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Biot’s equations
Linear momentum of the mixture

where the thermal expansion coe�cient of the solid-fluid mixture, �sw, is a combina-

tion of that of the solid, �s, and the fluid, �w:

�sw = Sw[(↵� n)�s + n�w]. (2.85)

In addition, ↵ is the Biot’s coe�cient:

↵ = 1� KT

Ks
. (2.86)

where KT denotes the tangential bulk modulus of an isotropic elastic material. ↵

is usually assumed equal to one in soils as the grains are much more rigid than the

mixture.

The relative velocity of the fluid, ẇ/n, represented by vws in Eq. (2.84) is defined

through the Darcy’s law as

nSwv
ws =

k
rwk

µw
[�grad pw + ⇢w(g � as � aws)] , (2.87)

where g represents the gravity acceleration vector, as and aws are the solid accel-

eration and the relative water acceleration with respect to the solid respectively, k,

the intrinsic permeability tensor of the porous matrix in water saturated condition,

k
rw is the water relative permeability parameter (a dimensionless parameter varying

from zero to one) and µw is the dynamic viscosity of the water [Pa · s]. For the case

of isotropic permeability, the intrinsic permeability, expressed in [m2], is related with

the notion of hydraulic conductivity,  [m/s], by the following equation

k

µw
=



⇢wg
. (2.88)

As we consider a totally saturated, iso-thermal multiphase media, @T/@t = 0, Sg =

0, Sw = 1, consequently, ṁ = 0, @Sw/@t = 0. If additionally the fluid density variation

is neglected, Eq. (2.84) is simplified as,
✓
1� n

Ks
+

n

Kw

◆
@pw

@t
+ div vs + div (nvws) = 0 (2.89)

Taking into consideration Eq. (2.82), the mass balance or continuity equation is writ-

ten as follows:
ṗw

Q
+ div u̇+ div ẇ = 0 (2.90)

When accelerations of the solid and the fluid are negligible, as in the u � pw formu-

lation, and the fluid can be considered incompressible, substituting Darcy’s law into

Eq. (2.90) we have the mass equation expressed as

div vs + div


k

µw
(�grad pw + ⇢wg)

�
= 0. (2.91)
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Following, the linear momentum balance equations are presented for the fluid phase

and the mixture respectively. On the one hand, the linear momentum balance equa-

tion for the fluid phase was presented in Eq. (2.87). By rearranging di↵erent terms,

the following expression is obtained:

�grad pw � µw

k
ẇ + ⇢w

✓
g � ü� ẅ

n

◆
= 0. (2.92)

On the other hand, according to Lewis and Schrefler [98], the linear momentum

balance equation for the multiphase system can also be expressed as the summation

of the dynamic equations for the individual constituents relative to the solid as, i.e.,

�⇢as � nSw⇢wa
ws � nSg⇢ga

gs + div � + ⇢g = 0 (2.93)

Since in the present research there is no gassy phase as the soil will be considered

as totally saturated, Sg = 0; nSw⇢waws = ⇢wẅ, plug Eq. (2.83) into Eq. (2.93), the

linear momentum equation can be written as follows

div [�0 � pw I]� ⇢ü� ⇢wẅ + ⇢g = 0. (2.94)

2.3.2 The u-w formulation

Predicting the dynamic behavior of saturated porous media at large deformation

regime is undoubtedly interesting and complex at the same time. This is evidenced

by the very limited literature available in this field [187, 109, 128, 50]. It is mainly

attributed to the fact that the widely-used u�pw formulation for the Biot’s equations,

though e↵ective for pseudo-static or dynamic but low frequency loading [186, 187, 184,

185, 35, 36, 37, 152, 154, 57], is not capable to capture high frequency oscillations.

By contrast, the u � w formulation (where u denotes the solid phase displacement

and w represents the relative fluid displacement with respect to the solid phase) is

particularly suited for solving dynamic problems when the e↵ect of inertia can not

be ignored, since both solid and fluid accelerations are included in the governing

equations. In addition, it is more stable than the complete formulation based on the

total displacement of the fluid phase, U , as nodal unknowns, since the later employs

one unique material point for both solid and fluid phases, making it unstable when

large deformations occur in the fluid phase[88, 147].

The u�w formulation starts from the assumption that Eq. (2.90) can be integrated

over time, i.e.,

pw = �Q (div u+ div w) + pw0. (2.95)
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n

◆
= 0. (2.92)

On the other hand, according to Lewis and Schrefler [98], the linear momentum

balance equation for the multiphase system can also be expressed as the summation

of the dynamic equations for the individual constituents relative to the solid as, i.e.,

�⇢as � nSw⇢wa
ws � nSg⇢ga

gs + div � + ⇢g = 0 (2.93)

Since in the present research there is no gassy phase as the soil will be considered

as totally saturated, Sg = 0; nSw⇢waws = ⇢wẅ, plug Eq. (2.83) into Eq. (2.93), the
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Linear momentum of the fluid phase

Mass conservation

In the above equations, the porosity, n, is the ratio between the voids volume, Vh,

and the total volume, VT :

n =
Vh

VT
=

Vh

Vh + Vs
, (2.81)

where Vs is the volume of the solid grains.

In the current work, the soil is assumed to be totally saturated, i.e. Vh coincides

with the water volume, which results Sw equals to one. Meanwhile, the volumetric

compressibility of the mixture, Q, is calculated as

Q =


1� n

Ks
+

n

Kw

��1

, (2.82)

where Ks is the bulk modulus of the solid grains, whereas Kw is the compressive

modulus of the fluid phase (usually water). In addition, by assuming tensile stresses

(except pore pressure pw, which is positive for compression) and strains as positive,

the Terzaghi’s e↵ective stress [165] is defined as follows

� = �0 � pwI, (2.83)

where �0 and � are the respective e↵ective and total Cauchy stress tensors (positive

in tension), whereas I is the second order unit tensor.

Next, we first explain in detail the derivation of mass balance and linear mo-

mentum equations for a fluid saturated multiphase media. Then the final u � w

formulation is presented.

2.3.1 Derivation of the mass and linear momentum balance

equation

The general mass balance equation in a multiphase media for compressible grains

given by Lewis and Schrefler [98] is presented next. Let pw, pg represent the water

and gas pressures respectively, T , the temperature, ṁ, the evaporation rate, then this

general mass balance equation is written as follows,
✓
↵� n

Ks
S
2
w +

nSw

Kw

◆
@pw

@t
+

↵� n

Ks
SwSg

@pg

@t
�

�sw
@T

@t
+

✓
↵� n

Ks
Swpw � ↵� n

Ks
Swpg + n

◆
@Sw

@t
+

↵Swdiv vs +
1

⇢w
div (nSw⇢wv

ws) = � ṁ

⇢w
, (2.84)
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Corner zone:

cep = Kc2(I⌦ I) +
Kc2

2↵QG��T

(I⌦ strk+1), (2.75)

where

c2 =
↵Q�H��T

3↵QK

q
��

2
1 + 3↵2

Q
��2

T
+ ↵Q�H��T

, (2.76)

and

��T = ��1 +��2. (2.77)

In the above equations, ntr
k+1 is the normalized version of the trial deviatoric stress

tensor, strk+1, i.e.,

ntr
k+1 =

strk+1

kstrk+1k
. (2.78)

2.3 Multiphase balance equations: the Biot’s equa-

tions

Since it is frequent to find more than one phase when dealing with civil engineering

materials, the linear momentum and mass balance equations are formulated in this

research for a multiphase problem. The Biot’s equations [28] are based on formulat-

ing the mechanical behavior of a solid-fluid mixture, the coupling between di↵erent

phases, and the continuity of flux through a di↵erential domain of saturated porous

media.

Let u and U represent the displacement vector of the solid skeleton and the

absolute displacement of the fluid phase respectively. The relative displacement of

the fluid phase with respect to the solid one, w is, expressed as

w = nSw (U � u), (2.79)

where Sw is the degree of water saturation and n, the soil porosity. Note that (U � u)

is usually termed as uws in the literature [98]. Let ⇢, ⇢w and ⇢s respectively represent

the mixture, fluid phase and solid particle densities, the mixture density can be defined

as function of the porosity:

⇢ = nSw⇢w + (1� n)⇢s. (2.80)
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✓
↵� n

Ks
S
2
w +

nSw

Kw

◆
@pw

@t
+

↵� n

Ks
SwSg

@pg

@t
�

�sw
@T

@t
+

✓
↵� n

Ks
Swpw � ↵� n

Ks
Swpg + n

◆
@Sw

@t
+

↵Swdiv vs +
1

⇢w
div (nSw⇢wv

ws) = � ṁ

⇢w
, (2.84)
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where:

1. Governing equations

Solid phase displacement

Total water displacement
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Biot’s equations
Linear momentum of the mixture
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of the dynamic equations for the individual constituents relative to the solid as, i.e.,

�⇢as � nSw⇢wa
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gs + div � + ⇢g = 0 (2.93)

Since in the present research there is no gassy phase as the soil will be considered

as totally saturated, Sg = 0; nSw⇢waws = ⇢wẅ, plug Eq. (2.83) into Eq. (2.93), the

linear momentum equation can be written as follows

div [�0 � pw I]� ⇢ü� ⇢wẅ + ⇢g = 0. (2.94)

2.3.2 The u-w formulation

Predicting the dynamic behavior of saturated porous media at large deformation

regime is undoubtedly interesting and complex at the same time. This is evidenced

by the very limited literature available in this field [187, 109, 128, 50]. It is mainly

attributed to the fact that the widely-used u�pw formulation for the Biot’s equations,

though e↵ective for pseudo-static or dynamic but low frequency loading [186, 187, 184,

185, 35, 36, 37, 152, 154, 57], is not capable to capture high frequency oscillations.

By contrast, the u � w formulation (where u denotes the solid phase displacement

and w represents the relative fluid displacement with respect to the solid phase) is

particularly suited for solving dynamic problems when the e↵ect of inertia can not

be ignored, since both solid and fluid accelerations are included in the governing

equations. In addition, it is more stable than the complete formulation based on the

total displacement of the fluid phase, U , as nodal unknowns, since the later employs

one unique material point for both solid and fluid phases, making it unstable when

large deformations occur in the fluid phase[88, 147].

The u�w formulation starts from the assumption that Eq. (2.90) can be integrated

over time, i.e.,

pw = �Q (div u+ div w) + pw0. (2.95)
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ẇ + ⇢w

✓
g � ü� ẅ
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2.3.2 The u-w formulation

Predicting the dynamic behavior of saturated porous media at large deformation

regime is undoubtedly interesting and complex at the same time. This is evidenced

by the very limited literature available in this field [187, 109, 128, 50]. It is mainly

attributed to the fact that the widely-used u�pw formulation for the Biot’s equations,

though e↵ective for pseudo-static or dynamic but low frequency loading [186, 187, 184,

185, 35, 36, 37, 152, 154, 57], is not capable to capture high frequency oscillations.

By contrast, the u � w formulation (where u denotes the solid phase displacement

and w represents the relative fluid displacement with respect to the solid phase) is

particularly suited for solving dynamic problems when the e↵ect of inertia can not

be ignored, since both solid and fluid accelerations are included in the governing

equations. In addition, it is more stable than the complete formulation based on the

total displacement of the fluid phase, U , as nodal unknowns, since the later employs

one unique material point for both solid and fluid phases, making it unstable when

large deformations occur in the fluid phase[88, 147].

The u�w formulation starts from the assumption that Eq. (2.90) can be integrated

over time, i.e.,

pw = �Q (div u+ div w) + pw0. (2.95)

36

Linear momentum of the fluid phase

Mass conservation

1. Governing equations
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linear momentum equation can be written as follows

div [�0 � pw I]� ⇢ü� ⇢wẅ + ⇢g = 0. (2.94)

2.3.2 The u-w formulation

Predicting the dynamic behavior of saturated porous media at large deformation

regime is undoubtedly interesting and complex at the same time. This is evidenced

by the very limited literature available in this field [187, 109, 128, 50]. It is mainly

attributed to the fact that the widely-used u�pw formulation for the Biot’s equations,

though e↵ective for pseudo-static or dynamic but low frequency loading [186, 187, 184,

185, 35, 36, 37, 152, 154, 57], is not capable to capture high frequency oscillations.

By contrast, the u � w formulation (where u denotes the solid phase displacement

and w represents the relative fluid displacement with respect to the solid phase) is

particularly suited for solving dynamic problems when the e↵ect of inertia can not

be ignored, since both solid and fluid accelerations are included in the governing

equations. In addition, it is more stable than the complete formulation based on the

total displacement of the fluid phase, U , as nodal unknowns, since the later employs

one unique material point for both solid and fluid phases, making it unstable when

large deformations occur in the fluid phase[88, 147].

The u�w formulation starts from the assumption that Eq. (2.90) can be integrated

over time, i.e.,

pw = �Q (div u+ div w) + pw0. (2.95)
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Biot’s equations

In order to obtain the weak form of the system equations for the u�w formulation,

the principle of virtual displacements is applied to the linear momentum equation of

both the solid and fluid phases.

Let �u represent the virtual displacement vector for the solid phase, the weak

form of the linear momentum balance equation reads
Z

B

[div (�)� ⇢ü� ⇢wẅ + ⇢g] · @u dv = 0 (2.96)

Applying the Green’s Theorem to Eq. (2.96), we obtain

�
Z

B

� : grad(�u) dv +

Z

B

[�⇢ü� ⇢wẅ + ⇢g] · �u dv

+

Z

@B

t · �u ds = 0. (2.97)

Taking into account Terzaghi’s definition of the e↵ective stress and mass conservation,

the terms in Eq. (2.97) can be arranged to yield the final expression of the weak form

for the solid phase as follows

�
Z

B

�0 : grad(�u) dv �
Z

B

Q div(u)I : grad(�u) dv (2.98)

�
Z

B

Q div(w)I : grad(�u) dv +

Z

B

[�⇢ü� ⇢wẅ + ⇢g] · �u dv +

Z

@B

t · �u ds = 0.

Let �w stand for the virtual displacements for the fluid phase, the corresponding

weak form of the linear momentum equation is written as
Z

B


�grad(pw)�

µw

k
ẇ + ⇢w(g � ü� ẅ

n
)

�
· �w dv = 0. (2.99)

Applying the Green’s Theorem to the above equation, we have
Z

B

pwI : grad(�w) dv �
Z

B

µw

k
ẇ · �w dv +

Z

B

⇢w(g � ü� ẅ

n
) · �w dv �

Z

@B

tw · �w ds = 0. (2.100)

Taking into account Eq. (2.95), the final weak form of the linear momentum equations

are obtained as follows,

�
Z

B

Q div(u)div(�w) dv �
Z

B

Q div(w)div(�w) dv �
Z

B

µw

k
ẇ · �w dv

�
Z

B

ẅ
⇢w

n
· �w dv +

Z

B

⇢w(g � ü) · �w dv �
Z

@B

tw · �w ds = 0. (2.101)
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Weak forms

1. Governing equations



Explicit scheme

Newmark central differences

LMBw - LMEm : incremental form

… after rearranging terms:

2.3.3 Explicit time integration scheme

To solve the aforementioned coupled problem in the time domain, the step-by-step

Newmark’s time integration scheme has been adopted. The method consists of di-

viding the time domain into steps, with time interval �t, small enough to guarantee

convergence and accuracy of the solution at the same time. If the current time step

is numbered as k + 1, and assuming the solution in the previous step k has been

already obtained (hence it is known), a relationship between uk+1, u̇k+1 and ük+1 is

established according to a finite di↵erent scheme, as follows:

ük+1 = ük +�ük+1,

u̇k+1 = u̇k + ük�t+ ��t�ük+1,

uk+1 = uk + u̇k�t+
1

2
�t

2ük + ��t
2�ük+1. (2.102)

From Eq. (2.92) and Eq. (2.94) we can get the solutions of the acceleration of the

solid phase in both cases, written in the incremental form:

�ü = ⇢
�1 [r (��0 ��pw)� ⇢w �ẅ + ⇢�g] , (2.103)

�ü = ⇢
�1
w


�r�pw � 1

k
�ẇ � ⇢w

n
�ẅ + ⇢w �g

�
. (2.104)

As �ẇ is unknown in the k + 1 step, it is necessary to write the Newmark’s time

integration scheme from Eq. (2.102) in terms of the fluid phase:

�ẇk+1 = ẅk�t+ ��t�ẅk+1 (2.105)

�wk+1 = ẇk�t+
1

2
�t

2ẅk + ��t
2�ẅn+1 (2.106)

If we write Eq. (2.104) by substituting �ẇ by the definition given in Eq. (2.105), we

obtain:

�ük+1 = ⇢
�1
w

✓
�r�pwk

� 1

k
ẅk�t� 1

k
��t�ẅk+1

�⇢w

n
�ẅk+1 + ⇢w �gk+1

⌘

= ⇢
�1
w


�r�pwk

� 1

k
ẅk�t+ ⇢w �gk+1

�
✓
1

k
��t+

⇢w

n

◆
�ẅk+1

�
. (2.107)

Rearranging Eq. (2.103) and Eq. (2.107) we can obtain one equation in terms of the

relative acceleration of the fluid, which can be solved explicitly and �ẅ is obtained

38

where:

as in Eq.(2.109). Once this equation is solved, �ü can be obtained from Eq. (2.103).

⇢w

⇥
r (��0 ��pw)k � ⇢w �ẅk+1 + ⇢�gk+1

⇤
=

⇢


�r�pwk

� 1

k
ẅk�t

�
✓
1

k
��t+

⇢w

n

◆
�ẅk+1 + ⇢w �gk+1

�
(2.108)

⇢w�Rs
k � (⇢w � ⇢)�Rw

k + ⇢w�P s
k+1 � ⇢�P w

k+1 +

�t⇢
1

k
ẅk =

✓
⇢w⇢w � ⇢

1

k
��t� ⇢⇢w

n

◆
�ẅk+1 (2.109)

Both equations to be solved, Eq. (2.109) and Eq. (2.103), after integration in space

can be written in the matrix form in the following way:


MwMw � ��tM sC � M sMw

n

��1

⇥
�R⇤

k +�P ⇤
k+1 +�tM sCẅk

⇤

= �ẅk+1 (2.110)

[M s]�1 ⇥�Rs
k +�Rw

k +�P s
k+1 �Mw�ẅk+1

⇤

= �ük+1 (2.111)

In Eqs. (2.110-2.111),Rk represents the internal forces of the previous step for the

solid, s, fluid, w, or the mixture of both, ⇤, i.e.:

�Rs
k = r��0

k,

�Rw
k = r�pwk

,

�R⇤
k = ⇢w�Rs

k � (⇢w � ⇢)�Rw
k .

Similarly, the current external forces can be expressed as P k+1, containing both grav-

ity acceleration and the boundary conditions for nodal forces. The external forces of

the mixture are denoted by:

�P ⇤
k+1 = ⇢w�P s

k+1 � ⇢�P w
k+1.

Mass and damping matrices, in the k + 1 step, are defined as follows:

Mw = ⇢wI,

M s = ⇢I,

C =
1

k
I.
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⇢w

⇥
r (��0 ��pw)k � ⇢w �ẅk+1 + ⇢�gk+1
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⇤
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Explicit scheme

Newmark central differences

LMBw - LMEm : incremental form
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ük+1 = ük +�ük+1,

u̇k+1 = u̇k + ük�t+ ��t�ük+1,
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�ü = ⇢
�1
w


�r�pw � 1

k
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Rearranging Eq. (2.103) and Eq. (2.107) we can obtain one equation in terms of the

relative acceleration of the fluid, which can be solved explicitly and �ẅ is obtained
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ẅk =

✓
⇢w⇢w � ⇢

1

k
��t� ⇢⇢w

n

◆
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⇢w

⇥
r (��0 ��pw)k � ⇢w �ẅk+1 + ⇢�gk+1
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ẅk =

✓
⇢w⇢w � ⇢

1

k
��t� ⇢⇢w

n

◆
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as in Eq.(2.109). Once this equation is solved, �ü can be obtained from Eq. (2.103).
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k � (⇢w � ⇢)�Rw
k .

Similarly, the current external forces can be expressed as P k+1, containing both grav-

ity acceleration and the boundary conditions for nodal forces. The external forces of

the mixture are denoted by:

�P ⇤
k+1 = ⇢w�P s

k+1 � ⇢�P w
k+1.

Mass and damping matrices, in the k + 1 step, are defined as follows:

Mw = ⇢wI,

M s = ⇢I,

C =
1

k
I.
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2.3.3.1 Explicit algorithm

The computation of the residuum, i.e. Eqs. 2.110 and 2.111, is part of a traditional

central di↵erences Newmark scheme. Herein the pseudo-algorithm of the whole model

is presented. However, a mono-phase algorithm can be derived from the general one

by deleting the pore pressure, pw, and the relative displacement of the water, w.

Algorithm 2: Explicit scheme

1. Explicit Newmark Predictor (� = 0.5, � = 0)

uk+1 = uk +�tu̇k + 0.5�t
2
ük = uk +�uk+1

wk+1 = wk +�tẇk + 0.5�t
2
ẅk = wk +�wk+1

u̇k+1 = u̇k + (1� �)�t ük

ẇk+1 = ẇk + (1� �)�t ẅk

xk+1 = xk +�uk+1

2. Material points position update

x
p
k+1 = x

p
k +

NbX

a=1

�u
a
k+1N

a(xp
k)

3. Deformation gradient calculation

�Fk+1 = I +
NbX

a=1

�u
a
k+1rN

a(xp
k)

�F
w
k+1 = I +

NbX

a=1

�w
a
k+1rN

a(xp
k)

Fk+1 = �Fk+1Fk

V = JV0 = detFV0

n = 1� 1� n0

J

4. Small strains and Pore pressure: C = F
T
F

div (u) = tr("k+1) = tr

✓
1

2
logCk+1

◆

div (w) = tr("wk+1) = tr

✓
1

2
logCw

k+1

◆

pw = �Q (div u+ div w) + pw0
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5. Remapping loop, reconnect the nodes with their new material neighbors

6. Update density and recompute lumped mass

⇢k+1 = nk+1⇢w + (1� nk+1)⇢s

7. Constitutive relations from the Elasto-Plastic model: �0
k+1 and Rk+1

8. Computation of ük+1 and ẅk+1 from the residuum: Eqs. (2.110) and (2.111).

9. Explicit Newmark Corrector

u̇k+1 = u̇k+1 + ��t ük+1

ẇk+1 = ẇk+1 + ��t ẅk+1

In order to obtain the material point position (Step 2.) and the deformation

gradient (Step 3.) it is necessary to calculate the shape function and its derivatives.

Since a meshfree method is employed, the computation is done along a neighborhood

Nb. However, this methodology is easily extendable to a traditional Finite Element

method by changing the neighborhood by the connectivity. The Local Max-Ent shape

function employed is described in Section 2.4.

2.3.4 Implicit time integration scheme, Newton-Raphson al-

gorithm and consistent linearization

As mentioned before, in the framework of the u � w formulation, also known as the

complete formulation (since no additional assumption is required), each node contains

both solid and fluid degrees of freedom, u and w, whereas the pore pressure, pw, is

calculated at the material point afterwards. By contrast, in the traditional u � pw

formulation, pw is considered directly as an additional nodal unknown. Consequently,

the imposition of impervious boundary conditions is more complicated.

In a two-dimensional problem, the nodal unknowns can be written as:

u = [ux uy wx wy]
T
.

After assembling the elementary matrices, the final system of equations cam be sim-

plified as

Rk+1 +C u̇k+1 +M ük+1 = P k+1, (2.112)
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1. Governing equations

Logarithmic strain

2.3.3.1 Explicit algorithm

The computation of the residuum, i.e. Eqs. 2.110 and 2.111, is part of a traditional

central di↵erences Newmark scheme. Herein the pseudo-algorithm of the whole model

is presented. However, a mono-phase algorithm can be derived from the general one

by deleting the pore pressure, pw, and the relative displacement of the water, w.

Algorithm 2: Explicit scheme

1. Explicit Newmark Predictor (� = 0.5, � = 0)
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3. Deformation gradient calculation
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4. Small strains and Pore pressure: C = F
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Implicit scheme

Table 2.3: The ↵-parameters and di↵erent time integration schemes.

↵1 =
1�↵m
��t2✓2 ↵2 =

1�↵m
��t✓

↵3 =
1�↵m
2� � 1 ↵4 =

�(1�↵f )
��t✓

↵5 = 1� �(1�↵f )
� ↵6 = (1� ↵f )

⇣
1� �

2�

⌘
�t✓

↵7 = (1� ↵f ) ↵8 = (1� ↵f )✓

Wilson-✓ [171] � = 1
6 , � = 1

2
Generalized-↵ [49] ✓ = 1
WBZ [172] ✓ = 1,↵f = 0
HHT [75] ✓ = 1,↵m = 0

Collocation method [83] ↵f = ↵m = 0
Newmark ↵f = ↵m = 0, ✓ = 1

where R, C and M respectively denote the internal forces vector and damping and

mass matrices, whereas P is the external forces vector, which contains both gravity

acceleration and external nodal forces.

In order to solve Eq. (2.112) in an implicit way, the Newmark equations are written

in terms of the incremental displacements, i.e.

ük+1 = ↵1�uk+1 � ↵2u̇k � ↵3ük, (2.113)

u̇k+1 = ↵4�uk+1 + ↵5u̇k + ↵6ük, (2.114)

where the ↵-parameters are listed in Table 2.3. Depending on the particular values

of ↵f , ↵m and ✓, the widely used time integration schemes such as the Wilson-✓,

Generalized-↵, HHT, WBZ or the collocation method can be recovered, see Table 2.3.

For instance, if both ↵f and ↵m are zero, Eqs. (2.113-2.114) become the collocation

method, if in addition, ✓ = 1, the well-known Newmark schemes is obtained.

It needs to be emphasized that we have extended the ↵-parameters defined by

Wriggers [173] by adding ↵f , ↵m and ✓. Consequently, Eqs. (2.113-2.114) become a

unified version of almost all the well-known integration schemes.

Inserting Eqs. (2.113-2.114) to Eq. (2.112), the equations for the unknowns can

be re-written as:

Gk+1 = M [↵1�uk+1 � ↵2u̇k � ↵3ük]

+ C [↵4�uk+1 + ↵5u̇k + ↵6ük]

+ ↵7Rk+1 � P k � ↵8�P k+1 = 0, (2.115)
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4 Pedro Navas et al.

Applying the Green’s Theorem to the above equation,148

we have149

Z

B
pwI : grad(�w) dv �

Z

B

µw

k
ẇ · �w dv +

Z

B
⇢w(g � ü� ẅ

n
) · �w dv �

Z

�B
tw · �w ds = 0. (19)

being tw the traction of the fluid phase. Taking into150

account Eq. (13), the final weak form of the linear mo-151

mentum equation of the liquid water is obtained as fol-152

lows,153

�
Z

B
Q div(u)div(�w) dv �

Z

B
Q div(w)div(�w) dv

�
Z

B

µw

k
ẇ · �w dv �

Z

B
ẅ
⇢w

n
· �w dv

+

Z

B
⇢w(g � ü) · �w dv �

Z

�B
tw · �w ds = 0. (20)

154

155

3 Time and spatial discretization and156

consistent linearization157

In this Section, we describe in detail the implicit time158

integration scheme, including the linearization process159

and the Newton-Raphson algorithm and the meshfree160

spatial discretization based on LME shape functions.161

3.1 Implicit solution and Newton-Raphson algorithm162

As mentioned before, the framework of the u � w for-163

mulation, also known as the complete formulation (since164

no additional assumption is required), each node con-165

tains both solid and fluid degrees of freedom, u and166

w, whereas the pore pressure, pw, is calculated at the167

material point afterwards. By contrast, in the more tra-168

ditional u�pw formulation, pw is considered directly as169

an additional nodal unknown. Consequently, the impo-170

sition of impervious boundary conditions is a bit more171

complicated.172

In a two-dimensional problem, the nodal unknowns
can be written as:

u⇤ = [ux uy wx wy]
T
.

After assembling the elementary matrices, the final sys-
tem of equations can be simplified as

Rk+1 +C u̇k+1 +M ük+1 = P k+1, (21)

where R, C and M respectively denote the internal173

forces vector and damping and mass matrices, whereas174

P is the external forces vector, which contains both175

Table 1 The ↵-parameters of the Newmark scheme.

↵1 = 1
��t2 ↵2 = 1

��t

↵3 = 1
2� � 1 ↵4 = �

��t

↵5 = 1� �
� ↵6 =

⇣
1� �

2�

⌘
�t

↵7 = 1 ↵8 = 1

gravity acceleration and external nodal forces. k + 1176

represents the current step.177

In order to solve Eq. (21) in an implicit way, the178

Newmark equations are written in terms of the incre-179

mental displacements, i.e.180

ük+1 = ↵1�uk+1 � ↵2u̇k � ↵3ük, (22)

u̇k+1 = ↵4�uk+1 + ↵5u̇k + ↵6ük, (23)

where the ↵-parameters are listed in Table 1 accord-181

ing to Wriggers [38]. These coe�cients can be easily182

extended to any other time integration schemes.183

In the current work, solutions are obtained with184

a traditional Newmark time integration scheme with185

� =0.6 and � =0.325.186

Inserting Eqs. (22-23) to Eq. (21), the equations for187

the unknowns can be re-written as:188

Gk+1 = M [↵1�uk+1 � ↵2u̇k � ↵3ük]

+ C [↵4�uk+1 + ↵5u̇k + ↵6ük]

+ ↵7Rk+1 � P k � ↵8�P k+1 = 0, (24)

or in the compact form:189

G(�,⌘) = 0, (25)

where � = [�u
,�w]T is the deformation mapping

and ⌘ = [�u, �w]T , �u⇤ = [�u,�w]T .

To solve the above non-linear equations, Taylor’s series190

are employed in the current configuration. After the191

linearization of �, Eq. (25) becomes192

G(�,⌘,�u⇤)i+1
k+1

⇠=
G(�,⌘)ik+1 +DG(�,⌘)ik+1 ·�u⇤i+1

k+1
⇠= 0, (26)

where � is the linearized deformation mapping. Taking
into account the fact that operator G is composed in
two parts, the derivatives taking the following form:

DG ·�u⇤ =


DGLMS ·�u+DGLMS ·�w
DGLMW ·�u+DGLMW ·�w

�
, (27)

where DGLMS and DGLMW represent the derivative of193

the linear momentum equations Eq. (17) and Eq. (20),194

of the solid phase and the fluid phase respectively.195

According to Wriggers [38], any Newton method can
be applied to determine the unknown displacements.
We first calculate the tangential sti↵ness matrix, i.e.

K(ui
k+1) = Ki

k+1 =
@R

@u

����
ui

k+1

. (28)
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Applying the Green’s Theorem to the above equation,148

we have149

Z

B
pwI : grad(�w) dv �

Z

B

µw

k
ẇ · �w dv +

Z

B
⇢w(g � ü� ẅ

n
) · �w dv �

Z

�B
tw · �w ds = 0. (19)

being tw the traction of the fluid phase. Taking into150

account Eq. (13), the final weak form of the linear mo-151

mentum equation of the liquid water is obtained as fol-152

lows,153

�
Z

B
Q div(u)div(�w) dv �

Z

B
Q div(w)div(�w) dv

�
Z

B

µw

k
ẇ · �w dv �

Z

B
ẅ
⇢w

n
· �w dv

+

Z

B
⇢w(g � ü) · �w dv �

Z

�B
tw · �w ds = 0. (20)
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3 Time and spatial discretization and156

consistent linearization157

In this Section, we describe in detail the implicit time158

integration scheme, including the linearization process159

and the Newton-Raphson algorithm and the meshfree160

spatial discretization based on LME shape functions.161

3.1 Implicit solution and Newton-Raphson algorithm162

As mentioned before, the framework of the u � w for-163

mulation, also known as the complete formulation (since164

no additional assumption is required), each node con-165

tains both solid and fluid degrees of freedom, u and166

w, whereas the pore pressure, pw, is calculated at the167

material point afterwards. By contrast, in the more tra-168

ditional u�pw formulation, pw is considered directly as169

an additional nodal unknown. Consequently, the impo-170

sition of impervious boundary conditions is a bit more171

complicated.172

In a two-dimensional problem, the nodal unknowns
can be written as:

u⇤ = [ux uy wx wy]
T
.

After assembling the elementary matrices, the final sys-
tem of equations can be simplified as

Rk+1 +C u̇k+1 +M ük+1 = P k+1, (21)

where R, C and M respectively denote the internal173

forces vector and damping and mass matrices, whereas174

P is the external forces vector, which contains both175

Table 1 The ↵-parameters of the Newmark scheme.

↵1 = 1
��t2 ↵2 = 1

��t

↵3 = 1
2� � 1 ↵4 = �

��t

↵5 = 1� �
� ↵6 =

⇣
1� �

2�

⌘
�t

↵7 = 1 ↵8 = 1

gravity acceleration and external nodal forces. k + 1176

represents the current step.177

In order to solve Eq. (21) in an implicit way, the178
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mental displacements, i.e.180
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u̇k+1 = ↵4�uk+1 + ↵5u̇k + ↵6ük, (23)

where the ↵-parameters are listed in Table 1 accord-181

ing to Wriggers [38]. These coe�cients can be easily182

extended to any other time integration schemes.183

In the current work, solutions are obtained with184

a traditional Newmark time integration scheme with185
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+ C [↵4�uk+1 + ↵5u̇k + ↵6ük]

+ ↵7Rk+1 � P k � ↵8�P k+1 = 0, (24)

or in the compact form:189

G(�,⌘) = 0, (25)

where � = [�u
,�w]T is the deformation mapping

and ⌘ = [�u, �w]T , �u⇤ = [�u,�w]T .

To solve the above non-linear equations, Taylor’s series190

are employed in the current configuration. After the191

linearization of �, Eq. (25) becomes192

G(�,⌘,�u⇤)i+1
k+1

⇠=
G(�,⌘)ik+1 +DG(�,⌘)ik+1 ·�u⇤i+1

k+1
⇠= 0, (26)

where � is the linearized deformation mapping. Taking
into account the fact that operator G is composed in
two parts, the derivatives taking the following form:

DG ·�u⇤ =


DGLMS ·�u+DGLMS ·�w
DGLMW ·�u+DGLMW ·�w

�
, (27)

where DGLMS and DGLMW represent the derivative of193

the linear momentum equations Eq. (17) and Eq. (20),194

of the solid phase and the fluid phase respectively.195

According to Wriggers [38], any Newton method can
be applied to determine the unknown displacements.
We first calculate the tangential sti↵ness matrix, i.e.

K(ui
k+1) = Ki

k+1 =
@R

@u

����
ui

k+1

. (28)

or in the compact form:

G(�,⌘) = 0, (2.116)

where � = [�u
,�w]T is the deformation mapping

and ⌘ = [�u, �w]T , �u⇤ = [�u,�w]T .

To solve the above non-linear equations, Taylor’s series are employed in the current

configuration. After the linearization of �, Eq. (2.116) becomes

G(�,⌘,�u⇤)i+1
k+1

⇠=
G(�,⌘)ik+1 +DG(�,⌘)ik+1 ·�u⇤i+1

k+1
⇠= 0, (2.117)

where � is the linearized deformation mapping. Taking into account the fact that

operator G is composed in two parts, the derivatives taking the following form:

DG ·�u⇤ =


DGLMS ·�u+DGLMS ·�w
DGLMW ·�u+DGLMW ·�w

�
, (2.118)

where DGLMS and DGLMW represent the derivative of the linear momentum equa-

tions Eq. (2.98) and Eq. (2.101), of the solid phase and the fluid phase respectively.

According to Wriggers [173], any Newton method can be applied to determine the

unknown displacements. We first calculate the tangential sti↵ness matrix, i.e.

K(ui
k+1) = Ki

k+1 =
@R

@u

����
ui
k+1

. (2.119)

that allows us to solve the system equations in an iterative manner (iteration index i).

The iteration finishes when Gi
k+1 is lower than a given tolerance:

⇥
↵1M + ↵4C + ↵7K

i
k+1

⇤
�ui+1

k+1 = �G(ui
k+1), (2.120)

where ui+1
k+1 = ui

k+1 +�ui+1
k+1.

Rewritting Eq. (2.115) to separate the current (k + 1) and previous (k) terms, since

the later ones are not susceptible of linearization as they are constants that come

from the previous step, we have

Gk+1 = [↵1M + ↵4C]uk+1 + ↵7R(uk+1)� ↵8P k+1

+ [↵1Muk � ↵2Mu̇k � ↵3Mük]

+ [↵4Cuk + ↵5Cu̇k + ↵6Cük]� ↵fP k

= [↵1M + ↵4C]uk+1 + ↵7R(uk+1)

� ↵8P k+1 + F int
k . (2.121)
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5. Remapping loop, reconnect the nodes with their new material neighbors

6. Update density and recompute lumped mass

⇢k+1 = nk+1⇢w + (1� nk+1)⇢s

7. Constitutive relations from the Elasto-Plastic model: �0
k+1 and Rk+1

8. Computation of ük+1 and ẅk+1 from the residuum: Eqs. (2.110) and (2.111).

9. Explicit Newmark Corrector

u̇k+1 = u̇k+1 + ��t ük+1

ẇk+1 = ẇk+1 + ��t ẅk+1

In order to obtain the material point position (Step 2.) and the deformation

gradient (Step 3.) it is necessary to calculate the shape function and its derivatives.

Since a meshfree method is employed, the computation is done along a neighborhood

Nb. However, this methodology is easily extendable to a traditional Finite Element

method by changing the neighborhood by the connectivity. The Local Max-Ent shape

function employed is described in Section 2.4.

2.3.4 Implicit time integration scheme, Newton-Raphson al-

gorithm and consistent linearization

As mentioned before, in the framework of the u � w formulation, also known as the

complete formulation (since no additional assumption is required), each node contains

both solid and fluid degrees of freedom, u and w, whereas the pore pressure, pw, is

calculated at the material point afterwards. By contrast, in the traditional u � pw

formulation, pw is considered directly as an additional nodal unknown. Consequently,

the imposition of impervious boundary conditions is more complicated.

In a two-dimensional problem, the nodal unknowns can be written as:

u = [ux uy wx wy]
T
.

After assembling the elementary matrices, the final system of equations cam be sim-

plified as

Rk+1 +C u̇k+1 +M ük+1 = P k+1, (2.112)
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or in the compact form:

G(�,⌘) = 0, (2.116)

where � = [�u
,�w]T is the deformation mapping

and ⌘ = [�u, �w]T , �u⇤ = [�u,�w]T .

To solve the above non-linear equations, Taylor’s series are employed in the current

configuration. After the linearization of �, Eq. (2.116) becomes

G(�,⌘,�u⇤)i+1
k+1
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G(�,⌘)ik+1 +DG(�,⌘)ik+1 ·�u⇤i+1

k+1
⇠= 0, (2.117)

where � is the linearized deformation mapping. Taking into account the fact that

operator G is composed in two parts, the derivatives taking the following form:
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DGLMW ·�u+DGLMW ·�w

�
, (2.118)

where DGLMS and DGLMW represent the derivative of the linear momentum equa-

tions Eq. (2.98) and Eq. (2.101), of the solid phase and the fluid phase respectively.

According to Wriggers [173], any Newton method can be applied to determine the

unknown displacements. We first calculate the tangential sti↵ness matrix, i.e.

K(ui
k+1) = Ki

k+1 =
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����
ui
k+1

. (2.119)

that allows us to solve the system equations in an iterative manner (iteration index i).

The iteration finishes when Gi
k+1 is lower than a given tolerance:

⇥
↵1M + ↵4C + ↵7K

i
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k+1), (2.120)

where ui+1
k+1 = ui

k+1 +�ui+1
k+1.

Rewritting Eq. (2.115) to separate the current (k + 1) and previous (k) terms, since

the later ones are not susceptible of linearization as they are constants that come

from the previous step, we have

Gk+1 = [↵1M + ↵4C]uk+1 + ↵7R(uk+1)� ↵8P k+1

+ [↵1Muk � ↵2Mu̇k � ↵3Mük]
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k . (2.121)
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or in the compact form:

G(�,⌘) = 0, (2.116)

where � = [�u
,�w]T is the deformation mapping

and ⌘ = [�u, �w]T , �u⇤ = [�u,�w]T .

To solve the above non-linear equations, Taylor’s series are employed in the current

configuration. After the linearization of �, Eq. (2.116) becomes

G(�,⌘,�u⇤)i+1
k+1

⇠=
G(�,⌘)ik+1 +DG(�,⌘)ik+1 ·�u⇤i+1

k+1
⇠= 0, (2.117)

where � is the linearized deformation mapping. Taking into account the fact that

operator G is composed in two parts, the derivatives taking the following form:

DG ·�u⇤ =


DGLMS ·�u+DGLMS ·�w
DGLMW ·�u+DGLMW ·�w

�
, (2.118)

where DGLMS and DGLMW represent the derivative of the linear momentum equa-

tions Eq. (2.98) and Eq. (2.101), of the solid phase and the fluid phase respectively.

According to Wriggers [173], any Newton method can be applied to determine the

unknown displacements. We first calculate the tangential sti↵ness matrix, i.e.

K(ui
k+1) = Ki

k+1 =
@R

@u

����
ui
k+1

. (2.119)

that allows us to solve the system equations in an iterative manner (iteration index i).

The iteration finishes when Gi
k+1 is lower than a given tolerance:

⇥
↵1M + ↵4C + ↵7K

i
k+1

⇤
�ui+1

k+1 = �G(ui
k+1), (2.120)

where ui+1
k+1 = ui

k+1 +�ui+1
k+1.

Rewritting Eq. (2.115) to separate the current (k + 1) and previous (k) terms, since

the later ones are not susceptible of linearization as they are constants that come

from the previous step, we have

Gk+1 = [↵1M + ↵4C]uk+1 + ↵7R(uk+1)� ↵8P k+1

+ [↵1Muk � ↵2Mu̇k � ↵3Mük]

+ [↵4Cuk + ↵5Cu̇k + ↵6Cük]� ↵fP k
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iteratively:

linearization Newton-Raphson

1. Governing equations
Wriggers (2008)



Implicit scheme
1. Governing equations

LMBm

LMBw

Weak forms after time integration schemeConsequently, after integration in time, Eq. (2.98) and Eq. (2.101) are transformed

as follows

�↵7

Z

B

�0 : grad(�u) dv � ↵7

Z

B

Q div(u)div(�u) dv

�↵7

Z

B

Q div(w)div(�u) dv � ↵1

Z

B

[⇢u+ ⇢ww] · �u dv

+↵8

Z

B

⇢g · �u dv + ↵8

Z

�B

t · �u ds = 0 (2.122)

�
Z

B

↵7Q div(u)div(�w) dv �
Z

B

↵7Q div(w)div(�w) dv

�↵4

Z

B

µw

k
w · �w dv � ↵1

Z

B

⇢w

n
w · �w dv

�↵1

Z

B

⇢wu · �w dv + ↵8

Z

B

⇢wg · �w dv

�↵8

Z

�B

tw · �w ds = 0. (2.123)

The results of the linearization process for Eq. (2.122) and Eq.(2.123) are given in

Eq. (2.124) and Eq. (2.125) respectively, whereas the details are described in the

following section (Sec. 2.3.4.1).

Linear momentum of for the solid phase

� ↵7

Z

B

grad(�u) : cep : grad(�u) dv

� ↵7

Z

B

�0 : gradT (�u) grad(�u) dv

� ↵7

Z

B

grad( �u) : (Q [div(�u) + div(�w)] I) dv

� ↵7

Z

B

grad( �u) : pw gradT (�u)dv

� ↵7

Z

B

grad( �u) : pw
1� n

n
div(�u)Idv

� ↵1

Z

B

�u · [⇢�u+ ⇢w�w + ⇢wdiv(�u) (u+w)] dv

+ ↵8

Z

B

⇢w�u · g div(�u) dv (2.124)
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Implicit scheme
Linearization

Consequently, after integration in time, Eq. (2.98) and Eq. (2.101) are transformed

as follows
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Z
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[⇢u+ ⇢ww] · �u dv

+↵8

Z

B

⇢g · �u dv + ↵8

Z

�B

t · �u ds = 0 (2.122)
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Z

�B

tw · �w ds = 0. (2.123)

The results of the linearization process for Eq. (2.122) and Eq.(2.123) are given in

Eq. (2.124) and Eq. (2.125) respectively, whereas the details are described in the

following section (Sec. 2.3.4.1).

Linear momentum of for the solid phase
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�0 : gradT (�u) grad(�u) dv
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grad( �u) : pw gradT (�u)dv
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grad( �u) : pw
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⇢w�u · g div(�u) dv (2.124)
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DGLMS DGLMWLinear momentum for the fluid phase:

� ↵7

Z

B

grad( �w) : (Q [div(�u) + div(�w)] I) dv

� ↵7

Z

B

grad( �w) : pw gradT (�u)dv

� ↵7

Z

B

grad( �w) : pw
1� n
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div(�u)Idv

� ↵4

Z

B
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�w ·
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�w + div(�u)

✓
1� 1� n

k

@k

@n

◆
w

�
dv

� ↵1

Z

B

⇢w

n
�w ·


�w +

2n� 1

n
div(�u)w

�
dv

� ↵1

Z

B

⇢w�w · [�u+ div(�u)u] dv

+ ↵8

Z

B

⇢w�w · g div(�u) dv (2.125)

In this research, several examples are presented in the small strain regime (see

Sec. 3). In that case, high order terms derived from the linearization of the derivative

of the balance equations can be neglected as their influence in the linear branch of the

equation is small. Thus, the derivatives of the balance equations in the small strain

regime yield:

Linear momentum of for the solid phase

� ↵7

Z

B

grad(�u) : cep : grad(�u) dv

� ↵7

Z

B

grad( �u) : (Q [div(�u) + div(�w)] I) dv

� ↵1

Z

B

�u · [⇢�u+ ⇢w�w] dv (2.126)

Linear momentum for the fluid phase:

� ↵7

Z

B

grad( �w) : (Q [div(�u) + div(�w)] I) dv

� ↵4

Z

B

µw

k
�w ·�w dv � ↵1

Z

B

⇢w�w ·

�w

n
+�u

�
dv (2.127)
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Optimal Transportation Meshfree
1. Spatial discretization: OTM



Local Max-Ent

the unique solution is:

has been already obtained (and hence it is known), a re-
lationship between un+1, u̇n+1 and ün+1 is established
according to a finite different scheme, as follows:

ün+1 = ün + �ün+1 (14)

u̇n+1 = u̇n + ün�t + �1�t�ün+1 (15)

un+1 = un + u̇n�t +
1
2
�t

2ün

+
1
2
�2�t

2�ün+1 (16)

where �1 and �2 are coefficients. To ensure stability, the
following condition needs to be enforced

�2 � �1 � 0.5

We choose �1 and �2 to be 0.6 and 0.605 respectively
to improve the stability and convergence by allowing a
small numerical damping.

Rearranging the above expressions, Eq. (13) finally yields


2
�2�t2

M +
2�1

�2�t
C + K

�
�un+1 =

dfn+1 +


2
�2�t

M +
2�1

�2
C

�
u̇n

+


1
�2

M ��t

✓
1� �1

�2

◆
C

�
ün (17)

A self-adaptive procedure, proposed in [9] is implemen-
ted to select the correct time step, keeping the total nume-
rical error under a given limit. Using a given time interval
�t, the numerical error eu is defined as:

eu =
����

����
1
2
�t

2

✓
�2 �

1
3

◆
�un+1

����

���� (18)

where ||·|| represents the norm of the vector inside. On-
ce this error has been obtained, the new time step adapts
according to the following condition

�tnew

�told
=

(
1 if eu

e⇤ 2 [0.2, 2]h
e⇤

eu

i1/3
otherwise

(19)

where e
⇤ is the error tolerance set as 5⇥ 10�6.

2.4. Spatial discretization: Max-ent shape functions

The basic idea of the shape functions based on the princi-
ple of maximum entropy is to interpret the shape function
N

a(x) as the probability of x to obtain the value xa. Ta-
king Shannon’s entropy as a starting point:

H(p1(x), ..., pn(x)) = �
NX

a=1

pa(x) log pa (20)

where pa(x) is the probability and is equivalent to the
mentioned shape function Na(x), satisfying the zeroth
and first-order consistency.

The least-biased approximation scheme is given by

(ME) Maximize H(p) = �
X

a=1

pa(x) log pa

subject to pa � 0, a=1,...,n
X

a=1

pa = 1

X

a=1

paxa = x

The local max-ent approximation schemes as a Pareto set
defined by Arroyo and Ortiz [2] is as follows

(LME)� For fixed x minimize
f�(x,p) = �H(x,p)�H(p)

subject to pa � 0, , a=1,...,n
X

a=1

pa = 1

X

a=1

paxa = x
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where �1 and �2 are coefficients. To ensure stability, the
following condition needs to be enforced
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We choose �1 and �2 to be 0.6 and 0.605 respectively
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A self-adaptive procedure, proposed in [9] is implemen-
ted to select the correct time step, keeping the total nume-
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where e
⇤ is the error tolerance set as 5⇥ 10�6.
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The local max-ent approximation schemes as a Pareto set, defined by Arroyo and Ortiz [16] is

as follows
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being �⇤(x) the unique minimizer for logZ(x,�)

In order to obtain the first derivatives of the shape function, it is also necessary to

compute rp
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⇤
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where

f
⇤
a (x,�,�) = ��|x� xa|2 + �(x� xa) (24)

Empoying the chain rule, rearranging and considering � as a constant, Arroyo and Ortiz [16]

obtained the following expression:

rp
⇤
a = �p

⇤
a(J

⇤)�1(x� xa) (25)

where J is the Hessian matrix, defined by:

J(x,�,�) =
@r

@�
(26)

r(x,�,�) ⌘ @�logZ(x,�) =
X

a

pa(x,�,�)(x� xa) (27)

Note that, the objective of the above procedure is to find the � which minimizes logZ(x,�).

The traditional way to obtain such a minimizer is using Eq. (26) to calculate small increments

of @� in a Newton-Raphson approach. However, it is more e�cient employing a Nelder-

Mead simplex algorithm [17, 47, 48], which is a direct search method for multidimensional

unconstrained minimization. It attempts to minimize a scalar-valued nonlinear function of

real variables using only function values, without any derivative information. Since only one
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Deriving by the chain rule, rearranging and considering �

as constant, Arroyo and Ortiz [2] obtained the following
expression:
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where pa is ranged between �1 and1. In practice, it is
calculated between two limit values r1 and r2, when fa

reaches a given tolerance, as shown in Fig. 2.
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Figura 2: Limit values r1 and r2 which give an fa value
of 0.05.

The limit values for r1 and r2 are calculated as follows:

exp[fa(r, �)] = exp
⇥
��r

2
i

⇤
= tol )

ri =

s

� ln(tol)
�

, i = 1 or 2 (29)

This limit value is used thereafter to find the neighbor
nodes of a given integration point.

2.5. Determination of the free boundary (or phreatic

surface)

There are two basic methods to determine the free boun-
dary in an unconfined flow system. One is through dra-

wing trial flow net, the other is employing numerical so-
lutions based on parabola. For example, the Dupuit so-
lution [10] assumes that flow lines are nearly horizontal
and the hydraulic gradient of the flow is equal to the slope
of the phreatic surface, but it does not take into account
neither the slope geometry nor the entrance and exit con-
ditions.

Here we choose the procedure developed by López-
Querol et al. [1], which obtains the sought phreatic sur-
face by imposing Dirichlet boundary conditions for the
fluid phase. This is possible thanks to the employed dis-
placement formulation, since there is no water displace-
ment at those boundaries. As such surface is unknown at
the beginning of the calculation, the impermeability con-
dition at downstream is necessarily changed by allowing
water displacement below the free surface. The iterative
procedure finishes when there is no need to change the
impermeability boundary conditions, which typically oc-
curs after 4 or 5 iterations.

3. NUMERICAL RESULTS

In this Section, we apply the aforementioned methodo-
logy to two benchmark problems in Soil Mechanics, the
Muskat problem and the Drain toe rectangular dam. Then
we compare the obtained results with available ones in
the literature.

3.22

0.48

1.62

Porous
media

Figura 3: Geometry of the Muskat problem (units in m).

3.1. Muskat problem

The Muskat problem is originally defined as the dyna-
mics of the interface between two incompressible im-
miscible fluids with different constant densities. Within
the framework of soil mechanics, it is the evolution of
the phreatic surface in a homogeneous rectangular earth

radius
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constitutive updates [33]. The term 1=2d2W ðrk; rkþ 1Þðtkþ 1 $ tkÞ in
Eq. (3) supplies a measure of the inertial action between times tk
and tkþ 1. We also note that in writing Eq. (3) we have restricted
attention to elastic behavior and unforced systems for simplicity.
Extensions accounting for forcing, e.g., in the form of body forces,
boundary tractions, and extensions to inelasticity may be found in
[21].

In order to render the governing equations fully discrete, we
proceed to introduce a spatial discretization of the action Eq. (3), cf.
Fig. 4. To this end, we begin by approximating mass densities by
point masses, namely,

rh;kðxÞ ¼
XM

p ¼ 1
mpd

!
x $ xp;k

"
; (6)

where xp,k represents the position at time tk of a material point of
constant mass mp and d (x $ xp,k) is the Dirac-delta distribution
centered at xp,k, Fig. 4. Li et al. [21] have shown that the constancy of
the material point masses mp is indeed equivalent to the weak
satisfaction of the continuity equation. To complete the spatial
discretization, we approximate the incremental deformation
mapping as

4h;k/kþ 1ðxÞ ¼
XN

a ¼ 1
xa;kþ 1Na;kðxÞ; (7)

where {xa,kþ 1,a ¼ 1,.,N} is an array of nodal coordinates at time tkþ 1
and Na,k (x) are conforming shape functions defined over the
configuration at time tk. All local state data is storedeand consti-
tutive calculations are performedeat an evolvingmaterial point set.
As their name indicates, material points designate fix material
points of the body and, therefore, are convected by the deforma-
tion. Material points also carry a fixed volume and mass and serve
the purpose of integration points for the calculation of the effective
nodal forces and masses.

In calculations, we specifically use max-ent shape functions [3]
computed from the array {xa,k,a ¼ 1,.,N} of nodal coordinates at
time tk. Since max-ent shape functions are strongly localized, the

interpolation at a material point xp,k depends solely on the nodes
contained in a small local neighborhoodN p;k of the material point,
Fig. 4. The collection of these local neighborhoods may be regarded
as a dynamical connectivity table. In calculations, the local neigh-
borhoods are continuously updated using range searches [7] to
account for the relative motion betweenmaterial points and nodes,
and the max-ent shape functions are recalculated at every time
step, which effectively results in a dynamic or on-the-fly recon-
nection of nodes and material points. Conveniently, the resulting
reconnection between material points and nodes leaves the
material points invariant, thus entirely eliminating the need for
state-variable remapping.

Inserting these approximations into Eq. (3) we obtain the fully-
discrete action

Sh
#
4h;1;.;4h;N$ 1

$
¼

XN$ 1

k ¼ 0

XM

p ¼ 1

(
mp

2
jxp;kþ 1 $ xp;kj

2

ðtkþ 1 $ tkÞ
2

$
1
2

h
mpf

!
V4h;k

!
xp;k

""
þ mpf

&
!
V4h;kþ 1

!
xp;kþ 1

""i)

ðtkþ 1 $ tkÞ;

(8)

where we again consider the unforced elastic case for simplicity.
The discrete trajectories now follow from the discrete Hamilton’s
principle

dSh ¼ 0 (9)

of stationary action.
The algorithm resulting from the preceding scheme is listed in

Algorithm 1. We see from Fig. 4 that the OTM scheme can be solved
forward explicitly. This forward solution has the usual structure of
explicit time-integration and updated-Lagrangian schemes. In
particular, all the finite kinematics of the motion, including the
mass density and volume updates, are geometrically exact. In
addition, the continuous reconstruction of the local material-point
neighborhoods and shape functions has the effect of automatically

Fig. 4. Spatial discretization scheme used in the OTM method. The figure describes one step of the application of the method between times tk and tkþ 1. The open circles represent
the nodal points and the red circles the material points. Bk and Bkþ 1 are the configurations of the body at times tk and tkþ 1, respectively, and 4k/kþ 1 is the corresponding incremental
deformation mapping. Np,k is the local neighborhood of material point xp,k that supports the local max-ent mesh-free interpolation. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

B. Li et al. / International Journal of Impact Engineering 42 (2012) 25e36 29

Np,k+1

Li, Habbal and Ortiz (2010)
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Hyperelastic
2. Constitutive law

Bonet [34]: ce =
�

J
I ⌦ I +

2

J
(G� � log(J))1 (2.53)

Wriggers [173]: ce = �J
2I ⌦ I + (2G� �(J2 � 1))1

In order to predict the non-linear elastic behavior for solids undergoing large

deformations and to be able to take into consideration the e↵ect of the compaction,

the variation of the volume and the initial porosity n0 in soils, the compressible part

of the Neo-hookean material model proposed by Ehlers and Eipper [60] is adopted

when dealing with porous media problems. It reads as follows,

⌧ = G(b� I) + �n
2
0

✓
J

n0
� J

J � 1 + n0

◆
I (2.54)

Consequently, the continuous variation of the tangent moduli, ce, is depicted as:

ce = 2


G� �n0J

J � 1

J + n0 � 1

�
1

+�


n0J

J
2 + (1� n0)(1� 2J)

(J + n0 � 1)2

�
(I ⌦ I) (2.55)

Saint Venant material model

The simplest example of a hyperelastic material is the St. Venant-Kirchho↵model,

which is defined by the strain energy, in this case function of E, as:

W
e(E) =

1

2
�tr(E)2 +GE : E (2.56)

We can obtain the second Piola-Kirchho↵ stress tensor as:

S = �tr(E)I + 2GE (2.57)

and the Lagrangian elasticity tensor emerges as:

Ce = �I ⌦ I +G1 (2.58)

Note that the Green-Lagrange tensor, when we lie in the small strain regime, becomes

the small strain tensor since the high order terms are negligible:

E =
1

2

�
H +HT +⇠⇠⇠⇠HTH

�
= " (2.59)

26

Bonet [34]: ce =
�

J
I ⌦ I +

2

J
(G� � log(J))1 (2.53)

Wriggers [173]: ce = �J
2I ⌦ I + (2G� �(J2 � 1))1

In order to predict the non-linear elastic behavior for solids undergoing large

deformations and to be able to take into consideration the e↵ect of the compaction,

the variation of the volume and the initial porosity n0 in soils, the compressible part

of the Neo-hookean material model proposed by Ehlers and Eipper [60] is adopted

when dealing with porous media problems. It reads as follows,

⌧ = G(b� I) + �n
2
0

✓
J

n0
� J

J � 1 + n0

◆
I (2.54)

Consequently, the continuous variation of the tangent moduli, ce, is depicted as:

ce = 2


G� �n0J

J � 1

J + n0 � 1

�
1

+�


n0J

J
2 + (1� n0)(1� 2J)

(J + n0 � 1)2

�
(I ⌦ I) (2.55)

Saint Venant material model

The simplest example of a hyperelastic material is the St. Venant-Kirchho↵model,

which is defined by the strain energy, in this case function of E, as:

W
e(E) =

1

2
�tr(E)2 +GE : E (2.56)

We can obtain the second Piola-Kirchho↵ stress tensor as:

S = �tr(E)I + 2GE (2.57)

and the Lagrangian elasticity tensor emerges as:

Ce = �I ⌦ I +G1 (2.58)

Note that the Green-Lagrange tensor, when we lie in the small strain regime, becomes

the small strain tensor since the high order terms are negligible:

E =
1

2

�
H +HT +⇠⇠⇠⇠HTH

�
= " (2.59)

26

Neo-Hookean with compaction point Ehlers and Eipper (2001)



Elasto-plastic
2. Constitutive law

Drucker-Prager flow rule Sanavia et al. (2002)

2.2.3.2 Plastic materials: Drucker-Prager model

Similarly to the elastic case, the plastic component of the energy can be expressed

as:

W
p = W

p(q) (2.65)

where q represents the internal variables of the material which define the plastic

behavior, i.e. the yield and potential surfaces:

� = �(S, q) , �p = �p(S, q) (2.66)

The direction of the plastic flow follows this rule:

Lp = �̇
@�p(S, q)

@S
(2.67)

being �̇ the equivalent plastic strain rate. It is important to define mathematically

the conditions of the plastic surfaces depending on the elastic/plastic state:

• �(S, q) < 0 when the material behaves elastically.

• �(S, q) = 0 implies that S is on the plastic surface and the plastic deformation

can grow; therefore, �(S, q) cannot be greater than zero.

These premises comprehend the Kuhn-Tucker conditions:

�̇ � 0 , �(S, q)  0 , �̇�(S, q) = 0 (2.68)

The Drucker-Prager model has been chosen in order to test the proposed methodology

within a very general plastic flow rule. The methodology of Sanavia et al. [154, 151]

is employed for its reduced computational e↵ort and its capacity to distinguish if the

location of the stress state is on the cone or apex before calculating the plastic strain.

Indeed, the von-Mises criteria is also derived from the general equation of the yield

surface, which is di↵erent for both classical or apex region:

�cl = kstrialk+1 k � 2G�� + 3↵F [p
trial
k+1 � 3K↵Q��]� �ck+1 (2.69)
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trial
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where ��1 =
kstrialk+1 k

2G , �� and ��2 are the objective functions to be calculated in the

Newton-Raphson scheme for the classical or apex regions accordingly. The current

cohesion, ck+1, and its derivative, the hardening modulus, H, are calculated following

28

Table 2.1: Equivalent plastic strain

Classical "
p
k+1 = "

p
k +��

q
3↵2

Q
+ 1

Apex "
p
k+1 = "

p
k +

q
��21 + 3↵2

Q
(��1 +��2)

2
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where "pk+1 is the current equivalent plastic strain, calculated in di↵erent ways de-

pending on the fact that if the stress state is in the classical or apex region, see

Table 2.1.

The rest of the parameters of the plastic implementation are the shear modulus,

G, the bulk modulus, K, Poisson’s ratio, ⌫, the reference plastic strain "0, and the

hardening exponent, N
". In addition, the Perzyna’s visco-plastic model is added

in order to model this behavior as well. This model employs the viscosity-related

parameter µ [s] and the rate-sensitivity parameter, ✏, which ranges between 0 and 1.

Drucker-Prager parameters, ↵F , ↵Q and �, come from the friction � and dilatancy

 angles. The application of this methodology is done for 2D plane strain prob-

lems, thus the plane strain parameters are used. However, some of the worked out

validation problems presented in this thesis have been compared with Ansys [2]. In

order to do so, we need the outer cone parameters, which is the solution that Ansys

provides. The outer cone is related to the cone which evolves the external edges of

the Mohr-Coulomb plastic region. Both types of parameters are presented in Tab.2.2.

In order to know which algorithm to employ, a limit value for the pressure, plim

is calculated:

plim =
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If the trial pressure is lower than this limit, classical return-mapping algorithm is

employed, otherwise the apex algorithm is adopted.
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When an implicit scheme is desired to be employed, it is necessary to calculate the

elastoplastic tangent modulus in a similar way that the elastic moduli are obtained,

see Eqs. (2.53) and (2.55). According to Sanavia et al [154, 151], depending on where

the current stress state is located, the corresponding tangent modulus is calculated

as:
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2.2.3.2 Plastic materials: Drucker-Prager model

Similarly to the elastic case, the plastic component of the energy can be expressed

as:

W
p = W

p(q) (2.65)

where q represents the internal variables of the material which define the plastic

behavior, i.e. the yield and potential surfaces:

� = �(S, q) , �p = �p(S, q) (2.66)
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(2.67)
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is employed for its reduced computational e↵ort and its capacity to distinguish if the

location of the stress state is on the cone or apex before calculating the plastic strain.
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Apex

Corner zone:
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and

��T = ��1 +��2. (2.77)

In the above equations, ntr
k+1 is the normalized version of the trial deviatoric stress

tensor, strk+1, i.e.,

ntr
k+1 =

strk+1

kstrk+1k
. (2.78)

2.3 Multiphase balance equations: the Biot’s equa-

tions

Since it is frequent to find more than one phase when dealing with civil engineering

materials, the linear momentum and mass balance equations are formulated in this

research for a multiphase problem. The Biot’s equations [28] are based on formulat-

ing the mechanical behavior of a solid-fluid mixture, the coupling between di↵erent

phases, and the continuity of flux through a di↵erential domain of saturated porous

media.

Let u and U represent the displacement vector of the solid skeleton and the

absolute displacement of the fluid phase respectively. The relative displacement of

the fluid phase with respect to the solid one, w is, expressed as

w = nSw (U � u), (2.79)

where Sw is the degree of water saturation and n, the soil porosity. Note that (U � u)

is usually termed as uws in the literature [98]. Let ⇢, ⇢w and ⇢s respectively represent

the mixture, fluid phase and solid particle densities, the mixture density can be defined

as function of the porosity:

⇢ = nSw⇢w + (1� n)⇢s. (2.80)
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Figure 5.1: A) Geometry and boundary conditions of the column of soil; Loading of
B) the dynamic consolidation and C) large deformation consolidation problems.

5.2.1 Dynamic consolidation of a soil column

The dynamic consolidation of a soil column is studied using the geometry given in

Fig. 5.1.A. The column is loaded at the top boundary, �4, by a harmonic surface

loading, Pmax cos(!t), see Fig. 5.1.B, where the angular frequency ! is defined as

2⇡/T . This problem was first analytically solved by Zienkiewicz et al. [186] in 1980s.

In Section 3.4.2 this problem is also solved using an implicit Eulerian method. Here,

both explicit and implicit Lagrangian schemes are employed in the calculation.

The soil behaviors studied are dependent on the solid skeleton properties, the

permeability and the frequency of the harmonic load. Three zones, defined in Fig. 5.2

are characterized by the values of ⇧1 and ⇧2, which are defined as follows:

⇧1 =
k V

2
c

g
⇢f
⇢ ! H

2
T

=
k !

g
⇢f
⇢ ⇧2

, ⇧2 =
!
2
H

2
T

V 2
c

(5.1)

where HT is the column height, Vc is the p-wave velocity calculated as:

Vc =

s✓
D +

Kf

n

◆
1

⇢
, where D =

2G(1� ⌫)

1� 2⌫
. (5.2)
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Table 5.1: Material parameters of the dynamic consolidation problem

G [MPa] 312.5 Kw [MPa] 104

⌫ 0.2 Ks [MPa] 1034

n 0.333 ⇢w [kg/m3] 1000

Vc [m/s] 3205 ⇢s [kg/m3] 3003
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Figure 5.2: Three zones that characterize the soil behavior in the ⇧1-⇧2 space (See
[186]), and tabulated parameter values for the di↵erent points to be studied.

141

Table 5.2: Material parameters of the dynamic consolidation problem

� [MPa] 29 Kw [MPa] 2.2 · 104

G [MPa] 7 Ks [MPa] 1034

n 0.42 ⇢w [kg/m3] 1000

k [m/s] 0.1 ⇢s [kg/m3] 2700

However, although the explicit solution presents this oscillating behavior, the steady

solution is reached successfully without any additional numerical damping. This

clearly demonstrates the good performance of the explicit methodology even for zone

III problems.

Since the implicit Eulerian results were first validated against Zienkiewicz’s solu-

tion [186] (See Sec. 3.4.2 and Figs. 3.19 and 3.21), we can conclude that the proposed

methodologies, explicit and implicit Lagrangian, are validated against the dynamic

loading under high frequency.

5.2.2 Large deformation consolidation of a soil column

In order to validate the developed methodology against large deformation regime, the

problem proposed by Li, Borja and Regueiro [103] is studied. The geometry of the soil

is the same as the previous example, see Fig. 5.1.A, whereas the load history is given

in Fig. 5.1.C, where t0 = 0.05 s, Pmax=8 MPa. Parameters of the soil skeleton are

provided in Tab. 5.2. The Neo-Hookean material model described in Section 2.2.3.1,

the proposed by Ehlers and Eipper [60], is employed in this case since is more suitable

to simulate the reduction of the pores volume, i.e. the compaction, which leads to

soil hardening of the soil with less settlement.

The obtained solutions with both explicit and implicit methodologies are com-

pared against those of Li, Borja and Regueiro [103]. Quite similar settlement histo-

ries are obtained by the implicit and explicit Lagrangian schemes based on the u�w

formulation, in particular, the dynamic branch around 0.3 s is captured. By contrast,

the solution based on the u � pw formulation by Li, Borja and Regueiro [103], the

dynamic phenomenon has been smoothed out, since no acceleration terms were taken

into account. In other words, the slight discrepancy seen in the current solution at the

beginning of the calculation is due to the dynamic nature for the problem. Moreover,

in the cited research the loading was applied at the beginning of the simulation but,
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Table 5.1: Material parameters of the dynamic consolidation problem

G [MPa] 312.5 Kw [MPa] 104

⌫ 0.2 Ks [MPa] 1034
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5.2.1 Dynamic consolidation of a soil column

The dynamic consolidation of a soil column is studied using the geometry given in

Fig. 5.1.A. The column is loaded at the top boundary, �4, by a harmonic surface

loading, Pmax cos(!t), see Fig. 5.1.B, where the angular frequency ! is defined as

2⇡/T . This problem was first analytically solved by Zienkiewicz et al. [186] in 1980s.

In Section 3.4.2 this problem is also solved using an implicit Eulerian method. Here,

both explicit and implicit Lagrangian schemes are employed in the calculation.

The soil behaviors studied are dependent on the solid skeleton properties, the

permeability and the frequency of the harmonic load. Three zones, defined in Fig. 5.2

are characterized by the values of ⇧1 and ⇧2, which are defined as follows:
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where HT is the column height, Vc is the p-wave velocity calculated as:
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O.C. Zienkiewicz, C.T. Chang, and P. Bettes. Drained, undrained, consolidating and dynamic behaviour assumptions in soils. 
Geotechnique, 30(4):385-395,1980.
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C. Li, R.I. Borja, and R.A. Regueiro. Dynamics of porous media at finite strain. Computer Methods in Applied Mechanics and 
Engineering, 193:3837-3870, 2004.

4. Benchmark examples

-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.0       0.1             0.2      0.3              0.4                  0.5
t (s)

Explicit Lagrangian scheme u y (
m

)

Small deformation
Finite deformation

Li et al. (2001):

Complete formulation:

Implicit Lagrangian scheme 
(Navas et al. 17, a)

(Navas et al. 17, b)



Rigid footing in a saturated square plate
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Figure 5.6: Geometry, spatial discretization, material parameters and boundary con-
ditions of a square domain of water saturated porous material.
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L. Sanavia, B.A. Schrefler, E. Stein, and P. Steinmann. Modelling of localisation at finite inelastic strain in fluid saturated porous media. Proc. In: Ehlers W (ed.), 
IUTAM Symposium on Theoretical and Numerical Methods in Continuum Mechanics of Porous Materials, Kluwer Academic Publishers, pages 239-244, 2001.
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Rigid footing in a saturated square plate

t = 25 s t = 50 s

Pw
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Figure 5.7: Pore pressure (in Pa) and equivalent plastic strain at 25 s and 50 s the
square domain for  = 20�.

plastic strain when the dilatancy angle changes. However, when the dilatancy angle

decreases, a decrease of the shear band slope is noticed. In addition, the e↵ect of the

plastic dilatancy (contractancy) is evidenced by the negative (positive) pore pressure

within the shear band zone, see Figs. 5.7-5.8 and Fig. 5.10 respectively. Moreover,

in the case of zero dilatancy angle, see Fig. 5.9, no marked pore pressure variation is

observed within the shear band zone. Similar phenomena were obtained by Sanavia

et al. [153] although in this research slower velocity was employed.

In order to study the evolution of the principal results of the problem, the histories

of the pore pressure and equivalent plastic strain in a material point close to the shear

band (Point P, see Fig. 5.6) have been depicted in Figs. 5.11 and 5.12.

For positive dilatancy values, smooth pore pressure evolution is observed. In

addition, the peak pressure signals the initiation of plastic strain localization or shear

band. The further extension of the shear band is accompanied by the continuous

decreasing of the pore pressure. The material with dilatancy equal to 0� experiences
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Figure 5.8: Obtained results of the pore pressure (in Pa) and equivalent plastic strain
at 25 s and 50 s of the square domain with  = 10�.
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Explicit scheme: 2e-2 m/s
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Rigid footing in a saturated square plate
Explicit scheme: 2e-2 m/s
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Figure 5.9: Obtained results of the pore pressure (in Pa) and equivalent plastic strain
at 25 s and 45 s of the square domain with  = 0�.

149

Φ = 20º
Ψ = -10º

Pw

εp

0.062 0.12 0.190 0.25
Ep

0.062 0.12 0.190 0.25
Ep

t = 25 s t = 45 s

52500 1.0e+5 1.6e+5-1.0e+04 2.0e+05
Pore Pressure (Pa)

52500 1.0e+5 1.6e+5-1.0e+04 2.0e+05
Pore Pressure (Pa)

Figure 5.10: Obtained results of the pore pressure (in Pa) and equivalent plastic
strain at 25 s and 45 s of the square domain with  = �10�.
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Rigid footing in a saturated square plate
Explicit scheme: 2e-2 m/s
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Figure 5.11: Evolution of the pore pressure along the time in the point P.
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Figure 5.13: Reaction forces of the soil for the di↵erent dilatancy angles.

a softer decreasing, in this case due to the dissipation of the pore pressure in the

permeable boundary, not because of the shear band. In addition, for zero and negative

dilatancy angles, increased pore pressure oscillation is seen and finally leads to an

instability in the last five seconds of the simulation. This is the reason why figures

5.9 and 5.10 are not depicted for 50 s, but for 45 s. The contractive behavior presents

soil failure around 15 seconds. Before that point the pore pressure increases in the

plastic zone; after that, the soil fails and there is no change of the plastic strain. This

failure is also reflected in the reaction of the soil against this load, Fig. 5.13.

From Fig. 5.13, we observe that the reaction force for negative dilatancy angles

presents a softening branch until the soil fails, i.e. when the reaction force approaches

zero. By contrast, positive dilatancy angles presents a hardening branch whereas zero

dilatancy angle shows a horizontal part with slightly increased oscillations.

5.3.2 Slow phenomena

In this case, the studied velocity is 5 mm/s over a duration of 200 s for the implicit

scheme. The distributions of the equivalent plastic strain and the pore pressure

at 200 s for four di↵erent dilatancy angles are depicted in Fig. 5.14 and Fig. 5.15

respectively. No significant variations of the equivalent plastic strain are perceived for

positive dilantancy angles (dilatant material), whereas large plastic strain is obtained
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Implicit scheme: 5 mm/s
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Figure 5.14: Equivalent plastic strain spatial distribution at the final of the simulation
for the four dilatancy angles.

for the negative one (contractive material). In addition, decreased shear band slopes

are observed for smaller dilatancy angles. From Fig. 5.15, the e↵ect of the plastic

dilatancy (contractancy) is evidenced by the negative (positive) pore pressure within

the shear band zone, meanwhile in the case of zero dilatancy angle no marked pore

pressure variation is observed within the shear band zone. Despite the coarse spatial

discretization excellent results can be observed, mainly in the shear band zone.

It is worth mentioning that with this slow velocity in the application of the loading

we are able to compare with the reference pseudo-static case presented by Sanavia

et al. [153] as the loading rate is similar. It has been considered the modeling of

this problem with the explicit solution as well. Although this is a problem more

appropriate to be solved with the implicit one, we aim to verify the performance of
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Rigid footing in a saturated square plate
Implicit scheme: 5 mm/s
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Figure 5.17: Pore pressure distribution (in Pa) below the cavitation value (98.99 kPa)
for dilatancy equal to 20� at the final of the simulation.

respectively. The evolution of the pore pressure shows an increase of when contractive

material is employed meanwhile a reduction occurs for positive dilatancy angles, as

expected. The higher plastic strain values for contractive materials is seen in Fig.

5.19. The evolution of the reaction forces against the footing (Fig. 5.20) also provides

interesting information. Once the material plastifies, the 0 dilatancy angle material

keeps the reaction constant, dilatant materials obtain a post-peak hardening while

the contractive material feels the loss of the resistance which can be interpreted as

the fracture of the soil.

The influence of the velocity of the loading can be seen by comparing the results

of both sections. In the quicker problem the dissipation is slower and a higher pore

pressure in the lower right corner is seen. In contrast, more negative values are seen

in the shear band, what leads to a lower plastic strain values around that zone. This

quicker reduction of the pore pressure with the higher loading rate is also observed in

Fig. 5.21, where both solutions are compared along the displacement of the footing.

The increase of the plastic strain due to the higher pore pressure is evident as well.
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Rigid footing in a saturated square plate
Implicit vs Explicit scheme: 5 mm/s
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Figure 5.15: Pore pressure distribution (in Pa) at the final of the simulation for the
four dilatancy angles.
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for the negative one (contractive material). In addition, decreased shear band slopes

are observed for smaller dilatancy angles. From Fig. 5.15, the e↵ect of the plastic

dilatancy (contractancy) is evidenced by the negative (positive) pore pressure within

the shear band zone, meanwhile in the case of zero dilatancy angle no marked pore

pressure variation is observed within the shear band zone. Despite the coarse spatial

discretization excellent results can be observed, mainly in the shear band zone.

It is worth mentioning that with this slow velocity in the application of the loading

we are able to compare with the reference pseudo-static case presented by Sanavia

et al. [153] as the loading rate is similar. It has been considered the modeling of

this problem with the explicit solution as well. Although this is a problem more

appropriate to be solved with the implicit one, we aim to verify the performance of
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Figure 5.16: Pore pressure (in Pa) and equivalent plastic strain at 100 s and 200 s of
the square domain for  = 20� carried out with the explicit scheme

the explicit methodology with this pseudo-static problem. The distribution of pore

pressure and equivalent plastic strain can be seen in Fig. 5.16 for the dilatancy angle

equal to 20� at two di↵erent times of the simulation, being also very similar to the

previous solutions with the implicit methodology as well as the reported by Sanavia

et al. [153].

Moreover, in the case of  = 20�, it can be noted in Fig. 5.17 that the negative wa-

ter pressure within the shear band is smaller than the cavitation pressure at ambient

temperature (-98986 Pa), indicating the occurrence of cavitation, as experimentally

observed in [120]. This phenomenon should be modeled by extending the formulation

of this research to unsaturated conditions and adding the water vapor phase, e.g. as

in [66].

In order to study the evolution of the principal results of the problem, the histories

of the pore pressure and equivalent plastic strain in a material point close to the

shear band (P, see Fig.5.6) have been extracted and depicted in Figs. 5.18 and 5.19
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for the negative one (contractive material). In addition, decreased shear band slopes

are observed for smaller dilatancy angles. From Fig. 5.15, the e↵ect of the plastic

dilatancy (contractancy) is evidenced by the negative (positive) pore pressure within

the shear band zone, meanwhile in the case of zero dilatancy angle no marked pore

pressure variation is observed within the shear band zone. Despite the coarse spatial

discretization excellent results can be observed, mainly in the shear band zone.

It is worth mentioning that with this slow velocity in the application of the loading

we are able to compare with the reference pseudo-static case presented by Sanavia

et al. [153] as the loading rate is similar. It has been considered the modeling of
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5.4 Application to a saturated embankment loaded

by a horizontal, harmonic, gravitational accel-

eration

As mentioned before, the main advantage of the u � w formulation in comparison

with the u� pw lie in its better suitability to accurately reproduce the soil behavior

when high frequency dynamic loadings are involved. In this section, we apply the de-

veloped implicit Lagrangian scheme to a realistic embankment loaded by a horizontal

sinusoidal acceleration, representing the action of an earthquake with an amplitude

of g/2, and a frequency of 1 Hz, i.e.

a =
g

2
sin(2⇡ft)

The geometry and material properties of the Drucker-Prager soil are given in Fig. 5.22.

The boundary conditions of the solid and fluid phases are also depicted in the figure,

where the foundation borders (�1,�2, and �3) are impermeable. Two dilatancy angles,

5� and �3�, are adopted for this study. Unlike the previous examples, the gravity

is necessarily considered here as initial stresses throughout the whose domain before

the earthquake occurs are required to start the time integration. Consequently, an

initial state was computed until an steady state of the pore pressure was achieved,

and after that, the dynamic acceleration was applied. The seismic load is applied for

a duration of 20 s (or until soil failure) as a gravitational acceleration to all the nodes

of the domain. Initial pore pressure conditions are hydrostatic, as shown in Fig.5.23.

The distributions of the equivalent plastic strain at di↵erent times are illustrated in

Fig. 5.24 and Fig. 5.25 for dilatancy angles of 5� and �3� respectively. Note that for

the former (dilantant soil), the maximum plastic strains are concentrated around the

area where the embankment intercepts the foundation, whereas global failure which

involves particularly the foundation is observed for the latter (contractive soil). In

addition, for the dilatancy angle of �3�, since soil breakage occurred around 12 s, no

further calculations were carried out.

In order to gain more insights into the failure process, three points located around

the expected failure zone are chosen (A, B and C), see Fig. 5.22. Besides the equiv-

alent plastic strain, the liquefaction ratio, ru, is also employed. It is defined as the

overpressure increment of water with respect to the initial pore pressure, normalized

by the the initial average e↵ective stress, p00, i.e.

ru =
pw � pw0

p
0
0

. (5.3)
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