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Presentation Plan 

• Outline of the general mathematical model 
 

• Three applications of biological interest 
 

• Recent advances and perspectives 

Concrete at early age 

Tumor growth 

General conclusions 

• Outline of the general mathematical model 
 

• Relevant hydration-dependent constitutive relationships 
 

• Applications: massive structures and repairs 



Thin structures Massive structures 

TCM models 

…...... 
Other concrete 

structures 

HCM models 

Assumptions unidirectional coupling THC→M: 

• partial saturation 

• small displacements and small crack opening 
 

Peculiarities of the model 
 

• Effect of age on the desorption isotherm and 

Biot’s coefficient 

• Autogenous and drying shrinkage computed in 

a unified way 

• Mechanical damage coupled with creep 

• 3D implementation in Cast3M that simplifies 

model exploitation 

MECHANICAL part

Equation 9. 
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THC part

Equations 6, 7, 8. 
THC part 

Mechanical part 

THCM 

Background:  

Gawin D., Pesavento F., Schrefler B. (2006)  

Benboudjema F. and Torrenti J-M (2008) 



Concrete is treated as a porous solid and 

porosity is denoted by ε, so that the volume 

fraction occupied by the solid skeleton is 

εs=1- ε.  

The rest of the volume is occupied by the 

liquid water (εl); and the gaseous phase (εg).  

• Anhydrous cement: Cs 

• Aggregates: As 

• Hydrates: Hs 

1 Solid phase s:  

• Liquid water   1 Liquid phase l: 

• Water vapour: Wg 

• Dry air: Ag 
1 Gaseous phase g:  

The MULTIPHASE system 
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s HsrMass exchanges          and reaction terms 
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s Hsr hydration rate of the anhydrous cement 

chemically combined water and           vaporized water per second 
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M
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M


5 



 
  0

s s Hs
l Hs

s s Hs s s Hsr M
t

  
   


   


v

 
  0

s s As

s s As s

t

  
  


 


v

 
  0

s s Cs

s s Cs s s Hsr
t

  
   


  


v

  

  

  

Anhydrous cement: 

Aggregates: 

Hydration products: 
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Summing the previous three equations gives:  

Cement paste 
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Intra-phase exchange of mass 

Intra-phase exchange of mass 

Inter-phase  exchange of mass 

Mass balance equations: SOLID PHASE [ s ] 



Mass balance equations: LIQUID PHASE [ l ] 
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Vapour water: 

Dry air: 
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Summing the previous two 

equations gives:  
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Mass balance equations: GAZEOUS PHASE [ g ] 
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Governing equations 

Water (liquid + vapour): 

Dry air 

ENTHALPY BALANCE EQUATION: 

MASS BALANCE EQUATIONS: 

LINEAR MOMENTUM BALANCE EQUATION: 0
t t

  
   

  

t
g

Primary variables:  pg
      p

c
    T   u        Internal variables: Г  D 

 
2

0

g g Ag
g gW

gA g g Wgrel A W

g g

g

k M M p
p D

t M p

  
 



     
        

      

k

   
  2

g g Wgl l l g gW l Hs
l g c gW g g Wgrel rel A W

l g g

g

k k M M p
p p p D M

t t M p

   
  

 

       
              

         

k k

   
 

 effeff

dГ

d

l l ll Hs
l g crel

p hydr vap vap vap l

kT
C T L H H M H p p

t tt

 
 



  
         

   

k
χ



Arrhenius type law with the rate of hydration is a function of: 

• Hydration degree 

• relative humidity 

• temperature    
exp a

Γ h

EdΓ
A β

dt RT

 
  

 

with:     A(Г)     chemical affinity 

             β(h)       function of relative humidity [0 – 1] 

             Ea       activation energy 

Degree of reaction 

(hydration advancement)  

hydr

(t)

t hydr

m
Γ

m



With:               chemically combined water mass at time t 
 

                        chemically combined water mass at time t = ∞ 

hydr

tm )(

hydrm
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The hydration model 



T.C. Power model  (Enhanced by Jensen and Hansen to account silica fume, 2001) 

Hydration degree 

and LeChatelier contraction 

       w c w s

w c
p

w c s c   


     
1

1 c s

k
s c 


 

w, c and s are respectively the masses of water, cement and silica fume present in a cubic 

meter of concrete.  

   0,20 0,69 1csV k s c p         
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   1 1cV k p     

     1,43 1 1csV k s c p         

Cement paste 
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• Porosity function 

• Self-desiccation 

• Autogenous shrinkage 
obtained from stochiometry 

Volume fractions of phases during hydration 



Hydration-dependent desorption isotherm 

Г=0.8 

Pore radius 

V
o

lu
m
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Г=0.2 

r 

Experimental results for w/c impact Porosity evolution 

Baroghel-Bouny et al. (1999) 

Van Genuchten (readapted): 
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Parallelism Laplace’s equation 



Visco-elastic damageable model 

     cl st re hh 
    E E e et e e e

 1 D t t

Shrinkage computed 
consistently with the effective 
stress principle of porous 
media mechanics. 

      is the effective stress 
(in the sense of damage 
mechanics): 

t
t t

sp sp

creele



Anhydrous grain 

Hydration 

shell 

Cement Paste

Capillary pore

pl
pg

Hydrated grain 

s g g l l g l cp S p S p p S p   

Solid pressure 

𝐭𝒆𝒇𝒇 = 𝐭 + 𝟏𝜶𝒑𝒔 

Effective stress  
in the sense of porous media mechanics 

Biot’s coefficient       

𝛼 = 1 − 𝐾𝑇 𝐾𝑆  
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*This law is used for Young’s modulus, tensile strength and 

fracture energy. 

 ( a )  ( b ) 

Mechanical properties vs hydration degree 
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The damage model 
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Max crack width: 

(a): 118 μm 

(b): 125 μm 

(c): 127 μm 

The damage model 

Four points bending test 

(a) (b) 

(c) 



RG8: Large specimen with restrained shrinkage 

 
DESCRIPTION OF THE TEST 

The longitudinal strains of the structure are globally 
restrained by two struts. 
 
-During the first 2 days after the cast, the structure is 
isolated. 
 
  

-Then the isolation and the formwork are removed 
and the structure is conserved during 2 months in 
the environment 
 
 

-Therefore after this two months, the structure is 
submitted to a static bending test.  

*ConCrack (2011) is an international benchmark for Control of Cracking in reinforced concrete structures.  

This benchmark is part of the national French project CEOS (Comportement et Evaluation des Ouvrages Speciaux vis-à-vis de la 

fissuration et du retrait) dedicated to the analysis of the behaviour of special construction works concerning cracking and shrinkage. 17 

ConCrack Benchmark* 

http://www.ceosfr.org/


From the left to the right: image of the structure, finite element mesh of the concrete and of the reinforcement 
bars (a). Adiabatic calorimetry test (b). Evolution of the Young’s modulus with time (c). Autogenous (d) and total 
(e) shrinkage tests. Loss of mass test (f). Loss of mass versus drying shrinkage (g). 

ConCrack Benchmark 
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Building 

(a) 
(b) 

(c) 

(a) Specimen orientation;  

(b) Temperature 2,25 days after the cast 

(afternoon);  

(c) Experimental and numerical results for 

the temperature in the central point of 

the beam. 

TEMPERATURE 

SOLAR RADIATION 
CONSIDERED 
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ConCrack Benchmark: THC results 



60 days Four point bending test 

Damage Cracks pattern 
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ConCrack Benchmark: MEC results 



Three identical reinforced beams* are considered. Two of these beams, after the 

hydrodemolition of 30 mm of the upper part, had been repaired: one using the ordinary 

concrete (OC) and the other using the ultra-high performance fiber reinforced concrete 

(UHPC). The third beam is the reference specimen.  

 
 

*These repaired beams are real cases analyzed experimentally by Bastien Masse (2010). 21 

Modeling of a repaired beam 
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Time [days] 

Cast of the 3 beams 

-30 0 120 

REPAIR 3 points bending test 

hydration 

hydration 

hydration 

dΓ
=0

dt

dΓ
=0

dt

hydration 

hydration 

Γ 1

Γ 1

Γ 1

Reference 

OC repaired 

UHPC repaired 

a) Repair cured until 90 hours 

b) Gravity taken into account 

Modeling of a repaired beam 
ADOPTED APPROACH 
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Modeling of a repaired beam 
RELATIVE HUMIDITY AND SATURATION DEGREE 



Depl. Imp. = 15 mm 

(a) Beam repaired using the UHPC. Only some racks are traversing 

(b) Force versus averaged strain of 

the compressed fiber optic sensor. 
 

(c) Force versus displacement 

curves (numerical results). 

Experimental crack pattern 

(a) 

3-points bending test 

Vertical displacement of the middle points of 

the three beams (point D).  
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STAGES OF TUMOR GROWTH 

time 

        Avascular                    Vascular                    Metastatic 

O2 

O2 

O2 

TCs releases AF: 

angiogenesis 



4 PHASES ARE CONSIDERED 
 

The system consists of the extra-cellular matrix, ECM, modeled as a 

solid phase, and three immiscible fluid phases: the tumor cell population 

TC, the host cell population HC, and the interstitial fluid IF. 

Extracellular matrix (ECM)

Living tumor cell (LTC)

Necrotic tumor cell (NTC)

Healthy cells (HC)

Interstitial fluid (IF)

Nutrient, Cytokine, … 

Figure 1 - The multi-phase system within a representative elementary volume (REV) which must contain all phases

The MULTI-PHASE system  
FOR AVASCULAR TUMOR GROWTH 
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Surface tension of cell 

aggregates varies between 

1x10-3 and 22x10-3 N/m 
 

Ambrosi et al. 2012 

 

Surface tension  

of water 72x10-3 N/m 

 

 

We model IF, HC and TC as fluids: 3-phase flow with interfacial properties  
Diffuse interface model: interfaces are present throughout the domain 

The MULTI-PHASE system  
FOR AVASCULAR TUMOR GROWTH 

Cell migration in a 3D extracellular matrix 
Gabriel G. Martins and John Kolega (2006) 



Volume fractions 

1s h t l      

Extra-cellular matrix Interstitial fluid 

Host cells  

Volume fractions occupied by the different phases: 

Tumor cells  
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Model derivation and its solution 

• Mass balance equations of phases and species; 

• Linear momentum balance equations of phases; 

• Constitutive relationships to close the model; 

• Numerical solution and computational strategy. 



M
 

s HsrMass exchanges          and reaction terms 

Co-opted blood vessels considered 

via boundary conditions 
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Mass balance eqs of phases and species 

Summing over all species gives  
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Summing over all species gives  
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Summing these two eqs gives  

Mass balance eqs of phases and species 
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Mass balance eqs of phases and species 
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Mass balance eqs of phases and species 



Each of the three fluids of the multiphase system has its specific pressure, 

pα, so a pressure difference exists between any pair of fluid phases:  

Fluid phases configuration and 

flows of cells within ECM micro-

channels (a).  

Pressure difference - saturation 

relationships (b, c) 
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Interfacial tensions appear 

explicitly 

Pressure saturation relationships 
 

Interfaces are capable to sustain a pressure difference 



Final system of eqs 
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Mass balance eqn HC 

 

 

 

 

Mass balance eqn  

(TC + HC + IF) 

hlp

 Primary variables 
lp nl
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Mass balance eqn OXYGEN 

Linear momentum balance eqn ECM (rate form) 



MODULEs 1 & 2 

Phases saturation and 
interstitial fluid pressure 

and nutrient mass fraction 

pth phl pl  wNl 

MODULE 3 

Displacement 
vector 

us 

Residuals controls 

Global convergence 
check 

Yes 

No 

Next step 

Staggered 

procedure 

 
 
 

2

t

h


LOWER LIMIT FOR: 

TURSKA ET AL, 1994,   
MURTHY ET AL, 1989,  

RANK ET AL, 1984. 
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Numerical solution 
Computational procedure 

hlp

 Primary variables 
lp nl

thp su
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The evolution of a multicellular tumor spheroid (MTS) in a quiescent, cell 

culture medium is modelled. 
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Type: Imposed values 

Type: Imposed fluxes 

Due to the symmetry of the problem there 

are no normal fluxes. 
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Initial conditions: 

CASE 1: MTS IN VITRO 

Boundary 1 

Boundary 2 ECM and IF 

ECM 

IF  

and TC 



Living tumor cells (LTC) and necrotic 

tumor cells (NTC) at 360 hours. 

Numerical prediction of the volume fraction of the 

tumor cells (total and living volume fractions) 

during 360h (a); mass fraction of oxygen (b). 

Optical Imaging of Prostate Tumor in Rat Model: the 

Fluorescent near-infrared probe (PSS-794) targets the 

necrotic core of the tumor 

Bradley D. Smith et al. 

(a) 

(b) 
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CASE 1: MTS IN VITRO 



CASE 2: MTS IN VIVO 



CASE 2: MTS IN VIVO 

TC-HC interfacial tension has a 

relevant impact on growth and 

invasion! 
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Figure 17 – Geometry and boundary conditions of the third case
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Figure 18 – Initial conditions of the third case. In yellow are represented the axes of the two capillary vessels.

168
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hours

(a)

(b)

(c)

(a) Initial conditions of the third case. Yellow shows the axes of the two capillary vessel 

(b) Geometry and boundary conditions.  

Two blood vessels are considered with the tumor present initially only in one vessel. 

In a first numerical simulation (S1) the distance between the two vessels is 80 

μm, in a second one (S2) the distance is 100 μm 
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CASE 3: TUMOR CORDS 



Case 3-S1: Tumor growth from 0 to 20 days 

S1 

CASE 3: TUMOR CORDS 

Two blood vessels are considered with the tumor present initially only in one vessel. 

In a first numerical simulation (S1) the distance between the two vessels is 80 

μm, in a second one (S2) the distance is 100 μm 



    

Volume fractions of the living tumor cells (first column) of the healthy cells (second column) and mass fraction of 

oxygen (third column) for the case S1.  
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Figure 18 – Initial conditions of the third case. In yellow are represented the axes of the two capillary vessels.
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CASE 3: TUMOR CORDS 

Two blood vessels are considered with the tumor present initially only in one vessel. 

In a first numerical simulation (S1) the distance between the two vessels is 80 

μm, in a second one (S2) the distance is 100 μm 



Recently the assumption of a rigid scaffold has been relaxed and the impact 

of ECM deformability can be now properly taken into account  

CASE 4: GROWTH OF MELANOMA 



CASE 4: GROWTH OF MELANOMA 



CASE 4: GROWTH OF MELANOMA 

Chung LS, Man YG, Lupton GP (2010) 



49 

Presentation Plan 

• Outline of the general mathematical model 
 

• Three applications of biological interest 
 

• Recent advances and perspectives 

Concrete at early age 

Tumor growth 

General conclusions 



THCM model young concrete 
 
Conclusions 
 

• The model, even if sophisticated, is 

reasonably exploitable for real life cases. 
 

• Going from the material scale to the 

structural one an agreement between the 

numerical and experimental results is 
achieved qualitatively and quantitatively.  

 
Perspectives 
 

• The creep rheological model must be 

enhanced to take into account concrete 

age (long-term creep).  
 

•  Numerical results of the hydration 

dependent damage model must be 

confirmed by experiments, which are 

currently under design. 

Tumor growth model 
 
Conclusions 
 

• A multiphase model for tumor growth in the 

avascular stage has been developed.  
 

• Diffuse interfaces are considered with 

pressure differences between the three 

fluids; 
 

• The computational procedure has a 

modular structure which allows to add new 

building blocks if needed (ci, vasculature, T, 

pH…); 

 
Perspectives 
 

• Modeling of angiogenesis and introduction 

of vasculature, drugs delivery. 
 

• Extensive validation with experiments. 

Thank you for your attention! 


