Local Max-Ent meshfree method applied to large deformation problems in saturated soils

Dynamic approach

Pedro Navas a, Lorenzo Sanavia b, Susana López-Querol c and R.C. Yu d

^a Departament d'Enginyeria Civil i Ambiental, Universidad Politécnica de Catalunya, 08034 Barcelona, Spain

^b Dip. di Ingegneria Civile, Edile e Ambientale, Universitá degli Studi di Padova, 35131 Padova, Italy

^c Dept. of Civil, Environmental and Geomatic Engineering, University College London, UK

^d School of Civil Engineering, University of Castilla-La Mancha 13071 Ciudad Real, Spain

28th ALERT Workshop Program

Aussois, 4th October 2017

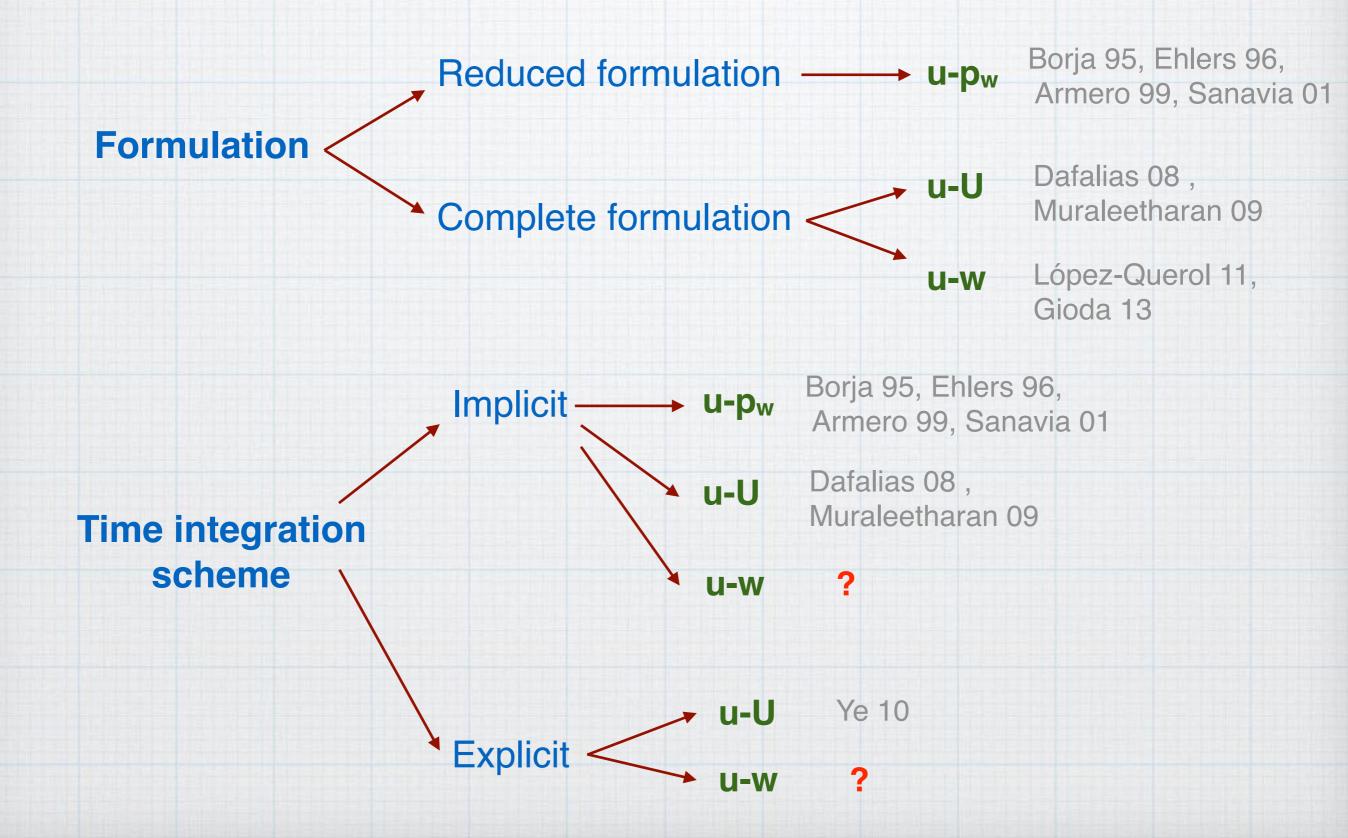
Outline

- **1. Governing equations**
- 2. Spatial discretization: OTM
- 3. Constitutive law
- 4. Benchmark examples
- 5. Embankment application
- 6. Conclusions and future work

Outline

- **1. Governing equations**
- 2. Spatial discretization: OTM
- 3. Constitutive law
- 4. Benchmark examples
- 5. Embankment application
- 6. Conclusions and future work

1. Governing equations Biot's equations



Biot's equations

Lewis & Schrefler (1998)

Linear momentum of the mixture

div
$$[\boldsymbol{\sigma'} - p_w \mathbf{I}] - \rho \mathbf{\ddot{u}} - \rho_w \mathbf{\ddot{w}} + \rho \mathbf{g} = \mathbf{0}.$$

Linear momentum of the fluid phase

$$-\operatorname{grad} p_w - \frac{\mu_w}{k} \dot{\boldsymbol{w}} + \rho_w \left(\boldsymbol{g} - \ddot{\boldsymbol{u}} - \frac{\ddot{\boldsymbol{w}}}{n} \right) = \boldsymbol{0}.$$

U

U

Mass conservation

$$\frac{p_w}{Q} + \operatorname{div} \, \dot{\boldsymbol{u}} + \operatorname{div} \, \dot{\boldsymbol{w}} = 0$$

where:

Solid phase displacement

Total water displacement

Relative water displacement

$$\boldsymbol{w} = nS_w \left(\boldsymbol{U} - \boldsymbol{u} \right)$$

$$\rho = nS_w\rho_w + (1-n)\rho_s$$
$$n = \frac{V_h}{V_T} = \frac{V_h}{V_h + V_s}$$
$$Q = \left[\frac{1-n}{K_s} + \frac{n}{K_w}\right]^{-1}$$

Biot's equations

Lewis & Schrefler (1998)

Linear momentum of the mixture

div
$$[\boldsymbol{\sigma'} - p_w \mathbf{I}] - \rho \mathbf{\ddot{u}} - \rho_w \mathbf{\ddot{w}} + \rho \mathbf{g} = \mathbf{0}.$$

Linear momentum of the fluid phase

$$-\operatorname{grad} p_w - \frac{\mu_w}{k} \dot{\boldsymbol{w}} + \rho_w \left(\boldsymbol{g} - \ddot{\boldsymbol{u}} - \frac{\ddot{\boldsymbol{w}}}{n} \right) = \boldsymbol{0}.$$

Mass conservation

$$\frac{p_w}{Q} + \operatorname{div} \, \dot{\boldsymbol{u}} + \operatorname{div} \, \dot{\boldsymbol{w}} = 0$$

deriving on time...

$$p_w = -Q (\operatorname{div} \boldsymbol{u} + \operatorname{div} \boldsymbol{w}) + p_{w0}.$$

Biot's equations Weak forms

 $\mathsf{LMBm} \qquad -\int_{B} \boldsymbol{\sigma'} : \operatorname{grad}(\delta \boldsymbol{u}) \, dv - \int_{B} Q \operatorname{div}(\boldsymbol{u}) \boldsymbol{I} : \operatorname{grad}(\delta \boldsymbol{u}) \, dv \\ -\int_{B} Q \operatorname{div}(\boldsymbol{w}) \boldsymbol{I} : \operatorname{grad}(\delta \boldsymbol{u}) \, dv + \int_{B} [-\rho \boldsymbol{\ddot{u}} - \rho_{w} \boldsymbol{\ddot{w}} + \rho \boldsymbol{g}] \cdot \delta \boldsymbol{u} \, dv + \int_{\partial B} \boldsymbol{\bar{t}} \cdot \delta \boldsymbol{u} \, ds = \boldsymbol{0}.$

$$\mathsf{LMBw} \quad -\int_{B} Q \operatorname{div}(\boldsymbol{u}) \operatorname{div}(\delta \boldsymbol{w}) \, dv - \int_{B} Q \operatorname{div}(\boldsymbol{w}) \operatorname{div}(\delta \boldsymbol{w}) \, dv - \int_{B} \frac{\mu_{w}}{k} \boldsymbol{\dot{w}} \cdot \delta \boldsymbol{w} \, dv \\ -\int_{B} \boldsymbol{\ddot{w}} \frac{\rho_{w}}{n} \cdot \delta \boldsymbol{w} \, dv + \int_{B} \rho_{w} (\boldsymbol{g} - \boldsymbol{\ddot{u}}) \cdot \delta \boldsymbol{w} \, dv - \int_{\partial B} \boldsymbol{\bar{t}}_{w} \cdot \delta \boldsymbol{w} \, ds = \boldsymbol{0}.$$

1. Governing equations Explicit scheme

Newmark central differences

 $\Delta \dot{\boldsymbol{w}}_{k+1} = \ddot{\boldsymbol{w}}_k \Delta t + \gamma \Delta t \Delta \ddot{\boldsymbol{w}}_{k+1}$

LMBw - LMEm : incremental form

$$\rho_{w} \qquad \left[\nabla \left(\Delta \boldsymbol{\sigma}' - \Delta p_{w} \right)_{k} - \rho_{w} \Delta \ddot{\boldsymbol{w}}_{k+1} + \rho \Delta \boldsymbol{g}_{k+1} \right] = \\\rho \left[-\nabla \Delta p_{w_{k}} - \frac{1}{k} \ddot{\boldsymbol{w}}_{k} \Delta t - \left(\frac{1}{k} \gamma \Delta t + \frac{\rho_{w}}{n} \right) \Delta \ddot{\boldsymbol{w}}_{k+1} + \rho_{w} \Delta \boldsymbol{g}_{k+1} \right]$$

... after rearranging terms:

where:

$$\begin{bmatrix} M^{w}M^{w} - \gamma \Delta t M^{s}C - \frac{M^{s}M^{w}}{n} \end{bmatrix}^{-1} \qquad \Delta R_{k}^{s} = \nabla \Delta \sigma'_{k}, \\ \Delta R_{k}^{w} = \nabla \Delta p_{w_{k}}, \\ \Delta R_{k}^{w} = \nabla \Delta p_{w_{k}}, \\ \Delta R_{k}^{*} = \rho_{w} \Delta R_{k}^{s} - (\rho_{w} - \rho) \Delta R_{k}^{w}. \\ M^{s}]^{-1} \left[\Delta R_{k}^{s} + \Delta R_{k}^{w} + \Delta P_{k+1}^{s} - M^{w} \Delta \ddot{w}_{k+1} \right] = \Delta \ddot{u}_{k+1} \qquad \Delta P_{k+1}^{*} = \rho_{w} \Delta P_{k+1}^{s} - \rho \Delta P_{k+1}^{w}.$$

1. Governing equations Explicit scheme

Newmark central differences

 $\Delta \dot{\boldsymbol{w}}_{k+1} = \ddot{\boldsymbol{w}}_k \Delta t + \gamma \Delta t \Delta \ddot{\boldsymbol{w}}_{k+1}$

LMBw - LMEm : incremental form

$$\rho_{w} \qquad \left[\nabla \left(\Delta \boldsymbol{\sigma}' - \Delta p_{w} \right)_{k} - \rho_{w} \Delta \ddot{\boldsymbol{w}}_{k+1} + \rho \Delta \boldsymbol{g}_{k+1} \right] = \\\rho \left[-\nabla \Delta p_{w_{k}} - \frac{1}{k} \ddot{\boldsymbol{w}}_{k} \Delta t - \left(\frac{1}{k} \gamma \Delta t + \frac{\rho_{w}}{n} \right) \Delta \ddot{\boldsymbol{w}}_{k+1} + \rho_{w} \Delta \boldsymbol{g}_{k+1} \right]$$

... after rearranging terms:

where:

$$\begin{bmatrix} \boldsymbol{M}^{w}\boldsymbol{M}^{w} - \gamma\Delta t\boldsymbol{M}^{s}\boldsymbol{C} - \frac{\boldsymbol{M}^{s}\boldsymbol{M}^{w}}{n} \end{bmatrix}^{-1} & \boldsymbol{M}^{w} = -\rho_{w}\boldsymbol{I}, \\ \begin{bmatrix} \Delta \boldsymbol{R}_{k}^{*} + \Delta \boldsymbol{P}_{k+1}^{*} + \Delta t\boldsymbol{M}^{s}\boldsymbol{C}\boldsymbol{\ddot{w}}_{k} \end{bmatrix} = \Delta \boldsymbol{\ddot{w}}_{k+1} & \boldsymbol{M}^{s} = -\rho \boldsymbol{I}, \\ \boldsymbol{M}^{s} = -\rho \boldsymbol{I}, \\ \boldsymbol{C} = -\frac{1}{k}\boldsymbol{I}. \end{bmatrix}$$
$$\begin{bmatrix} \boldsymbol{M}^{s} \end{bmatrix}^{-1} \begin{bmatrix} \Delta \boldsymbol{R}_{k}^{s} + \Delta \boldsymbol{R}_{k}^{w} + \Delta \boldsymbol{P}_{k+1}^{s} - \boldsymbol{M}^{w}\Delta \boldsymbol{\ddot{w}}_{k+1} \end{bmatrix} = \Delta \boldsymbol{\ddot{u}}_{k+1} & \boldsymbol{C} = -\frac{1}{k}\boldsymbol{I}. \end{bmatrix}$$

1. Governing equations Explicit scheme

Explicit algorithm

1. Explicit Newmark Predictor ($\gamma = 0.5, \beta = 0$)

 $u_{k+1} = u_k + \Delta t \dot{u}_k + 0.5 \Delta t^2 \ddot{u}_k = u_k + \Delta u_{k+1}$ $w_{k+1} = w_k + \Delta t \dot{w}_k + 0.5 \Delta t^2 \ddot{w}_k = w_k + \Delta w_{k+1}$ $\dot{u}_{k+1} = \dot{u}_k + (1 - \gamma) \Delta t \ddot{u}_k$ $\dot{w}_{k+1} = \dot{w}_k + (1 - \gamma) \Delta t \ddot{w}_k$ $x_{k+1} = x_k + \Delta u_{k+1}$

- 2. Material points position update
- 3. Deformation gradient calculation
- 4. Logarithmic strain and Pore pressure: $\mathbf{C} = \mathbf{F}^T \mathbf{F}$

$$\operatorname{div} (\boldsymbol{u}) = \operatorname{tr}(\boldsymbol{\varepsilon}_{k+1}) = \operatorname{tr}\left(\frac{1}{2}\log \mathbf{C}_{k+1}\right)$$
$$\operatorname{div} (\boldsymbol{w}) = \operatorname{tr}(\boldsymbol{\varepsilon}_{k+1}^w) = \operatorname{tr}\left(\frac{1}{2}\log \mathbf{C}_{k+1}^w\right)$$
$$p_w = -Q\left(\operatorname{div} \boldsymbol{u} + \operatorname{div} \boldsymbol{w}\right) + p_{w_0}$$

- 5. Remapping loop, reconnect the nodes with their new material neighbors6. Update density and recompute lumped mass
 - $\rho_{k+1} = n_{k+1}\rho_w + (1 n_{k+1})\rho_s$
- 7. Constitutive relations from the Elasto-Plastic model: σ'_{k+1} and R_{k+1}
- 8. Computation of $\ddot{\boldsymbol{u}}_{k+1}$ and $\ddot{\boldsymbol{w}}_{k+1}$
- 9. Explicit Newmark Corrector

$$\dot{u}_{k+1} = \dot{u}_{k+1} + \gamma \Delta t \, \ddot{u}_{k+1}$$

$$\dot{w}_{k+1} = \dot{w}_{k+1} + \gamma \Delta t \, \ddot{w}_{k+1}$$

Implicit scheme

Wriggers (2008)

	$\ddot{\boldsymbol{u}}_{k+1} = \alpha_1 \Delta \boldsymbol{u}_{k+1} - \alpha_2 \dot{\boldsymbol{u}}_k - \alpha_3 \ddot{\boldsymbol{u}}_k$	
¥	$\dot{\boldsymbol{u}}_{k+1} = lpha_4 \Delta \boldsymbol{u}$	$oldsymbol{u}_{k+1} + lpha_5 oldsymbol{\dot{u}}_k + lpha_6 oldsymbol{\ddot{u}}_k$
Newma	$\alpha_1 = \frac{1}{\beta \Delta t^2}$ $\alpha_3 = \frac{1}{2\beta} - 1$ $\alpha_5 = 1 - \frac{\gamma}{\beta}$ $\alpha_7 = 1$	$\begin{aligned} \alpha_2 &= \frac{1}{\beta \Delta t} \\ \alpha_4 &= \frac{\gamma}{\beta \Delta t} \\ \alpha_6 &= \left(1 - \frac{\gamma}{2\beta}\right) \Delta t \\ \alpha_8 &= 1 \end{aligned}$

$$egin{aligned} &m{R}_{k+1}+C\,\dot{m{u}}_{k+1}+M\,\ddot{m{u}}_{k+1}=m{P}_{k+1}, \ &m{G}_{k+1}&=&m{M}\left[lpha_1\Deltam{u}_{k+1}-lpha_2\dot{m{u}}_k-lpha_3\ddot{m{u}}_k
ight] \ &+&m{C}\left[lpha_4\Deltam{u}_{k+1}+lpha_5\dot{m{u}}_k+lpha_6\ddot{m{u}}_k
ight] \ &+&m{a}_7m{R}_{k+1}-m{P}_k-lpha_8\Deltam{P}_{k+1}=m{0} \end{aligned}$$

 $G(\overline{\chi}, \eta, \Delta u^{*})_{k+1}^{i+1} \cong \mathbf{0},$ $G(\overline{\chi}, \eta)_{k+1}^{i} + DG(\overline{\chi}, \eta)_{k+1}^{i} \cdot \Delta u_{k+1}^{*i+1} \cong \mathbf{0},$ $DG \cdot \Delta u^{*} = \begin{bmatrix} DG_{LMS} \cdot \Delta u + DG_{LMS} \cdot \Delta w \\ DG_{LMW} \cdot \Delta u + DG_{LMW} \cdot \Delta w \end{bmatrix}$ Integrization $\mathbf{Mewton-Raphson}$ iteratively: $[\alpha_{1}M + \alpha_{4}C + \alpha_{7}K_{k+1}^{i}] \Delta u_{k+1}^{i+1} = -G(u_{k+1}^{i}),$ where $u_{k+1}^{i+1} = u_{k+1}^{i} + \Delta u_{k+1}^{i+1}.$

Implicit scheme Weak forms after time integration scheme

$$-\alpha_7 \int_B \boldsymbol{\sigma'} : \operatorname{grad}(\delta \boldsymbol{u}) \, dv - \alpha_7 \int_B Q \operatorname{div}(\boldsymbol{u}) \operatorname{div}(\delta \boldsymbol{u}) \, dv$$

$$-\alpha_7 \int_B Q \operatorname{div}(\boldsymbol{w}) \operatorname{div}(\delta \boldsymbol{u}) \, dv - \alpha_1 \int_B \left[\rho \boldsymbol{u} + \rho_w \boldsymbol{w}\right] \cdot \delta \boldsymbol{u} \, dv$$

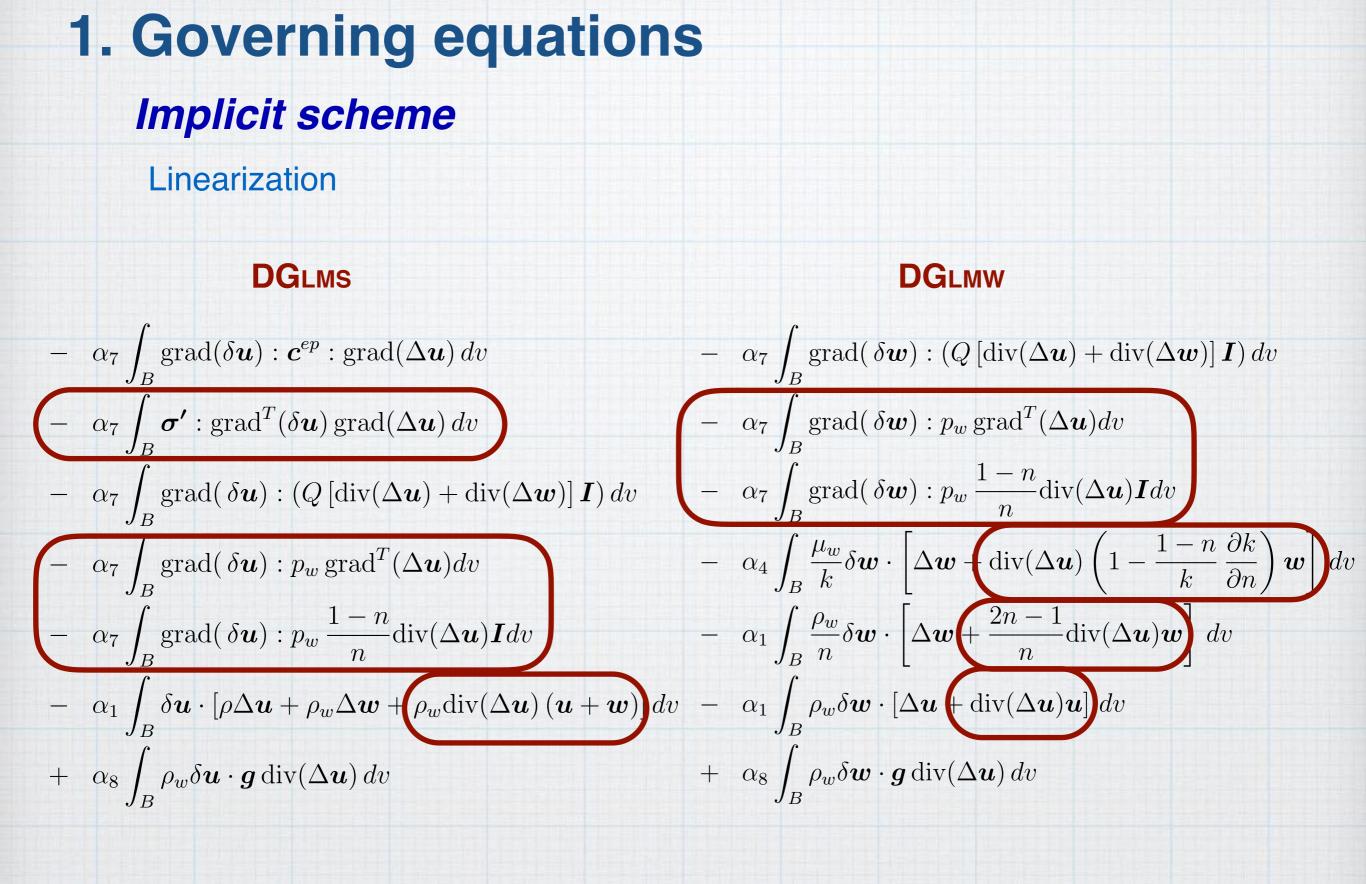
$$+\alpha_8 \int_B \rho \boldsymbol{g} \cdot \delta \boldsymbol{u} \, dv + \alpha_8 \int_{\delta B} \overline{\boldsymbol{t}} \cdot \delta \boldsymbol{u} \, ds = \mathbf{0}$$

$$-\int_{B} \alpha_{7}Q \operatorname{div}(\boldsymbol{u}) \operatorname{div}(\delta \boldsymbol{w}) dv - \int_{B} \alpha_{7}Q \operatorname{div}(\boldsymbol{w}) \operatorname{div}(\delta \boldsymbol{w}) dv$$

$$-\alpha_{4} \int_{B} \frac{\mu_{w}}{k} \boldsymbol{w} \cdot \delta \boldsymbol{w} dv - \alpha_{1} \int_{B} \frac{\rho_{w}}{n} \boldsymbol{w} \cdot \delta \boldsymbol{w} dv$$

$$-\alpha_{1} \int_{B} \rho_{w} \boldsymbol{u} \cdot \delta \boldsymbol{w} dv + \alpha_{8} \int_{B} \rho_{w} \boldsymbol{g} \cdot \delta \boldsymbol{w} dv$$

$$-\alpha_{8} \int_{\delta B} \bar{\boldsymbol{t}}_{w} \cdot \delta \boldsymbol{w} ds = \boldsymbol{0}.$$



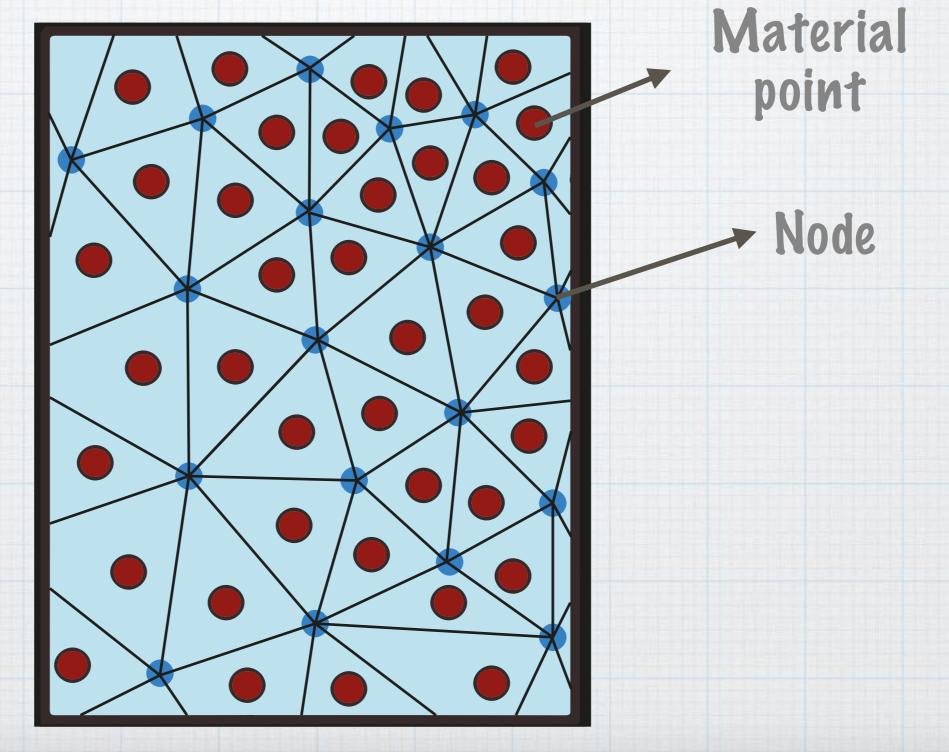
Outline

- **1. Governing equations**
- 2. Spatial discretization: OTM
- 3. Constitutive law
- 4. Benchmark examples
- 5. Embankment application
- 6. Conclusions and future work

Optimal Transportation Meshfree

Optimal Transportation Meshfree (OTM) (Li, Habbal and Ortiz, 2010)

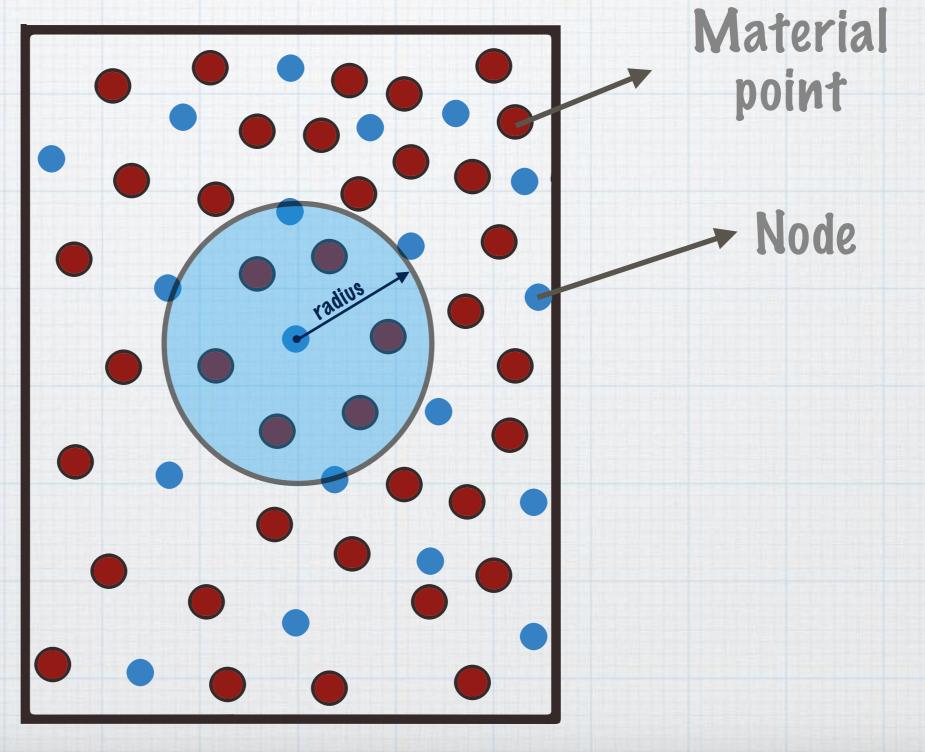
DAAS (Saucedo and Yu, 2012)



Optimal Transportation Meshfree

Optimal Transportation Meshfree (OTM) (Li, Habbal and Ortiz, 2010)

DAAS (Saucedo and Yu, 2012)



Local Max-Ent

M. Arroyo and M. Ortiz (2006)

 $f_{\beta}(\mathbf{x}, \mathbf{p}) = \beta H(\mathbf{x}, \mathbf{p}) - H(\mathbf{p})$ subject to $p_a \ge 0$, a=1,...,n $\sum_{a=1} p_a \mathbf{x}_a = 1$ $\sum_{a=1} p_a \mathbf{x}_a = \mathbf{x}$

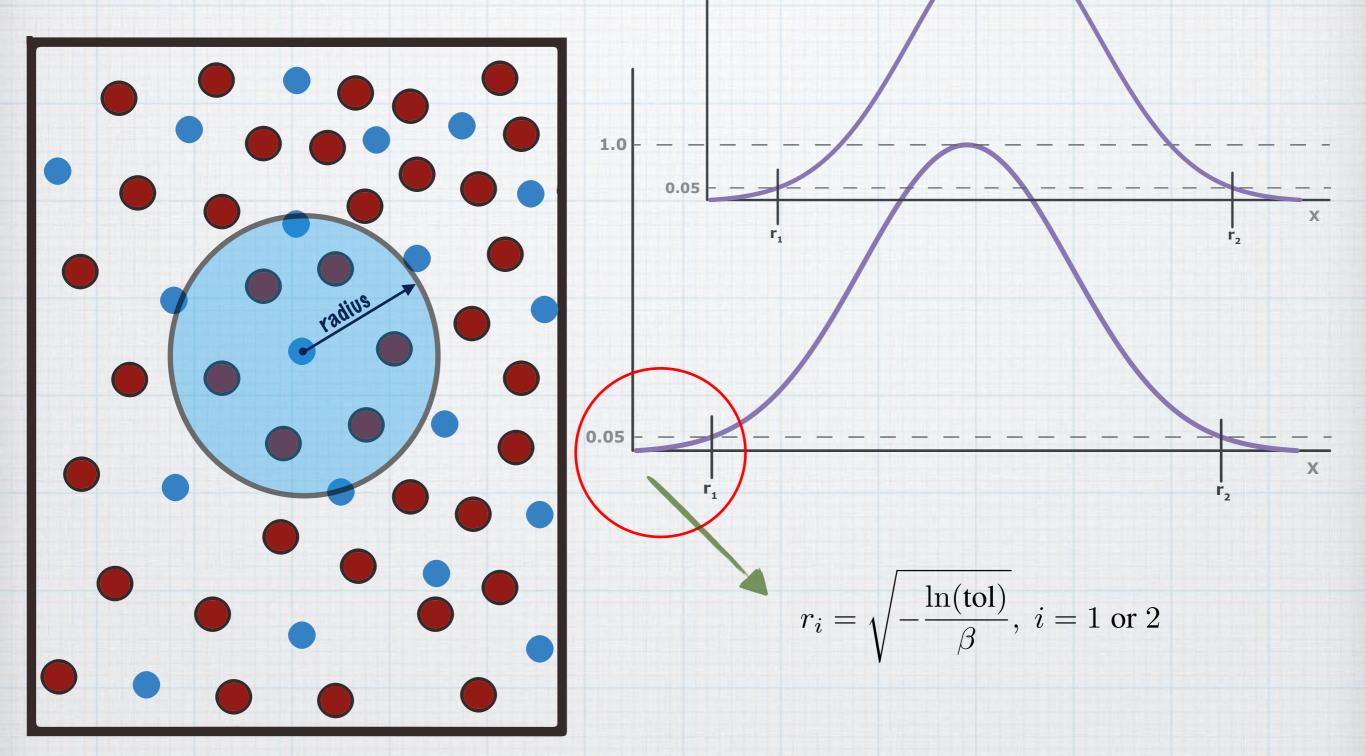
the unique solution is:

where

$$p(\mathbf{x}) = \frac{\exp\left[-\beta|\mathbf{x} - \mathbf{x}_{\mathbf{a}}|^{2} + \lambda(\mathbf{x} - \mathbf{x}_{\mathbf{a}})\right]}{Z(\mathbf{x}, \lambda^{*}(\mathbf{x}))}$$
$$Z(\mathbf{x}, \lambda) = \sum_{\mathbf{a}=\mathbf{a}}^{\mathbf{N}} \exp\left[-\beta|\mathbf{x} - \mathbf{x}_{\mathbf{a}}|^{2} + \lambda(\mathbf{x} - \mathbf{x}_{\mathbf{a}})\right]$$

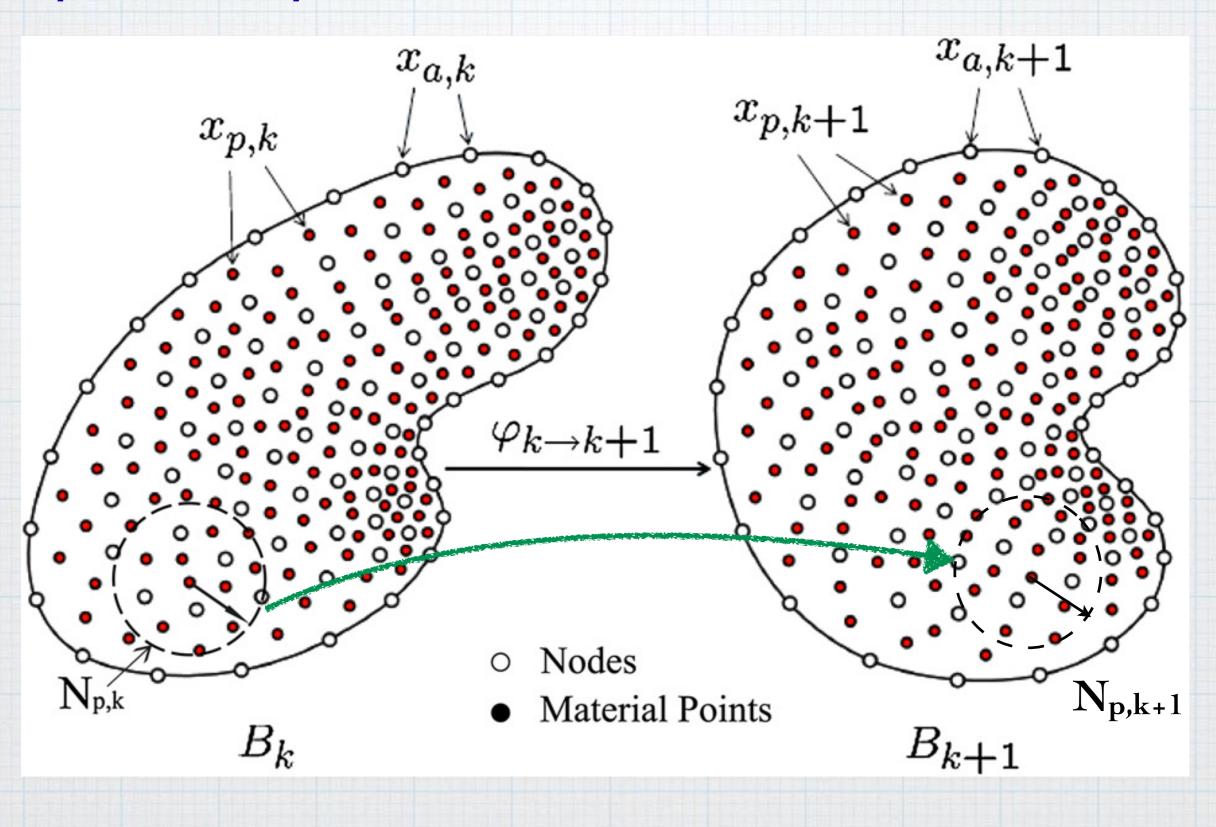
First derivatives expression is: $\nabla p_a^* = -p_a^* (\mathbf{J}^*)^{-1} (\mathbf{x} - \mathbf{x_a})$ where $\mathbf{J}(\mathbf{x}, \lambda, \beta) = \frac{\partial \mathbf{r}}{\partial \lambda}$ $\mathbf{r}(\mathbf{x}, \lambda, \beta) \equiv \partial_{\lambda} \log Z(\mathbf{x}, \lambda) = \sum_{a} p_a(\mathbf{x}, \lambda, \beta) (\mathbf{x} - \mathbf{x_a})$

1. Spatial discretization: OTM *Optimal Transportation Meshfree*



Optimal Transportation Meshfree

Li, Habbal and Ortiz (2010)



Outline

- **1. Governing equations**
- 2. Spatial discretization: OTM
- 3. Constitutive law
- 4. Benchmark examples
- 5. Embankment application
- 6. Conclusions and future work

2. Constitutive law

Hyperelastic

Neo-Hookean with compaction point Ehlers and Eipper (2001)

$$\boldsymbol{\tau} = G(\boldsymbol{b} - \mathbf{I}) + \lambda n_0^2 \left(\frac{J}{n_0} - \frac{J}{J - 1 + n_0} \right) \mathbf{I}$$

$$c^{e} = 2 \left[G - \lambda n_{0} J \frac{J - 1}{J + n_{0} - 1} \right] \mathbf{1} \\ + \lambda \left[n_{0} J \frac{J^{2} + (1 - n_{0})(1 - 2J)}{(J + n_{0} - 1)^{2}} \right] (\mathbf{I} \otimes \mathbf{I})$$

2. Constitutive law

Elasto-plastic

Drucker-Prager flow rule

Sanavia et al. (2002)

$$p_{lim} = \frac{3\alpha_Q K}{2G} \|\mathbf{s}_{k+1}^{trial}\| + \frac{\beta}{3\alpha_F} \left(\frac{\|\mathbf{s}_{k+1}^{trial}\|}{2G} H \sqrt{1 + 3\alpha_Q^2} + c_F \right)$$

Classical

Apex

C

$$\Phi^{cl} = \|\mathbf{s}_{k+1}^{trial}\| - 2G\Delta\gamma + 3\alpha_F [p_{k+1}^{trial} - 3K\alpha_Q\Delta\gamma] - \beta c_{k+1} \qquad \Phi^{ap} = \frac{\beta}{3\alpha_F} \left[c_k + H\sqrt{\Delta\gamma_1^2 + 3\alpha_Q^2(\Delta\gamma_1 + \Delta\gamma_2)^2} \right]$$

$$\begin{aligned} \boldsymbol{c}^{ep} &= \quad K \left[1 - \frac{9\alpha_{Q}\alpha_{F}K}{c_{1}} \right] (\mathbf{I} \otimes \mathbf{I}) \\ &+ 2G \left[1 - \frac{2G\Delta\gamma}{\|\mathbf{s}_{k+1}^{trial}\|} \right] (\mathbf{1} - \frac{1}{3}\mathbf{I} \otimes \mathbf{I}) \\ &- \frac{6\alpha_{Q}KG}{c_{1}} (\boldsymbol{I} \otimes \boldsymbol{n}_{k+1}^{tr}) - \frac{6\alpha_{F}KG}{c_{1}} (\boldsymbol{n}_{k+1}^{tr} \otimes \mathbf{I}) \\ &- 4G^{2} \left[\frac{1}{c_{1}} - \frac{\Delta\gamma}{\|\mathbf{s}_{k+1}^{trial}\|} \right] (\boldsymbol{n}_{k+1}^{tr} \otimes \boldsymbol{n}_{k+1}^{tr}), \end{aligned}$$

$$c_1 = 9\alpha_F \alpha_Q K + 2G + \beta H \sqrt{1 + 3\alpha_Q^2}$$

$$\boldsymbol{c}^{ep} = Kc_2(\mathbf{I} \otimes \mathbf{I}) + \frac{Kc_2}{2\alpha_Q G \Delta \gamma_T} (\mathbf{I} \otimes \boldsymbol{s}^{tr}_{k+1}),$$

 $-p_{k+1}^{trial} + 3K\alpha_{Q} \left(\Delta\gamma_{1} + \Delta\gamma_{2}\right)$

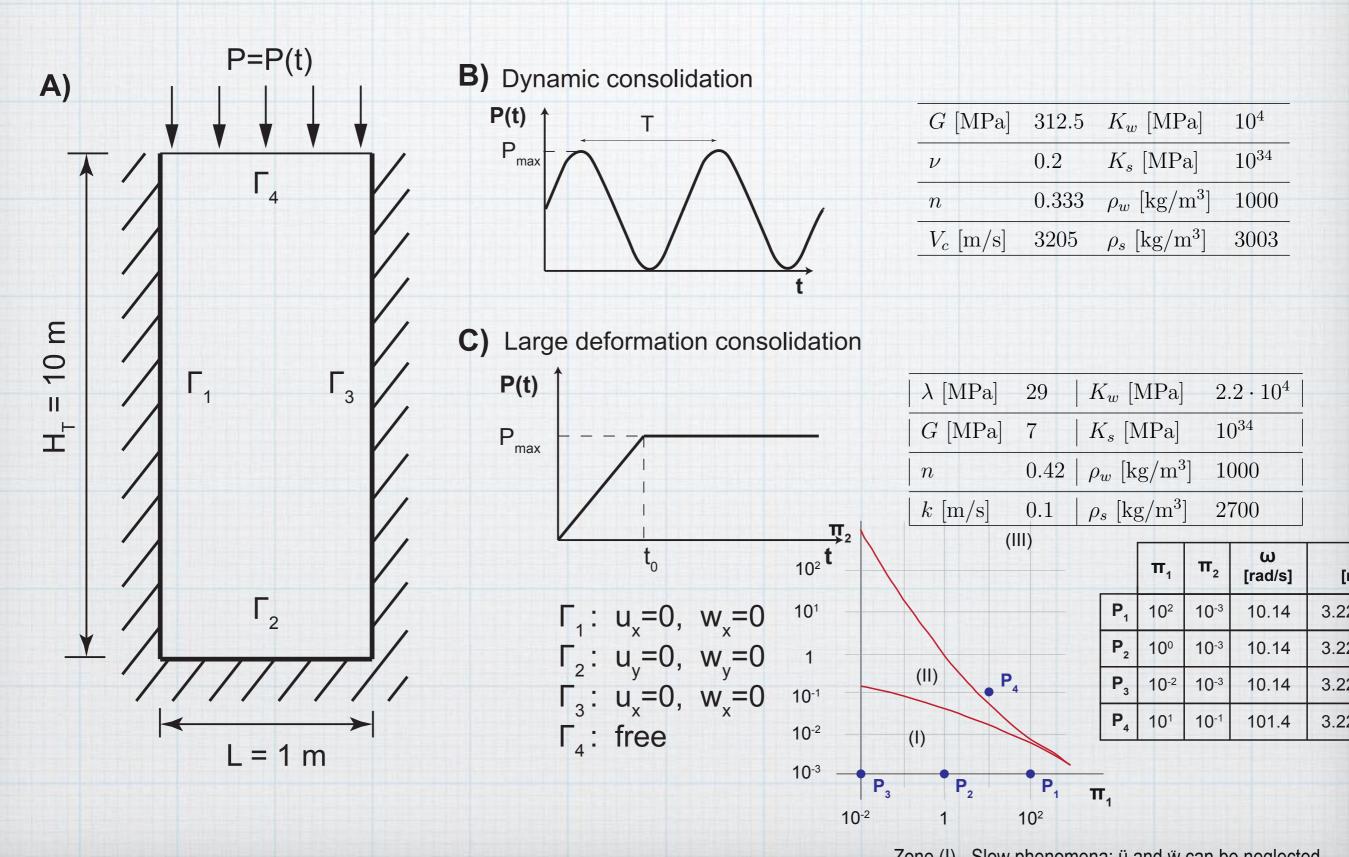
$$_{2} = \frac{\alpha_{_{Q}}\beta H \Delta \gamma_{_{T}}}{3\alpha_{_{Q}}K \sqrt{\Delta \gamma_{1}^{2} + 3\alpha_{_{Q}}^{2}\Delta \gamma_{_{T}}^{2}} + \alpha_{_{Q}}\beta H \Delta \gamma_{_{T}}}$$

$$egin{aligned} &\Delta \gamma_{T} = \Delta \gamma_{1} + \Delta \gamma_{2}. \ &oldsymbol{n}_{k+1}^{tr} = rac{oldsymbol{s}_{k+1}^{tr}}{\|oldsymbol{s}_{k+1}^{tr}\|} \end{aligned}$$

Outline

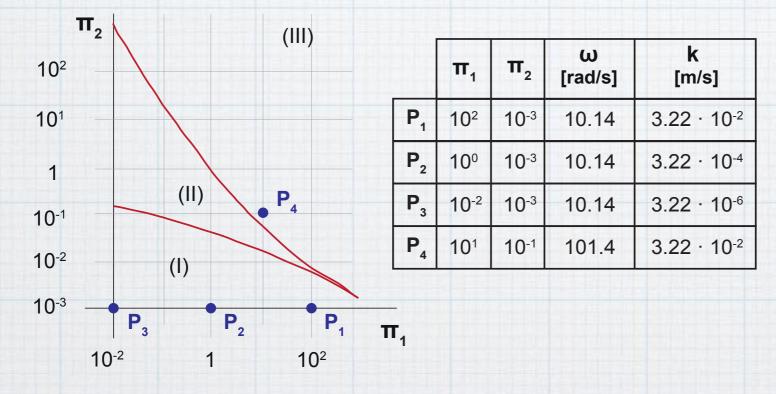
- **1. Governing equations**
- 2. Spatial discretization: OTM
- 3. Constitutive law
- 4. Benchmark examples
- 5. Embankment application
- 6. Conclusions and future work

Consolidation



Dynamic Consolidation

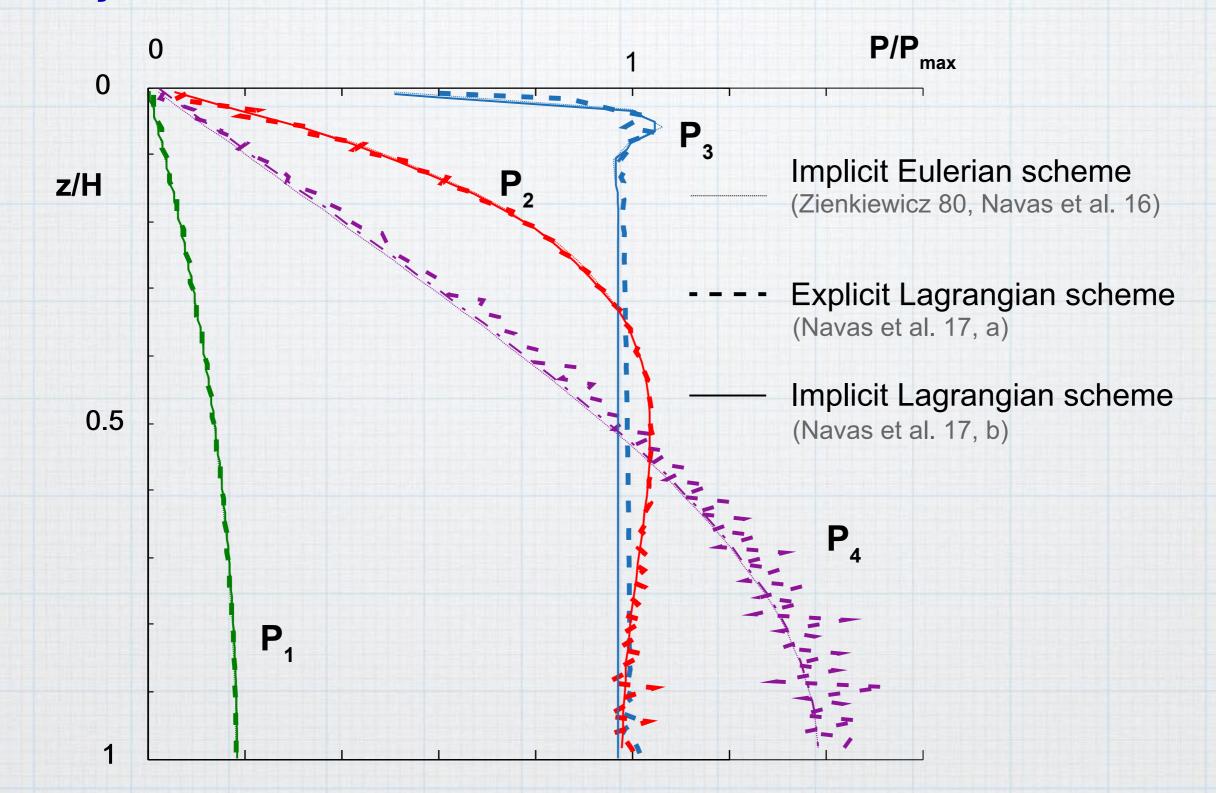
$$\Pi_1 = \frac{k V_c^2}{g \frac{\rho_f}{\rho} \omega H_T^2} = \frac{k \omega}{g \frac{\rho_f}{\rho} \Pi_2}, \quad \Pi_2 = \frac{\omega^2 H_T^2}{V_c^2}$$



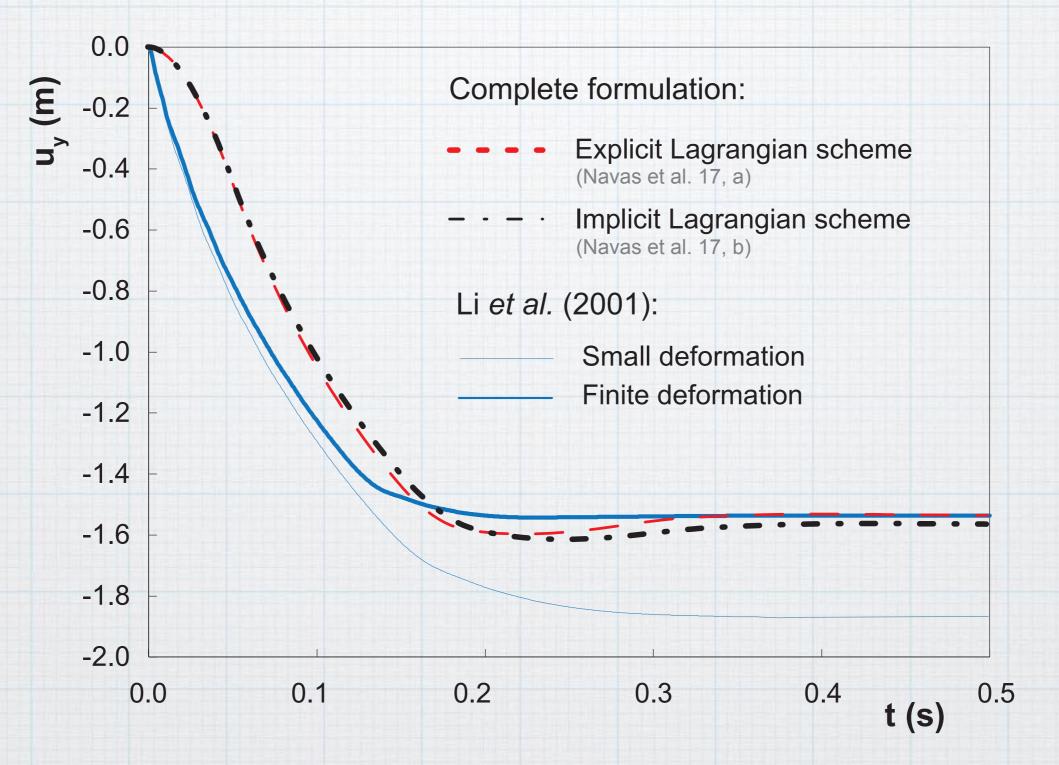
Zone (I) - Slow phenomena: ü and w can be neglected Zone (II) - Moderate speed: w can be neglected Zone (III) - Fast phenomena: only full Biot eq. valid

O.C. Zienkiewicz, C.T. Chang, and P. Bettes. Drained, undrained, consolidating and dynamic behaviour assumptions in soils. Geotechnique, 30(4):385-395,1980.

Dynamic Consolidation

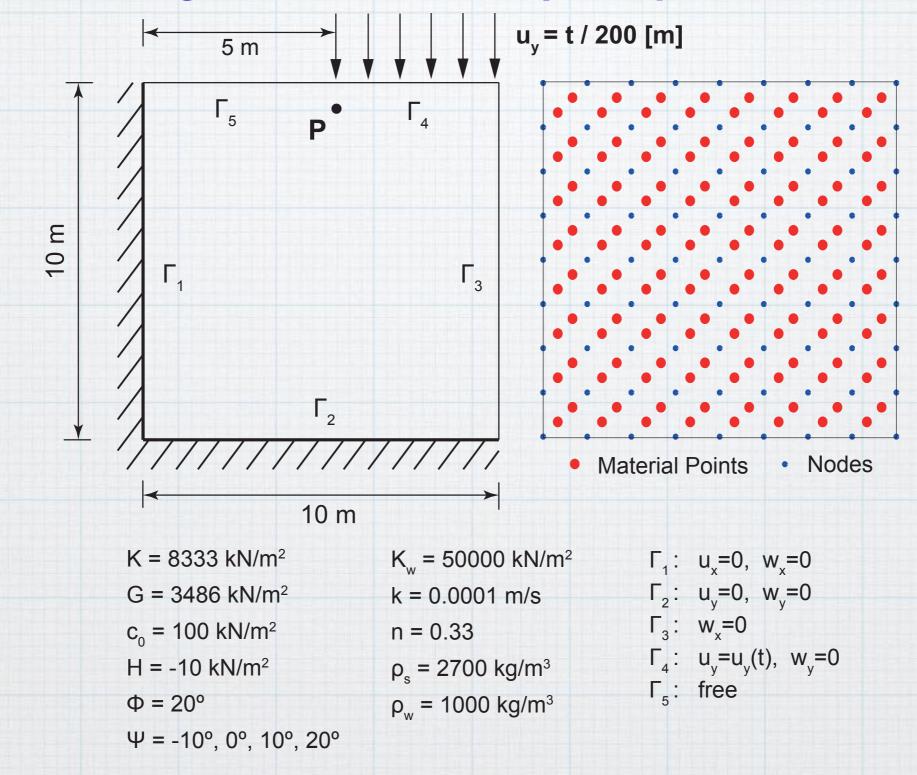


Large strain consolidation



C. Li, R.I. Borja, and R.A. Regueiro. Dynamics of porous media at finite strain. Computer Methods in Applied Mechanics and Engineering, 193:3837-3870, 2004.

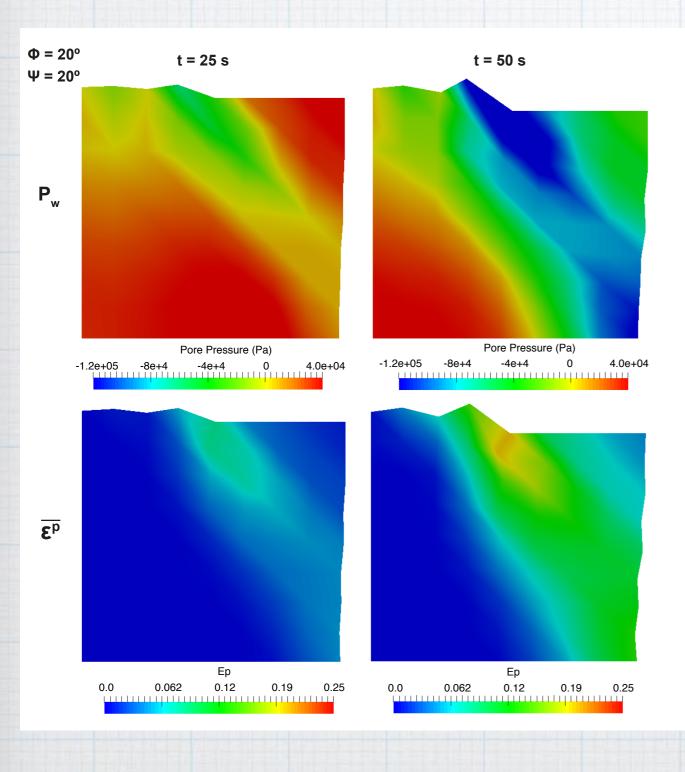
Rigid footing in a saturated square plate

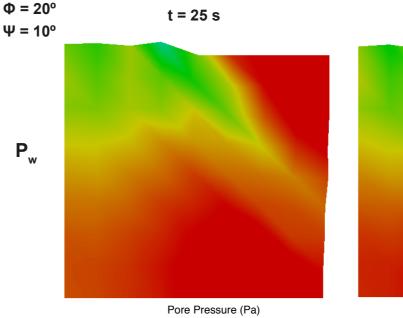


L. Sanavia, B.A. Schrefler, E. Stein, and P. Steinmann. Modelling of localisation at finite inelastic strain in fluid saturated porous media. Proc. In: Ehlers W (ed.), IUTAM Symposium on Theoretical and Numerical Methods in Continuum Mechanics of Porous Materials, Kluwer Academic Publishers, pages 239-244, 2001.

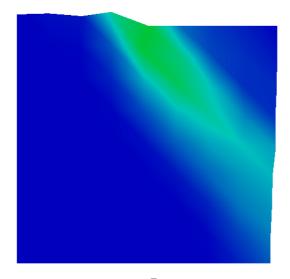
Rigid footing in a saturated square plate

Explicit scheme: 2e-2 m/s



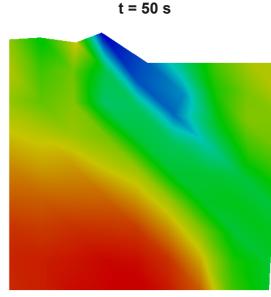


-7e+4 -6e+4 -3e+4 0 3e+4 4e+4

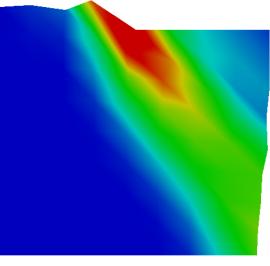


2^p

Ep 0.0 0.062 0.12 0.19 0.25



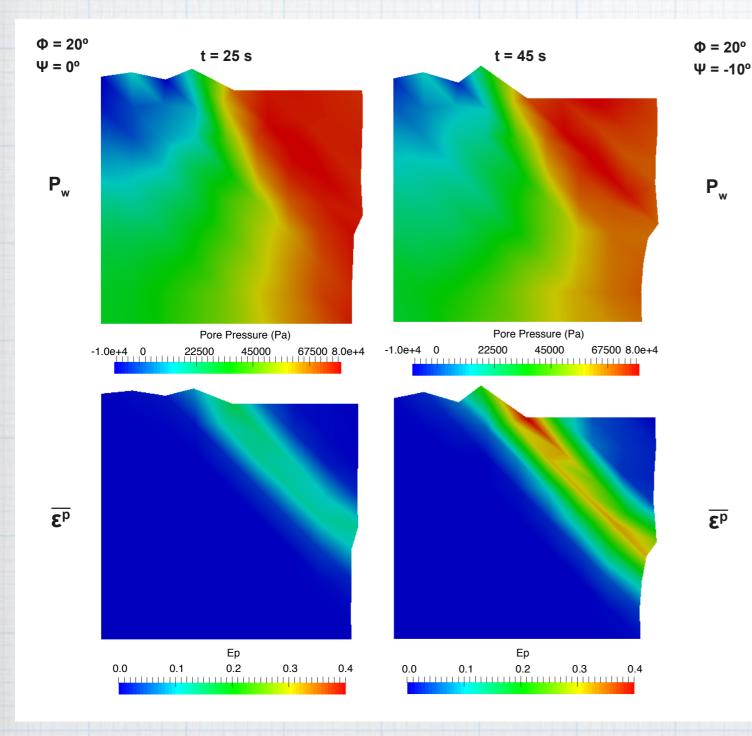
Pore Pressure (Pa) -7e+4 -6e+4 -3e+4 0 3e+4 4e+4



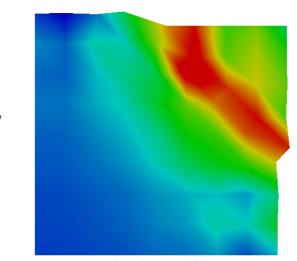
Ep 0.0 0.062 0.12 0.19 0.25

Rigid footing in a saturated square plate

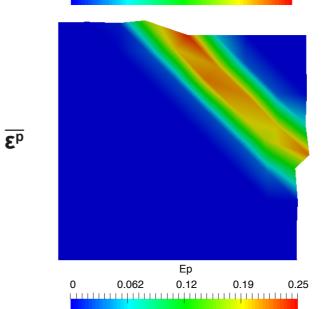
Explicit scheme: 2e-2 m/s



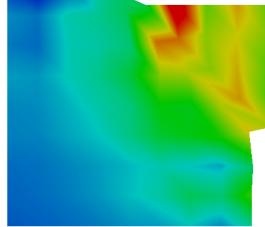
20° t = 25 s



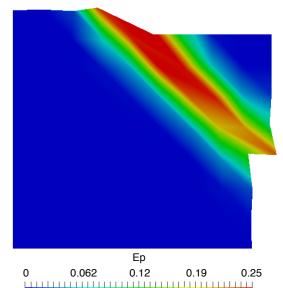
Pore Pressure (Pa) -1.0e+04 52500 1.0e+5 1.6e+5 2.0e+05



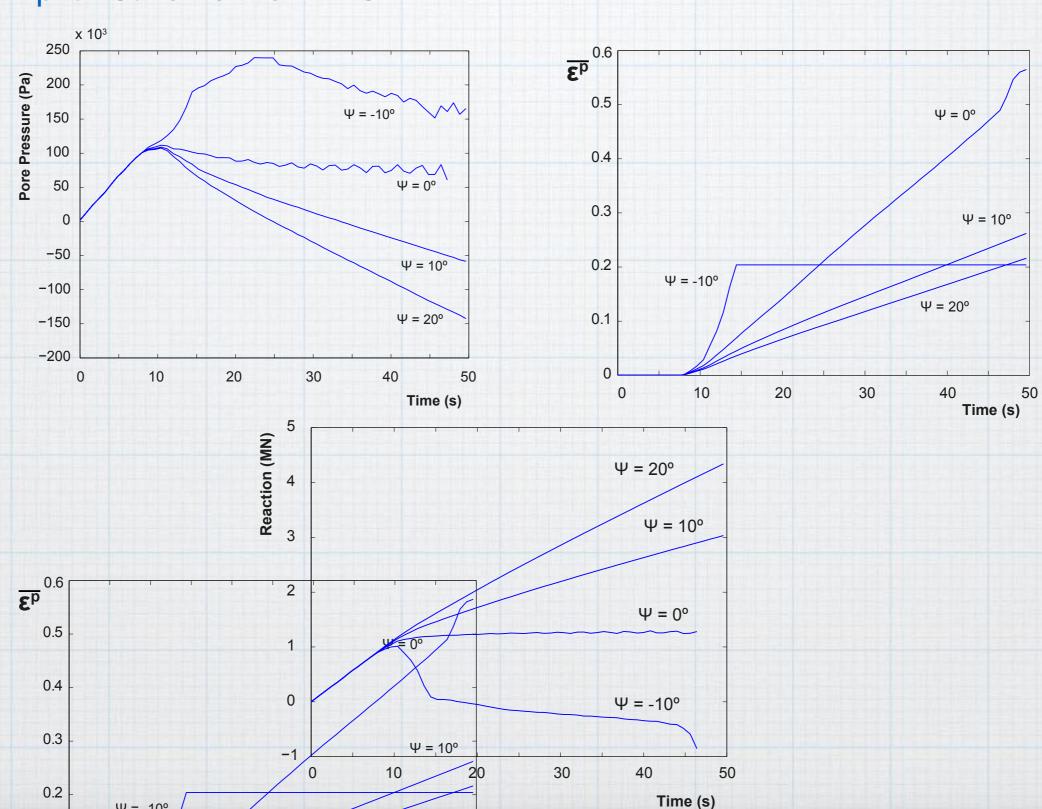
t = 45 s



Pore Pressure (Pa) -1.0e+04 52500 1.0e+5 1.6e+5 2.0e+05



Rigid footing in a saturated square plate



-200

0

10

20

30

40

50

Time (s)

Explicit scheme: 2e-2 m/s

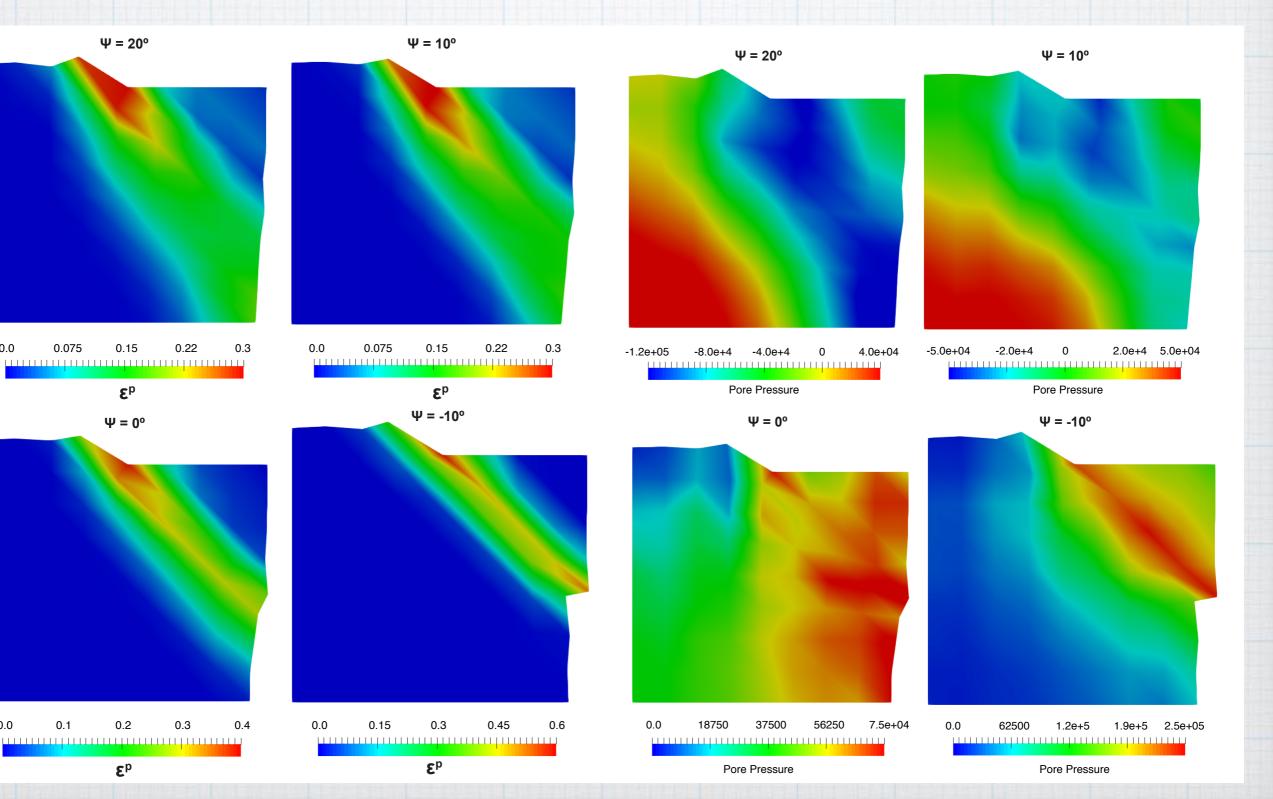
 $\Psi = -10^{\circ}$

Rigid footing in a saturated square plate

Implicit scheme: 5 mm/s

0.0

0.0



Rigid footing in a saturated square plate

-100

0

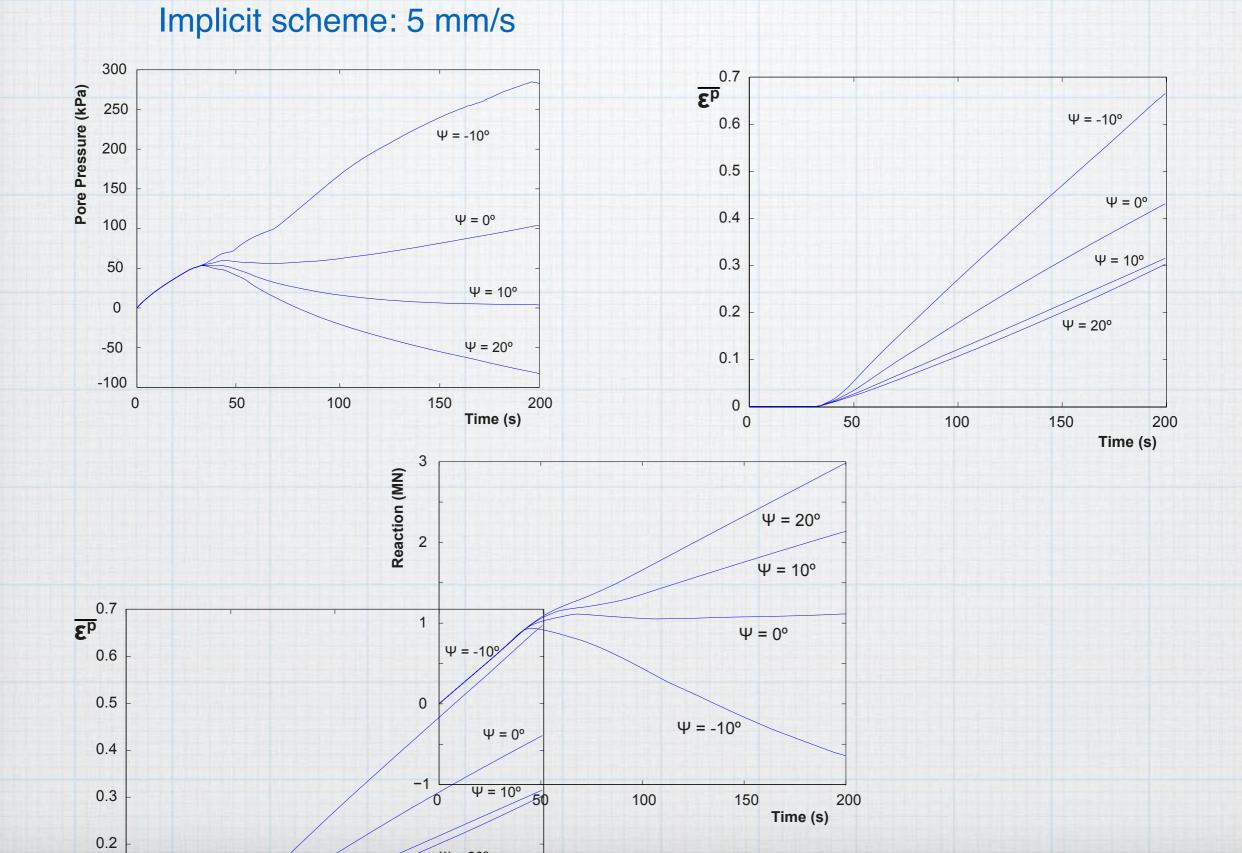
50

100

150

200

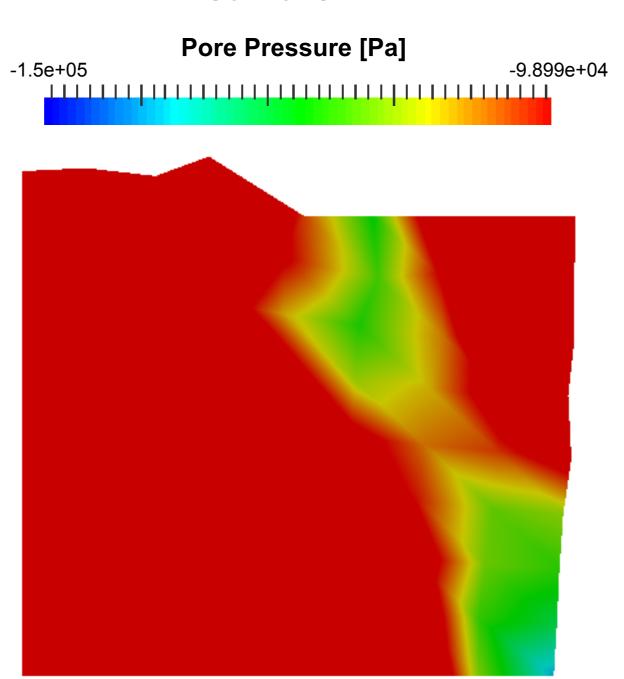
Time (s)



Rigid footing in a saturated square plate

Implicit scheme: 5 mm/s

Cavitation



Rigid footing in a saturated square plate

Implicit vs Explicit scheme: 5 mm/s

Comparison between velocities

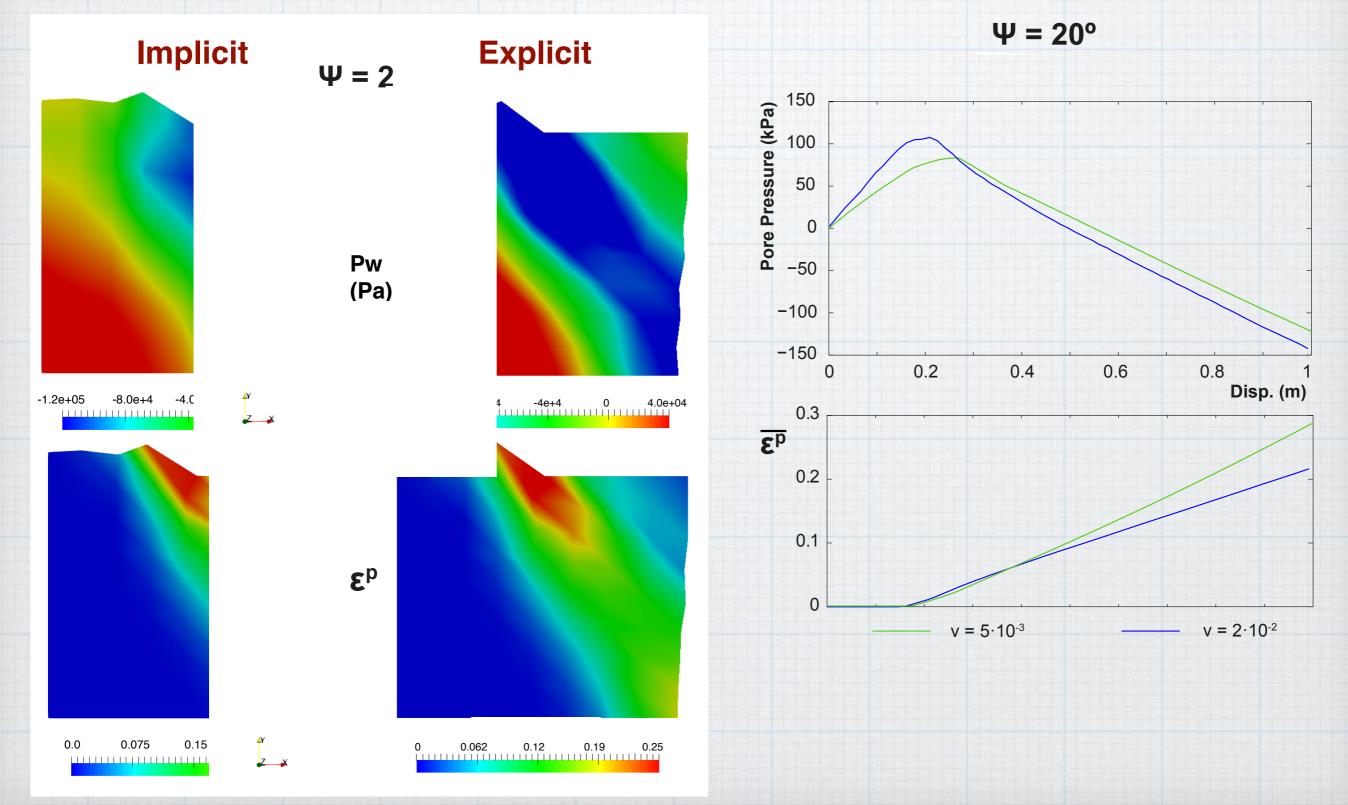
100

 $\Psi = -10^{\circ}$

150

200

0



4. Benchmark examples Rigid footing in a saturated square plate

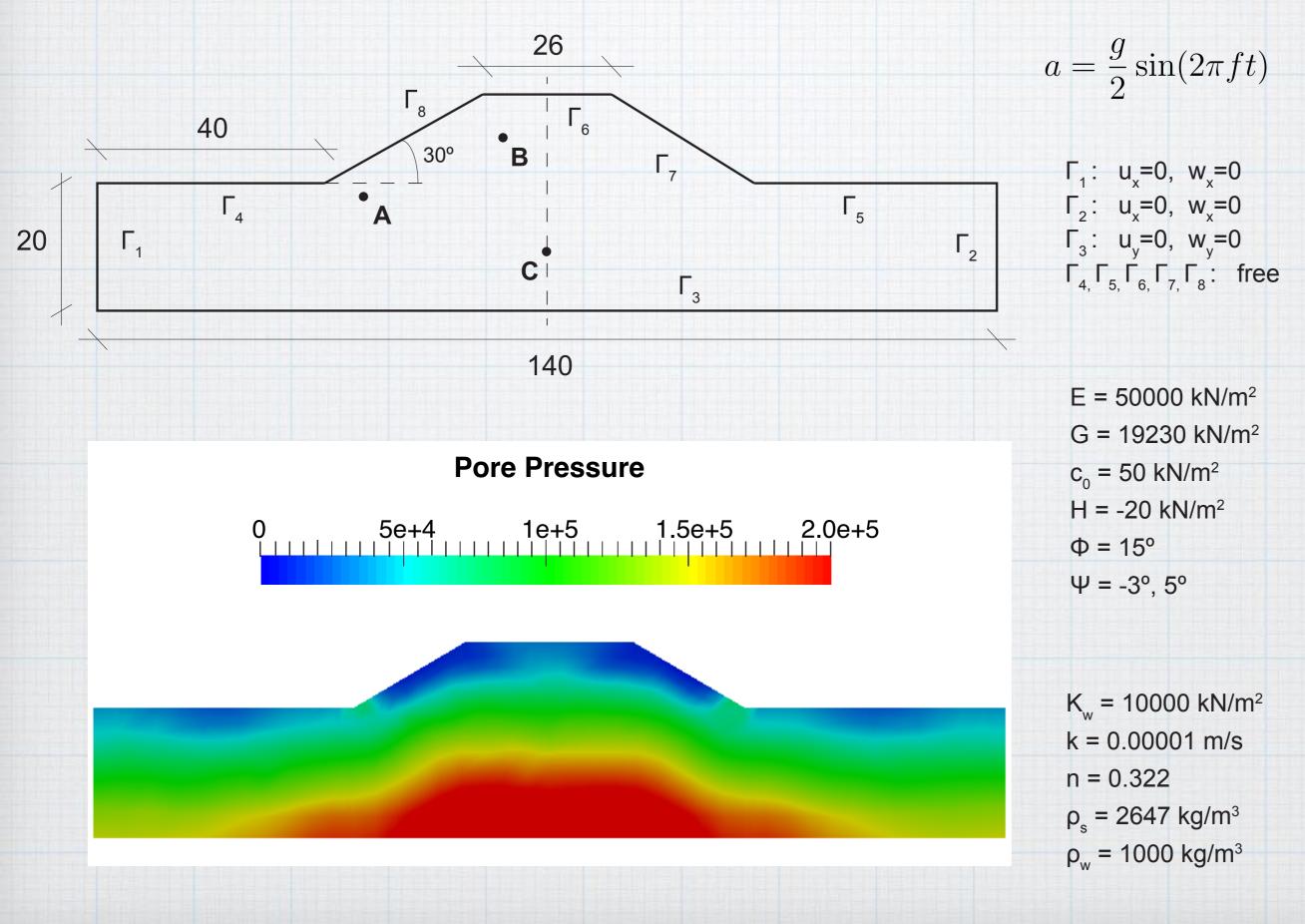
Implicit

Explicit

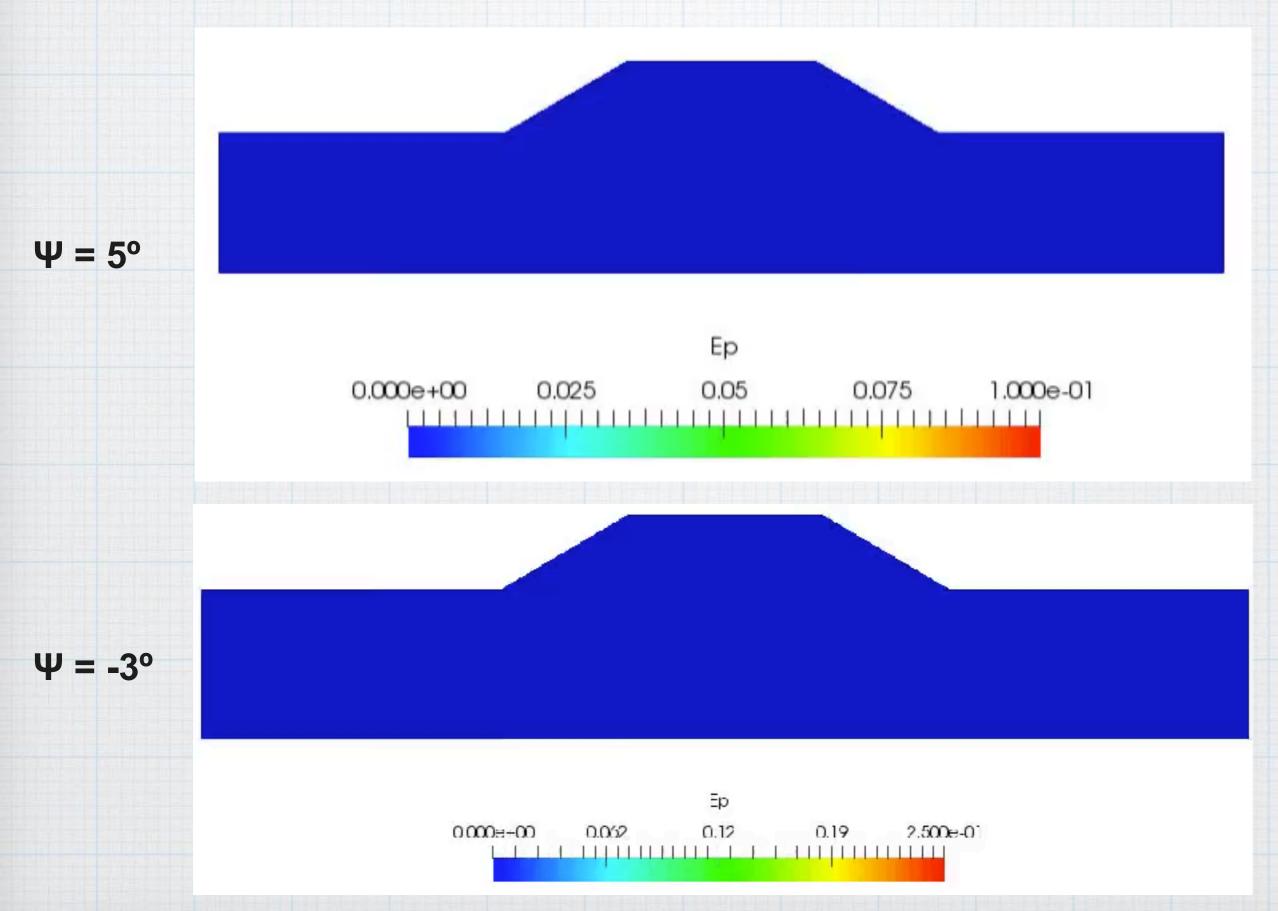
Outline

- **1. Governing equations**
- 2. Spatial discretization: OTM
- 3. Constitutive law
- 4. Benchmark examples
- 5. Embankment application
- 6. Conclusions and future work

5. Embankment application



5. Embankment application



Outline

- **1. Governing equations**
- 2. Spatial discretization: OTM
- 3. Constitutive law
- 4. Benchmark examples
- 5. Embankment application
- 6. Conclusions and future work

6. Conclusiones and future work Conclusions **Robustness** Implicit **Complete formulation Explicit** Easyness u-w Implicit Stability **Dynamic consolidation Explicit** Oscillations Implicit Large deformation **Dynamic effects** consolidation **Explicit** Implicit Stability **Plastic square loaded** by a strip footing **Explicit** Oscillations **Embankment** Implicit **Excellent** performance

6. Conclusiones and future work Future work

Employment within different computational methods

G-PFEM MPM Traditional techniques: FEM

Different constitutive models

Cam-Clay

Multi-phase governing equations

Unsaturated soils

Time integration schemes assessment Explicit - Implicit

Publications

•

•

Navas, P., Sanavia, L., López-Querol, S., Yu, R. (2017): Explicit meshfree solution for large deformation dynamic problems in saturated porous media. DOI: 10.1007/s11440-017-0612-7

Navas, P., Sanavia, L., López-Querol, S., Yu, R. (2017): u-w formulation for dynamic problems in large deformation regime solved through an implicit meshfree scheme. Computational mechanics. DOI: 10.1007/s00466-017-1524-y

Local Max-Ent meshfree method applied to large deformation problems in saturated soils

P. Navas, L. Sanavia, S. López-Querol and R.C. Yu

28th ALERT Workshop Program

Aussois, 4th October 2017