloading (MLD)
- 2. Poiseuille's law (ksi=1) overestimates the crack permeability
- 3. Good agreement between the proposed models and experimental data
- 4. Rastiello's parameters are valid for an OC/mortar up to COD of 0.1  $mm_{21/25}$

Conclusions

Perspectives

## Mesh sensitivity



## Mesh independent results obtained with the proposed approaches

### **Mohamad Dandachy**

## Alert Geomaterials 4/10/2016

#### Introduction and context

Conclusions

# Outline

- Bibliography
- Hydro-mechanical modelling
- Application: Brazilian test
- Conclusions
- Perspectives





| ntroduction<br>and context | Bibliography | Numerical coupling between transport and<br>mechanical properties | Conclusions | Perspectives |
|----------------------------|--------------|-------------------------------------------------------------------|-------------|--------------|
|----------------------------|--------------|-------------------------------------------------------------------|-------------|--------------|

## **Conclusions:**

- The NL stress based is proven to be better than the original NL on the Global scale as well as on the local one.
- With (MLD), damage (permeability) stabilizes around 1 and do not evolves when unloading.
- The crack opening assessment is obtained accurately using the Strong Discontinuity approach applied in the post processing phase.
- > It is shown that the proposed parameters of Rastiello that intervene in the relation between the correction factor and the crack opening,  $\gamma$  and  $\beta$ , are valid for an ordinary concrete/mortar.
- > The coupling using two approaches is validated on the splitting test.
- Mesh independent results are obtained.

## Perspectives :

Coupling permeability with thermal and/or creep damage. Other applications (steel-concrete interface for instance). Generalize the approaches to structure elements. Consider slip flow (apparent permeability) in the hydraulic models.

## Alert Geomaterials 4/10/2016



# Thank you for your attention





# Crack location and opening

## **Crack path**

• Trivial in the actual test (Plane of symmetry parallel to the loading).

## Crack opening along the path



Mohamad Dandachy



#### Mohamad Dandachy

Conclusions (FXP)

## Applying the SD Method

- → Crack path is taken as the green crack surface
- → Convert the medium to 1D profile along a line orthogonal to the crack surface.
- $\rightarrow$  Projection of strain field on the 1D profile.

$$\Im^{\mathbf{R}} \qquad \mathcal{E}_N = \vec{N}.\mathcal{E}.\vec{N}$$

Equality of numerical and analytical profiles at their maximum  $x_0$ 

$$\overline{\varepsilon}_{sd}(x_0) = \overline{\varepsilon}_{eq}(x_0)$$



28/25

#### Mohamad Dandachy

## Coupling by means of two approaches

#### Pijaudier-Cabot et al, JEM (2009)



#### **Mohamad Dandachy**

Perspectives

## Correction factor for Poiseuille's law





Structural or mean permeability

$$K_m = K_P \frac{[u]_m \cdot \varphi}{S_{struct}} = \frac{\xi_{struct}}{S_{struct}} \frac{[u]_m^3 \cdot \varphi}{12}$$

$$\xi_{struct} = \frac{1}{\beta \overline{[u]}^{\gamma}} \quad \left\{ \begin{array}{l} \beta = 5,625 \times 10^{-5} \\ \gamma = -1,19 \end{array} \right.$$

#### Mohamad Dandachy

#### Alert Geomaterials 4/10/2016





Mohamad Dandachy