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Samplers & Corers
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Sampling disturbance
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Motivation: sampling

Sampling can cause significant disturbance so
that the samples obtained do not truly reflect
the in situ state.

Soil sampler geometry and roughness plays a
prominent role in the disturbance of the soil.

It is believed that the vertical strain along the
symmetry axis is a good estimator of the
sample disturbance (Baligh et al, 1987).

The Strain Path Method (Baligh et al, 1987)
has been extensively used to simulate the
tube sampling process.

Very few numerical simulations have been
performed (Alonso & Onate, 1981; Budhu &
Wu, 1992).
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e The simulation is a complex task since it el —— :
IS a system full of nonlinearities: e 5 5
o Material ::E ::E
o Geometrical :Z;_ T __ ::f
o Contact (normal and tangent) = Tpaozgosg}?n BEEERFRR ST e N

e Additionally, the occurrence of an
Incompressible response of the medium
may pose additional numerical
difficulties.
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Particle finite element method (Onate et al, 2004, 2008)

e The nodes of the domain as treated as particles whose motion is tracked during the solution process

e The particles serves as nodes of a Finite Elemet mesh

o The FE mesh is periodically re-triangulated
o h-apdative methods are used:

m Insertion of nodes in regions with large plastic dissipation
m Remove of nodes due to local concentration of particles and in the elastic part of the

domain.

e The continuum is modelled using an Updated Lagrangrian formulation.
e Only low order elements are used. (Prone to volumetric locking)
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Balance equations

For the single-phase medium, the linear momentum balance equation may be written as:

(V.o +b=0  in, x(0,7)
u(X,t =0)=wug 1n £

lux,t)=u in I, x (0, T)
Ln-a:f in I7 x (0, T)

where o = o (F, V) isthe Cauchy stress tensor.

The balance of mass and linear momentum for a fluid-saturated porous media read using an
Updated Lagrangian form (with respect to the solid-phase) reads (Larsson & Larsson, 2002):

V.o+b=0 in £2; x (0,7)

—1
—Pw+V-v+V-vi=0 in 2, x (0,7)
Kaw

/ A/
where, according to the effective stress principle: @ = 0 -+ pwl =0 (F, V) + pwl

The principal assumptions are:
e Fluid-saturated porous media,
e Quasi-static,
e The solid phase is composed by incompressible particles whereas the liquid is almost
incompressible.



Numerical treatment

e Low order shape functions are used.
e Use of an Updated Lagrangian formulation.
e An implicit time integration algorithm,

e In the hidro-mechanical problem, (Solid skeleton) displacement and water pressure are the unknown
fields (u-p,, formulation),

p ("tlg) —n+1 gert P("Ho') + Q"1 p,, = £
1
Q- Au— —M: Ap,, — AtH "l p, = Atfre
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Constitutive frameworks

Explicit integration

Implicit integration

Hyper-elastic based
plasticity
F=Fe.Fp

This work

Simo (1998)

Simo & Hughes (1998)
Rouainia & Muir Wood
(2000)

Pérez-Foguet &
Armero (2002)

Mutliplicative split of
the deformation
gradient.

The formulation is
inherently frame
indifferent.

Hypo-elastic based
plasticity
d=de+dp

Bathe (1996)
Nazem et al (2006,
2009)

Simo & Hughes (1998)

Additive split of the
spatial rate of
deformation.

Use of an objective
stress rate.

Often found more
robust.

More laborious
algorithms.

Second order
convergence of the
global problem.
Lack of convergence
for complex plastic
models.



Constitutive equations
The local problem is given by (Simo, 1998).

(Strain decomposition: F = g—; = F°.FP?

Hyperelastic model: T=Jo=W(F°. F)
{ Yield surface: f(r, V) <0

Flow rule: P = A2CEY) where 1P = F¢.L" - (F°)~!
| Hardening law: V = V(F?.F?T)

Assuming an exponential variation of the deformation gradient, the following explicit expression is
obtained for the Elastic Left Cauchy Green tensor:

OG(T,h)
or

0G(T,h)

T
) v (0 222 )

¢ 1 =Fop - Fylexp (—/-\’r

where the Plastic multiplier may be approximated as:
af . mye -
Ay = & D¢ : VAu

H + % - De - —aGé:’h)

D : 0;:G ® Orv) : D . d
H+ 0 :De:0,G )

whereas the Elasto-Plastic matrix:

Lo =D°: d° = (De—

The general algorithm to integrate elasto-plastic relations is based on Sloan et al (2001).

Additionally, to reduce the computational cost and increase the computability an IMPLEX algorithm
(Oliver, 2008) is used.



Sloan et al (2001) algorithm

To overcome the shortcomings of explicit
integration algorithms, Sloan et al (2001)
algorithm is used:

e (Firstorder in time): Adaptive
substepping.

e (Violation of the yield surface): Drift
correction algorithm.

Algorithm 1: Stress integration with error control

Data: ¢, h,, fi*!

W =W, hy,)
T:::—l = I{;l:f.rrl-'-l ’ h.rr: ’ f.rlr:!-'-lT:I

I.II?.r' — I'II(szlr-.f-l-‘hﬂ)

if U < TOL then B

© — g+l qe | 41T
ti'J‘rt-f—l o f.l'[ b.rr f.rr
h.rt-f—l = h'.rr;
else

Flag, = (0" < —Tol; and " > Tol;) [}

Flag, = (% < T[J].L) .
if (Flag, or Flag,) then
Find a such that (W (b5, ), b)) =0

'.r:+r1-[i)rrf'.r!+rer
113

T T

where b}, = f
Set hpsa = hn
else .
‘ o =10
end
while o < 1 do
‘ Integrate elasto-plastic equations with substepping and error cont

end

Perform Drift Correction

end
Tn+l = I'I,[:b.rr:+lj
RESUIt: lFJ'r;[_f_l.-‘r!n+l.~"’_.r:+1




Implex (Oliver et al, 2008)

The extremely non-linear behaviour of complex Elasto-Plastic materials may lead to a lack of convergence
of the Global Problem.

Oliver et al (2008), developed the Implicit-Extrapolated scheme. Then the problem reads:

1. Solve the mechanical problem by using an extrapolated value of the plastic multiplier:

(V- Opnt1+ b=0
< where: ni1=0(Fni1,V,Av,)

b =F,-F, 1 -exp (Ay, 0,;G,) - b -exp (Ay, ,G,,) - F; T -Fl
\ L,7m=D¢:d

2. Evaluation, at each Gauss point, of the constitutive model with the standard integration method.
Af}/n—l—l — A")/n_|_1

In some cases (small strains, linear elasticity, von Mises yield criterion) the problem becomes step-
constant.

In a general problem, the number of required iterations to converge the Global problem is considerably
reduced (Oliver et al, 2008).



Hyperelastic Modified Cam Clay

(Hyperelasticity: 7/ = 7'1 + 74
(Houlsby, 1985) 7/ = —pgexp (
(Borja et al, 97) Ty = 2 (Gg + ar™ exp (
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Contact

To simplify the problem, the structure is considered rigid; this hypothesis holds
when the Young’s moduli ratio between the structure and the soil is large
(Wriggers, 2002). This way, the shape and movement of the structure is

defined beforehand.

Contact constraints are introduced into the solution with the Penalty method

(Wriggers, 2002):

'Y

The normal part reads:

On = €N g]:f

Ce

> / vw:adszn+]+] w-bdQi1+ [ wWetedD | +C.=0
Q;Ya.+1 QE.H Iy

:/c (w? —w') - (o, +t)dl

In the tangential part, an elasto-plastic analogy is used
(Wriggers, 2002). The yield surface depends on the
normal effective stress:

(gr =g°+g°

L,t=¢g°

Q fs(ton,90) = [t = Fo(on, 90) <O
=7 =1

(v =7

oI\
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Volumetric locking

Using FEM to describe incompressible materials may
cause numerical problems or lead to an erroneous
solution due to volumetric locking.

Pressure

This pathology is produced due to an
overconstrained solution.

Volumetric locking cause large oscillations at
the pressure field and overestimates the
reactions.

Locking is more pronounced in low order
elements.

Standard FEM Mixed U/P

Plastic strain

Only vertical
Triangle 1 T”"”“‘.‘”"B"‘
§-------------0 poSsible for
| no volume
'L change

| Only horizontal
{ movemant

| possible for
no volume

| change

Triangle 2

(Zienkiewicz et al, 2006)

Steel plate with a whole in at the center.
J2 plasticity with softening.

(Benedetti et
- al, 2015)

Standard FEM Mixed U/Pressure



Volumetric locking

In total stress analysis, volumetric locking arises from the elasto-plastic constitutive models (i.e.,
incompressible elastic model and isochoric flow rule).

There are two sources of volumetric locking at the coupled hydro-mechanical problem:

e Compressible constitutive equations are used for the solid skeleton.

o However, Critical state theory also predicts zero volume change at critical state (Sun et
al, 2013).

e The mixture behaves like an incompressible material in almost undrained conditions (i.e.
rapid application of loads with respect to the permeability).

Volumetric locking may be alleviated:

e Use of mixed stabilized formulations.
e For high-order elements:

o Use of admissible elements in mixed formulations.
o Use of smoothed volumetric strains.

o  Selective integration.



Mixed forms for the single phase problem

The three mixed formulations in strong form read:

u— p:

{V-Mw@j+ﬂ)+b—0
p—(51:0)=0

u— 6 —p, (Simo et al, 1985; Zienkiewicz et al 2006):

VV- ((dev(ﬁ') + %p]l) %) +b=0

1 J—60=0

P (51:6)=0 J = det(F)

- G=6(F.V)
V.+b=0 F=F'F’ = (07)(det(F) 7 F)




Mixed forms for the single phase problem

In order to alleviate volumetric locking, the Polynomial Pressure Projection (Bochev et al, 2008) is
applied to all scalar balance equations:

o s v
/ (g —4¢)—(p—p)dQy =0
Qe H

By using the PPP, a term proportional to the L2 norm of the difference of the approximation of the solution
in CO and the projection of the solution to a lower order shape functions is added to the residual.

Finally, the discrete FE equations read:

(P(dev(o))—kQ-I‘i:f@?t P(U)Z[Q B” .o d,
P M OdgMS > — fP o
JQ,
( 0 B - l
P(deV(OU')j)—FQﬁ:fewt M_.QtN 'NJth
0
as N ext __ ) T
u-J-p § (M + IMS)-ﬂzf‘?‘ f t—IQth bth+l£?Nf t dl
p
(M + Z2M#) - p = £2(5) €= [ N7 a0,
\ M Ja,
. 1 1
r’P(O\J‘) — fext (o) = Jo, NT(E]l:a)j dQ),
u-J < 052 ~ 0 . ] o
(M+?MS)-9:f M*= [ N'.N-d9,— | NT-N-do,
\ vy J Oy




Strip footing on clay

Weightless uniform Tresca soil:
E =100 kPa, S, =1 kPa, v=0.495; 1, = G/S, = 33

Total Vertical stress

16334
|0.688-45
+-1.2014
- -2.1463

'-3.0912

-4,0361
-4.981
-5.9259

-6.8709

Total mean stress

1

021179

-0.57643
+-1.3646

¢ -2.1529
-2.9411

-3.7293
-4.5175
-5.3057

-6.0939

-0.25646

5B
Fixed wuy

Fixed u

Fixed wuy,

oB

.

10B

Incremental plastic shear strain

0.01
l 0.0088889
0.0077778
- 0.0066667
- 0.0055556
0.0044444

0.0011111

0

0.0033333
I 0.0022222

1.9237
1.7167
1.5007
1.3028
1.0958
0.88884
0.68188
0.47491
0.26794
0.060976



u-p formulation

Total mean stress Incremental plastic shear strain

1 0.015
‘0009 aottee?
- -1.5333 -0.01

oo  Pyoom
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1
0.15555
Ppoy
-2.3778

M 32222

; SEf
Pl VAVAVAVA'= N

Eia Fans

e A i
- A R RS
NAVAY;

Total vertical stress



Case Formulation Mapping Initial Mesh Initial number of elements Final number of elements
PFEM_F_1 Displacement (u-only) Centroid Coarse 14,427 14,556

PFEM_F_2 Mixed stabilized (u-p) Centroid Coarse 14,427 14,601

PFEM_F_3 Mixed stabilized (u-p) Centroid X-Coarse 1669 4669

PFEM_F_4 Mixed stabilized (u-p) Least Square X-Coarse 1669 4977

PFEM_F_5 Mixed stabilized (u-p) Centroid Half X-Coarse 832 2551

12 . - ' -

Displacement based :
o formulation

—
o

Normalized resistance, q/S,

6 5
u-p formulation
4+ | PFEM_F_1 1
(¢) PFEM_F.2 --PFEM_F_2
2 —PFEM_F_3 |
-—-PFEM_F 4
« PFEM_F_5
0 I 1 ] 1
KIKSE 3 0 0.2 0.4 06 08 1
DANVAVAVAVAVAY VAV YR Normalized penetration, z/B
ANAVAVAVAVAV. <N VAVAVAV S VA VAV

(d) PFEM_F_4



(Kardani et al, 2014)

The same problem (considering the
symmetry of the solution) has been solved
by Kardani et al (2014) using EALE
(Efficient Arbitrary Lagrangian-Eulerian).

In their work, a displacement-based
formulation is used in conjunction of high
order elements.

Two FE meshes are used: 3700 nodes
(coarse) and 14600 nodes (fine).
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Strip footing on clay

12 12
“ 10} Displacement based 1 @10 ~v ]
=) /r formulation =)
) )
] - o e —
5 8 £ = 8
o) ; @ T
a Ny .
o ¢ lat s Increasing
SERVAY —PFEM 1] J-pformulation o, ~Kardani, 21-Fine | element
= --PFEM_F 2 - --Kardani, 15-Fine | order
E ol —PFEM_F_3 | é o - Kardani, 10-Fine
£ --PFEM_F 4 =) + Kardani. 6-Fine
- PFEM_F_5 ~ o Kardani, 6-Coarse
0 ' ' ' - 0 ' - ' -
0 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
Normalized penetration, z/B Normalized penetration, z/B
e Thanks to the use of a mixed-stabilized formulation and h-adaptive methods, a similar
accuracy is obtained with only 14% of DoF and GP.
Case Elements Interp. order Degrees of freedom Gauss points N¢
Initial Final Initial Final (z/B=1)
PFEM_F_5 3-noded triangle 1 1371 3978 832 2551 7.16
EALE-6-Coarse 6-noded 2 7442 7442 10,800 10,800 11.38
EALE-6-Fine 6-noded 2 29,282 29,282 43,200 43,200 9.99
EALE-10-Fine 10-noded 3 29,282 29,282 19,200 15,200 8.59
EALE-15-Fine 15-noded 4 29,282 29,7282 21,600 21,600 8.02
EALE-21-Fine 21-noded 5 29,282 29,282 18,432 18,432 6.73




Comparison of the mixed forms
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Origin of the oscillations

One of the causes of the sudden drops of
resistance in the load-displacement curves are
due to the insertion of new nodes in the contour.

e

inserted

Velocity contours at two consecutive time-
steps.



Comparison of the mixed forms

Normalized Resistence (¢/S,)
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= gg: Penetration (z/B)
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[t -5.16 _ _
5,93 The problem is recomputed using a much

higher Rigidiy index: I, = G/S, = 500.
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= 2f 120 127 1 angle are found using the u-p formulation.
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Mixed forms for the hydro-mechanical problem

e Compressible constitutive equations are used for the solid skeleton.
o However, Critical state theory also predicts zero volume change at critical state.

e The mixture behaves like an incompressible material in almost undrained conditions (i.e.
rapid application of loads with respect to the permeability).

e Low order elements tend to present highly oscillatory pressure fields.

To this end, the following stabilized mixed forms are used:

5 (V. (6 +pu1)+b=0 z [V (dev(e’) +p'1 +pu1)+b=0
S )J-6=0 )y —(:0) =
I 0 N T
> — P+ -+ V- -vi= 5 Pow+ V- v+ V.vi=0
. Fw 0 Raw
where:
o=0(F,V )
B = R = (03)(det(P) 3F) = (-2 )'F
~ - © ~ \ det(F)

A stabilization term, PPP, is added to the Jacobian and effective pressure equations; whereas the
mass conservation equation is stabilized by the Fluid Pressure Laplacian (FPL) technique.



Mixed forms for the hydro-mechanical problem

u-J-p,,
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Cone penetration test (CPT) )]

e The interpretation of CPT (obtain soil constitutive
parameters based on measured reactions) is still Friction |~ Cone
L sleeve penetrometer
based on empiricism.

e In the model, axisymmetric conditions are
Pore pressure

COﬂSIdered . filter location:
Uy ™

e K=107m/s: OCR =1.12 \/ | Cone |
RN

K A" a Go(kPa)  po(kPa)
0.016 0.1 235 400 10
peokPa) M alo(kPa) afo(kPa)  pyo(kPa)
70 1 57.5 28.9 80




Evolution of water
pressure and contact
stress at the interface for
a smooth case.

Water

pressure
70
Iaa.asg
107.78
12667
14556
N 16444
. 183.33
20222
221.11
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Mixed formulations

The performance of both formulations is compared.

Penetration, z/R

V-o+b=20

;mw+vwv+vw#:o

-15}

L, J—0=0

R—pw—i—v'v—l—v-vdzﬂ

Due to the stabilization of the mass conservation

equation, both formulations render smooth water
pressure profiles.

The mixed formulation renders smoother load-

displacement curve. In fact, the contact stress also
present a smoother profile

Penetration, z/R

-10+

15+

V(@ +pul)+b=0

—up, ——u-p

—u-J-p,, ——u-J-p

(a)

u'pw

1 1 ! _20
50 100 150 200 0

Net Cone Resistance, (kPa)

50
Water Pressure, (kPa)



_ Preconsolidation
Effective Pressure, p’ (kPa) Pressure, p, (kPa)
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Application example



Soil sampler

Sampling can cause significant disturbance so Several cases varying the ratio D/t; the contact
that the samples obtained do not truly reflect the roughness and the shape of the cutting edge has
in situ state. been performed.

Soil sampler geometry and roughness plays a In all cases the Rigidiy index, I, = G/S, =100; v =
prominent role in the disturbance of the soil. 0.49.

It is believed that the vertical strain along the The contact roughness is modelled as:
symmetry axis is a good estimator of the sample f(r)= 1-a$S,

disturbance.

2:0

(Hover et al, 2013)
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Roud-tipped soil sampler; D/t = 10

1 _ _
Vertical Almansi strain. € = B (]l ~F '.F 1)

Smooth interface Rough interface a = 0.5

Syy-ALMANSI_STRAIN_TENSOR
031316
027632
023947
0.20263
0.16579

- 012895

- 0092105
0.055263
0.018421
0.018421
0.055263
-0.092105
0.12895
0.16579
0.20263
0.23947
0.27632
0.31316

7
YAV AVAVAVAY

A AT
TN AN
1&"#}7"‘“ YA

o
=

Initial FE mesh: 2413 nodes and 4502 elements.
Final FE mesh: 13568 nodes and 26056 elements.



Round-tip soil sampler; D/t = 10

Smooth interface Rough interface a = 0.5

Radial velocity Incremental plastic shear strain Radial velocity

INCR_SHEAR_PLASTIC

loo1]
I 0.0094737 I 0.0084211

0.0089474 0.0068421
0.0084211 0.0052632
- 0.0078947 - 0.0036842
- 0.0073684 - 0.0021053
- 0.0068421 - 0.00052632
- 0.0063158 - -0.0010526
- 0.0057895 - -0.0026316
- 0.0052632 - -0.0042105
- 0.0047368 - -0.0057895
- 0.0042105 - -0.0073684
- 0.0036842 - -0.0089474
- 0.0031579 - -0.010526
0.0026316 -0.012105
0.0021053 -0.013684
0.0015789 -0.015263
0.0010526 -0.016842
0.00052632 -0.018421

0



Components of the Almansi
strain.
Smooth case, D/t = 10

1l o o
e_Q(]l F F ')

i Circumferential ) Shear

3
0.31316
027632
023947
020263
0.16579

- 0.12895

- 0.092105

- 0.055263
0.018421
-0.018421
-0.055263
-0.092105
-0.12895
-0.16579
-0.20263
-0.23947
-0.27632
-0.31316




Components of the Almansi
strain.

Rough case, D/t = 10

Vertical Radial Circumferential Shear

(1-F " F

[033]

0.31316
0.27632
0.23947
0.20263
016579




Centreline strain path

Soil element position, z/r

Smooth interface
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Specific recovery ratio / Incremental filling ratio

i 2

i &3 ®
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Gavin (2009)

L/H = TOTAL RECOVERY RATID

AL ABH = SPECIFIC RECOVERY RATIO

Hvorslev (1949)



Specific recovery ratio

The specific recovery ratio is defined as -1+ .
the ratio of increment of sample entering
the tube to the increment of tube 2 .
advance.

-8 1 Rough case i
D/t=10

_9 | | | | |
0 50 100 150 200 250 300

Recovery ratio, (%)




Total mean stress (kPa)

Smooth

Rough

STRESS_INV_P

274.74
269.47
264.21
258.95
253.68
- 248.42
- 243.16
- 237.89
232.63
227.37
22211
216.84
211.58
206.32
201.05
195.79
190.53
185.26

J2 (kPa)

Smooth

STRESS_IN
19.925
18.882
1784
16.797
15.755
14712

-13.669

-12.627

-11.584
10.541
9.4989
8.4563
74137
6.3711
5.3285
4.2859
3.2433
2.2007
1.1581
0.11548



Influence D/t, Smooth interface
D/t=10

Increasing the ratio D/t
decreases the amount
of vertical elongation
along the centreline.

Syy-ALMANSI_STRAIN_TENSOR

031316
027632
0.23947
0.20263
0.16579

- 0.12885

- 0.092105
0.055263
0.018421
-0.018421
-0.055263
-0.092105
-0.12895
-0.16579
-0.20263
-0.23947
-0.27632
-0.31316

| e |




Influence D/t, Smooth interface

Soil element position, z/r

D/t =10

o — 1
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Vertical unit elongation, ¢

Soil element position, z/r
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0

01 02 03 04
Vertical unit elongation, ¢

0.5

Increasing the ratio D/t decreases
the amount of vertical elongation
along the centreline.

For the case D/t=20 the same
failure mechanism is found.

Stress and strains follow the same
trend.



Hover et al (2013)

Small-scale physical modelling centreline strain path show a similar trend.
D/t=145

A

Soil element position, z/B

i

B 1 I
——1-33B
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2B
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—o— 2678
Baligh et al. (1987)
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Influence of the shape of the cutting shoe

D/t = 10; Smooth interface; edge tapper angle 20°

Components of the Almansi strain.

Vertical Radial Circumferential Incr Plastic Shear




Influence of the shape of the cutting shoe

Soil element position, z/r

-

iy

—
o

0.1 0.2 0.3
Vertical strain

Smooth interface

The cutting shoe and the roughness of the
contact has a large incidence on the
strains inside and outside the sampler
device.




Piston

—_—

e Another way to reduce the deformation of the sample is the P,
inclusion of a piston in the interior of the tube.

D/t = 20.0, Rough contact.

Components of the Almansi strain. Skinner & McCabe (2003)

Vertical Radial Circumferential Shear

Sxx-ALMANSI_STRAIN

Syy-ALMANSI_STRAIN_ Szz-ALMANSI_STRAII Sxy-ALM
o
0.044737 0089474 0044737 m
0.039474 0.078947 0.039474 0.
0.034211 0.068421 0.034211 0.
0.028947 0.057895 0.028847 0
0.023684 0.047368 0.023684 o

- 0.018421 © - 0.036842 - 0.018421 -
- 0.013158 - 0.026316 - 0.013158 0.
0.0078947 0.015789 0.0078947 o
0.0026316 0.0052632 0.0026316 Y
-0.0026316 -0.0052631 -0.0026318 0
-0.0078947 -0.015789 -0.0078947 0
-0.013158 -0.026316 -0.013158 0
-0.018421 -0.036842 -0.018421 0
-0.023684 0.047368 0.023684 o
-0.028947 0.057895 -0.028947 o
-0.034211 -0.068421 -0.034211 0
-0.039474 -0.078947 -0.039474 0
0.044737 0.089474 0.044737 o
E



Piston

Soil element position, z/r

Vertical strain

0.05

Baligh
—===1R
—===2 R
3R

The inclusion of a piston decreases
severely the vertical strains along the
centreline of the sample.

In fact, the maximum magnitude is
similar to that predicted by Baligh et al
(1987) by the Strain Path Method.



Conclusions

e A numerical framework for the analysis of saturated porous media undergoing
finite strains, based on PFEM, has been presented.

e Several mixed formulations for the single-phase mechanical problem and
coupled hydro-mechanical problem have been described.
o The benefits of the use of mixed-stabilized formulations has been shown in a total stress

analysis of a rigid footing in a Tresca soil and the most challenging hydro-mechanical
simulation of the CPT in a MCC soil.

e Preliminary results of the simulation of the soil sampling process have been
discussed.

e The developed scheme appears to be a promising tool for the simulation of
penetration problems in geotechnics.

Kratos Multiphysics
https://github.com/KratosMultiphysics
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G-PFEM: a Particle Finite Element Method platform
for geotechnical applications.
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