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Editorial

The ALERT Doctoral School (European Graduate School) in 2014 is organized by
Michael A. Hicks and Cristina Jommi from the TU Delft. With the topic Stochas-
tic Analysis and Inverse Modelling they have chosen a subject which is without any
doubts important but at the same time somehow feared. We know that the ground
properties and behaviour are hardly deterministic and in many cases we miss im-
portant parameters which can be obtained only by inverse analysis. Still, only in
relatively rare occasions we involve appropriate stochastic and inverse techniques. I
hope that this school book can change the attitude of the doctoral students attending
the school and of those who will read the book afterwards. As usual, the pdf file
of the book can be downloaded for free from the website of ALERT Geomaterials –
http://alertgeomaterials.eu.

On behalf of the ALERT Board of Directors and of all the members of ALERT, I
wish you a successful ALERT Doctoral School 2014. I highly appreciate the commit-
ment of the school organizers and contributors of this printed volume and wish them
a fruitful event in the Paul Langevin Centre in Aussois.

Ivo Herle
Director of ALERT Geomaterials
Technische Universität Dresden
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_____________________________________________________________________________________ 

Stochastic Analysis and Inverse Modelling: 
Foreword 

____________________________________________________________________ 
 
 
This book contains a collection of notes to accompany the lectures of the 2014 
ALERT Geomaterials Doctoral School on “Stochastic Analysis and Inverse Model-
ling”. The School has been organized by Michael Hicks and Cristina Jommi (Delft 
University of Technology), who gratefully acknowledge the hard work of all con-
tributors. The book contains 11 chapters. 
 
Chapter 1 has been written by Gordon Fenton, and contains a review of the basics 
of probability theory. This includes the theory of random variables, their main char-
acteristics, the effects of dependencies between random variables, and the most 
common  discrete and  continuous distributions. Chapters 2-4 have been written by 
Abed Soubra and Emilio Bastidas. They cover functions of random variables, as 
well as reliability analysis methods for providing a framework to account for uncer-
tainties in engineering design. These include the First Order and Second Order 
Reliability Methods, as well as more advanced methods. There then follow a series 
of chapters focussing on matters relating to the spatial variation of geotechnical 
properties. Chapters 5-7 have been written by Gordon Fenton and cover random 
fields, best linear unbiased estimation, and methods of simulating ground property 
random fields. These are followed by Chapter 8, written by Michael Hicks, focussing 
on the application of the Random Finite Element Method for assessing the influence 
of soil heterogeneity on soil behaviour and geotechnical performance. The final 3 
chapters are devoted to inverse modelling. Chapter 9 has been written by Alberto 
Ledesma and describes the use of a Maximum Likelihood approach for back-
analysing geotechnical model parameters from field measurements. Chapter 10 has 
been written by Michele Calvello and includes the use of inverse modelling for pa-
rameter estimation, physical modelling, and field monitoring and construction. 
Finally, Chapter 11 introduces sequential data assimilation and filtering for time-
dependent problems and has been written by Cristina Jommi and Patrick Arnold. 
 
We hope that students and researchers will find this collection of notes a useful 
source of information, both in complementing the lectures of the Doctoral School 
and as a future source of reference. 
 

Michael HICKS 
Cristina JOMMI
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Review of Probability Theory

Gordon A. Fenton

Dalhousie University, Canada

Regulatory bodies are increasingly asking geotechnical engineers to provide rational
risk assessments to accompany their designs. In order to provide these assessments,
geotechnical engineers need a good understanding of both basic probability theory
and the more sophisticated, but realistic, random field soil models. This chapter lays
the groundwork for this understanding. Starting with the basics of probability, the
reader is lead through the theory of random variables, their main characteristics,
the effect of dependencies between random variables, and finally reviews the most
common discrete and continuous distributions, including extreme value distributions.

1 Basic Probability Concepts

Games of chance played an important role in the development of probability theory.
The great gambling houses of Europe frequently hired mathematicians to help improve
their own odds over the last 600 years. The mathematical theory of probability was
started by Pascal and Fermat, who were French mathematicians of the 1600’s, spurred
in large part by financing from the gambling house owners.

Although the term probability is commonplace today, its exact definition is still a
highly controversial subject. There are three ‘accepted’ interpretations;

1. equilikely interpretation - that all outcomes are equally likely

2. frequency interpretation - that probability is proportional to the frequency of
occurrence,

3. subjective interpretation - that probability is derived from experience

The equilikely interpretation is the simplest, although some people argue that random-
ness can be characterized by the equilikely interpretation only if the ‘correct’ set of
outcomes can be defined. However, if an experiment can result in any one of N dif-
ferent but equally likely outcomes, and if exactly m of these outcomes correspond to
the event A, then the probability of event A is m/N under this interpretation.
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The frequency interpretation is probably the most powerful and commonly used inter-
pretation of probability. It allows the estimation of probability by counting the number
of occurrences of a particular event of interest and dividing by the total number of oc-
currences possible. For example, if an experiment has two possible outcomes, A and
B, and out of 80 experiments, event A occurred 20 times, then we say that the proba-
bility of the event A is (at least approximately) 20/80.

Finally, subjective interpretations are often extremely valuable, especially in geotech-
nical engineering, since years of experience can rarely be captured by a mathematical
model... In fact there are those that argue that most engineering probability estimates
are subjective. They are probably right in that most engineering situations do not allow
a very large number of experiments to assess probabilities according to the frequency
interpretation. Often it boils down to an expert’s opinion regarding the basic event
probabilities, usually derived from years of experience with similar events.

2 Mathematics of Probability

Definition of Probability:

The probability of an event A, denoted by P
[
A
]
, is a number which satisfies

axioms 1 and 2 listed next. More generally, the probabilities associated with any
set of disjoint events A1, A2, . . ., where each Ai ∈ S, are numbers which satisfy
axioms 1, 2, and 3.

Three Axioms (fundamental assumptions)

1. for any event A, P
[
A
]
≥ 0

2. a certain event has probability 1: P
[
S
]
= 1

3. for any sequence of disjoint events, A1, A2, . . .,

P
[
A1 ∪ A2 ∪ · · ·

]
= P

[
A1

]
+ P

[
A2

]
+ . . . (1)

From these three fundamental assumptions, all probability theory is constructed!

Important Results:

a) P
[
φ
]
= 0

b) if A1 and A2 are disjoint then

P
[
A1 ∪ A2

]
= P

[
A1

]
+ P

[
A2

]
(addition rule) (2)

and similarly for any finite number of disjoint events.

c) P
[
A ∪ Ac

]
= P

[
A
]
+ P

[
Ac

]
since A and Ac are disjoint events. Furthermore

P
[
A ∪ Ac

]
= P

[
S
]
= 1 → P

[
Ac

]
= 1− P

[
A
]

(3)
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d) 0 ≤ P
[
a
]
≤ 1

e) if a ⊂ b then P
[
a
]
≤ P

[
b
]

f) for any two events a and b,

P
[
A ∪ B

]
= P

[
A
]
+ P

[
B
]
− P

[
A ∩ B

]
(4)

g) similarly for any three events A, B, and C,

P
[
A ∪ B ∪ C

]
= P

[
A
]
+ P

[
B
]
+ P

[
C
]
− P

[
A ∩ B

]

− P
[
A ∩ C

]
− P

[
B ∩ C

]
+ P

[
A ∩ B ∩ C

]
(5)

2.1 Conditional Probability

The probability of an event is often affected by the occurrence of other events and/or
the knowledge of information relevant to the event. Given two events A1 and A2

resulting from an experiment, the conditional probability of A1 occurring given that
we know A2 has occurred is denoted as P

[
A1 |A2

]
. Note that the vertical bar, | ,

means ‘given that’.

The conditional probability can be interpreted graphically using a Venn diagram. If
we know A2 has occurred, then the outcome must lie somewhere in A2. That is,

- The ‘new’ sample space is A2

- The probability that the outcome lies in A1 ∩ A2 is just the area of A1 ∩ A2 divided
by the new sample space area A2, ie

P
[
A1 |A2

]
=

P
[
A1 ∩ A2

]

P
[
A2

] (6)

This leads to the multiplication rule:

P
[
A1 ∩ A2

]
= P

[
A1 |A2

]
· P

[
A2

]
= P

[
A2 |A1

]
· P

[
A1

]
(7)

Note that the addition rule can be applied conditionally, ie

P
[
A1 ∪ A2 |E

]
= P

[
A1 |E

]
+ P

[
A2 |E

]
− P

[
A1 ∩ A2 |E

]
(8)

where P
[
A1 ∩ A2 |E

]
= P

[
A1 |A2 ∩ E

]
· P

[
A2 |E

]
.

More generally, all probabilities are conditional probabilities. It’s just that we don’t
usually express the more obvious ones. For example, if I compute the probability
that a stock market price will fall below $3.50, the resulting probability is implicitly
conditional on a variety of things which (usually) have probability 1.0; for example,
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the computed estimate will be conditional on the fact that we have developed the
concept of money, that a stock market exists, that the world has not been destroyed
by a supernova, etc. The point is that any of the probability relationships developed
above and below have the same form regardless of the number of conditional events
appearing to the right of the | sign. For example, the relationship

P
[
A ∪ B

]
= P

[
A
]
+ P

[
B
]
− P

[
A ∩ B

]
(9)

is still valid if we add any number of conditional events, as in

P
[
A ∪ B |C ∩ D

]
= P

[
A |C ∩ D

]
+P

[
B |C ∩ D

]
−P

[
A ∩ B |C ∩ D

]
(10)

That is, every term just has the conditions added to it.

Note that conditional events do not obey the rules of probability. Conditional events
are assumed to have occurred – they are non-random. For example, it is a mistake
to assume that P

[
A |B ∪ C

]
= P

[
A |B

]
+ P

[
A |C

]
− P

[
A |B ∩ C

]
. If you do

need to break the event B ∪ C up in some way, you need to first turn it around. For
example, Bayes’ Theorem allows us to write

P
[
A |B ∪ C

]
=

P
[
B ∪ C |A

]
P
[
A
]

P
[
B ∪ C

] (11)

where now we can write

P
[
B ∪ C

]
= P

[
B
]
+ P

[
C
]
− P

[
B ∩ C

]
(12)

and
P
[
B ∪ C |A

]
= P

[
B |A

]
+ P

[
C |A

]
− P

[
B ∩ C |A

]
(13)

2.2 Statistical Independence

If the occurrence (or non-occurrence) of one event does not affect the probability of
another event, then the two events are called statistically independent (this is not the
same as disjoint!). For example if event A1 is independent of event A2 then

P
[
A1 |A2

]
= P

[
A1

]

P
[
A2 |A1

]
= P

[
A2

]
(14)

so that P
[
A1 ∩ A2

]
= P

[
A1 |A2

]
· P

[
A2

]
= P

[
A1

]
· P

[
A2

]

Similarly for three mutually statistically independent events we can write

P
[
A1 ∩ A2 ∩ A3

]
= P

[
A1 |A2 ∩ A3

]
· P

[
A2 ∩ A3

]

= P
[
A1 |A2 ∩ A3

]
· P

[
A2 |A3

]
· P

[
A3

]

= P
[
A1

]
· P

[
A2

]
· P

[
A3

]
(15)
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since we must have P
[
A1 |A2 ∩ A3

]
= P

[
A1

]
and P

[
A2 |A3

]
= P

[
A2

]
if A1, A2,

and A3 are statistically independent.

Note that A1, A2, and A3 may be pairwise independent and yet not mutually indepen-
dent (in which case P

[
A1 |A2 ∩ A3

]
6= P

[
A1

]
even though P

[
Ai |Aj

]
= P

[
Ai

]
for

all i 6= j).

2.3 Total Probability and Event Trees

Sometimes the probability of an event E cannot be determined directly, its probability
being given in terms of the occurrence of other events.

If A1, A2, . . . , An form a partition of the sample space S (ie. are mutually exclusive
and collectively exhaustive), then we can express the probability of E as a sum of
conditional probabilities;

P
[
E
]
= P

[
E ∩ S

]
= P

[
E ∩ (A1 ∪ A2 ∪ · · · ∪ An)

]

= P
[
(E ∩ A1) ∪ (E ∩ A2) ∪ · · · ∪ (E ∩ An)

]

= P
[
E ∩ A1

]
+ P

[
E ∩ A2

]
+ · · ·+ P

[
E ∩ An

]
(16)

To obtain the last line, we note that because A1, A2, . . . , An are disjoint, the events
(E ∩ A1), (E ∩ A2), . . . , (E ∩ An) must also be disjoint, so that the probability can
be written as a simple sum.

Now since P
[
E ∩ Ai

]
= P

[
E |Ai

]
· P

[
Ai

]
, this can be written in the form

P
[
E
]
= P

[
E |A1

]
P
[
A1

]
+ P

[
E |A2

]
P
[
A2

]
+ · · ·P

[
E |An

]
P
[
An

]
(17)

which is the Total Probability Theorem.

We can illustrate this Theorem through the following example.

A company manufactures network cards of which 50% are produced at plant A, 30%
at plant B, and 20% at plant C. It is known that 1% of plant A’s, 2% of plant B’s,
and 3% of plant C’s output are defective. What is the probability that a network card
chosen at random will be defective?

Solution:
Let A be the event that the network card was produced at plant A.
Let B be the event that the network card was produced at plant B.
Let C be the event that the network card was produced at plant C.
Let D be the event that the network card is defective.

Given:

P
[
A
]
= 0.50, P

[
B
]
= 0.30, P

[
C
]
= 0.20,

P
[
D|A

]
= 0.01, P

[
D|B

]
= 0.02, P

[
D|C

]
= 0.03.
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We are looking for: P
[
D
]
.

Two possible approaches:

Approach 1
A Venn diagram of the sample space appears as follows,

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

A B C

D

The information given in the problem is not easily portrayed in a Venn diagram. How-
ever, the event of interest has been shaded in the diagram, and P

[
D
]

can be computed
as follows,

P
[
D
]
= P

[
(A ∩D) ∪ (B ∩D) ∪ (C ∩D)

]

= P
[
A ∩D

]
+ P

[
B ∩D

]
+ P

[
C ∩D

]

since A ∩D, B ∩D, and C ∩D are mutually exclusive

= P
[
D|A

]
P
[
A
]
+ P

[
D|B

]
P
[
B
]
+ P

[
D|C

]
P
[
C
]

= 0.01(0.5) + 0.02(0.3) + 0.03(0.2)

= 0.017 (18)

Approach 2
When we have only unconditional probabilities like P

[
A
]
, P

[
B
]
, . . ., etc., it is rela-

tively easy to draw these probabilities on a Venn diagram. However, since conditional
probabilities are ratios of the areas in the diagram, they are less easily seen. Con-
ditional probabilities find a more natural home in event trees. Event trees must be
constructed carefully according to certain rules. The basic idea is that there is a start-
ing node from which two or more branches leave. At the end of each of these branches
there is another node from which more branches may leave (and go to more separate
nodes). The idea is repeated from each node as often as required to completely depict
all possibilities. For any node other than the starting node, the branches leaving the
node will hold conditional events. That is, each of these branches can only be arrived
at by traversing the branches leading to it. Probabilistically, this means that the event
associated with a branch is conditional on the the events of the branches leading up to
it having taken place. Normally, the event tree is labeled with both the events and their
conditional probabilities. In fact, an event tree is of limited use if the probabilities are
not labeled on all branches.
In addition, the branches leading from any node must form a partition of the sample
space – the sum of probabilities of all branches leaving any node must be 1.0.
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Finally, you can only be on one branch at a time (which is really a restatement of the
partition requirement). If you have drawn an event tree and realize that one or more
of your possible outcomes has you on more than one branch at the same time, then
your tree is wrong. In this sense, it sometimes does help to draw a Venn diagram first
(corresponding to a particular node) – there should be one branch leaving the node
for each separate area on the Venn diagram. For example, a Venn diagram with two
overlapping circles corresponding to events A and B would have four branches, one
for each of (A ∩ B), (Ac ∩ B), (A ∩ Bc) and (Ac ∩ Bc).

Consider the question on the network cards: The network cards must first be made at
a plant, then depending on where they were made, they could be defective or not. The
event tree for this problem is as follows

D C

D C

D C

.5
.3

.2

.01

.99

.02

.98

.97
.03

A

B

C

D

D

D

Note that there are six ‘paths’ on the tree. When a network card is selected at random,
exactly one of these paths will have been followed. Recall that interest is in finding
P
[
D
]
. The event D will have occurred if either the 1st, 3rd, or 5th path was followed.

That is, the probability that the 1st, 3rd, or 5th path was followed is sought. If the first
path is followed, then the event A ∩ D has occurred. The probability that the 1st path
was followed is P

[
A ∩ D

]
= P

[
D|A

]
P
[
A
]
= 0.01(0.5) = 0.005. Looking back at

the calculation performed in Approach 1, P
[
D
]

was computed as

P
[
D
]
= P

[
D|A

]
P
[
A
]
+ P

[
D|B

]
P
[
B
]
+ P

[
D|C

]
P
[
C
]

= 0.01(0.5) + 0.02(0.3) + 0.03(0.2)

= 0.017 (19)

which, in terms of the event tree, is just the sum of the paths that lead to the outcome
that you desire, D. Event trees make ‘total probability’ problems much simpler. They
give a ‘picture’ of what is going on, and allow the computation of some of the desired
probabilities directly.
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2.4 Bayes’ Theorem

Suppose we want to go the other way, that is, given that event E occurred, what is the
probability that event Ai occurred?

We had

P
[
E
]
= P

[
E |A1

]
P
[
A1

]
+ P

[
E |A2

]
P
[
A2

]
+ · · ·P

[
E |An

]
P
[
An

]
(20)

and we want P
[
Ai |E

]
.

Now we know that P
[
Ai ∩ E

]
= P

[
E ∩ Ai

]
so that

P
[
Ai |E

]
P
[
E
]
= P

[
E |Ai

]
P
[
Ai

]
which we can solve for P

[
Ai |E

]
,

P
[
Ai |E

]
=

P
[
E |Ai

]
P
[
Ai

]

P
[
E
] (21)

or, since we know P
[
E
]
,

P
[
Ai |E

]
=

P
[
E |Ai

]
P
[
Ai

]

P
[
E |A1

]
P
[
A1

]
+ · · ·+ P

[
E |An

]
P
[
An

]

=
P
[
E |Ai

]
P
[
Ai

]
∑n

j=1 P
[
E |Aj

]
P
[
Aj

] (22)

which is Bayes’ Theorem.

Return to the manufacturer of network cards from above. If a network card is selected
at random and found to be defective, what is the probability that it came from plant
A?

Set-up: Same as before, except now the probability of interest is P
[
A|D

]
.

Two possible approaches:

Approach 1
Recall that P

[
A|D

]
=

P
[
A∩D

]

P
[
D
] . The relevant quantities are depicted in the following

Venn diagram.

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

A B C

D
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where P
[
A|D

]
can be computed as follows:

P
[
A|D

]
=

P
[
A ∩D

]

P
[
D
]

=
P
[
A ∩D

]

P
[
(A ∩D) ∪ (B ∩D) ∪ (C ∩D)

]

=
P
[
A ∩D

]

P
[
A ∩D

]
+ P

[
B ∩D

]
+ P

[
C ∩D

]

since A ∩D, B ∩D, and C ∩D are mutually exclusive

=
P
[
D|A

]
P
[
A
]

P
[
D|A

]
P
[
A
]
+ P

[
D|B

]
P
[
B
]
+ P

[
D|C

]
P
[
C
]

=
0.01(0.5)

0.01(0.5) + 0.02(0.3) + 0.03(0.2)

=
0.005

0.017
= 0.294 (23)

Note that the denominator had already been calculated in the previous question, how-
ever the computations have been reproduced here for completeness.

Approach 2
The probability P

[
A|D

]
can also be easily computed from the event tree. The proba-

bility that A has occurred given that D has occurred is sought. In terms of the paths
on the tree, we know that one of the 1st, 3rd, or 5th paths has been taken. Thus, the
probability that the 1st was taken is just its ‘weight’ relative to all three possible paths,
namely

P
[
A|D

]
=

P
[
D|A

]
P
[
A
]

P
[
D|A

]
P
[
A
]
+ P

[
D|B

]
P
[
B
]
+ P

[
D|C

]
P
[
C
]

=
0.01(0.5)

0.01(0.5) + 0.02(0.3) + 0.03(0.2)
=

0.005

0.017

= 0.294 (24)

which is the ratio of the probabilities (weights). This is actually an application of
Bayes’ Theorem which, of course, agrees with Approach 1.

Bayes’ Theorem is useful for revising or updating probabilities as more data and in-
formation becomes available. In the previous question on network cards, we had an
initial probability that a network card was manufactured at plant A: P

[
A
]
= 0.5. This

probability is referred to as the prior probability of A. That is, in the absence of any
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other information, a network card chosen at random has a probability of having been
manufactured at plant A of 0.5. However, if a network card is chosen at random and
found to be defective (and thus there is now more information on the network card),
then it was computed that the probability that it was manufactured at plant A was re-
duced to 0.294. This latter probability is referred to as the posterior probability on A.
These Bayesian quantities have special significance to engineering design and there
are many applications.

2.5 Applications to Reliability Theory

The total probability theorem is useful in evaluating the reliability of complex sys-
tems because it allows the designer to assign probabilities to individual events before
attempting to calculate the system reliability.

For example, the reliability of a system can be found by

1. identifying all possible causes of failure: C1, C2, . . .

2. estimate the probability of occurrence of each cause: P
[
C1

]
,P

[
C2

]
, . . .

3. estimate the probability of failure given that a cause has occurred:
P
[
F |C1

]
,P

[
F |C2

]
, . . .

4. calculate the total probability of failure,

P
[
F
]
= P

[
F |C1

]
P
[
C1

]
+ P

[
F |C2

]
P
[
C2

]
+ · · · (25)

5. calculate the system reliability, F c: P
[
F c

]
= 1− P

[
F
]

3 Random Variables

A random variable is a means of identifying events in numerical terms. For example,
if the outcome e1 means that we’ve selected an apple and e2 means that we’ve selected
an orange, then we could let X(e1) = 1 and X(e2) = 0. Then X > 0 means that
we’ve selected an apple. We can now use mathematics on X , ie. if our fruit picking
experiment is repeated n times and x1 = X1(e) is the outcome of the first experiment,
x2 = X2(e) the outcome of the second, etc., then the total number of apples picked
is
∑n

i=1 xi. Note that we could not directly use mathematics on the actual outcomes
themselves.

This example illustrates in a rather simple way the primary motivation for the use of
random variables – simply so that we can use mathematics. You might notice one
other thing in the previous paragraph. After the ‘experiment’ has taken place and we
know what the outcome is, we refer to the lower case, xi. That is xi has a known
fixed value while X does not. We say that x is a realization of the random variable X .
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This is a rather fine distinction, but suffice to say that we can refer to the probability
distribution of the random variable X , but not to the probability distribution of x since
x is deterministic.

For each outcome e, there is exactly one value of x = X(e), but different values of e
may lead to the same x.

In some cases the sample space is already numerical, for example if the quantity of
interest is a flood height, then each observation of X is already a number.

3.1 Probability Distributions

Definition: The cumulative distribution function (CDF) of X is defined by

F (x) = P
[
X ≤ x

]
(26)

Properties of the CDF

1. 0 ≤ F (x) ≤ 1

2. limx→∞ F (x) = 1

3. limx→−∞ F (x) = 0

4. F (x) is non-decreasing

5. F (x) is right continuous (select x; as we approach it from the right, F (x) re-
mains continuous).

Random variables come in two sorts: those which take discrete values and those which
take continuous values. An example of a discrete random variable would be the num-
ber of students taking this course in any one year. Clearly, this must be a non-negative
integer – we cannot have 62.3 students taking the course. The number of students
taking the course can be one of the numbers 0, 1, 2, etc.

A continuous random variable is one which can take any value on the real line. An
example would be a student’s height. A randomly selected student can have any height
– one might be 1.683674... m in height, another might be 1.683673... m in height. This
random variable can take any one of an infinite number of possible values.

Of course, the distinction between continuous and discrete random variables is often
blurred. If students heights are only measured to the nearest cm (1.68, 1.69, 1.70,
etc.), then the possible set of student heights has been converted to a discrete set! In
general, any continuous random variable can be converted to a discrete random vari-
able simply by rounding (and ignoring its continuous nature). Conversely, a discrete
random variable can be converted (less easily) to a continuous random variable by
simply ignoring its discrete nature and assuming that it varies continuously. This is
usually only done when the set of possible discrete values is very large.
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In the following discussion we will look at both discrete and continuous random
variables. In general, all of the common discrete random variables have continu-
ous analogs. Also, probabilities associated with discrete random variables generally
involve summations, while probabilities for continuous random variables involve inte-
grations. Recognizing that integrals are simply summations allows the easy translation
from continuous to discrete random variables: if you know a formula for a continuous
random variable, the corresponding formula for a discrete random variable is obtained
simply by replacing integrals with summations.

Discrete Random Variables

Discrete random variables are such that X takes on only discrete values {x1, x2, . . .},
ie. have a countable number of outcomes (note that countable just means that the
outcomes can be numbered 1, 2, . . ., however there could still be an infinite number of
them).

We saw in an earlier example that in the discrete case,

F (xi) = P
[
X ≤ xi

]
=

∑

xj≤xi

P
[
X = xj

]
. (27)

We often denote the probability P
[
X = xj

]
simply p(xj) and call this the proba-

bility mass function (pmf). p(xj) can be obtained through experimentation in which
the frequency of the outcome xj is measured and normalized by the total number of
experiments (frequency interpretation).

The number p(xj) is a probability, and as such must lie between 0 and 1, inclusive. If
we sum up the probabilities associated with each possible xj , we must get 1. That is,
the probability mass function must satisfy

∑

all xj

p(xj) = 1 (28)

Continuous Random Variables

Continuous random variables can take on an infinite number of possible outcomes –
generally X takes values from the real line R. Since the probability P

[
X = x

]
is

infinitesimally small we use the probability density function to define probabilities;

F (x) =

∫ x

−∞
f(ξ) dξ (29)

where f(x) dx = P
[
x < X ≤ x+ dx

]
.

NOTE: f(x) is not a probability – we call it a density because we have to multiply
it by a length (area, volume) to get ‘mass’ or probability.

Conversely, f(x) =
d

dx

(
F (x)

)
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Properties: 1) f(x) ≥ 0 ∀x, 2)
∫ ∞

−∞
f(x) dx = 1

CDF → Probability PDF → Probability

P
[
X ≤ x

]
= F (x) P

[
X ≤ x

]
=

∫ x

−∞
f(ξ) dξ

P
[
X > x

]
= 1− F (x) P

[
X > x

]
=

∫ ∞

x

f(ξ) dξ

P
[
x1 < X ≤ x2

]
= F (x2)− F (x1) P

[
a < X ≤ b

]
=

∫ b

a

f(ξ) dξ

3.2 Main Descriptors of Distributions

Often the exact features of a distribution are unknown. It is convenient to identify key
features of a distribution, for example its mean and degree of scatter, or variance.

Mean

The mean is the most important characteristic of a random value. It tells us the most
about a distribution, namely its central tendency. We denote the mean µ and write

µ = E
[
X
]
=

∑

i

xi P
[
X = xi

]
=

∑

i

xi p(xi) for discrete X

=

∫ ∞

−∞
x f(x) dx for continuous X(30)

where E
[
·
]

is the expectation operator. This is the first moment of f(x) about the
origin (in analogy to moments of inertia or area). The expectation operator is defined
by

E
[
ANY THING

]
=

∫ ∞

−∞
(anything) f(x) dx (31)

We’ll see more of this later.

Note that if X is discrete, µ need not equal any of the possible values of X . For
example, in the three coin toss,

E
[
X
]
=

3∑

i=0

xi p(xi) = 0(18 ) + 1(38 ) + 2(38 ) + 3(18 ) = 1.5 (32)

that is, on average 1.5 heads will turn up (just half the number of coin tosses).

Variance

The mean or expected value of the r.v. X tells where the probability distribution is
“centered”. But is the distribution “skinny”, “fat”, or somewhere in between? This
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distribution “dispersion” is measured by a quantity called the variance of X . This
is the second most important characteristic of a random value, namely the degree of
scatter or variance which we denote as σ2. This gives us some additional information
about a distribution – it is the second most important piece of information about the
distribution. We compute the variance as follows;

σ2 = Var
[
X
]
=

∑

i

(xi − µ)2 P
[
X = xi

]
=

∑

i

(xi − µ)2 p(xi) for discrete X

=

∫ ∞

−∞
(x− µ)2 f(x) dx for continuous X(33)

This is the second moment of f(x) about the mean.

We call σ =
√
σ2 the standard deviation (which has the same units as X and µ). The

dimensionless coefficient of variation, v, is defined as σ
µ and its size gives us a direct

sense of how variable the random variable is. For example, a random variable with
mean 1 and standard deviation 3 is highly variable whereas a random variable with
mean 1, 000, 000 and standard deviation 3 is pretty well a constant.

Making use of the definition for µ we could write

Var
[
X
]
=

∑

i

x2
i p(xi)− µ2 for discrete X

=

∫ ∞

−∞
x2 f(x) dx − µ2 for continuous X

= E
[
X2

]
− E2

[
X
]

for both(34)

Expectations

In general, the expectation of g(X) which can be any function of X is

E
[
g(X)

]
=

∑

i

g(xi) p(xi) for discrete X

=

∫ ∞

−∞
g(x) f(x) dx for continuous X(35)

so we see that

µ = E
[
X
]
=

∫ ∞

−∞
x f(x) dx

σ2 = E
[
(X − µ)2

]
=

∫ ∞

−∞
(x− µ)2 f(x) dx = E

[
X2

]
− E2

[
X
]

(36)
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∴ E
[
X
]

→ µ

E
[
X2

]
→ σ2

·
·
E
[
Xn

]
is the nth moment of the pdf about the origin.

Comments:

1. E
[
·
]

is a linear operator (i.e. integration is a linear operation because it is really
just a summation). Thus if g(X) is a linear function, g(X) = a+ bX , then

E
[
g(X)

]
= E

[
a+ bX

]
= a+ bE

[
X
]

(37)

If g(X) is not linear, then you must use the integral form to find expectations,
for example if g(X) = aX + bX2 + c sin(X) then

E
[
g(X)

]
= E

[
aX + bX2 + c sin(X)

]
= aE

[
X
]
+ bE

[
X2

]
+ cE

[
sin(X)

]

(38)

where E
[
sin(X)

]
=

∫ ∞

−∞
sin(x) f(x) dx

E
[
X2

]
=

∫ ∞

−∞
x2 f(x) dx

E
[
X
]
=

∫ ∞

−∞
x f(x) dx

2. The variance of a linear function g(X) = a + bX works out to be reasonably
simple

Var
[
a+ bX

]
= E

[{
(a+ bX)− E

[
a+ bX

]}2
]

= E
[{

a+ bX − a− bE
[
X
]}2

]

= E
[{

b(X − E
[
X
]
)
}2

]

= b2E
[
(X − E

[
X
]
)2
]

= b2Var
[
X
]

(39)

Higher Order Moments

Skewness: degree of asymmetry

θ =
E
[
(X − µ)3

]

σ3
= 1

σ3

∑
i(xi − µ)3 p(xi)

= 1
σ3

∫∞
−∞ (x− µ)3 f(x) dx (40)

If the distribution is symmetric about its mean, then θ = 0 (in fact all odd moments
about the mean are zero).
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3.3 Covariance and Correlation

Often one must consider more than one random variable at a time. For example,
the friction angle and cohesion in the soil at a point are random variables. These
two soil properties can be modeled by two random variables, and since they likely
influence one another (or they are jointly influenced by some other factor), they must
be characterized by a bivariate distribution.

Properties of the Bivariate Distribution

Discrete:

a) fXY (x, y) = P
[
X = x ∩ Y = y

]

b) 0 ≤ fXY (x, y) ≤ 1

c)
∑

all x

∑

all y
fXY (x, y) = 1

Continuous:

a) fXY (x, y) ≥ 0 for all (x, y) ∈ ℜ2

b)
∫ ∞

−∞

∫ ∞

−∞
fXY (x, y) dx dy = 1

c) P
[
x1 < X ≤ x2 ∩ y1 < Y ≤ y2

]
=

∫ y2

y1

∫ x2

x1

fXY (x, y) dx dy

Consider now two random variables, which we will call X and Y . Recall that the first
two primary characteristics of the distributions governing X and Y are

µX = E
[
X
]
, σ2

X = E
[
(X − µX)

2
]

µY = E
[
Y
]
, σ2

Y = E
[
(Y − µY )

2
]

(41)

which are obtained using the distributions of X and Y respectively. Sometimes the
value that X takes on has absolutely no affect on the value that Y takes on. In this case,
we say that the random variables, X and Y , are independent. In general, however, X
does affect the value that Y takes on (for example, if X is temperature, and Y is
ice-cream sales, then an increase in X is expected to cause an increase in Y ). The
primary characteristic reflecting the degree of linear dependence between X and Y is
their covariance, which is defined as follows;

Cov
[
X,Y

]
= E

[
(X − µX)(Y − µY )

]
= E

[
XY − µY X − µXY + µXµY

]

= E
[
XY

]
− E

[
X
]
E
[
Y
]

(42)
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Note that Cov
[
X,X

]
= Var

[
X
]
, so that the covariance is a second moment. In fact

E
[
XY

]
is the joint second moment of X and Y ,

E
[
XY

]
=

∫ ∞

−∞

∫ ∞

−∞
xyfXY (x, y) dx dy (43)

If X is independent of Y (which we could write as X ⊥ Y ), then fXY (x, y) =
fX(x) · fY (y) so that

E
[
XY

]
=

∫ ∞

−∞

∫ ∞

−∞
xyfX(x)fY (y) dx dy =

∫ ∞

−∞
xfX(x) dx

∫ ∞

−∞
yfY (y) dy

= E
[
X
]
E
[
Y
]

(44)

in which case Cov
[
X,Y

]
= 0. The converse is not necessarily true, that is if

Cov
[
X,Y

]
= 0, X and Y are not necessarily independent – we can only say that

they are uncorrelated.

The covariance measures the degree of linear dependence between X and Y . How-
ever, the magnitude of the covariance is not intuitively meaningful since it depends
on the variability of the two random variables. A more meaningful measure of the
degree of linear dependence between X and Y is the correlation coefficient which is
a normalized quantity

ρXY =
Cov

[
X,Y

]

σXσY

(45)

Again, this will be zero if X and Y are independent or uncorrelated. Note that if
Y = X , that is X and Y are completely linearly dependent, then Cov

[
X,Y

]
=

Cov
[
X,X

]
= σ2

X
and we get ρXY = 1. In fact we can show that

−1 ≤ ρXY ≤ 1 (46)

for any X and Y .

3.4 Linear Combinations

If the random variable Y is formed from a linear combination of two other random
variables, X1 and X2, as in Y = a1X1 + a2X2 then the moments of Y are given by

E
[
Y
]
= a1E

[
X1

]
+ a2E

[
X2

]

Var
[
Y
]
= a21Var

[
X1

]
+ a22Var

[
X2

]
+ 2a1a2Cov

[
X1, X2

]
(47)
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In the general case if Y =

n∑

i=1

aiXi, then

E
[
Y
]
=

n∑

i=1

aiE
[
Xi

]

Var
[
Y
]
=

n∑

i=1

n∑

j=1

aiajCov
[
Xi, Xj

]
(48)

Also if we have Y =

n∑

i=1

aiXi, Z =

m∑

j=1

bjXj then

Cov
[
Y, Z

]
=

n∑

i=1

m∑

j=1

aibjCov
[
Xi, Xj

]
(49)

3.5 Common Discrete Distributions

3.5.1 Bernoulli Trials

If each of a sequence of trials has two possible outcomes, Sj = {S, F} where Sj is the
sample space of the jth trial, and the trials are independent with constant probability
of success (p = P

[
S
]
), then the sequence of trials is called a Bernoulli Process. There

are many examples of Bernoulli processes: one might model the failures of individual
telescopes in a large array of radio telescopes using a Bernoulli process. Students
passing or failing a course might also constitute a Bernoulli process (if they work
independently!).

If we let

Xj =

{
1 if the jth trial results in {S},
0 if the jth trial results in {F}.

(50)

then the Bernoulli distribution is given by

P
[
Xj = 1

]
= p

P
[
Xj = 0

]
= 1− p = q (51)
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for all j = 1, 2, . . .. For the individual trials we have the following results

P
[
X1 = x1 ∩ X2 = x2 ∩ · · ·Xn = xn

]
=

n∏

i=1

P
[
Xi = xi

]

E
[
Xj

]
=

1∑

i=0

iP
[
Xj = i

]
= 0(1− p) + 1(p) = p

E
[
X2

j

]
=

1∑

i=0

i2P
[
Xj = i

]
= 02(1 − p) + 12(p) = p

Var
[
Xj

]
= E

[
X2

j

]
− E2

[
Xj

]
= p− p2 = pq (52)

3.5.2 Binomial Distribution

Now let
Nn = X1 +X2 + · · ·Xn (53)

denote the number of successes amongst n Bernoulli trials.

In general Nn follows the binomial distribution with

P
[
Nn = x

]
=

(
n

x

)
px(1− p)n−x, x = 0, 1, 2, . . . , n (54)

where px(1−p)n−x is the probability of obtaining a particular sequence of x successes
in n trials and

(
n
x

)
is the number of possible outcomes having x successes in n trials.

The expected number of successes in n trials can be found directly from the definition
of expectation (discrete case),

E
[
Nn

]
=

n∑

x=0

x

(
n

x

)
pxqn−x =

n∑

x=0

x

(
n!

x!(n− x)!

)
pxqn−x

= np

n∑

x=1

(n− 1)!

(x− 1)!(n− x)!
px−1qn−x

= np

(n−1)∑

x=0

(n− 1)!

x!((n− 1)− x)!
pxq(n−1)−x = np(p+ q)n−1 (55)

∴ E
[
Nn

]
= np
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Alternatively, we could write

E
[
Nn

]
= E

[
X1 +X2 + · · ·+Xn

]

= E
[
X1

]
+ E

[
X2

]
+ · · ·+ E

[
Xn

]

= np (56)

To find the variance of Nn, we need first to find

E
[
N2

n

]
=

n∑

x=0

x2

(
n

x

)
pxqn−x =

n∑

x=1

x2

(
n!

x!(n− x)!

)
pxqn−x

= np

n∑

x=1

x

(
(n− 1)!

(x− 1)!(n− x)!

)
px−1qn−x

= np

n−1∑

x=0

(x+ 1)

(
(n− 1)!

x!(n− 1− x)!

)
pxqn−1−x

= np {(n− 1)p+ 1}

∴ Var
[
Nn

]
= E

[
N2

n

]
− E2

[
Nn

]
= npq (57)

The same result could have been (much more easily) obtained by considering the
variance of a sum of independent random variables.

3.5.3 Geometric Distribution

Consider a Bernoulli process in which T1 is the number of trials (“time”) required to
achieve the first success. Thus if T1 = 3, then we must have had 2 failures followed by
a success (the value of T1 fully prescribes the sequence of trials). This has probability

P
[
T1 = 3

]
= P

[
{FFS}

]
= q2p (58)

In general
P
[
T1 = k

]
= qk−1p, k = 1, 2, . . . (59)

Note that this is a valid pmf since

∞∑

k=1

qk−1p = p

∞∑

k=0

qk =
p

1− q
= 1 (60)
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Properties:

Mean Recurrence Time (Return Period):

E
[
T1

]
=

∞∑

k=1

kpqk−1 = p

∞∑

k=1

kqk−1 = p
d

dq

∞∑

k=1

qk = p
d

dq

(
q

1− q

)

= p

(
1

(1− q)2

)
=

1

p
(61)

Variance:

E
[
T 2
1

]
=

∞∑

k=1

k2pqk−1 = p
∞∑

k=1

k2qk−1 = p
d

dq

∞∑

k=1

kqk

= p
d

dq

(
q

(1− q)2

)
=

1

p
+

2q

p2

∴ Var
[
T1

]
= E

[
T 2
1

]
− E2

[
T1

]
=

q

p2
(62)

The geometric distribution is a memoryless process, as is the exponential distribution
(which is its continuous counterpart), as we will see. That is for non-negative and
integer values of t and k,

P
[
T1 > t+ k |T1 > t

]
=

P
[
T1 > t+ k ∩ T1 > k

]

P
[
T1 > t

] =
P
[
T1 > t+ k

]

P
[
T1 > t

]

=

∑∞
m=t+k+1 q

m−1p∑∞
n=t+1 q

n−1p
=

∑∞
m=t+k+1 q

m−1

∑∞
n=t+1 q

n−1
=

∑∞
m=t+k q

m

∑∞
n=t q

n

=
qk

∑∞
m=t+k q

m−k

∑∞
n=t q

n
= qk (63)

but P
[
T1 > k

]
=

∞∑

k+1

qm−1p = p

∞∑

m=k

qm = pqk
∞∑

m=0

qm = pqk
(

1

1− q

)
= qk

∴ P
[
T1 > t+ k|T1 > t

]
= P

[
T1 > k

]
(64)

3.5.4 Negative Binomial Distribution

Suppose we wish to know the number of trials (“time”) of a Bernoulli process until
the k’th success. Letting Tk be the number of trials until the k’th success, then

P
[
Tk = m

]
=

(
m− 1

k − 1

)
pkqm−k for m = k, k + 1, . . . (65)
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Properties

Mean:

E
[
Tk

]
=

∞∑

j=k

jP
[
Tk = j

]
=

∞∑

j=k

j

(
j − 1

k − 1

)
pkqj−k

=

∞∑

j=k

j

(
(j − 1)!

(k − 1)!(j − k)!

)
pkqj−k = kpk

∞∑

j=k

(
j!

k!(j − k)!

)
qj−k

= kpk
[
1 + (k + 1)q +

(k + 2)(k + 1)

2!
q2 +

(k + 3)(k + 2)(k + 1)

3!
q3 + · · ·

]

=
kpk

(1− q)k+1
=

k

p
(66)

Variance: To get the variance, Var
[
Tk

]
, we’ll write

Tk = T1 + (T2 − T1) + · · ·+ (Tk − Tk−1) (67)

which are independent due to the properties of a Bernoulli sequence. Now E
[
T1

]
=

1/p as we saw earlier. Similarly E
[
Tj − Tj−1

]
= 1/p due to memorylessness.

∴ E
[
Tk

]
= E

[
T1

]
+ E

[
T2 − T1

]
+ · · ·+ E

[
Tk − Tk−1

]
=

k

p
(68)

as found above. Now due to independence of the terms,

Var
[
Tk

]
= Var

[
T1

]
+Var

[
T2 − T1

]
+ · · ·+Var

[
Tk − Tk−1

]

= kVar
[
T1

]

=
kq

p2
(69)

3.5.5 Poisson Distribution

The Poisson distribution governs many ‘rate’ dependent processes (for example, ar-
rivals of vehicles at an intersection or ‘packets’ through a computer net). The assump-
tions on which a Poisson process is based are;

1. events occur at random and at any point in time (or space),

2. the occurrence of an event in a given time (or space) interval is independent of
events occurring in disjoint intervals,

3. the probability of an event occurring in a small interval, ∆t, is proportional to
the size of ∆t, ie. is λ∆t, where λ is the mean rate of occurrence.
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4. for ∆t → 0, the probability of two or more events in ∆t is negligible.

Now let Nt be the number of events occurring in the interval [0, t]. We can show that
Nt follows the distribution

P
[
Nt = k

]
=

(λt)k

k!
e−λt, k = 0, 1, 2, . . . (70)

Properties

Mean:

E
[
Nt

]
=

∞∑

j=0

j
(λt)j

j! e
−λt = λte−λt

∞∑

j=1

(λt)j−1

(j − 1)!
= λte−λt

∞∑

j=0

(λt)j

j!

= λt (71)

Variance:

E
[
N2

t

]
=

∞∑

j=0

j2
(λt)j

j!
e−λt = λte−λt

∞∑

j=0

(j + 1)
(λt)j

j!

= λte−λt




∞∑

j=0

j
(λt)j

j!
+

∞∑

j=0

(λt)j

j!




= (λt)2 + (λt)

∴ Var
[
Nt

]
= E

[
N2

t

]
− E2

[
Nt

]
= λt (72)

Comparison to Binomial Distribution

Suppose that a systems engineer analyses a network and verifies that an average of 60
packets of information pass through a gateway per hour. What is the probability that
10 packets will pass through in a 10-minute interval?

Solution:

Divide the hour into 120 30-second intervals and assume that no more than 1 packet
can be transmitted in a 30-second time interval. Thus p = 60/120 = 0.5 is the
probability of 1 packet arriving in a ‘trial’ interval, and

P
[
10 packets in 10 minutes

]
≃

(
20

10

)
(0.5)10(0.5)20−10 = 0.176 (73)

Of course, two or more packets could be transmitted in 30 seconds (hopefully!). An
improved solution is obtained using a shorter ‘trial’ interval, ie. if 10-second intervals
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were used then p = 60/360 = 1
6 and

P
[
10 packets in 10 minutes

]
≃

(
60

10

)
(16 )

10(56 )
50 = 0.137 (74)

In general, if time t is divided into n intervals then p = λt
n and

P
[
Nt = k

]
=

(
n

k

)(
λt

n

)k (
1− λt

n

)n−k

(75)

where λt is the mean number of events occurring in the time t. Now if packets pass
the gate ‘instantaneously’ and can arrive at any time then

P
[
Nt = k

]
= lim

n→∞

(
n

k

)(
λt

n

)k (
1− λt

n

)n−k

= lim
n→∞

[{
n

n
· n− 1

n
· · · n− k + 1

n

}
(λt)k

k!

(
1− λt

n

)n (
1− λt

n

)−k
]

(76)

but since lim
n→∞

(
1− λt

n

)n

= e−λt this reduces to

P
[
Nt = k

]
=

(λt)k

k!
e−λt (77)

which is the Poisson distribution. Thus we see that the Poisson distribution is a limit-
ing case of the Binomial distribution.

For our problem λ = 1 packet/minute and t = 10 minutes so that, using the Poisson
distribution

P
[
X10 = 10

]
=

(10)10

10!
e−10 = 0.125.

3.6 Common Continuous Distributions

3.6.1 Exponential Distribution

The exponential distribution is useful to describe ‘time-to-failure’ type problems. It
also governs the time between occurrences of a Poisson process. If T is the time to
the occurrence (or failure) in question, then

f(t) =

{
λe−λt if t ≥ 0

0 otherwise
(78)

where λ is the mean rate of occurrence (or failure).
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Characteristics:

E
[
T
]
=

1

λ

Var
[
T
]
=

1

λ2
(79)

Memoryless Property:

Let T denote the time between detections of a rare particle at a geiger counter. As-
sume that T has an exponential distribution with a mean of 4 minutes. Thus, T ∼
exp

(
1
λ = 4 → λ = 0.25

)
. The probability that a particle is detected within 30 sec-

onds of starting the counter is

P
[
T < 30 s

]
= P

[
T < 0.5 min

]
= 1− e−0.5×0.25 = 0.1175 (80)

Now, suppose that the geiger counter is turned on and 3 minutes pass without detection
of a particle. What is the probability that a particle will be detected in the next 30
seconds? Because 3 minutes have gone by without detection, you might feel that a
detection is “due”. That is, that the probability of detection in the next 30 seconds
should be greater than 0.1175. However, for the exponential distribution, this is not
true. In fact,

P
[
T < 3.5|T > 3

]
=

P
[
3 < T < 3.5

]

P
[
T > 3

] =
(1− e−3.5×0.25)− (1− e−3×0.25)

e−3×0.25

= 0.1175 (81)

Thus, after waiting for 3 minutes without detection, the probability of detection in
the next 30 seconds is the same as the probability of detection in the 30 seconds
immediately after starting the counter.

More generally, if T ∼ exp (λ) then

P
[
T > t+ s|T > t

]
=

P
[
T > t+ s ∩ T > t

]

P
[
T > t

] =
P
[
T > t+ s

]

P
[
T > t

] =
e−λ(t+s)

e−λt

= e−λs = P
[
T > s

]
(82)

The exponential distribution is the only continuous probability distribution function to
have the memoryless property (note that the discrete geometric distribution, which is
the analog of the exponential, also has this property). This is due to the fact that the
exponential distribution arises from an infinite number of Bernoulli trials, one for each
instant in time (or space) and all of which are independent with constant probability
(rate) of “success”.

Link to Poisson: It was mentioned earlier that the exponential distribution governs the
time between the occurrences of a Poisson process. We can see this as follows;
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Let Nt be a Poisson process with mean rate λ. If we start watching this process at
time t = 0, and we let T be the time until the first “arrival” in this Poisson process,
then the event that T > t is the same as the event that no arrivals occur in the time
interval [0, 1]. Thus,

P
[
T > t

]
= P

[
Nt = 0

]
=

(λt)0

0!
eλt = e−λt (83)

Thus,
F (t) = P

[
T ≤ t

]
= 1− e−λt (84)

But F (t) = 1 − e−λt is the cumulative distribution for the exponential probability
density function f(t) = λe−λt. This means that T must follow an exponential distri-
bution with parameter λ equal to the Poisson rate. Due to independence between all
trials (one at each instant in time) in a Poisson process, the time between any arrivals
follows the same exponential distribution.

3.6.2 Gamma Distribution

If Tk is the sum of k independent exponentially distributed random variables Ei, each
with parameter λ, that is Tk = E1 + E2 + · · ·Ek, then

fTk
(t) =

{
λ

Γ(k) (λt)
k−1 e−λt if t ≥ 0

0 otherwise
(85)

where Γ(·) is the Gamma function. For integers, Γ(k) = (k − 1)!. Note that k = 1
gives the exponential distribution, as expected.

Link to Poisson: The Gamma distribution governs the time between every kth “ar-
rival” in a Poisson process. That is, if Tk is the time to the krmth arrival in a Poission
process, then Tk is the sum of k independent exponentially distributed “inter-arrival”
times and Tk follows a Gamma distribution.

Characteristics:

E
[
Tk

]
=

k

λ

(
= kE

[
Ei

])

Var
[
Tk

]
=

k

λ2

(
= kVar

[
Ei

])
(86)

3.6.3 Weibull Distribution

Often, engineers are concerned with the strength properties of materials and the life-
time of manufactured devices. The Weibull distribution has become extremely popular
in describing such behavior. Its probability density function, mean, and variance are a
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bit clumsy to describe so the cumulative distribution (since this is really all one needs
to compute probabilities anyways) will be used.

If a continuous random variable X has a Weibull distribution with parameters λ > 0
and β > 0, then it has probability density function

f(x) =
β

x
(λx)β e−(λx)β , for x > 0 (87)

and zero otherwise. The Weibull has a particularly simple cumulative distribution
function

F (x) = 1− e−(λx)β for x ≥ 0 (88)

Note that the exponential distribution is a special case of the Weibull distribution (set
β = 1). The exponential distribution has constant failure rate whereas the Weibull
allows a failure rate that decreases with time (i.e., a system which improves with time;
β < 1) or a failure rate that increases with time (i.e., a system which degrades with
time; β > 1).

The mean and variance of a Weibull distributed random variable are

µ =
1

λ
Γ

(
1 +

1

β

)

σ2 =
1

λ2

[
Γ

(
1 +

2

β

)
− Γ2

(
1 +

1

β

)]
(89)

where Γ(x) is the Gamma function defined as

Γ(x) =

∫ ∞

0

e−t tx−1 dt (90)

If x is a positive integer, Γ(x) = (x − 1)!.

3.6.4 Uniform Distribution

The uniform distribution is the simplest of distributions. Its general definition is

f(x) =

{
1

β−α if α ≤ x ≤ β

0 otherwise
(91)

Characteristics:

E
[
X
]
=

∫ β

α

xdx

β − α
= 1

2 (α+ β) (this is the midpoint)

Var
[
X
]
=

∫ β

α

x2 dx

β − α
− E2

[
X
]
= 1

12 (β − α)2 (92)
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3.6.5 Normal Distribution

The normal distribution is perhaps the single most important distribution. This is per-
haps because the central limit theorem predicts that many natural ‘additive’ type phe-
nomena (or phenomena involving many factors) tend towards a normal distribution.
We’ll look at the central limit theorem shortly.

We say that a random variable X follows a normal (or Gaussian) distribution if

f(x) =
1

σ
√
2π

e−
1
2 (

x−µ
σ )2 on −∞ < x < ∞ (93)

We also write this as X ∼ N(µ, σ2), where N(·) stands for normal distribution and
(µ, σ2) are the parameters of the distribution.

Properties:

1. symmetric about the mean µ,

2. the maximum point of the distribution occurs at µ (we call this the mode)

3. inflection points of f(x) are at x = µ± σ

Characteristics:

E
[
X
]
= µ

Var
[
X
]
= σ2

F (x) = P
[
X ≤ x

]
= P

[
Z ≤ x− µ

σ

]
=

∫ x−µ
σ

−∞

1√
2π

e−
1
2 z

2

dz = Φ

(
x− µ

σ

)
(94)

We call Z = x−µ
σ the standardized normal variate.

Standard Normal Distribution

If we can transform X ∼ N(µ, σ2) into Z ∼ N(0, 1), then we only need one set of
probability tables, where

fZ(z) =
1√
2π

e−
1
2 z

2

Φ(z) =

∫ z

−∞

1√
2π

e−
1
2 ξ

2

dξ (95)

Most probability and statistics books have tables ofΦ(z). For any normally distributed
X , set

Z =
X − µ

σ
=⇒ z =

x− µ

σ
(96)

and use the standard tables available in most probability text books.
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One of the nice features about the normal distribution is that the sum of normally
distributed random variables remains normally distributed. This is one of the results
of the Central Limit Theorem to be considered next. That is, if X and Y are normally
distributed, then

Z = X − Y (97)

is also normally distributed with mean µZ = µX − µY and variance σ2
Z = σ2

X + σ2
Y ,

in the event that X and Y are uncorrelated. If X and Y are not uncorrelated, then see
the results presented below for more general results.

The Central Limit Theorem

If X1, X2, . . . , Xn are independent random variables having arbitrary distributions,
then the random variable

Y = X1 +X2 + · · ·+Xn (98)

has a normal distribution as n → ∞ if all the X’s have about the same ‘weight’.

The central limit theorem can be illustrated by considering the binomial distributed
random variable

Nn =

n∑

i=1

Xi (99)

where Xi is a Bernoulli random variable, having value Xi = 1 with probability p, and
value Xi = 0 with probability q = 1− p. Clearly, Nn is a sum of n random variables
each of which has a distribution which is distinctly non-normal (as can be seen by the
first plot in the following figure). We saw in Chapter 1 that Nn follows a binomial
distribution with

P
[
Nn = k

]
=

(
n

k

)
pkqn−k (100)

For n = 1, 2, · · · 6 and p = 0.5 we get the following probabilities;

n k

0 1 2 3 4 5 6

1 1/2 1/2

2 1/4 1/2 1/4

3 1/8 3/8 3/8 1/8

4 1/16 1/4 3/8 1/4 1/16

5 1/32 5/32 5/16 5/16 5/32 1/32

6 1/64 3/32 15/64 5/16 15/64 3/32 1/64

which have the following bar plots;
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0 1

P P P

P

n  =  1 n  =  2 n  =  3

n  =  4

0 1 2 0 1 2 3

0 1 2 3 4

P n  =  5

0 1 2 3 4 5

P n  =  6

0 1 2 3 4 5 6
Clearly, the distribution for n = 1 is about as non-normal as possible (this is the
Bernoulli distribution). However, it is clear that as more and more random variables
are added together to give Nn, the distribution becomes increasingly normal in shape.
The central limit theorem starts to become evident even for n = 2.

Specifically, the central limit theorem tells us that if

Xn =
1

n

n∑

i=1

Xi (101)

where X1, X2, . . . , Xn form a random sample from X having mean µ and variance
σ2 (any distribution), then

lim
n→∞

P

[
(Xn − µ)

σ/
√
n

≤ x

]
= Φ(x) (102)

In other words, X will tend to be normally distributed for large n.

Implications:

1. the sum of normal variates is normal (for any n) as discussed above,

2. if the distributions of the X’s are well-behaved (almost normal), then n ≥ 4
gives a good approximation to the normal distribution,

3. if the distributions of the X’s are uniform (or almost so), then n ≥ 6 yields a
reasonably good approximation to the normal distribution,

4. for poorly-behaved distributions, you may need n > 100 before the distribution
begins to look normal. This happens, for example, with distributions whose
tails do not fall off rapidly.

5. in general, if n ≥ 30 the sum is deemed to be very closely normally distributed.
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Thus for n sufficiently large and X1, X2, . . . , Xn independent and identically dis-
tributed (iid), then

Y = X1 +X2 + · · ·+Xn (103)

is approximately normally distributed with

µY = E
[
Y
]
= nE

[
Xi

]

σ2
Y = Var

[
Y
]
= nVar

[
Xi

]
(104)

If the X’s are not identically distributed, then

µY =
n∑

i=1

E
[
Xi

]

σ2
Y =

n∑

i=1

Var
[
Xi

]
(105)

Normal Approximation to the Binomial

By virtue of the Central Limit Theorem, the binomial distribution, which as you will
recall arises from the sum of a sequence of Bernoulli random variables, can be ap-
proximated by the normal distribution. Specifically, if Nn is the number of successes
in n trials, then

Nn =

n∑

i=1

Xi (106)

where Xi is the outcome of a Bernoulli trial (Xi = 1 with probability p, Xi = 0
with probability q = 1 − p). Since Nn is the sum of identically distributed random
variables, then if n is large enough, the Central Limit Theorem says that Nn can be
approximated by a normal distribution. We generally consider this approximation
to be valid when both np ≥ 5 and nq ≥ 5. In this case, the normal distribution
approximation is specified by its mean and standard deviation;

µ = np

σ =
√
npq (107)

Of course, we know that Nn is discrete while the normal distribution governs a con-
tinuous random variable. When we want to find the approximate probability that Nn

is greater than or equal to, say, k, using the normal distribution, we should include all

Fenton 33

ALERT Doctoral School 2014



of the binomial mass at k. This means that we should look at the normal probability
that (Nn > k − 1

2 ). For example, in the following plot, the probability that Nn ≥ 20
is better captured by the area under the normal distribution above 19.5.

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

x

0
0.

05
0.

1
0.

15

f(
x)

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

0
0.

05
0.

1
0.

15

Normal Approximation

In general, the following corrections apply. Similar corrections apply for two-sided
probability calculations.

P
[
Nn ≥ k

]
≃ 1− Φ

(
k − 0.5− µ

σ

)

P
[
Nn > k

]
≃ 1− Φ

(
k + 0.5− µ

σ

)

P
[
Nn ≤ k

]
≃ Φ

(
k + 0.5− µ

σ

)

P
[
Nn < k

]
≃ Φ

(
k − 0.5− µ

σ

)
(108)

3.6.6 Lognormal Distribution

The random variable X is lognormally distributed if ln(X) is normally distributed. X
has pdf

f(x) =





1
xσlnx

√
2π

e
− 1

2

(
lnx−µlnx

σlnx

)2

if 0 < x < ∞
0 otherwise

(109)
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Note that the two parameters

µlnx = E
[
lnX

]

σ2
ln x = Var

[
lnX

]
(110)

are the mean and variance of the normally distributed variable lnX .

Probabilities

P
[
a < X ≤ b

]
=

∫ b

a

f(x) dx =

∫ b

a

1

xσln x

√
2π

e
− 1

2

(
lnx−µlnx

σlnx

)2

dx (111)

now let z =
lnx− µln x

σln x
=⇒ dz =

dx

xσln x
so that

P
[
a < X ≤ b

]
=

∫ ln b−µlnx
σlnx

ln a−µlnx
σlnx

1√
2π

e−
1
2 z

2

dz = Φ

(
ln b− µln x

σln x

)
−Φ

(
ln a− µln x

σln x

)

(112)

Mean and Variance

µX = E
[
X
]
= eµlnx+

1
2σ

2
lnx

σ2
X
= Var

[
X
]
= µ2

X

(
eσ

2
ln x − 1

)
(113)

alternatively, if you are given µX and σ2
X , you can obtain the parameters µln x and

σ2
ln x as follows;

σ2
ln x = ln

(
1 +

σ2
X

µ2
X

)

µln x = ln(µX)−
1

2
σ2
ln x (114)

Other Characteristics

mode = eµlnx−σ2
ln x

median = eµlnx

(
P
[
X ≤ median

]
= 0.5

)

mean = eµlnx+
1
2σ

2
ln x

E
[
Xk

]
= ekµln x+

1
2k

2σ2
ln x
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Multiplicative Property

If X = Y1Y2 · · ·Yn and each Yi are (positive) independent lognormally distributed
random variables of about the same ‘weight’, then

lnX = lnY1 + lnY2 + · · ·+ lnYn (115)

and since a sum of normals remains normal, lnX tends to a normal distribution with

µln x = µln y1 + µln y2 + · · ·+ µln yn

σ2
ln x = σ2

ln y1
+ σ2

ln y2
+ · · ·+ σ2

ln yn
(116)

(Note that the last line holds only if the random variables are independent). Thus X
tends to a lognormal distribution with parameters µln x and σ2

ln x. In particular, if X is
any multiplicative function, ie. say

X =
AB

C
(117)

and A, B, and C are independent lognormally distributed random variables, then X
is also lognormally distributed with

µln x = µlnA + µlnB − µlnC

σ2
ln x = σ2

lnA + σ2
lnB + σ2

lnC (118)

This is a useful property since it can be used to approximate the distribution of many
multiplicative functions.

3.7 Extreme Value Distributions

Most engineering systems fail only when extreme loads occur and failure tends to ini-
tiate at the weakest point. Thus, it is of considerable interest to investigate the distribu-
tion of extreme values. Consider a sequence of n random variables, X1, X2, . . . , Xn.
This could, for example, be the sequence of tensile strengths of individual links in
a chain, or the sequence of daily average windspeeds, or earthquake intensities, etc.
Now define the extremes of this set of random variables as

Yn = max(X1, X2, . . . , Xn)

Y1 = min(X1, X2, . . . , Xn) (119)

so that if Xi is the daily average windspeed, then Yn is the maximum daily average
windspeed over n days. Similarly, if Xi is the tensile strength of the ith link in a chain,
then Y1 is the tensile strength of a chain composed of n links.
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3.7.1 Exact Extreme Value Distributions

Now let us examine the behaviour of the maximum, Yn. We know that if the maximum
is less than some number y, then each Xi must also be less than y. That is the event
(Yn ≤ y) must be equivalent to the event (X1 ≤ y ∩ X2 ≤ y ∩ · · · ∩ Xn ≤ y). In
other words the exact distribution of Yn is,

P
[
Yn ≤ y

]
= P

[
X1 ≤ y ∩ X2 ≤ y ∩ · · · ∩ Xn ≤ y

]
(120)

If it can be further assumed that the X’s are independent and identically distributed
(IID) (if this is not the case the problem becomes very complex and usually only
solved via simulation), then

FY n
(y) = P

[
Yn ≤ y

]
= P

[
X1 ≤ y

]
P
[
X2 ≤ y

]
· · ·P

[
Xn ≤ y

]

=
[
FX(y)

]n
(121)

and, taking the derivative,

fY n
(y) =

dFY n
(y)

dy
= n

[
FX(y)

]n−1 dFX(y)

dy
= n

[
FX(y)

]n−1
fX(y) (122)

Now consider the distribution of Y1. If we proceed as we did for Yn, then we would
look at the event Y1 ≤ y. This event just means that X1 ≤ y or X2 ≤ y or . . ., that is

P
[
Y1 ≤ y

]
= P

[
X1 ≤ y ∪ X2 ≤ y ∪ · ∪ Xn ≤ y

]
(123)

which expands into
(
n
1

)
+
(
n
2

)
+
(
n
3

)
+ . . .+

(
n
n

)
terms... in other words a lot of terms.

A better way to work out this distribution is to look at the complement;

P
[
Y1 > y

]
= P

[
X1 > y ∩ X2 > y ∩ · · · ∩ Xn > y

]

= P
[
X1 > y

]
P
[
X2 > y

]
· · ·P

[
Xn > y

]

=
[
1− FX(y)

]n
(124)

and since P
[
Y1 > y

]
= 1− FY 1

(y) we get

FY 1
(y) = 1−

[
1− FX(y)

]n
(125)

and, taking the derivative,

fY 1
(y) = n

[
1− FX(y)

]n−1
fX(y) (126)
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3.7.2 Asymptotic Extreme Value Distributions

In cases where the cumulative distribution function, FX(x), is not known (for ex-
ample the normal or lognormal) explicitly, the exact distributions given above are of
questionable value. It turns out that if n is large enough, and the sample is random
(ie. independent observations), then the distribution of an extreme value tends towards
one of three ‘asymptotic’ forms. These are explained as follows.

Type I Asymptotic Form

If X has a distribution with an unlimited exponentially decaying tail in the direction
of the extreme under consideration, then the distribution of the extreme will tend to
the Type I asymptotic form. Examples of such distributions are the normal (in either
direction) and the exponential (in the positive direction).

In the case of the maximum, the Type I extreme value distribution has the form

FY n
(y) = exp

{
−e−αn(y−un)

}

fY n
(y) = αn e

−αn(y−un) exp
{
−e−αn(y−un)

}
(127)

where,
un = ‘characteristic’ largest value of X

= F−1
X

(
1− 1

n

)

= mode of Yn

αn = an inverse measure of the variance of Yn

= nfX(un)

In particular,un is defined as the value thatX exceeds with probability 1/n. It is found
by solving P

[
X > un

]
= 1/n for un, giving the result shown above. If F−1

X
(p) is not

known, you will either have to consult the literature or determine this extreme value
distribution via simulation.

The mean and variance of the Type I maximum asymptotic distribution are as follows;

E
[
Yn

]
= un +

γ

αn

Var
[
Yn

]
=

π2

6α2
n

(128)

where γ = 0.577216 . . . is Euler’s number. It always amazes me how often π manages
to work its way into results...
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The distribution of the minimum value, where the distribution of X is exponentially
decaying and unlimited in the direction of the minimum, has the form

FY 1
(y) = 1− exp

{
−e−α1(y−u1)

}

fY 1
(y) = α1 e

−α1(y−u1) exp
{
−e−α1(y−u1)

}
(129)

where,
u1 = ‘characteristic’ smallest value of X

= F−1
X

(
1

n

)

= mode of Y1

α1 = an inverse measure of the variance of Y1

= nfX(u1)

In particular, u1 is defined as the value that X has probability 1/n of being below. It
is found by solving P

[
X ≤ u1

]
= 1/n for u1. The mean and variance of Y1 are as

follows;

E
[
Y1

]
= u1 −

γ

α1

Var
[
Y1

]
=

π2

6α2
1

(130)

Because of the mirror symmetry of the minimum and maximum Type I extreme value
distributions, the skewness coefficient of Yn is 1.1414 whereas the skewness coeffi-
cient of Y1 is −1.1414. That is, the two distributions are mirror images of one another.

Type II Asymptotic Form

If X has a distribution with an unlimited polynomial tail, in the direction of the ex-
treme, then its extreme value will have a type II distribution. Examples of distributions
with polynomial tails are the lognormal (in the positive direction) and the Pareto (also
in the positive direction) distributions, the latter of which has the form

FX(x) = 1−
(
b

x

)α

, for x ≥ b (131)

If the coefficient b is replaced by un/n
1/α, then we get

FX(x) = 1− 1

n

(un

x

)α

, for x ≥ un/n
1/α (132)
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The corresponding extreme value distribution for the maximum, in the limit as n →
∞, is

FY n
(y) = exp

{
−
(
un

y

)α}
, for y ≥ 0

fY n(y) =

(
α

un

)(
un

y

)α+1

exp

{
−
(
un

y

)α}
(133)

where,
un = ‘characteristic’ largest value of X

= F−1
X

(
1− 1

n

)

= mode of Yn

α = shape parameter
= order of polynomial decay of FX(x) in direction of the extreme

Note that although the lognormal distribution seems to have an exponentially decaying
tail in the direction of the maximum, the distribution is actually a function of the form
a exp{−b(lnx)2} which has a polynomial decay. Thus, the extreme value distribution
of n lognormally distributed random variables follows a type II distribution with

α =

√
2 lnn

σlnX

un = exp{u′
n}

u′
n = σlnX

√
2 lnn−

σlnX

(
ln(lnn) + ln(4π)

)

2
√
2 lnn

+ µlnX (134)

The distribution of the minimum, for an unbounded polynomial decaying tail, can be
found as the negative ‘reflection’ of the maximum, namely as

FY 1
(y) = 1− exp

{
−
(
u1

y

)α}
, y ≤ 0; u1 < 0

fY 1
(y) = −

(
α

u1

)(
u1

y

)α+1

exp

{
−
(
u1

y

)α}
(135)

where,
u1 = ‘characteristic’ smallest value of X

= F−1
X

(
1

n

)

= mode of Y1

α = shape parameter
= order of polynomial decay of FX(x) in direction of the extreme
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Type III Asymptotic Form

If the distribution of X is bounded by a value, say u, in the direction of the extreme,
then the asymptotic (as n → ∞) extreme value distribution is the Type III form. For
the maximum, this form is

FY n
(y) = exp

{
−
(

u− y

u− un

)α}
, for y ≤ u (136)

where,
un = ‘characteristic’ largest value of X

= F−1
X

(
1− 1

n

)

= mode of Yn

α = shape parameter
= order of polynomial decay of FX(x) in direction of the extreme

In the case of the minimum, the asymptotic extreme value distribution is

FY 1(y) = 1− exp

{
−
(

y − u

u1 − u

)α}
, for y ≥ u (137)

where,
u1 = ‘characteristic’ smallest value of X

= F−1
X

(
1

n

)

= mode of Y1

α = shape parameter
= order of polynomial decay of FX(x) in direction of the extreme

and u is now the minimum bound on X . This distribution is also called the Weibull
distribution. The shape parameter α is, as mentioned, the order of the polynomial in
the direction of the extreme. For example, if X is exponentially distributed, and we are
looking at the distribution of the minimum, then FX(x) has Taylor’s series expansion
for small x of

FX(x) = 1− e−λx ≃ 1− (1 − λx) = λx (138)

which has order 1 as x → 0. Thus, for the minimum of an exponential distribution,
α = 1.
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In many engineering problems, the uncertainty associated with one random variable 
needs to be estimated indirectly from the information on uncertainty in another 
random variable. In most cases, functional relationships (linear or nonlinear) be-
tween the response and basic random variables are known; however, in some cases, 
the exact relationship may not be known explicitly. Since the response variable is a 
function of other random variables, it will also be random, whether the exact func-
tional relationship between them is known or not. The subject of this chapter is the 
quantification of the uncertainty in the response variable when it is related to other 
random variables with a known or unknown relationship. 

1 Introduction 

This chapter deals with the study of functions of random variable(s). Engineering 
problems often involve the determination of a relationship between a dependent 
variable and one or more basic or independent variables. If any one of the independ-
ent variables is random, the dependent variable will likewise be random. The proba-
bility distribution (as well as its statistical moments) of the dependent variable will 
be functionally related to and may be derived from those of the basic random varia-
bles. As a simple example, the deflection ܦ of a cantilever beam of length ܮ subject-
ed to a concentrated load ܲ (applied at the end of the cantilever) is functionally re-
lated to the load ܲ and the modulus of elasticity ܧ of the beam material ሾܦ ൌ
ሺܲܮଷሻ ሺ3ܫܧሻ⁄ ሿ in which ܫ is the moment of inertia of the beam cross section. Clearly, 
we can expect that if ܲ and ܧ are both random variables, with respective ܲݏܨܦ, ௉݂ 
and ா݂, the deflection ܦ will also be a random variable with ܲܨܦ, ஽݂, that can be 
derived from the ܲݏܨܦ of ܲ and ܧ. Moreover, the first two statistical moments (i.e. 
the mean and variance) of ܦ can also be derived as a function of the respective mo-
ments of ܲand ܧ.  

 
In this chapter, we shall develop and illustrate the relevant concepts and procedures 
for determining the ܲܨܦof the response variable or the statistical moments of this 
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response variable. Both cases where the functional relationship between the re-
sponse variable and the independent variables is known or unknown are considered.  

2 Exact distributions of functions of random varia-
ble(s) 

The exact distribution of a function of random variables is considered herein only in 
case where the response variable is a function of a single random variable. The case 
where this response variable is a function of several random variables can be found 
elsewhere (cf. [Hal00], [Ang07] and [Fen08] among others). 

2.1 Function of a single random variable 

Consider a general case in which the functional relationship between the response 
variable and the basic random variable is not linear. Assume that the response varia-
ble ܻ is functionally related to ܺ as: 

ܻ ൌ ݃ሺܺሻ (1)

If ܻ is a monotonically increasing function of ܺ, then 

ܲሺܻ ൑ ሻݕ ൌ ܲሺܺ ൑ ሻ (2)ݔ

Or:  

ሻݕ௒ሺܨ ൌ ሻݔ௑ሺܨ ൌ ሻሿ (3)ݕ௑ሾ݃ିଵሺܨ

The value ݃ିଵሺݕሻ can be evaluated by inverting equation (1). If both sides are dif-
ferentiated with respect to ݕ, the ܲܨܦ of ܻ can be obtained as: 

௒݂ሺݕሻ ൌ ௑݂ሾ݃ିଵሺݕሻሿ
݀݃ିଵሺݕሻ

ݕ݀
 (4)

Thus, if the functional relationship ݃ and the ܲܨܦ of ܺ are known, the uncertainty 
in ܻ in terms of its ܲܨܦ can be obtained from equation (4). 
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If ܻ decreases with ܺ, ݀݃ିଵሺݕሻ/݀ݕ is negative (since ݃ିଵ decreases with Y). Since 
the ܲܨܦ of a random variable cannot be negative, its absolute value is of interest. 
Therefore, to account for both cases, the ܲܨܦ of ܻ is written as 

௒݂ሺݕሻ ൌ ௑݂ሾ݃ିଵሺݕሻሿ ቤ
݀݃ିଵሺݕሻ

ݕ݀
ቤ (5)

2.2 Example application for an exact distribution of a function 
of single random variable 

Consider a normal variate ܺ with parameters ߤ and ߪ; i.e. ܰሺߤ,  ܨܦܲ ሻ withߪ

௑݂ሺݔሻ ൌ
1

ߪߨ2√
݌ݔ݁ ൤െ

1
2
ቀ
ݔ െ ߤ
ߪ

ቁ
ଶ
൨ (6)

Let ܻ ൌ
௑ିఓ

ఙ
. Using equation (5), we determine the ܲܨܦ of ܻ as follows: First, we 

observe that the inverse function is ݃ିଵሺݕሻ ൌ ݕߪ ൅  and ߤ
ௗ௚షభ

ௗ௬
ൌ -Then, accord .ߪ

ing to equation (5), the ܲܨܦ of ܻ is 

௒݂ሺݕሻ ൌ
1

ߪߨ2√
݌ݔ݁ ቎

െ
1
2 ሺݕߪ ൅ ߤ െ ሻଶߤ

ଶߪ
቏ |ߪ| ൌ

1

ߨ2√
݁ି

ଵ
ଶ௬

మ
 (7)

which is the ܲܨܦ of the standard normal distribution, ܰሺ0,1ሻ. 

3 Moments of functions of random variables 

In the previous section, we derived the probability distribution of a function of one 
random variable. It was shown in literature that the linear function of normal variate 
remains normal. The product (or quotient) of lognormal variates remains also 
lognormal (see [Ang07] among others). 

 
In general, the derived probability distributions of the function may be difficult (or 
even impossible) to derive analytically. Indeed, if the distributions of the Xi’s are not 
known, or if X1 is normal, X2 is lognormal, and so on, it is not possible to determine 
the exact distribution of the response variable Y; however, its mean and variance can 
still be extracted from the information on the means and variances of the Xi’s, giving 
only limited information on its randomness. 
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If the functional relationship is linear, then the mean and variance of the response 
variable can be estimated without any approximation. For nonlinear functional rela-
tionships, the mean and variance of the response variable can only be estimated 
approximately. These are discussed next. Beforehand, remember that the expected 
value of a function ܼ ൌ ݃ሺ ଵܺ, ܺଶ, … , ܺ௡	ሻ of ݊ random variables, called the mathe-
matical expectation, is given by:  

 

ሺܼሻܧ ൌ න …න ݃ሺݔଵ, ,ଶݔ … , ௡ሻݔ ௑݂భ,௑మ,…,௑೙

ஶ

ିஶ

ஶ

ିஶ

൫ݔଵ,ݔଶ, … ଶݔଵ݀ݔ௡,൯݀ݔ ௡ (8)ݔ݀…

 
Below, we shall use equation (8) to derive the moments of linear functions of ran-
dom variables, as well as the first-order approximate moments of nonlinear func-
tions. 

3.1 Mean and variance of a linear function 

Consider first the moments of the linear function 
 

ܻ ൌ ܽܺ ൅ ܾ (9)
 

According to equation (8), the mean value of ܻ is: 
 

ሺܻሻܧ ൌ ሺܽܺܧ ൅ ܾሻ ൌ න ሺܽݔ ൅ ܾሻ
ஶ

ିஶ
௑݂ሺݔሻ݀ݔ

ൌ ܽන ݔ ௑݂

ஶ

ିஶ
ሺݔሻ݀ݔ ൅ ܾන ௑݂ሺݔሻ݀ݔ ൌ ሺܺሻܧܽ ൅ ܾ

ஶ

ିஶ
 

(10)

 
whereas the variance is: 

 
ሺܻሻܴܣܸ ൌ ሾሺܻܧ െ ௒ሻଶሿߤ ൌ ሾሺܽܺܧ ൅ ܾ െ ௑ߤܽ െ ܾሻଶሿ

ൌ ܽଶ න ሺݔ െ ௑ሻଶߤ ௑݂ሺݔሻ݀ݔ ൌ ܽଶܸܽݎሺܺሻ
ஶ

ିஶ
 

(11)

 
For ܻ ൌ ܽଵ ଵܺ ൅ ܽଶܺଶ,  
 
where ܽଵ and ܽଶ are constants 

ሺܻሻܧ ൌ න න ሺܽଵݔଵ ൅ ܽଶݔଶሻ ௑݂భ,௑మ

ஶ

ିஶ

ஶ

ିஶ
ሺݔଵ, ଶ (12)ݔଵ݀ݔଶሻ݀ݔ

 
This equation may be written (in case where ଵܺ and ܺଶ are statistically independent) 
as follows: 
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ሺܻሻܧ ൌ ܽଵ න ଵݔ
ஶ

ିஶ
௑݂భሺݔଵሻ݀ݔଵ ൅ ܽଶ න ଶݔ

ஶ

ିஶ
௑݂మሺݔଶሻ݀ݔଶ (13)

 
We can recognize that the last two integrals above are, respectively, ܧሺ ଵܺሻ and 
 ሺܺଶሻ; hence, we have for the sum of two random variablesܧ
 

ሺܻሻܧ ൌ ܽଵܧሺ ଵܺሻ ൅ ܽଶܧሺܺଶሻ (14)
 
The variance of ܻ (for the general case of correlated random variables) is given by: 

 

ሺܻሻݎܸܽ ൌ ሺܽଵൣܧ ଵܺ ൅ ܽଶܺଶሻ െ ൫ܽଵߤ௑భ ൅ ܽଶߤ௑మ൯൧
ଶ

ൌ ଵ൫ܽൣܧ ଵܺ െ ௑భ൯ߤ ൅ ܽଶ൫ܺଶ െ ௑మ൯൧ߤ
ଶ

ൌ ܧ ቂܽଵଶ൫ ଵܺ െ ௑భ൯ߤ
ଶ
൅ 2ܽଵܽଶ൫ ଵܺ െ ௑భ൯൫ܺଶߤ െ ௑మ൯ߤ

൅ ܽଶଶ൫ܺଶ െ ௑మ൯ߤ
ଶ
ቃ 

(15)

 
We may recognize that the expected values of the first and third terms within the 
brackets are variances of ଵܺ and ܺଶ, respectively, whereas the middle term is the 
covariance between ଵܺ and ܺଶ. Hence, we have: 

 
ሺܻሻݎܸܽ ൌ ܽଵଶܸܽݎሺ ଵܺሻ ൅ ܽଶଶܸܽݎሺܺଶሻ ൅ 2ܽଵܽଶܸܱܥሺ ଵܺ, ܺଶሻ (16)

 
If the variables ଵܺ and ܺଶ are statistically independent, ܸܱܥሺ ଵܺ, ܺଶሻ ൌ 0; thus, 
equation (16) becomes: 

 
ሺܻሻݎܸܽ ൌ ܽଵଶܸܽݎሺ ଵܺሻ ൅ ܽଶଶܸܽݎሺܺଶሻ (17)

 
The results we obtained above can be extended to a general linear function of ݊ 
random variables, such as 
 

ܻ ൌ෍ܽ௜ ௜ܺ

௡

௜ୀଵ

 
(18)

 
in which the ܽ௜’s are constants. For this general case, we obtain the mean and vari-
ance of ܻ as follows: 

ሺܻሻܧ ൌ෍ܽ௜ܧሺ ௜ܺሻ ൌ෍ܽ௜ߤ௑೔

௡

௜ୀଵ

௡

௜ୀଵ

 (19)
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ሺܻሻݎܸܽ ൌ෍ܽ௜ଶܸܽݎሺ ௜ܺሻ ൅ ෍ ܽ௜ ௝ܸܱܽܥ൫ ௜ܺ, ௝ܺ൯
௜,௝ୀଵ,..,௡
௜ஷ௝	

௡

௜ୀଵ

ൌ෍ܽ௜ଶߪ௑೔
ଶ

௡

௜ୀଵ

൅ ෍ ܽ௜ ௝ܽߩ௜௝ߪ௑೔ߪ௑ೕ
௜,௝ୀଵ,..,௡
௜ஷ௝

 

(20)

 
in which ߩ௜௝ is the correlation coefficient between ௜ܺ and ௝ܺ. 

3.2 Taylor’s series and approximate moments of a general func-
tion 

3.2.1. Function of a single random variable 
 
For a general function of a single random variable ܺ,  
 

ܻ ൌ ݃ሺܺሻ (21)
 
the exact moments of ܻ may be obtained using 
 

ሺܻሻܧ ൌ න ݃ሺݔሻ ௑݂ሺݔሻ݀ݔ
ஶ

ିஶ
 (22)

 
and 
 

ሺܻሻݎܸܽ ൌ න ሾ݃ሺݔሻ െ ௒ሿଶߤ ௑݂݀ݔ
ஶ

ିஶ
 (23)

 
Obviously, the determination of the mean and variance of the function ܻ with the 
above relations would require information on the ܨܦ ௑݂ሺݔሻ. In many applications, 
however, the ܲܨܦ of ܺ may not be available. In such cases, we seek approximate 
mean and variance of the function ܻ as follows: 
 
We may expand the function ݃ሺܺሻ in a Taylor series about the mean value of ܺ, that 
is, 
 

݃ሺܺሻ ൌ ݃ሺߤ௑ሻ ൅ ሺܺ െ ௑ሻߤ
݀݃
݀ܺ

൅
1
2
ሺܺ െ ௑ሻଶߤ

݀ଶ݃
݀ܺଶ

൅ ⋯ (24)

 
where the derivatives are evaluated at ߤ௑. 
 
Now, if we truncate the above series at the linear terms, i.e., 
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݃ሺܺሻ ≅ ݃ሺߤ௑ሻ ൅ ሺܺ െ ௑ሻߤ
݀݃
݀ܺ

 (25)

 
We obtain the first-order approximate mean and variance of ܻ as 
 

ሺܻሻܧ ≅ ݃ሺߤ௑ሻ (26)
 
and 
 

ሺܻሻݎܸܽ ≅ ሺܺሻݎܸܽ ൬
݀݃
݀ܺ
൰
ଶ

 (27)

 
We should observe that if the function ݃ሺܺሻ is approximately linear (i.e. not highly 
nonlinear) for the entire range of ܺ, equations (26) and (27) should yield good ap-
proximations of the exact mean and variance of ݃ሺܺሻ. Moreover, when ܸܽݎሺܺሻ is 
small relative to ݃ሺߤ௑ሻ, the above approximations should be adequate even when the 
function ݃ሺܺሻ is nonlinear. 
 
3.2.2. Function of multiple random variables 
 
If ܻ is a function of several random variables, 
 

ܻ ൌ ݃ሺ ଵܺ, ܺଶ, … , ܺ௡ ሻ (28)
 
We obtain the approximate mean and variance of ܻ as follows: Expand the function 
݃ሺ ଵܺ, ܺଶ,… , ܺ௡	ሻ in a Taylor series about the mean values ൫ߤ௑భ, ,௑మߤ … , -௑೙൯, yieldߤ
ing 
 

ܻ ൌ ݃൫ߤ௑భ, ,௑మߤ … , ௑೙൯ߤ ൅෍൫ ௜ܺ െ ௑೔൯ߤ

௡

௜ୀଵ

߲݃
߲ ௜ܺ

൅
1
2
෍෍൫ ௜ܺ െ ௑೔൯ߤ

௡

௝ୀଵ

௡

௜ୀଵ

ቀ ௝ܺ െ ௑ೕቁߤ
߲ଶ݃
߲ ௜ܺ ௝ܺ

൅ ⋯ 

(29)

 
Where the derivatives are all evaluated at 	ߤ௑భ, ,௑మߤ … ,  ௑೙. If we truncate the aboveߤ
series at the linear terms, i.e., 
 

ܻ ൌ ݃൫ߤ௑భ, ,௑మߤ … , ௑೙൯ߤ ൅෍൫ ௜ܺ െ ௑೔൯ߤ

௡

௜ୀଵ

߲݃
߲ ௜ܺ

 (30)

 
We obtain the first-order mean and variance of ܻ, respectively as follows: 

ሺܻሻܧ ≅ ݃൫ߤ௑భ, ,௑మߤ … , ௑೙൯ (31)ߤ
 
and 
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ሺܻሻݎܸܽ ≅෍൫ߪ௑೔൯
ଶ
൬
߲݃
߲ ௜ܺ

൰
ଶ

൅ ෍ ௑ೕߪ௑೔ߪ௜௝ߩ
߲݃
߲ ௜ܺ

߲݃
߲ ௝ܺ௜,௝ୀଵ,…,௡

௜ஷ௝

௡

௜ୀଵ

 (32)

 
We observe that if ௜ܺ and ௝ܺ are uncorrelated (or statically independent) for all ݅ and 
݆, i.e. ߩ௜௝ ൌ 0, then equation (32) becomes  
 

ሺܻሻݎܸܽ ≅෍൫ߪ௑೔൯
ଶ
൬
߲݃
߲ ௜ܺ

൰
ଶ௡

௜ୀଵ

 (33)

 
Equation (33) is a function of both the variances of the independent variables and of 
the sensitivity coefficients as represented by the partial derivatives.  

3.2.3. Example application for the computation of the mean and 
variance of a general function of several variables 

Assume that the random variable ܻ can be represented by the following relationship: 
 

ܻ ൌ ଵܺܺଶ
ଶܺଷ

ଵ ଷ⁄  (34)
 
Where ଵܺ, ܺଶ and ܺଷ are statistically independent random variables with means of 
1.0, 1.5, and 0.8, respectively, and corresponding standard deviations of 0.10, 0.20, 
and 0.15, respectively. Using equations (31) and (33), we find the first-order mean 
and variance, respectively, to be: 
 
ሺܻሻܧ ൎ 1.0 ൈ 1.5ଶ ൈ ሺ0.8ሻଵ ଷ⁄ ൌ 2.0887 
 
and 
 

ሺܻሻݎܸܽ ൎ ሺݎܸܽ ଵܺሻ൫ߤ௑మ
ଶ ൈ ௑యߤ

ଵ ଷ⁄ ൯
ଶ
൅ ௑భߤሺܺଶሻൣݎܸܽ ൈ ൫2ߤ௑మ൯ ൈ ௑యߤ

ଵ ଷ⁄ ൧
ଶ

൅ ሺܺଷሻݎܸܽ ൤ߤ௑భ ൈ ௑మߤ
ଶ ൈ ൬

1
3
௑యߤ

ିଶ ଷ⁄ ൰൨
ଶ

ൌ ሺ0.10ሻଶ൫1.5ଶ ൈ 0.8ଵ ଷ⁄ ൯
ଶ
൅ ሺ0.20ሻଶ൫1.0 ൈ 2 ൈ 1.5 ൈ 0.8ଵ ଷ⁄ ൯

ଶ

൅ ሺ0.15ሻଶൣ1.0 ൈ 1.5ଶ ൈ ሺ1 3⁄ ሻ ൈ 0.8ିଶ ଷ⁄ ൧
ଶ

ൌ ሺ0.10ሻଶሺ2.09ሻଶ ൅ ሺ0.20ሻଶሺ2.78ሻଶ ൅ ሺ0.15ሻଶሺ0.87ሻଶ

ൌ 0.04363 ൅ 0.31024 ൅ 0.01704 ൌ 0.37091 
and 
 
௒ߪ ൌ 0.609 
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3.3 Mean and variance of an analytically-unknown functional 
relationship 

In many cases, the exact form of ݃ in equation (28) may not be known. In fact, the 
exact functional relationship is known in algorithmic form but not in any exact func-
tional form. The implication is that the partial derivatives of the function with re-
spect to the random variables cannot be calculated to approximate the first-order 
mean and the first-order variance of the response variable, as discussed before. 
 
In this case, the approximate (first-order) mean value of the response, represented by 
ܻ in equation (28), can be obtained by using the mean values of all the parameters in 
the problem, the same as in equation (31). Evaluating the variance of ܻ will be more 
involved since the functional form of ݃ is unknown, and its partial derivatives with 
respect to the ith random variable in equation (28) cannot be evaluated. The task is to 
calculate the variance of ܻ without information on the analytical partial derivatives. 
The Taylor series finite difference estimation procedure can be used to numerically 
evaluate the variance of ܻ, as discussed below: 
 
To evaluate the variance, one needs to compute, for each random variable, the two 
following (intermediate) response variables: 
 

௜ܻ
ା ൌ ,௑భߤൣ݃ ,௑మߤ … , ൫ߤ௑೔ ൅ ,௑೔൯ߪ . . , ௑೙ߤ ൧ (35)

 
and 
 

௜ܻ
ି ൌ ,௑భߤൣ݃ ,௑మߤ … , ൫ߤ௑೔ െ ,௑೔൯ߪ . . , ௑೙ߤ ൧ (36)

 
In simple terms, equation (35) states that the response variable ௜ܻ

ା is calculated 
considering the mean of all the random variables except the ith one, which is consid-
ered to be the mean plus one standard deviation value. Equation (36) indicates the 
same thing, except that for the ith random variable, the mean minus one standard 
deviation value needs to be considered. Then, using the central difference approxi-
mation, we can show that 
 

௜ܧ ൌ
߲݃
߲ ௜ܺ

ൌ ௜ܻ
ା െ ௜ܻ

ି

௑೔ߪ2
 (37)

 
Considering all the random variables, the first-order variance of ܻ is computed as 
 

ሺܻሻݎܸܽ ൎ෍ቆ ௜ܻ
ା െ ௜ܻ

ି

௑೔ߪ2
ቇ
ଶ

ൈ ሺݎܸܽ ௜ܺሻ ൎ෍ቆ ௜ܻ
ା െ ௜ܻ

ି

2
ቇ
ଶ௡

௜ୀଵ

௡

௜ୀଵ

 (38)

 
Thus, when the functional relationship among the random variables is not known 
explicitly, the mean and variance of the response variable can be approximated by 
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using equations (31) and (38). This requires the computation of the response varia-
ble several times. If there are ݊ random variables present in a problem, the required 
total number of computations of the response variable is ሺ1 ൅ 2݊ሻ. 

4. Conclusion 

The probabilistic characteristics of a function of random variable(s) may be derived 
from those of the independent variates. These include, in particular, the probability 
distribution and the first two statistical moments (mean and variance) of the func-
tion. It was shown that for a function of a single random variable, the ܲܨܦ of the 
function can be readily obtained analytically. However, it was shown in the litera-
ture that the derivation of the distribution of a function of multiple variables can be 
complicated mathematically, especially for nonlinear functions (see [Ang07] among 
others). Therefore, even though the required distribution of a function may theoreti-
cally be derived, it is often impractical to apply, except for special cases, such as a 
linear function of independent Gaussian variates or the strictly product/quotient of 
independent lognormal variates. In this light, it is often necessary, in many applica-
tions, to describe the probabilistic characteristics of a function approximately in 
terms only of its mean and variance. The mean and variance of linear functions can 
be estimated without any approximation; however, for a general nonlinear function, 
we must often resort to first-order (or second-order) approximations. In case of ana-
lytically-unknown functions, one may use the finite difference method for the (ap-
proximate) computation of the statistical moments. Finally, it should be mentioned 
that when the probability distribution of a general function is required, we may need 
to resort to Monte Carlo simulations or other numerical methods. 
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There are numerous sources of uncertainties that should be considered in engineer-
ing design. Reliability analysis methods provide a framework to account for these 
uncertainties in a rational manner. This chapter presents the First Order Reliability 
Method (FORM) and the Second Order Reliability Method (SORM). These methods 
are illustrated by academic examples. 
 
 

1. Introduction 
 
Engineering design aims at providing minimum levels of serviceability and safety 
during the structural lifetime. This is a difficult task because there are important 
sources of uncertainty that could lead to over- or under-design solutions. For exam-
ple, there are uncertainties related to environmental exposure, loading, material 
properties, engineering models, etc. Reliability analysis methods offer the theoretical 
framework for considering uncertainties in a comprehensive decision scheme. The 
main goal of reliability analysis methods is to evaluate the ability of systems or 
components to remain safe and operational during their lifecycle.  
 
The main objective of this chapter is to present and illustrate various reliability anal-
ysis methods that can be used for engineering or research purposes. The chapter 
starts with a description of fundamental concepts for reliability analysis. After, we 
present the First Order Reliability Method (FORM) and the Second Order Reliabil-
ity Method (SORM). These methods are illustrated by academic examples.   
 
2. Basic concepts for reliability analysis 

 
Reliability methods have been established to take into account, in a rigorous manner, 
the uncertainties involved in the analysis of an engineering problem. The failure 
probability and the reliability index are used to quantify risks and therefore evaluate 
the consequences of failure. In this approach, the governing parameters of the prob-
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lem are modeled as random variables. Random variables can be grouped in a ran-
dom vector X where fX(x) is the joint probability density function (PDF).  
 
For reliability analysis, the space D of random variables may be divided into the 
failure and the safety regions. The failure region Df is defined by Df = {X | g(X) ≤ 0} 
and the safety region, Ds, by Ds = {X | g(X) > 0} where g(X) represents the perfor-
mance function. Notice that g(X)=0 is the boundary between failure and safety re-
gions and it is called the limit state surface.  
 
In the simplest case, the performance function g(X) is expressed as the difference 
between the resistance R(X) and the demand or solicitation on the system S(X) – i.e., 
g(X) =R(X) – S(X). In reliability engineering analysis, g(X) is usually expressed in 
terms of displacement, strain, stress, etc. The performance functions can be related 
to the following structural conditions: 
 

1. Serviceability limit state: under this condition, ‘failure’ is related to a ser-
viceability loss that does not imply a significant decay of structural safety. 
For example, if the reliability analysis of a given structural component fo-
cuses on a maximum displacement vmax, the performance function can 
write: 

 
݃ሺܺሻ ൌ ௠௔௫ݒ െ ሻ (1)ࢄሺݒ

 
where vmax could be fixed by standards or particular serviceability con-
straints and v(X) is the displacement of the point of interest that depends on 
X random variables (material strength, geometry, load, etc.). In the case of 
failure, v(X) > vmax, but the structural component is still considered safe. 

 
2. Ultimate limit state: this condition describes the state at which structural 

safety is highly affected and may lead to total failure or collapse. For in-
stance, if the reliability analysis focuses on the bending moment of a beam, 
the performance function is: 

 
݃ሺܺሻ ൌ ሻࢄ௥ሺܯ െ ௦ܯ (2)

 
where Mr(X) is the resistant bending moment of the beam that depends on 
X random variables (material strength, sectional geometry, etc.), and Ms is 
the soliciting bending moment. Notice that although Ms is assumed to be 
deterministic in eq. (2), this variable may also be considered as a random 
variable. In the case of failure, Ms>Mr(X), leading to the collapse of the 
beam. 

 
By accounting for these definitions, the failure probability, Pf, is determined by: 
 

 (3)
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Notice that the limit state function can be a linear or a nonlinear function of the basic 
variables. FORM can be used to evaluate eq. (3) when the limit state function is a 
linear function of uncorrelated normal variables or when the nonlinear limit state 
function is represented by a first-order (linear) approximation with equivalent nor-
mal variables. SORM estimates the probability of failure by approximating the non-
linear limit state function (including a linear limit state function with correlated non-
normal variables) by a second-order representation. 
 

3. First Order Reliability Methods (FORM) 
 
The First Order Reliability Method (FORM) makes use of the first and second mo-
ments of the random variables. This method includes two approaches [Hal00]. These 
are First-Order Second-Moment (FOSM) and Advanced First-Order Second-
Moment (AFOSM) approaches. In FOSM, the information on the distribution of 
random variables is ignored; however, in AFOSM, the distributional information is 
appropriately used. 
    
3.1. First Order Second Moment (FOSM) 
 
The First Order Second Moment (FOSM) method makes use of only second-
moment statistics (i.e. mean and standard deviation) of the random variables and it 
requires a linearized form of the performance function at the mean values of the 
random variables. A first-order Taylor series approximation is used to linearize the 
performance function at the mean values of the random variables.  
 
Cornell [Cor69] proposed the original FOSM formulation. Let us consider an ele-
mentary reliability case where a weight is hung by a cable. The load-carrying ca-
pacity or the resistance of the cable is R and the load effect is S. The resistance and 
the load will be modeled as independent Gaussian random variables with N(μR, σR) 
and N(μS, σS), respectively. In this case, the failure probability Pf is related to the 
failure event R < S, and is computed as: 
 

Pf = P(R < S) = P(R – S < 0) (4)
 
A new random variable Z (called performance function) can be introduced: 
 

Z =R – S (5)
 
The performance function Z is characterized by a mean μZ = μR – μS and a standard 
deviation σZ

2 = σR
2 + σS

2. Since R and S are Gaussian, it can be demonstrated that Z 
also follows a Gaussian distribution. Figure 1 presents the PDF of Z. It is observed 
that the failure probability is related to the event P(Z < 0). Consequently, Pf could be 
estimated directly from: 
 

Pf = Φ[(0 – μZ)/σZ] = Φ[– μZ /σZ] =Φ[– β] (6)
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where Φ[.] represents the standard normal cumulative distribution function (CDF) 
and β = μZ /σZ is the ‘reliability index’ that is also used to quantify risks of failure.  
 
 

 
Figure 1: Probability density function of Z 

 
As may be easily seen from Figure 1, the reliability index computed by FOSM rep-
resents the number of standard deviations that separate the mean value of the per-
formance function from the limit state surface Z = 0.  
 
For lognormal random variables, an alternative formulation to eq. (6) could be de-
rived as follows: Assume that R and S are statically independent lognormal varia-
bles, that is, LN(λR, ξR) and LN(λS, ξS). In this case, another random variable Y can be 
introduced as 
 

Y = R / S (7)
or 
 

lnY = Z =lnR – lnS (8)
 
The failure event can be defined as Y < 1.0 or Z < 0. Since R and S are lognormal, 
lnR and lnS are normal; therefore, lnY or Z is a normal random variable with mean 

λR – λS and standard deviation R
2 S

2 . The probability of failure can be defined 

(similar to eq. (6)) by 
 

௙ܲ ൌ Φ ቎
଴ିሺఒೃିఒೄሻ

ටకೃ
మାకೄ

మ
቏ ൌ Φ ቂെ

ఓೋ
ఙೋ
ቃ ൌ Φሾെߚሿ  

(9)

 
In the general case where the performance function Z is a function of a vector of n 
random variables, i.e.,  
 

Z = g(X) = g(X1, X2,…, Xn) (10)
 
the Taylor series expansion about the mean value gives: 
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 (11)

 
where the derivatives are evaluated at the mean values of the random variables (X1, 
X2,…, Xn), and   is the mean value of Xi. By truncating eq. (11) at the linear 

terms, it is possible to obtain first-order approximations of the mean and variance of 
Z as follows: 
 

 (12)

 
and 
 

 (13)

 
where Cov(Xi, Xj) is the covariance of Xi and Xj. For uncorrelated random variables, 
the variance becomes: 
 

 (14)

 
Consequently, by estimating μZ and σZ from eqs. (12) and (13), respectively, the 
reliability index can be computed as β = μZ /σZ.  
 
The exact failure probability could be derived from the reliability index only in few 
cases:  

1. if all the Xi’s are statically independent normal variables and if Z is a linear 
function of the Xi, then, Z is normal and the probability of failure is given 
by eq. (6); 

2. if all the Xi’s are statically independent lognormal variables and if g(X) is a 
multiplicative function of the Xi’s, then Z = ln g(X) is normal and the prob-
ability of failure is also given by Pf = Φ(–β). 
  

To conclude, in most cases it is not likely that all the variables are statically inde-
pendent normal or lognormal. Nor is it likely that the performance function is a 
simple additive or multiplicative function of these variables. In such cases, the relia-
bility index cannot be directly related to the probability of failure; nevertheless, the 
equation Pf = Φ(–β) does provide a rough idea of the level of risk. Notice finally that 
FOSM approach has the following shortcomings: 

 the information about the distribution of the independent variables is not con-
sidered, 

 the truncation errors may be significant if g(.) is non-linear, 
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 the assessment of reliability index varies when the limit state function is ex-
pressed in different but mechanically equivalent formulations – e.g., (R – S 
= 0) or (R / S = 1). 

 
Example 1  Reliability index of a steel beam using FOSM 
 
Let us consider a steel beam subjected to a deterministic bending moment of Ma 
=130 kNm. The yield stress Fy and the plastic modulus Zp of the beam are consid-
ered as random variables following normal distributions with the following parame-
ters: 
 

 

 
 

Question 1: Write two different performance functions by considering strength and 
stress formulations. 
 
For the strength formulation, the resistance of the beam is a random variable defined 
as R = FyZp and the solicitation S is deterministic where S = Ma. Then, the perfor-
mance function becomes 
 

 (15)

 
For the stress formulation, the yield stress becomes the resistance of the perfor-
mance function, i.e.  R = Fy and the solicitation is computed as S = Ma/Z. In this 
case, both R and S are random variables and the performance function becomes 
 

 (16)

 
Question 2: Estimate the reliability index using the strength formulation. 
 
We assume that the random variables are independent. We will first estimate μR and 
σR by using eqs. (12) and (14) respectively: 
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The sollicitation is deterministic, then, μS = Ma and σS = 0. Consequently, the relia-
bility index is given by :  
 

 
 
Question 3: Estimate the reliability index using the stress formulation. 
 
According to the performance function given by eq. (16), we obtain directly the 
mean and the standard deviation of the resistance:  and . For the 

solicitation, μS and σS are computed from eqs. (12) and (14) respectively: 
 

 

 

 
And the reliability index becomes 
 

 
 
By comparing the reliability indexes, it is noted that the result depends on the for-
mulation of the performance function. This lack of invariance motivated the devel-
opment of other reliability methods such as that presented in the following sections.  
 
3.2. Advanced First Order Second Moment (AFOSM) 
 
AFOSM is also called ‘Hasofer-Lind’ method. In this method, the assessment of the 
reliability index is mainly based on the transformation/reduction of the problem to a 
standardized coordinate system. Thus, a random variable Xi is reduced as: 
 

 (17)

 
where Xi’ is a random variable with zero mean and unit standard deviation. Thus, 
Eq. (17) is used to transform the original limit state surface g(X) = 0 into a reduced 
limit state surface g(X’) = 0. Consequently, X denotes ‘original coordinate system’ 
and X’ describes the ‘transformed or reduced coordinate system’. In the standard-
ized coordinate system, the Hasofer-Lind reliability index βHL corresponds to the 
minimum distance from the origin of the axes (in the reduced coordinates system) to 
the limit state surface: 
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 (18)

 
The minimum distance point on the limit state surface is called the ‘design point’. It 
is denoted by vector x* in the original coordinate system and by vector x’* in the 
reduced coordinate system. These vectors represent the values of all the random 
variables, i.e. X1, X2, …, Xn at the design point corresponding to the coordinate sys-
tem being used.  
 
Figure 2 illustrates the reduction of the random variables R and S for a linear per-
formance function such as that described by eq. (5). According to eq. (17), R and S 
can be reduced as: 
 

 (19)

 
The substitution of R’ and S’ into the limit state surface (Z=0) gives the new limit 
state surface in the reduced coordinate system (Figure 2b): 
 

=0 (20)

 
Figure 2: Reduction of coordinates: (a) original coordinates, (b) reduced coordinates  
 
The reliability of the problem is estimated by using eq. (18). It corresponds to the 
minimum distance between the limit state surface and the origin (in the reduced 
coordinates system). By using simple trigonometry, this distance (reliability index) 
can be estimated as: 
 

  (21)

 
It should be emphasized here that in the present case of a linear limit state surface, 
the Hasofer-Lind reliability index corresponds exactly to the reliability index com-

R 
r* μR 

R – S = 0 
S 

s* 

μS 

Design point 

Safety region 

Failure region 

R’ 

S’ 

(0,(μR–μS)/σS) 

Design point 
(r’*,s’*) 

Safety  
region 

Failure region 

βHL 

(–(μR–μS)/σR,0) 

 
 

θR 
αR 

θS 
αS 

α 

(a) (b) 
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puted from FOSM if both R and S are normal variables. However, this is not the case 
for other limit state surfaces or random variable distributions.  
 
From Figure (2b), it is apparent that if the limit state line is closer to the origin in the 
reduced coordinate system, the failure region is larger, and if it is farther away from 
the origin, the failure region is smaller. Thus, the position of the limit state surface 
relative to the origin in the reduced coordinate system is a measure of the reliability 
of the system. Notice that the Hasofer-Lind reliability index can be used to calculate 
the failure probability as Pf = Φ(–βHL). This is the integral of the standard normal 
density function along the ray joining the origin and x’*. It is obvious that the nearer 
x’* is to the origin, the larger is also the most probable failure point. The point of 
minimum distance from the origin to the limit state surface, x’*, represents the worst 
combination of the stochastic variables and is appropriately named the ‘design 
point’ or the ‘most probable point MPP’ of failure.    
 
Finally, it should be noted that the Hasofer-Lind reliability index is invariant, be-
cause regardless of the form in which the limit state equation is written [e.g., (R–
S=0) or (R/S=1)], its geometric shape and the distance from the origin remain con-
stant.  
 
For the general case of a non-linear limit state surface, the assessment of the mini-
mum distance can be written as an optimization problem:  
 

(22)

 
By using Lagrange’s multipliers, the minimum distance (for n random variables) 
could be estimated as: 
 

  (23)

 
where (∂g/∂X’i)

* is the ith
 partial derivative evaluated at the design point (x1’

*, 
x2’

*,…, xn’
*). The design point in the reduced coordinates is: 

 

  (24)

 
where αi are the direction cosines along the coordinate axes X’i. They are given by: 
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  (25)

 
By using eq. (17), the design point (in the original space) is given by:  
 

  (26)

 
An algorithm was formulated by [Rac76] to compute βHL and xi’

* as follows: 
 

Step 1: Define the appropriate performance function g(X). 
 

Step 2: Assume initial values for the design point x*
i. The initial design point 

is usually assumed to be at the mean value of the n –1 random variables. 
For the last random variable, its value is obtained from the performance 
function to ensure that the design point is located on the limit state surface 
g(X) = 0.  

 
Step 3: Obtain the design point in the reduced space x’*= [x1’

*, x2’
*,…, xn’

*] as 
 

  (27)

 
Step 4: Estimate the partial derivatives of the performance function (∂g/∂X’i)

* 
with respect to the variables in the reduced space and evaluate them at xi’

*. 
These derivatives can be estimated from the performance function in the 
original space by using the chain rule of differentiation 
 

 (28)

 
Define the column vector A such that 
 

 (29)

 
Step 5: Compute the reliability index as 

 

  (30)
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Step 6: Determine a vector of directional cosines as  
 

  (31)

 
Step 7: Obtain the new design point xi’

* for the n –1 random variables. 
 

Step 8: Determine the coordinates of the new design point in the original 
space for the n –1 random variables considered in Step 7 as 

 
  (32)

 
Step 9: Determine the value of the last random variable in the original space 

such that the estimated point belongs to the limit state surface g(X) = 0. 
 

Step 10: Repeat Steps 3 to 9 until convergence of βHL. 
 

Finally, notice that the Hasofer-Lind reliability index βHL can be used to estimate a 
first-order approximation of the failure probability as Pf ൎ Φ(–βHL). 
 
Example 2   Assessment of the reliability index by using FORM 

(Adapted from [San10]) 
 
Let us suppose that the performance function of a problem is defined by  
 

g(X1, X2, X3) = 6.2 X1 – X2 X3
2 

 
where the random variables X1, X2, X3 follow normal distributions with means μX1 = 
20, μX2 = 5, and μX3 = 4; and standard deviations σX1 = 3.5, σX2 = 0.8, and σX3 = 0.4.  
 
Question 1: Estimate the reliability index by using FORM. 
 
Once the performance function is defined (Step 1), we define the coordinates of the 
design point in the original space (Step 2): 
 

 

 
The Step 3 consists of obtaining the design points in the reduced space: 
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Then, (x’*)T = [0, 0, 2.448]. In the Step 4, we estimate the vector containing the 
derivatives of the performance function evaluated at the design point (eqs. 28-29): 
 

 

 
 
Therefore, AT = [21.7, –19.84, –19.92]. The first estimate of the reliability index 
becomes (Step 5): 
 

 

 
We estimate the vector of directional cosines in Step 6: 
 

 

 
The new design point in the reduced space is estimated for the n – 1 random varia-
bles (Step 7): 
 

 

 
Consequently, the corresponding values in the original space are (Step 8): 
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We estimate afterwards the value of x3
* such that it belongs to the limit state func-

tion (Step 9): 
 

 

 

The algorithm is repeated until convergence of the reliability index (Step 10). Table 
1 presents the results of various iterations. Convergence is reached after three itera-
tions for this example. We found a reliability index βHL = 1.413 that corresponds to a 
failure probability Pf  0.079 computed based on a first-order approximation.  
 

Table 1: Summary of the iterative process to estimate βHL 
Variable Iteration Number 

 1 2 3 
x1

* 20 17.06 16.732 
x2

* 5 5.614 5.519 
x3

* 4.98 4.34 4.335 
    
βHL 1.374 1.413 1.413 

    
x1

* 17.06 16.732 16.709 
x2

* 5.614 5.519 5.521 
x3

* 4.34 4.335 4.332 
 

3.2.1. Extension of AFOSM to the case of non-normal random varia-
bles 

 
To extend the Hasofer-Lind method to the case of non-normal random variables, 
Rackwitz and Fiessler [Rac78] proposed to transform each non-normal random 
variable into an equivalent normal random variable with a mean  and standard 

deviation . This transformation allows estimating a solution in the reduced space 

by using the procedure explained in the previous paragraphs. The equivalent param-
eters evaluated at the design point xi

* are given by: 
 

  (33)

 

 (34)

 
where Φ[.] and ϕ[.] are the CDF and the PDF of the standard variate, respectively, 
and FXi

(.) and fXi
(.)  are the CDF and PDF of the original non-normal random vari-
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able (some useful Matlab commandes may be found in Appendix). Notice that eqs. 
(33-34) are derived by equating the cumulative distribution functions and the proba-
bility density functions of the actual variables and the equivalent normal variables at 
the design point on the limit state surface. 
 
Since the equivalent parameters are evaluated at the design point, each iteration 
should include the assessment of the equivalent parameters. The before presented 
algorithm is thus modified as follows: 
 

 Steps 1 and 2 remain similar. 
 

 Step 3 should include the assessment of the equivalent parameters  and 

 at the design point for each non-normal random variable. These 

equivalent parameters will be used to determine the design point in the re-
duced space as follows  
 

  (35)

 
 Steps 4 to 7 remain exactly similar. 

 
 In Step 8, the assessment of the coordinates in the original space becomes 

 
  (36)

 
 Finally, Steps 9 and 10 remain similar. 

 
 
3.3. Ellipsoid Approach 
 
The Hasofer-Lind reliability index can be formulated in a matrix form: 
 

  (37)

 
where X is a vector containing the n random variables, μ is a vector containning 
their mean values, and C is the covariance matrix. 
 
An intuitive interpretation of the reliability index was suggested in Low and Tang 
(cf. [Low97] and [Low04]), where the concept of an expanding ellipse (Figure 3) led 
to a simple method for computing the Hasofer-Lind reliability index in the original 
space of the random variables using an optimization tool available in most spread-
sheet software packages.  
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When there are only two uncorrelated non-normal random variables X1 and X2, these 
variables span a two-dimensional random space, with an equivalent one-sigma dis-
persion ellipse (corresponding to βHL=1 in Eq. (37) without the min.), centered at the 
equivalent mean values ߤଵே and ߤଶே 

and whose axes are parallel to the coordinate 
axes of the original space. For correlated variables, a tilted ellipse is obtained.  
 
Low and Tang (cf. [Low97] and [Low04]) reported that the Hasofer-Lind reliability 
index βHL may be regarded as the codirectional axis ratio of the smallest ellipse 
(which is either an expansion or a contraction of the 1−σ ellipse) that just touches 
the limit state surface to the 1−σ dispersion ellipse. They also stated that finding the 
smallest ellipse that is tangent to the limit state surface is equivalent to finding the 
most probable failure point. 
 

 
Figure 3: Ellipsoid approach for the computation of the Hasofer-Lind reliability 

index  
 
3.3.1. Ellipsoid Approach via Spreadsheet 
 
Low and Tang (cf. [Low97] and [Low04]) showed that the minimization of the Has-
ofer-Lind reliability index can be efficiently carried out in the Excel spreadsheet 
environment. The spreadsheet approach is simple and easy to understand because it 
works in the original space of random variables and does not require the additional 
step of transforming X to X’ where X’ is a transformed vector of the random varia-
bles in the uncorrelated Gaussian space. Notice however that the optimization in 
original space is not preferred from a computational perspective. This is because the 
optimization in a standardized space is mathematically more desirable in nonlinear 
optimization. For example, when minimizing the quadratic form of Eq. (37) in the 
original space; in some cases, the correct solution is obtained only when the solver 
option “use automatic scaling” is activated. As an alternative, Cholesky factorization 
of the covariance matrix can be used.  
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When the random variables are non-normal, the Rackwitz-Fiessler equivalent nor-
mal transformation can be used to compute the equivalent normal mean ߤ௘ and the 
equivalent normal standard deviation ߪ௘. The iterative computations of ߤ௘ and ߪ௘ 
for each trial design point are automatic during the constrained optimization search. 
For non-normal random variables, Eq. (37) may be rewritten as 
 

  (38)

 
where μe and σe are vectors containning the equivalent mean and standard deviations 
values, respectively, and R−1 is the inverse of the correlation matrix. This equation 
will be used instead of Eq. (37) since the correlation matrix R displays the correla-
tion structure more explicitly than the covariance matrix C. 
 
Additional information on Solver’s options and algorithms can be found in the Mi-
crosoft Excel Solver’s help file and at www.solver.com. The implementation proce-
dure of the ellipsoid approach in the spreadsheet is described in [Low97] and 
[Low04] among others. Some Excel files are available at 
http://alum.mit.edu/www/bklow. 
 
3.4. Response Surface Method (RSM)  
 
In case of analytically-unknown system response (such as the responses computed 
using a finite element/finite difference method), several approaches based on the 
Response Surface Method (RSM) can be found in the literature with the aim of cal-
culating the reliability index and the corresponding design point. We present herein 
the approach by Tandjiria et al. [Tan00]. The basic idea of this method is to approx-
imate the system response Y(x) by an explicit function of random variables, and to 
improve the approximation via iterations. The system response can be approximated 
(in the original space of random variables) by: 
 

 (39)

 
 
where xi are the random variables (μi and σi being their mean and standard deviation 
values, respectively); n is the number of random variables; and (ai, bi) are coeffi-
cients to be determined. The RSM algorithm is summarized as follows: 
 

Step 1: Evaluate the system response Y(x) at the mean value point μ and at the 
2n points each at μ ± kσ where k can be arbitrarily chosen (k = 1). 
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Step 2: The above 2n+1 values of Y(x) are used to solve eq. (39) and find the 
coefficients (ai, bi). Then, the performance function g(x) can be constructed 
to give a tentative response surface function. 

 
Step 3: Solve eq. (37) to obtain a tentative design point and a tentative βHL 

subjected to the constraint that the tentative performance function of step 2 
be equal to zero. 

 
Step 4: Repeat Steps 1 to 3 until convergence of βHL. Each time, Step 1 is re-

peated, the 2n + 1 sampled points are centered at the new tentative design 
point of Step 3. 

 
Concerning the numerical implementation of the RSM algorithm described above, 
the determination of βHL requires (i) the resolution of eq. (39) for the 2n+1 sampled 
points, and (ii) the minimization of βHL given by Eq. (37). These two operations 
constitute a single iteration and can be done using the optimization toolbox available 
in Excel. Several iterations should be performed until convergence of βHL. Conver- 
gence is considered to be reached when the absolute difference between two succes-
sive values of the reliability index becomes smaller than 10–2. 
 

4. Second Order Reliability Method (SORM) 
 
Reliability assessment is relatively simple if the limit state function is linear. How-
ever, most of the limit state functions are nonlinear. The nonlinearity is due to non-
linear relationship between random variables, to the consideration of non-normal 
random variables, and/or to the transformation from correlated to uncorrelated ran-
dom variables. Indeed, a linear limit state in the original space becomes non-linear 
when transformed to the standard normal space if any of the variables is non-normal. 
Also, the transformation from correlated to uncorrelated variables might induce 
nonlinearity. 
 
Figure 4 presents examples of linear and nonlinear limit state functions in the re-
duced space. Both limit state functions have the same minimum distance point β, but 
the failure regions are different in both cases. The failure probability of the nonlinear 
limit state should be less than that of the linear limit state. The FORM approach 
approximates the limit state function with a linear function and will therefore pro-
vide the same assessment of the probability of failure for both cases. This approxi-
mation introduces errors in the assessment of the probability of failure. Consequent-
ly, it is preferable to use a higher order approximation for the failure probability 
computation.  
 
The SORM method improves the assessment given by FORM by including infor-
mation about the curvature (which is related to the second-order derivatives of the 
limit state function with respect to the basic variables). The Taylor series expansion 
of a general nonlinear function g(X1, X2,…, Xn) at the design point (x*

1, x
*

2,…, x*
n) is 

given by: 
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 (40)

 
where the derivatives are evaluated at the design point.  
 
 

 
Figure 4: Linear and nonlinear limit state functions  

 
For reliability analysis, the space of standard normal variables is more convenient 
for a second order approximation of g(). In the following, Xi and Yi will refer to 
random variables in the original and equivalent uncorrelated standard normal spaces, 
respectively. If all the variables are uncorrelated,  where  and 

 are the equivalent normal mean and standard deviation of Xi at the design point 

xi
*. 

 
In the Taylor series approximation given by eq. (40), FORM ignores the terms be-
yond the first order term, and SORM ignores the terms beyond the second-order 
term (involving second-order derivatives). 
 
Breitung [Bre84] proposed a simple closed-form solution for the probability compu-
tation using the theory of asymptotic approximation as:  
 

(41)

 
where κi represents the principal curvatures of the limit state function at the mini-
mum distance point, and βFORM is the reliability index computed by the FORM 
method.  
 

x’1 

g(X’) = 0 

x’2 

Safety region 

Failure region 

Design point, x’* 

β 
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The assessment of Pf requires the computation of κi. Towards this aim, the random 
variables Yi (in the Y  reduced space) are rotated to another set of variables Yi’, such 
that the last Yi’ variable coincides with the vector α where α is the unit gradient 
vector of the limit state at the minimum distance point.  
 
Figure 5 describes the problem for two random variables indicating that the problem 
consists of a simply rotation of coordinates. This rotation can be carried out by an 
orthogonal transformation: 
 

(42)
 
where R is the rotation matrix. For instance, in the case of two random variables: 
 

 (43)

 
where θ is the counterclockwise angle of rotation of the axes (Figure 5). For n ran-
dom variables, the reader may refer to [Hal00] for the determination of the matrix R. 
 
 

 
Figure 5: Rotation of axis in the standardized space  

 
The matrix R is after used to estimate a matrix A, whose elements are denoted aij, as 
follows: 
 

 (44)

 
where D is the n × n second-derivative matrix of the limit state function in the 
standard normal space evaluated at the design point and |∇G(y*)| is the length of the 
gradient vector in the standard normal space. 

Y1 

g(y1, y2) = 0 

Y2 

Safety region 

Failure region 

Design point, 
(y1

*, y2*) 

β 

α  

Y’1 

Y’2 

 
 

θ 
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The last variable Yn coincides with the β vector computed with the FORM approach 
in the rotated normal space. In the next step, the last row and last column in the A 
matrix and the last row in the Y’ vector are dropped to take this factor into account. 
The limit state can be rewritten in terms of a second-order approximation in this 
rotated standard normal space Y’ as: 	
 

 (45)

 
where the matrix A has now the size (n – 1) × (n – 1). Afterwards, the curvatures κi 
of eq. (41) are computed as the eigenvalues of the matrix A, to estimate the proba-
bility of failure.  
 
Breitung’s SORM method uses a parabolic approximation (it does not consider a 
general second order approximation) by ignoring the mixed terms and their deriva-
tives in the Taylor series approximation in eq. (40). This approach uses the theory of 
asymptotic approximation to derive the probability estimate. This approximation is 
accurate for large values of β (which is the case for engineering purposes). However, 
the assessment is less accurate for smaller β.  
 
Example 3  Assessment of the reliability index by using SORM 

(Adapted from [San10]) 
 
Suppose that the performance function of a problem is defined by  
 

g(X1, X2) = X1X2 – 80 
 
where X1 follows a normal distribution with mean μX1 = 20 and standard deviation 
σX1 = 2. X2 follows a lognormal distribution with mean μX2 = 7 and standard devia-
tion σX2 = 1.4.  
 
The results of the FORM approach provide a reliability index βFORM =2.402 and the 
two following vectors x* and α:  
 

 
 
where x* is the final design point in the original space and α is the vector of direc-
tion cosines.  
 
Question 1: Estimate the probability of failure by using SORM and compare the 
results with the probability of failure estimated from FORM. 
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We already have the results of the FORM approach. We will transform X1 and X2  
from the original to the standard normal space. Since X2 is lognormal, we use the 
Rackwitz and Fiessler procedure to estimate the equivalent parameters: 
 

 

 
Transforming X1 and X2 from the original to the reduced space gives: 
 

 

 
Then the values of the design point for each random variable in the reduced space 
are: 
 

 

 
The first step in SORM is to determine the matrix R from eq. (43). In the rotated 
coordinates, the second coordinate need to coincide with the unit gradient vector α. 
Figure 6 presents the example in the reduced space including the performance func-
tion and the design point. It also includes the geometrical description of the assess-
ment of θ. Thus, it can be noted that θ = 270º + tan–1(–2.085/–1.194) = 330.194º, and 
R becomes 
 

 

 
Notice that the elements of R are also easily available from the direction cosines, i.e. 
the components of the unit gradient vector α. 
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Figure 6: Rotation of the axis in the reduced space  

 
The next step is to construct the matrix D that contains the second derivatives of the 
performance function with respect to each variable in the standard normal space. We 
use the chain rule of differentiation for determining the derivatives from the limit 
state function in the original space 
 

 

 
Consequently 
 

 

 
We estimate the following partial derivatives for the assessment of A  
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These derivatives evaluated at the design point are 
 

 

 
and the length of the vector is 
 

 

 
Therefore by applying eq. (44), the matrix A is  
 

 

 
Afterwards, we modify the matrix A by deleting the last row and column. In this 
case, we have only one element a11 = –0.044. Then, the eigenvalue of this one ele-
ment matrix is simply the same element: κ1 = a11 = –0.044.  
 
The approximation of the failure probability is estimated from eq. (41) 
 

 

 
The probability of failure estimated from FORM is Pf = Φ(–2.402) = 8.144·10–3. The 
probability of failure estimate from the SORM procedure is about 5% larger. This 
result is expected because of the curvature of the performance function (Figure 6).  
 

5. Conclusions 
 
This chapter presented the First Order Reliability Method (FORM) and the Second 
Order Reliability Method (SORM). The First Order Reliability Method (FORM) 
makes use of the first and second moments of the random variables. This method 
includes two approaches. These are First-Order Second-Moment (FOSM) and Ad-

Bastidas-Arteaga & Soubra 75

ALERT Doctoral School 2014



vanced First-Order Second-Moment (AFOSM) approaches. In FOSM, the infor-
mation on the distribution of random variables is ignored; however, in AFOSM 
(called also Hasofer-Lind approach), the distributional information is appropriately 
used. It was shown that contrary to FOSM, the Hasofer-Lind method led to an invar-
iant reliability index regardless of the form in which the limit state equation is writ-
ten. 
 
While AFOSM requires the transformation of the limit state surface to a standard 
space of random variables, the recent ellipsoid approach led to a simple method for 
computing the Hasofer-Lind reliability index in the original space of random varia-
bles using an optimization tool available in most spreadsheet software packages.  
 
In case of analytically-unknown system response (i.e. when the system response is 
computed using a finite element/finite difference method), the Response Surface 
Method (RSM) can be used to calculate the Hasofer-Lind reliability index and the 
corresponding design point. The basic idea of this method is to approximate the 
system response by an explicit function of random variables, and to improve the 
approximation via iterations.  
 
For the computation of the failure probability, it was shown that the Hasofer-Lind 
reliability index can be used to evaluate the failure probability when the limit state 
function is a linear function of uncorrelated normal variables or when the nonlinear 
limit state function is represented by a first-order (linear) approximation with equiv-
alent normal variables. SORM estimates the probability of failure by approximating 
the nonlinear limit state function (including a linear limit state function with corre-
lated non-normal variables) by a second-order representation.  
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Appendix: Summary of Matlab® functions for the nor-
mal distribution 
 
 
Function Description 
normpdf(X,mu,sigma) computes the PDF at each of the values in X using the 

normal distribution with mean mu and standard deviation 
sigma. X, mu, and sigma can be vectors, matrices, or mul-
tidimensional arrays that all have the same size. A scalar 
input is expanded to a constant array with the same dimen-
sions as the other inputs. The parameters in sigma must be 
positive. 

normcdf(X)  returns the standard normal CDF at each value in X. The 
standard normal distribution has parameters mu = 0 and 
sigma = 1. 

norminv(P,mu,sigma)  computes the inverse of the normal CDF using the corre-
sponding mean mu and standard deviation sigma at the 
corresponding probabilities in P. P, mu, and sigma can be 
vectors, matrices, or multidimensional arrays that all have 
the same size. A scalar input is expanded to a constant 
array with the same dimensions as the other inputs. The 
parameters in sigma must be positive, and the values in P 
must lie in the interval [0 1]. 
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This chapter presents the subset simulation (SS) approach and the Polynomial Cha-
os Expansion (PCE) methodology. The SS method is an efficient alternative to the 
well-known Monte Carlo Simulation (MCS) methodology to calculate small failure 
probabilities. The basic idea of the SS approach is that the small failure probability 
can be expressed as a product of larger conditional failure probabilities. On the 
other hand, the PCE methodology allows one to accurately compute the PDF of a 
given system response using a reduced number of calls of the deterministic model 
(as compared to the classical MCS applied on the original complex deterministic 
model). Indeed, the PCE methodology replaces the computationally-expensive de-
terministic model by a meta-model. Once the meta-model is determined, MCS can be 
applied on the obtained PCE to compute the PDF of the system response with a 
quasi-negligible computation time.  

1 Introduction 

The most robust method used for the probabilistic analysis of geotechnical structures 
is the classical well-known Monte Carlo Simulation (ܵܥܯ) methodology. It should 
be noted that the probabilistic analysis of an engineering system involves the com-
putation of the PDF of the system response or the calculation of the failure probabil-
ity for a prescribed threshold of this system response.  
 
-is not suitable for the computation of the small failure probabilities encoun ܵܥܯ
tered in the practice of geotechnical engineering (especially when using a computa-
tionally-expensive finite element/finite difference deterministic model) due to the 
large number of simulations required to calculate a small failure probability. As an 
alternative to ܵܥܯ methodology, [Au01] proposed the subset simulation ሺܵܵሻ ap-
proach to calculate small failure probabilities. The basic idea of the ܵܵ approach is 
that the small failure probability can be expressed as a product of larger conditional 
failure probabilities. 
 
Similarly, MCS is not suitable for the accurate determination of the PDF of a system 
response because of the great number of calls of the deterministic model, which are 
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required for such a computation. The PCE methodology allows one to approximate a 
given system response by a polynomial chaos expansion (PCE) of a suitable order. 
Thus, the PCE methodology replaces the computationally-expensive deterministic 
model by a meta-model (i.e. a simple analytical equation). Once the PCE coeffi-
cients are determined, MCS can be applied on the obtained PCE to compute the PDF 
of the system response (and the corresponding statistical moments) with a quasi-
negligible computation time. 

2 Subset simulation ሺࡿࡿሻ approach 

Subset simulation ሺܵܵሻ approach was proposed by [Au01] as alternative to Monte 
Carlo Simulation (ܵܥܯ) methodology to compute small failure probabilities. The 
basic idea of the ܵܵ approach is that the small failure probability can be expressed as 
a product of larger conditional failure probabilities. In this section, one presents a 
brief description of the steps of ܵܵ approach in case of two random variables, the 
extension to the case of several random variables being straightforward. A detailed 
description of the ܵܵ approach may be found in [Au01], in the chapters 1 and 4 of 
the book by [Pho08] and in [Ahm12].  

 
The steps of ܵܵ approach in case of two random variables ሺ ଵܸ, ଶܸሻ can be described 
as follows: 

1. Generate a vector of two random variables ሺ ଵܸ, ଶܸሻ according to a target ܲܨܦ 
using direct Monte Carlo simulation.    

2. Using the deterministic model, calculate the system response corresponding to 
ሺ ଵܸ, ଶܸሻ.  

3. Repeat steps 1 and 2 until obtaining a prescribed number ௦ܰ of vectors of ran-
dom variables and the corresponding values of the system response.  

4. Determine the value of the performance function corresponding to each value of 
the system response and then, arrange the values of the performance function in 
an increasing order within a vector ܩ଴ where ܩ଴ ൌ ൛ܩ଴

ଵ,… , ଴ܩ
௞, … , ଴ܩ

ேೞൟ. Notice 
that the subscripts ‘0’ refer to the first level (level 0) of the subset simulation 
approach.   

5. Prescribe a constant intermediate conditional failure probability ݌଴ for the fail-
ure regions ܨ௝ሼ݆ ൌ 1,2, … ,݉ െ 1ሽ and evaluate the first failure threshold ܥଵ 
which corresponds to the first level of ܵܵ approach (see Figure 1). The failure 
threshold ܥଵ is equal to the ሾሺ ௦ܰ ൈ ଴ሻ݌ ൅ 1ሿ௧௛ value in the increasing list of el-
ements of the vector ܩ଴. This means that the value of the conditional failure 
probability of the first level ܲሺܨଵሻ will be equal to the prescribed ݌଴ value. 

6. Among the ௦ܰ vectors of random variables, there are ሾ ௦ܰ ൈ  ଴ሿ ones whose݌
values of the performance function are less than ܥଵ (i.e. they are located in the 
failure region ܨଵ). These vectors are used as ‘mother vectors’ to generate ௦ܰ 
new vectors of random variables (according to a proposal  ௣ܲ) using Markov 
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chain method based on the modified Metropolis-Hastings algorithm by [San11]. 
This algorithm is presented in Appendix 1. 

7. Using the deterministic model, calculate the values of the system response cor-
responding to the new vectors of random variables (which are located in level 
1). Then, calculate the corresponding values of the performance function. Final-
ly, gather the values of the performance function in an increasing order within a 
vector ܩଵ where ܩଵ ൌ ൛ܩଵଵ, … , ଵܩ

௞, … , ଵܩ
ேೞൟ.  

8. Evaluate the second failure threshold ܥଶ as the ሾሺ ௦ܰ ൈ ଴ሻ݌ ൅ 1ሿ௧௛ value in the 
increasing list of elements of the vector ܩଵ.    

9. Repeat steps 6-8 to evaluate the failure thresholds ܥଷ, ,ସܥ … ,  ௠ correspondingܥ
to the failure regions ܨଷ, ,ସܨ … ,  ,௠. Notice that contrary to all other thresholdsܨ
the last failure threshold ܥ௠ is negative. Thus, ܥ௠ is set to zero and the condi-
tional failure probability of the last level ܲሺܨ௠|ܨ௠ିଵሻ is calculated as: 

 

ܲሺܨ௠|ܨ௠ିଵሻ ൌ
1

௦ܰ
෍ܫி೘ሺ௦ೖሻ

ேೞ

௞ୀଵ

 
        
       (1) 

 
where ܫி೘ ൌ 1 if the performance function ܩሺݏ௞ሻ is negative and ܫி೘ ൌ 0 oth-
erwise. 

 

Figure 1: Nested Failure domain. 
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Finally, the failure probability ܲሺܨሻ is evaluated as follows:  
 

ܲሺܨሻ ൌ ܲሺܨଵሻෑܲ൫ܨ௝หܨ௝ିଵ൯

௠

௝ୀଶ

 
        

 (2)

 
It should be mentioned that a normal ܲܨܦ was used herein as a target probability 
density function ௧ܲ. However, a uniform ܲܨܦ was used as a proposal probability 
density function ௣ܲ (for more details, refer to Appendix 1).  
 
2.1 Example application 
 
In order to illustrate the algorithm of ܵܵ methodology in a simple way, a numerical 
example is provided herein. In this example, ܵܵ approach was used to calculate the 
failure probability ௙ܲ against bearing capacity failure of a strip footing of breadth ܤ. 
The footing rests on a ሺܿ, ߮ሻ soil and it is subjected to a service vertical load ௦ܲ. The 
soil cohesion ܿ and the soil angle of internal friction ߮ were considered as random 
variables. The following formula was used for the computation of the ultimate bear-
ing capacity: 
 

௨ݍ ൌ ߛ
ܤ
2 ఊܰ ൅ ܿ ௖ܰ ൅ ݍ ௤ܰ 

        
 (3)

 
in which: 

ఊܰ ൌ 2൫ ௤ܰ െ 1൯߮݊ܽݐ 
        

 (4a)

௤ܰ ൌ ݁గ௧௔௡ఝ. ଶ݊ܽݐ ቀ
ߨ
4
൅
߮
2
ቁ 

        
 (4b)

௖ܰ ൌ
௤ܰ െ 1
߮݊ܽݐ

 
        

 (4c)
 
where ఊܰ, ௤ܰ and ௖ܰ are the bearing capacity factors due to soil weight, surcharge 
loading and cohesion respectively. These coefficients are function of the soil friction 
angle. On the other hand, ߛ is the soil unit weight and ݍ is the surcharge loading. 
The performance function used in the analysis is:    

ܩ ൌ ௨ܲ

௦ܲ
െ 1 

        
 (5)

 
where ௨ܲ is the ultimate footing load and ௦ܲ is the footing applied load. As men-
tioned previously, only the soil cohesion and friction angle were considered as ran-
dom variables. All the other parameters were considered as deterministic. These 
parameters are given in Table (1).  
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In this example, the intermediate failure probability ݌଴ of a given level ݆ ሺ݆ ൌ
1,2, … ,݉ െ 1ሻ was arbitrary chosen equal to 0.2. A small number of samples per 
level ( ௦ܰ ൌ 10 samples) was used to facilitate the illustration. 
 

Table 1: Data used for the probabilistic analysis of a strip footing against bearing  
capacity failure 

 
Table 2 presents (i) the values of ܿ and ߮ of each sample for the successive levels 
(ii) the corresponding values of the performance function and (iii) the values of the 
failure thresholds ܥ௝ for the different levels. Notice that only the first two levels and 
the last level for which the failure threshold becomes negative were provided herein 
for illustration. Table (2) indicates that the failure threshold decreases with the suc-
cessive levels until reaching a negative value at the last level. This means that the 
samples generated by the subset simulation successfully progress towards the limit 
state surface ܩ ൌ 0. In order to select the failure threshold of a given level, the cal-
culated values of the performance function of this level were arranged in an increas-
ing order as shown in Table (2). Then, the failure threshold was selected as the 
ሾሺ ௦ܰ ൈ ଴ሻ݌ ൅ 1ሿ௧௛ value of the arranged values of the performance function. Since 
௦ܰ ൌ 10 and ݌଴ ൌ 0.2, the failure threshold is equal to the third value of the ar-

ranged values of the performance function. The ܵܵ computation continues until 
reaching a negative value (or a value of zero) of the failure threshold. In this exam-
ple, the negative value was reached in the sixth level (where ܥ଺ ൌ െ0.0936) as 
shown in Table (2). Theoretically, the last failure threshold should be equal to zero. 
For this reason, ܥ଺ was set to zero. This means that the last conditional failure prob-
ability ܲሺܨ଺|ܨହሻ is not equal to ݌଴. In this case, the last conditional failure probabil-
ity ܲሺܨ଺|ܨହሻ is calculated as the ratio between the number of samples for which the 
performance function is negative and the chosen number ௦ܰ of samples (i.e. 10). 
According to Table (2), ܲሺܨ଺|ܨହሻ is equal to 3 10⁄ ൌ 0.3. Thus, the failure probabil-
ity of the footing under consideration is equal to 0.2ହ ൈ 0.3 ൌ 9.6 ൈ 10ିହ.  

 

Parameter 
Type of parameter 

Mean and coefficient 
of variation of the pa-

rameter 
 Breadth ܤ Deterministic 2m 

Surcharge loading ݍ Deterministic 10kPa 
Soil unit weight ߛ Deterministic 20kN/m3 

Service vertical load 
௦ܲ 

Deterministic 1000kN/m 

Cohesion ܿ 
Random normal varia-

ble 
௖ߤ = 20kPa 
ܱܥ ௖ܸ= 0.3 

Friction angle ߮ 
Random normal varia-

ble 
 ఝ = 30°ߤ
ܱܥ ఝܸ = 0.1 
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Table 2: Results of ܵܵ algorithm when ௦ܰ=10 and ݌଴=0.2 

Level’s 
number ݆ 

Cohesion ܿ 
(kPa) 

Angle of internal 
friction ߮ (deg) 

Performance 
function 

Failure 
threshold 

 ௝ܥ

1 

23.23 26.0 0.9256 

1.4875 
 

31.00 39.1 1.1185 
6.45 32.2 1.4875 
25.17 29.9 1.5598 
21.91 32.1 2.0023 
12.15 29.4 2.6625 
17.40 29.6 3.8598 
22.06 34.5 4.9894 
41.47 34.3 5.3910 
36.62 34.3 9.1912 

2 

25.83 26.5 0.8587 

0.9740 
 

27.29 26.2 0.9411 
25.32 26.8 0.9740 
23.98 25.4 1.0561 
25.92 26.0 1.0842 
14.86 28.0 1.1505 
14.14 28.8 1.1528 
12.27 28.8 1.1747 
13.14 29.4 1.1931 
11.80 30.0 1.2361 

6 

15.17 22.9 -0.1604 

-0.0936 

14.88 23.0 -0.1003 
14.88 23.0 -0.0936 
14.56 22.5 0.0415 
14.56 22.5 0.0718 
15.84 22.5 0.0718 
16.36 21.5 0.1156 
14.53 20.7 0.1420 
12.89 20.6 0.1476 
15.43 20.3 0.1476 

௙ܲ 9.610-5

 
It should be emphasized that the failure probability calculated in Table (2) is not 
accurate due to the small value of ௦ܰ. For an accurate computation of the failure 
probability, ௦ܰ should be increased. This number should be greater than 100 to pro-
vide a small bias in the calculated ௙ܲ value (see chapter 4 by Honjo in [Pho08]).   

84 Advanced reliability analysis methods

ALERT Doctoral School 2014



In order to determine the optimal number of samples ௦ܰ to be used per level, differ-
ent values of ௦ܰ were considered to calculate ௙ܲ and its coefficient of variation 
ܱܥ ௉ܸ೑ as shown in Table (3). The thresholds corresponding to each ௦ܰ value were 

calculated and were shown in this table. Table (3) indicates (as was shown before 
when ௦ܰ ൌ 10) that for the different values of ௦ܰ, the failure threshold decreases 
with the successive levels until reaching a negative value at the last level.  

 
Table 3: Evolution of the failure threshold ܥ௝ with the different levels ݆ and with the 

number of realizations ௦ܰ when ݌଴ ൌ 0.2 

 

Figure (2a) shows the effect of ௦ܰ on the failure probability. It indicates that for 
small values of ௦ܰ, the failure probability largely changes with ௦ܰ.  However, for 
high values of ௦ܰ, the failure probability converges to an almost constant value. 
Figure (2a) also indicates that 2200 samples per level are required to accurately 
calculate the failure probability. This is because (i) the ܥ௝ values corresponding to 

௦ܰ=2200 and 2400 samples are quasi similar as it may be seen from Table (3) and 
(ii) the corresponding final ௙ܲ values are too close (they are respectively equal to 
2.6010-3 and 2.6310-3). 

Figure (2b) shows the effect of ௦ܰ on the coefficient of variation of the failure prob-
ability ܱܥ ௉ܸ೑.  As expected, ܱܥ ௉ܸ೑ decreases with the increase of ௦ܰ. Notice that 

the values of ܱܥ ௉ܸ೑ for ௦ܰ ൌ2200 and 2400 samples are equal to 12.8% and 12.4% 

which indicates (as expected) that the ܱܥ ௉ܸ೑ decreases with the increase in the 

number of realizations. 

It should be mentioned here that for ݌଴ ൌ 0.2, four levels of subset simulation were 
found necessary to reach the limit state surface ܩ ൌ 0 as may be seen from Table 
(3). Therefore, when ௦ܰ=2200 samples, a total number of ௧ܰ=22004=8800 sam-
ples were required to calculate the final ௙ܲ value. Remember that in this case, the 
 is (i.e. 12.8%) ܸܱܥ of ௙ܲ was equal to 12.8%. Notice that if the same value of ܸܱܥ

 ௝ for levelܥ
݆ 

Number of samples ௦ܰ per level 
10 100 200 1000 2000 2200 2400 

 ଵ 1.4875 0.9397 1.0071 1.0638 1.0532 1.0466 1.0803ܥ
 ଶ 0.9740 0.4157 0.3969 0.4916 0.4467 0.4466 0.4942ܥ
 ଷ 0.7391 0.1011 0.1016 0.1513 0.1434 0.1347 0.1549ܥ
ସ 0.4007 -0.0491ܥ -0.0437 -0.0307 -0.0616 -0.0536 -0.0564 
 -------- -------- -------- -------- -------- -------- ହ 0.1573ܥ
 -------- -------- -------- -------- -------- -------- ଺ -0.0936ܥ

௙ܲሺൈ 10ିଷሻ 0.096 2.80 2.72 2.20 2.80 2.60 2.63 
ܱܥ ௉ܸ೑

ሺ%ሻ 221.4 57.9 42.1 18.7 13.3 12.8 12.4 
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desired by ܵܥܯ to calculate ௙ܲ, the number of samples would be equal to 20000. 
This means that, for the same accuracy, the ܵܵ approach reduces the number of 
realizations by 56%. On the other hand, if one uses ܵܥܯ with the same number of 
samples (i.e. 8800 realizations), the value of ܸܱܥ of ௙ܲ would be equal to 19.6%. 
This means that for the same computational effort, the ܵܵ approach provides a 
smaller value of ܸܱܥ൫ ௙ܲ൯ than ܵܥܯ.  

 
(a) 

 
(b) 

 
Figure 2: ௙ܲ and ܱܥ ௉ܸ೑ versus the number of realizations ௦ܰ. 

3. Polynomial Chaos Expansion (PCE) methodology 

The basic idea of this method is to approximate a given system response by a poly-
nomial chaos expansion (PCE) of a suitable order. In other words, the PCE method-
ology replaces the computationally-expensive deterministic model by a meta-model. 
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In order to achieve this purpose, all the uncertain parameters (which may have dif-
ferent PDFs) should be represented by a unique chosen PDF. Table (4) presents the 
usual PDFs and their corresponding families of orthogonal polynomials.  
 

Table 4: Usual probability density functions and their corresponding families of 
orthogonal polynomials  

 
Probability density functions Polynomials 

Gaussian Hermite 
Gamma Laguerre 

Beta Jacobi 
Uniform Legendre 

Within the framework of the present methodology, the response of a system that 
involves n random variables can be expressed by a PCE as follows: 
 

௉஼ா ൌ ෍ܽ௜௜

௉ିଵ

௜ୀ଴

ሺሻ 
        

 (6)

 
where   i

 are multi-dimensional polynomials defined as the product of one-

dimensional polynomials ఈ೔, ൫ଵ, ଶ, … , ௡൯ are independent random variables,  

ሺܽଵ, ܽଶ, … , ܽ௡ሻ are unknown coefficients to be evaluated and P is the size of the 
PCE.   

The size P of the PCE (which is equal to the number of the unknown PCE coeffi-
cients) depends on the number n of random variables and the order p of the PCE. It 
is given as follows: 

 
!p!n

!pn
P


          

 (7)

 
It should be mentioned here that in this chapter, the random variables are represent-
ed in the independent standard normal space. Thus, the suitable corresponding bases 
are the multidimensional Hermite polynomials as may be seen from Table (4). The 
expressions of the multi-dimensional Hermite polynomials are given as follows: 
 





n

1i
i )(

i
 

 
        

 (8)

 
where α=[α1, ….., αn] is a sequence of n non-negative integers and )( ii

  are one-

dimensional Hermite polynomials. More details on the one-dimensional Hermite 
polynomials are given in Appendix 2.  
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For the determination of the PCE unknown coefficients, a non-intrusive technique 
(in which the deterministic model is treated as a black-box) is used (see [Ahm12] 
among others). In this chapter, the regression approach is employed. In this ap-
proach, it is required to compute the system response at a set of collocation points in 
order to perform a fit of the PCE using the obtained system response values.  

As suggested by several authors (e.g. [Hua09]), the collocation points can be chosen 
as the result of all possible combinations of the roots of the one-dimensional Her-
mite polynomial of order (p+1) for each random variable. For example, if a PCE of 
order p=2 is used to approximate the response surface of a system with n=2 random 
variables, the roots of the one-dimensional Hermite Polynomial of order 3 are cho-
sen for each random variable. These roots are (-√3, 0, √3) for the first random varia-
ble and (-√3, 0, √3) for the second random variable. In this case, 9 collocation points 
are available. These collocation points are (-√3, -√3), (-√3, 0), (-√3, √3), (0, -√3), (0, 
0), (0, √3), (√3, -√3), (√3, 0), (√3, √3). In the general case, for a PCE of order p and 
for n random variables, the number N of the available collocation points can be 
obtained using the following formula: 

N=(p+1)n 
(9)

 
Referring to Equations (7 and 9), one can observe that the number of the available 
collocation points is higher than the number of the unknown coefficients. This leads 
to a linear system of equations whose number N of equations is greater than the 
number P of the unknown coefficients. The regression approach is used to solve this 
system. This approach is based on a least square minimization between the exact 
solution Γ and the approximate solution ΓPCE which is based on the PCE. According-
ly, the unknown coefficients of the PCE can be computed using the following equa-
tion: 
 

a = (T)-1. T. Γ 
        

 (10)
 
in which a is a vector containing the PCE coefficients, Γ is a vector containing the 
system response values as calculated by the deterministic model at the different 
collocation points and  is a matrix of size NൈP whose elements are the multivariate 
Hermite polynomials. It is given as follows:  
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Notice that in order to calculate the system response corresponding to a given collo-
cation point, the standard normal random variables ξi should be expressed in the 
original physical space of random variables as follows: 
 

1 ( )
ii x ix F              

 (12)
 
in which, xi is a physical random variable, Fxi is the CDF of the physical random 
variable and Ф is the CDF of the standard normal random variable. Notice also that 
if the original physical random variables are correlated, the standard normal random 
variables should first be correlated using the following equation: 
 

1 1
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H

 
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     

 

        
 (13)

 
in which  nccc  ...,,, 21

 is the vector of correlated standard normal random varia-

bles,   n ...,,, 21
 is the vector of uncorrelated standard normal random variables 

and H is the Cholesky transformation of the correlation matrix of the physical ran-
dom variables. 

Once the PCE coefficients are determined, MCS can be applied on the obtained PCE 
(called meta-model) to compute the PDF of the system response. This is achieved by 
(i) generating a large number of realizations of the vector (ξ1, ξ2, … ξn) of standard 
normal random variables and (ii) calculating the system response corresponding to 
each realization by substituting the vector (ξ1, ξ2, … ξn) in the meta-model.  
 
3.1. Optimal number of collocation points  
 
The number of the available collocation points significantly increases with the in-
crease in the number of random variables (cf. Eq. 9) and it may be very large with 
respect to the number of the unknown PCE coefficients. This makes it necessary to 
determine the optimal number of collocation points which is needed by the regres-
sion approach to solve the linear system of equations (Eq. 10). Sudret [Sud08] has 
proposed to successively increase the information matrix A [where A=(T)] until 
it becomes invertible as follows: (a) the N available collocation points are ordered in 
a list according to increasing norm, (b) the information matrix A is constructed using 
the first P collocation points of the ordered list, i.e. the P collocation points that are 
the closest ones to the origin of the standard space of random variables and finally 
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(c) this matrix is successively increased (by adding each time the next collocation 
point from the ordered list) until it becomes invertible.  
 
3.2. Accuracy of the obtained PCE  
 
For a given PCE order, the accuracy of the approximation of the system response by 
a PCE can be measured by the coefficient of determination. Two types of coeffi-
cients of determination exist in literature. These are the coefficient of determination 
R2 and the leave-one-out coefficient of determination Q2.  

Let us consider J realizations of the standard normal random vector ξ as follows: 
          J

n
J

1
)J(1

n
1

1
)1( ...,,...,,...,,   , and let us assume that the vector 

      J1 ...,,    includes the corresponding values of the system response de-

termined by deterministic calculations. The coefficient of determination R2 is calcu-
lated as follows: 
 

PCER 12          
 (14)

 
where 

PCE  is given by: 
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and 
 

    
2

1

1

1

J i

i
Var

J



    
            

 (16)
 
Note here that J is the number of collocation points used to evaluate the unknown 
coefficients of the PCE. The value 1R2   indicates a perfect approximation of the 
true system response Γ, whereas 0R2   indicates a nonlinear relationship between 
the true model Γ and the PCE model ΓPCE.  

The coefficient of determination R2 may be a biased estimate since it does not take 
into account the robustness of the meta-model (i.e. its capability of correctly predict-
ing the model response at any point which does not belong to the collocation points. 
As a consequence, a more reliable and rigorous coefficient of determination, called 
the leave-one-out coefficient of determination, was proposed in literature. This coef-
ficient of determination consists in sequentially removing a point from the J colloca-
tion points. Let Γξ/i be the meta-model that has been built from (J-1) collocation 
points after removing the ith observation from these collocation points and let 

)()( )i(
/i

)i(i    be the predicted residual between the model evaluation at 
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point ξ(i) and its prediction at the same point based on Γξ/i. The empirical error is thus 
given as follows: 
 

* 2

1

1
( )

J
i

PCE
iJ 

            
 (17)

 
The corresponding coefficient of determination is often denoted by Q2 and is called 
leave-one-out coefficient of determination. It is given as follows: 
 

*
2 1

( )
PCEQ

Var


 


         

 (18)

 
3.3. PCE-based Sobol indices 
 
A Sobol index of a given input random variable is a measure by which the contribu-
tion of this input random variable to the variability of the system response can be 
determined. Sobol indices are generally calculated by MCS methodology. This 
method is very time-expensive especially when dealing with a large number of ran-
dom variables. [Sud08] proposed an efficient approach to calculate the Sobol indices 
based on the coefficients of the PCE. This method is based on ranking the different 
terms of the PCE and gathering them into groups where each group contains only 
one random variable or a combination of random variables. For more details on the 
computation of Sobol indices, the reader may refer to [Ahm12] among others. 

4. Conclusion 

This chapter first presented the subset simulation approach which is an efficient 
alternative to ܵܥܯ for the computation of a small failure probability. An example 
application was provided. It aims at showing the practical implementation of the ܵܵ 
approach. It was found that for a prescribed accuracy, the ܵܵ approach significantly 
reduces the number of realizations as compared to Monte Carlo simulations meth-
odology (the reduction was found equal to 93.3% in the present chapter). In other 
words, for the same computational effort, the ܵܵ approach provides a smaller value 
of the coefficient of variation of ௙ܲ  than ܵܥܯ. It should be mentioned that the 
Matlab code used for the example application is provided in http://www.univ-
nantes.fr/soubra-ah for practical use. 
 
In a second stage, the Polynomial Chaos Expansion methodology was presented. It 
was shown that the PCE method replaces the computationally-expensive determinis-
tic model by a meta-model (i.e. a simple analytical equation). Once the PCE coeffi-
cients are determined, MCS can be applied on the obtained PCE to easily compute 
the PDF of the system response with a quasi-negligible computation time. 
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APPENDIX 1  

Modified METROPOLIS-HASTINGS algorithm 

The Metropolis–Hastings algorithm is a Markov chain Monte Carlo (ܥܯܥܯ) meth-
od. It is used to generate a sequence of new realizations from existing realizations 
(that follow a target ܲܨܦ called ‘ ௧ܲ’). Refer to Figure (1) and let ݏ௞ ∈ ௝ܨ

 

be a current 
realization which follows a target ܲܨܦ ‘ ௧ܲ’. Using a proposal ܲܨܦ ‘ ௣ܲ’, a next real-
ization ݏ௞ାଵ ∈ ௝ܨ

 

that follows the target ܲܨܦ ‘ ௧ܲ’ can be simulated from the current 
realization ݏ௞  as follows: 

a. A candidate realization ̂ݏ is generated using the proposal ܲܨܦ ( ௣ܲ). The 
candidate realization ̂ݏ is centered at the current realization ݏ௞. 

b. Using the deterministic model, evaluate the value of the performance func-
tion ܩሺ̂ݏሻ corresponding to the candidate realization ̂ݏ. If ܩሺ̂ݏሻ ൏  ݏ̂ .௝ (i.eܥ
is located in the failure region ܨ௝), set ݏ௞ାଵ ൌ  and set ݏ̂ otherwise, reject ;ݏ̂
௞ାଵݏ ൌ        .(௞ is repeatedݏ i.e. the current realization) ௞ݏ

c. If ܩሺ̂ݏሻ ൏ ௝ܥ  in the preceding step, calculate the ratio ݎଵ= ௧ܲሺ̂ݏሻ ௧ܲ⁄ ሺݏ௞ሻ and 
the ratio ݎଶ= ௣ܲሺݏ௞|̂ݏሻ ௣ܲ⁄ ሺ̂ݏ|ݏ௞ሻ, then compute the value ݎ ൌ  .ଶݎଵݎ

d. If ݎ ൒ 1 (i.e. ̂ݏ is distributed according to the ௧ܲ), one continues to retain 
the realization ݏ௞ାଵ obtained in step b; otherwise, reject ̂ݏ and set ݏ௞ାଵ ൌ  ௞ݏ
(i.e. the current realization ݏ௞ is repeated). 

 
Notice that in step ܾ, if the candidate realization ̂ݏ does not satisfy the condition 
ሻݏሺ̂ܩ ൏  ௞ is repeated. Also in step ݀, ifݏ ௝, it is rejected and the current realizationܥ
the candidate realization ̂ݏ does not satisfy the condition ݎ ൒ 1 (i.e. ̂ݏ is not distrib-
uted according to the ௧ܲ), it is rejected and the current realization ݏ௞ is repeated. The 
presence of several repeated realizations is not desired as it leads to high probability 
that the chain of realizations remains in the current state. This means that there is 
high probability that the next failure threshold ܥ௝ାଵ is equal to the current failure 
threshold ܥ௝. This decreases the efficiency of the subset simulation approach. To 
overcome this inconvenience, Santoso et al. (2011) proposed to modify the classical 
M-H algorithm as follows:  

a. A candidate realization ̂ݏ is generated using the proposal  ൫ ௣ܲ൯. The candidate 
realization ̂ݏ is centered at the current realization ݏ௞. 

b. Calculate the ratio ݎଵ= ௧ܲሺ̂ݏሻ ௧ܲ⁄ ሺݏ௞ሻ and the ratio ݎଶ= ௣ܲሺݏ௞|̂ݏሻ ௣ܲ⁄ ሺ̂ݏ|ݏ௞ሻ, 
then compute the value ݎ ൌ  .ଶݎଵݎ

c. If ݎ ൒ 1, set ݏ௞ାଵ ൌ  .otherwise, another candidate realization is generated ;ݏ̂
Candidate realizations are generated randomly until the condition ݎ ൒ 1 is 
satisfied. 

d. Using the deterministic model, evaluate the value of the performance func-
tion ܩሺݏ௞ାଵሻ of the candidate realization that satisfies the condition ݎ ൒ 1. 
If ܩሺݏ௞ାଵሻ ൏  one continues ,(௝ܨ ௞ାଵ is located in the failure regionݏ .i.e) ௝ܥ
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to retain the realization ݏ௞ାଵ obtained in step ܿ; otherwise, reject ̂ݏ and set 
௞ାଵݏ ൌ ௞ݏ  (i.e. the current realization ݏ௞ is repeated).       

 
These modifications reduce the repeated realizations and allow one to avoid the 
computation of the system response of the rejected realizations. This becomes of 
great importance when the time cost for the computation of the system response is 
expensive (i.e. for the finite element or finite difference models).  

APPENDIX 2  

The one-dimensional Hermite polynomials of orders 0, 1, 2, 3, …, p+1 are given by: 

)(p)()(

3)(

1)(
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1pp1p

3
3
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where ξ is a standard normal random variable. 
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Random Fields

Gordon A. Fenton

Dalhousie University, Canada

To model spatially variable geotechnical properties, we need to consider models more
complex than the simple random variables we have seen so far in this course. We now
need to allow every point in our ground model to become a random variable. In other
words, we need to represent the ground using random fields, where a random field
is defined to be an organized collection of ordinary random variables, one for each
point in the ground. In general, random fields are three-dimensional, and although the
fourth dimension of time can easily be added, at least conceptually, we will consider
only spatial variability in this chapter. The chapter starts by discussing how random
fields are characterized and how their basic statistical parameters are estimated. It
then reviews how known information (sample data) can be used to best estimate the
ground properties at a location which has not been sampled using Best Linear Un-
biased Estimation or Kriging. Finally, the methods of random simulation of ground
property random fields, so that probabilistic geotechnical questions can be answered,
are discussed in detail.

1 Basic Random Field Concepts

Let’s start by considering the simplest of random fields, that along a 1-D line in time
or space. This could, for example, be the variation of a CPT sounding with depth, or
it could be the ground acceleration at a particular location during an earthquake. We
will use the earthquake time variation to illustrate the basic concepts of random field
theory, but do keep in mind that these concepts are equally easily applied to space.

Consider the random field, or process, X(t), which is made up of a sequence of ran-
dom variables, X(t), X(t+dt), ..., taking on an infinite number of possible values on
the real line.

Consider the following possible realization of X(t).
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The above figure could, for example, be the acceleration felt at a particular location in
the ground during an earthquake. Although the above might have been measured, and
so is a realization, we know that the accelerations felt at a neighboring location, or
during a future earthquake (and even in the next few seconds) might be quite different
than that recorded above. In general, we will not know the details of future ground
motions and so we must assume them to be uncertain. They are therefore amenable
to characterization by random fields, since the entire point of probability theory is to
rationally characterize our uncertainty.

Since random fields consist of a collection of random variables, they are completely
specified by the joint distribution between all of their component random variables.
Since a random field is made up of an infinite number of spatial points, each of which
has its own associated random variable, the complete specification of a random field
would be an infinite-dimensional joint probability distribution. How do we character-
ize such a process? To do so, we should consider

1. variability at a point: pick an instant in time, t∗. At this point the process
has random value X(t∗) = X∗ which is governed by some probability density
function, fX∗(x). If we picked another point in time, say t′, then X(t′) = X ′

would have another, possibly different PDF, fX′(x). That is, the PDF’s could
evolve with time (although this is complicated and hard to estimate in practice,
in general, unless the PDF’s are evolving merely by a simple trend in the mean
or standard deviation).
An example where the point, or marginal, distribution evolves with time is in
earthquake ground motion where usually the variance increases drastically dur-
ing the strong motion portion of the record.

2. spatial dependence: Consider again the two points in time, t∗ and t′. If X(t∗)
and X(t′) are independent for any time lag τ = t′ − t∗, then the process
would be infinitely rough – points separated by vanishingly small lags could
have quite different values. This is not physically realistic for most natural phe-
nomena. Thus, X(t∗) and X(t′) generally have some sort of interdependence
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(that often decreases with separation distance). This interdependence results in
a smoothing of the random process. That is, for small τ , nearby states of X are
preferential – the random field is constrained by its neighbors. We characterize
the interdependence with the joint distribution fX∗X′(x∗, x′). If we extend this
idea to the consideration of any three, or four, or five, ..., points then the com-
plete probabilistic description of a random process is the infinite-dimensional
probability density function fX1X2...(x1, x2, . . .).

Of course, such an infinite-dimensional distribution would be difficult to fully de-
scribe, or more precisely, would only be reasonably properly described if an infinite
number of realizations of the random field were available to use in estimating the pa-
rameters of the infinite-dimensional probability distribution. Usually, we have just one
realization of the ground at a site, from which we must develop a reasonable model
of our uncertainty regarding its spatial variability. From one realization, we cannot
estimate the parameters of a general infinite-dimensional probability distribution, so
we introduce a number of common simplifying assumptions to reduce the number of
unknown parameters;

1. Gaussian process: the joint PDF is a multivariate normally distributed random
process. The great advantage to the multivariate normal distribution is that the
complete distribution can be specified by just the mean vector and the covari-
ance matrix. The multivariate normal PDF has the form

fX1X2...,Xk
(x1, x2, . . . , xk) =

1

(2π)k/2
1

|C≈ |1/2
exp

{
− 1

2 (x∼ − µ
∼
)TC≈

−1(x∼ − µ
∼
)
}

(1)
where µ

∼
is the vector of mean values, one for each Xi, C≈ is the covariance

matrix between the X’s, and |C≈ | is its determinant. Specifically, µ
∼
= E

[
X∼
]

and

C≈ = E
[
(X∼ − µ

∼
)(X∼ − µ

∼
)T

]
(2)

where the superscript T means the transpose. The covariance matrix, C≈ , is a
k × k symmetric, positive definite, matrix. For a continuous random field, the
dimensions of µ

∼
andC≈ are still infinite, since the random field is composed of an

infinite number of X’s, one for each point. However, we often quantify µ
∼

and C≈
using continuous functions of space. For example, in a one-dimensional random
field (or random process), the mean may vary linearly, i.e., µ(t) = a+bt, and the
covariance matrix can be expressed in terms of the standard deviations, which
may vary with t, and the correlation function, ρ, as in

C(t1, t2) = σ(t1)σ(t2)ρ(t1, t2) (3)

which specifies the covariance between X(t1) and X(t2). It the random field
is stationary, then µ(t) = µ is constant, Again, such a PDF is difficult to use in
practice, not only mathematically, but also to estimate from real data.

2. stationarity or statistical homogeneity: the joint PDF is independent of spatial
position, that is it just depends on relative positions of the points, not on their
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position along the real line. This assumption implies that the mean, variance,
and higher order moments are constant in time (or space) and thus that the
marginal, or point, PDF is also constant in time (or space). So called weak
stationarity or second order stationarity just implies that the mean and variance
are constant in space.

3. isotropy: in two and higher dimensional random fields, isotropy implies that
the joint PDF is invariant under rotation. This condition implies statistical ho-
mogeneity. For our purposes, isotropy usually just means that the correlation
between two points only depends on the distance between the two points, not
on their orientation relative to one another.

Some comments need to be made about the above. First of all, a random field, X(t)
having non-stationary mean and variance can be converted to a random field which is
stationary in the mean and variance by the following transformation;

X ′(t) =
X(t)− µ(t)

σ(t)
(4)

In fact, the random field X ′(t) will now have zero mean and unit variance everywhere.
Similarly, a non-stationary random field can be produced from a stationary random
field. For example, if X(t) is a standard Gaussian random field (having zero mean
and unit variance) and

Y (t) = 2 + 1
2 t+

1
4

√
tX(t) (5)

then Y (t) is a non-stationary Gaussian random field with

E
[
Y (t)

]
= µY (t) = 2 + 1

2 t and Var
[
Y (t)

]
= σ2

Y (t) =
1
2 t (6)

in which both the mean and variance increase with t.

Secondly, we can often produce a non-Gaussian random field simply by transforming
a Gaussian random field. For example, the random field Y (t) defined by

Y (t) = eX(t) (7)

will have a lognormal distribution if X(t) is a Gaussian process. A note of caution
here, however, is that the covariance structure of the resulting field is also non-linearly
transformed. For example, if X(1) has correlation coefficient 0.2 with X(2), the same
is no longer true of Y (1) and Y (2). In fact, the correlation function of Y is now given
by

ρY (τ) =
exp{σ2

X
ρX(τ)} − 1

exp{σ2
X
} − 1

(8)

At this point, we can, in principle, describe a Gaussian random field and ask proba-
bilistic questions of it.

One useful result relating to a Gaussian random field is that if one or more points in the
field have been observed, the remainder of the field conditioned on those observations
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remains Gaussian. For example, suppose X(t) is observed to be 3.2 and one wonders
what X(t + 1) is. If X(t) and X(t + 1) are strongly correlated, then we would
expect X(t + 1) to be close to 3.2 in value. Alternatively, if X(t) and X(t + 1) are
uncorrelated, then knowledge of X(t) tells us nothing about X(t+1). For simplicity,
let us denote our observed value of X(t) by simply x (i.e. X(t) = x), and let Y =
X(t + s) be some unobserved point. If X is a Gaussian process, then Y is normally
distributed with conditional mean and variance given by

µY |X = µY + ρ(s)(x− µX)σY /σX (9a)

σY |X = σY

√
1− ρ2(s) (9b)

where ρ(s) is the correlation coefficient between X(t) and X(t + s). If the random
process is stationary, then µY = µX and σY = σX and the above conditional mean
simplifies to µY |X = µX + ρ(s)(x − µX).

1.1 The Variance Function

Virtually all engineering properties are actually properties of a local average of some
sort. For example, hydraulic conductivity is generally obtained using a laboratory
sample of some size, supplying a water pressure, and measuring the volume of water
which passes through the sample in some time interval. The paths that the water takes
to migrate through the sample are not considered individually, rather it is the sum of
these paths that are measured. This is a ‘local average’ over the laboratory sample.

Similarly, when the compressive strength of a material is determined, a load is applied
to a finite sized sample until failure occurs. Failure takes place when the shear/tensile
resistance of a large number of bonds are broken – the failure load is a function of the
average bond strength along the failure surface.

Thus, it is of considerable engineering interest to investigate how averages of random
fields behave. Consider a local average defined as

XT (t) =
1

T

∫ t+T/2

t−T/2

X(ξ) dξ (10)

which is a ‘moving’ local average. That is, XT (t) is the local average of X(t) under
a window of width T centered at t. As this window is moved along in time, the local
average XT (t) changes more slowly.

For example, consider the example of something floating on the ocean’s surface: if the
motion of a speck of sawdust on the surface of the ocean is tracked, it is seen to have
considerable variability in its elevation. In fact, it will have as much variability as the
waves themselves. Now, replace the sawdust with an ocean liner. The liner does not
bounce around with every wave, but rather it ‘averages’ out the wave motion over the
area of the liner. In other words, its vertical variability is drastically reduced.
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In the above example, it is also worth thinking about the spectral representation of
the ocean waves. The speck of sawdust sees all of the waves, big and small, whereas
the local averaging taking place over the ocean liner damps out the high frequency
components leaving just the long wavelength components (wavelengths of the order
of the size of the ship and longer). Thus, local averaging is a low-pass filter. If
the ocean waves on the day that the sawdust and ocean liner are being observed are
composed of just long wavelength swells, then the variability of the sawdust and liner
will be the same. Conversely, if the ocean surface is just choppy without any swells,
then the ocean liner may not move up and down at all. However, both the sawdust and
the ocean liner will have the same mean elevation in all cases.

So, the main effect of local averaging is to reduce the variance, and the amount of
variance reduction increases with increasing high-frequency content in the random
field. An increased high-frequency content corresponds to increasing independence in
the random field, so that another way of putting this is that variance reduction increases
when the random field consists of more ‘independence’.

Let us look in more detail at the moments of XT (t). Its mean is

E
[
XT (t)

]
= E

[
1

T

∫ t+T/2

t−T/2

X(ξ) dξ

]
=

1

T

∫ t+T/2

t−T/2

E
[
X(ξ)

]
dξ = E

[
X
]

(11)

for stationary X(t). That is, local averaging preserves the mean of the random field
(the mean of an arithmetic average is just the mean of the process). Consider the
variance,

Var
[
XT (t)

]
= E

[
(XT (t)− µXT

)2
]

(12)

where, since µXT
= µX ,

XT − µXT
=

1

T

∫ t+T/2

t−T/2

X(ξ) dξ − µX =
1

T

∫ t+T/2

t−T/2

[X(ξ)− µX ] dξ (13)

so that (due to stationarity, the bounds of the integral can be changed to any domain
of length T without changing the expectation; we will use the domain [0, T ] for sim-
plicity),

Var
[
XT (t)

]
= E

[
1

T

∫ T

0

[X(ξ)− µX ] dξ ·
1

T

∫ T

0

[X(η)− µX] dη

]

=
1

T 2

∫ T

0

∫ T

0

E
[
(X(ξ)− µX)(X(η) − µX)

]
dξ dη

=
1

T 2

∫ T

0

∫ T

0

CX(ξ − η) dξ dη =
σ2

X

T 2

∫ T

0

∫ T

0

ρX(ξ − η) dξ dη

= σ2
X
γ(T ) (14)

where CX(τ) is the covariance function of X(t), and ρX(τ) is the correlation function
of X(t), such that CX(τ) = σ2

XρX(τ). In the final expression, γ(T ) is the so-called
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variance function, which gives the amount that the variance is reduced when averaged
over the length T . The variance function has value 1.0 when T = 0, which is to say
that XT (t) = X(t) when T = 0 and so the variance is not at all reduced. As T
increases, the variance function falls towards zero. It has the mathematical definition

γ(T ) =
1

T 2

∫ T

0

∫ T

0

ρX(ξ − η) dξ dη (15)

If one considers this integral which is over the square region [0, T ] × [0, T ] in (ξ, η)
space, one sees that ρX(ξ−η) is constant along diagonal lines where ξ−η = constant.
The length of the main diagonal, where ξ = η, is

√
2T , and the other diagonal lines

decreasing linearly in length to zero in the corners. Thus, the double integral can
be collapsed to a single integral by integrating in a direction perpendicular to the
diagonals; each diagonal line has length

√
2(T − |τ |), width dτ/

√
2, and ‘height’

equal to ρX(ξ − η) = ρX(τ) The integral reduces to

γ(T ) =
1

T 2

∫ T

−T

√
2(T − |τ |)ρX(τ)

dτ√
2
] =

1

T 2

∫ T

−T

(T − |τ |)ρX(τ) dτ (16)

Furthermore, since ρX(τ) = ρX(−τ), the integrand is even giving us

γ(T ) =
2

T 2

∫ T

0

(T − τ)ρX(τ) dτ (17)

The variance function can be seen in Eq. (15) above to be an average of the correlation
coefficient between every pair of points on the interval [0, T ]. If the correlation func-
tion falls off rapidly, so that the correlation between pairs of points becomes rapidly
smaller with separation distance, then γ(T ) will be small. On the other hand, if all
points on the interval [0, T ] are perfectly correlated, having ρ(τ) = 1 for all τ , then
γ(T ) will be 1.0. Such a field displays no variance reduction under local averaging.
(In fact, in such a field all points have the same random value, X(t) = X , if the field
is stationary.)

The variance function is another ‘equivalent’ second-moment description of a random
field, since it can be obtained through knowledge of the correlation function, which
in turn can be obtained from the spectral density function. The inverse relationship
between γ(T ) and ρ(τ) is obtained by differentiation;

ρ(τ) =
1

2

d2

dτ2
[τ2γ(τ)] (18)

1.2 The Scale of Fluctuation

A convenient measure of the variability of a random field is the so-called scale of
fluctuation, θ. Loosely speaking θ is the distance beyond which points are largely
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uncorrelated. Conversely, two points separated by a distance less than θ will be signif-
icantly correlated. Mathematically, θ can be defined as the area under the correlation
function;

θ =

∫ ∞

−∞
ρ(τ) dτ = 2

∫ ∞

0

ρ(τ) dτ (19)

This relationship implies that if θ is to exist (ie. be finite) that ρ(τ) must decrease
sufficiently quickly to zero as τ increases. Not all valid correlation functions will
satisfy this criteria so that for such random processes, θ = ∞. An example of a
process with infinite scale of fluctuation is a fractal or statistically self-similar process.

In addition, the scale of fluctuation is really only meaningful for strictly non-negative
correlation functions. Since −1 ≤ ρ ≤ 1, one could conceivably have an oscillatory
correlation function whose area is zero but which has significant correlations (positive
or negative) over significant distances. An example of such a correlation function
might be that governing wave heights in a body of water. We will not consider such
cases since most engineering materials have strictly non-negative correlation functions
(an exception possibly being laminates).

The scale of fluctuation can also be defined in terms of the spectral density function
(see next Section),

G(ω) =
2σ2

π

∫ ∞

0

ρ(τ) cos(ωτ) dτ (20)

so that

G(0) =
2σ2

π

∫ ∞

0

ρ(τ) dτ =
σ2

π
θ (21)

or

θ =
πG(0)

σ2
(22)

which means that if the spectral density function is finite at the origin, then θ will
exist.

Finally, the scale of fluctuation can also be defined in terms of the variance function
as a limit;

θ = lim
T→∞

Tγ(T ) (23)

In turn, this implies that if the scale of fluctuation is finite, that the variance function
has the following limiting form as the averaging region grows very large;

lim
T→∞

γ(T ) =
θ

T
(24)

which in turn means that θ/T can be used as an approximation for γ(T ) when T >>
θ. A more extensive approximation for γ(T ), useful when the precise correlation
structure of a random field is unknown, but for which θ is known (or estimated) is

γ(T ) ≃ θ

θ + |T | (25)
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which has the correct limiting form for T >> θ and which has value 1.0 when T = 0,
as expected.

Several commonly used correlation functions are parameterized by the scale of fluc-
tuation, for example,

1. Markov correlation function:

ρ(τ) = exp

{
−2|τ |

θ

}
(26)

which has variance function

γ(T ) =
θ2

2T 2

[
2|T |
θ

+ exp

{
−2|T |

θ

}
− 1

]
(27)

and spectral density function

G(ω) =
4σ2θ

π(4 + θ2ω2)
(28)

2. Gaussian type correlation function:

ρ(τ) = exp

{
−π

( |τ |
θ

)2
}

(29)

which has variance function

γ(T ) =
θ2

πT 2

[
π|T |
θ

erf

{√
π|T |
θ

}
+ exp

{
−πT 2

θ2

}
− 1

]
(30)

where erf(x) = 2Φ(
√
2x) − 1 is the error function and Φ(z) is the standard

normal cumulative distribution function.

3. Fractional Gaussian Noise: this is a form of a fractal process as defined by
Mandelbrot and Ness,

ρ(τ) =
1

2δ2H

[
|τ + δ|2H − 2|τ |2H + |τ − δ|2H

]
, (31a)

γ(T ) =
|T + δ|2H+2 − 2|T |2H+2 + |T − δ|2H+2 − 2δ2H+2

T 2(2H + 1)(2H + 2)δ2H
, (31b)

defined for 0 < H < 1. The case H = 0.5 corresponds to white noise. Note
that this process actually has two parameters, H and δ. The latter is a small
averaging region thrown in to damp out the infinite variance high frequency
contributions to the true fractal process – that is, it changes the infinite variance
fractal process into a finite variance ‘band-limited’ approximation to the fractal
process.
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4. Polynomial decaying correlation function:

ρ(τ) =
θ3

(θ + τ)3
(32)

which has variance function

γ(T ) =
θ

θ + T
(33)

Finally, some comments about what affect the scale of fluctuation has on a random
field are in order. When the scale of fluctuation is small, the field tends to be somewhat
‘rough’. In the limit, for say a Markov correlation function, the field becomes a so-
called white noise when θ → 0. Conversely, when the scale of fluctuation is large, the
field is smoother. In the limit, for say a Markov correlation function, the field becomes
completely uniform – different from realization to realization but each realization is
composed of a single random value.

The next figure shows two random field realizations, each of size 1 × 1. The field on
the left has a small scale of fluctuation (θ = 0.04) and can be seen to be quite rough.
The field on the right has a large scale of fluctuation (θ = 2) and can be seen to be
more slowly varying.

1.3 The Spectral Density Function

We now turn our attention to an equivalent 2nd-order description of a stationary ran-
dom process, namely its spectral representation. We say ‘equivalent’ because the
spectral representation, in the form of a spectral density function, contains the same
information as the covariance function, just expressed in a different way. As we shall
see, the spectral density function can be obtained from the covariance function and
vice-versa. The two forms are merely transforms of one another.
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Priestley (1981) shows that if X(t) is a stationary random process, with ρ(τ) continu-
ous at τ = 0, then it can be expressed as a sum of sinusoids with mutually independent
random amplitudes and phase angles,

X(t) = µX +

N∑

k=−N

Ck cos(ωkt+Φk) = µX +

N∑

k=−N

(
Ak cos(ωkt) +Bk sin(ωkt)

)

(34)
where µX is the process mean, Ck is a random amplitude, and Φk is a random phase
angle. The equivalent form involvingAk andBk is obtained by settingAk = Ck cos(Φk)
and Bk = −Ck sin(Φk). If the random amplitudes Ak and Bk are normally dis-
tributed with zero means, then X(t) will also be normally distributed with mean µX .
For this to be true, Ck must be Raleigh distributed and Φk must be uniformly dis-
tributed on the interval [0, 2π]. Note that X(t) will tend to a normal distribution
anyhow, by virtue of the central limit theorem, for wide-band processes, so we will
assume that X(t) is normally distributed.

Consider the kth component of X(t), and ignore µX for the time being,

Xk(t) = Ck cos(ωkt+Φk) (35)

If Ck is independent of Φk, then Xk(t) has mean

E
[
Xk(t)

]
= E

[
Ck cos(ωkt+Φk)

]
= E

[
Ck

]
E
[
cos(ωkt+Φk)

]
= 0 (36)

due to independence and the fact that for any t, E
[
cos(ωkt+Φk)

]
= 0 since Φk is

uniformly distributed on [0, 2π]. The variance of Xk(t) is thus

Var
[
Xk(t)

]
= E

[
X2

k(t)
]
= E

[
C2

k

]
E
[
cos2(ωkt+Φk)

]
= 1

2E
[
C2

k

]
(37)

Note that E
[
cos2(ωkt+Φk)

]
= 1

2 , which again uses the fact that Φk is uniformly
distributed between 0 and 2π.

Priestley also shows that the component sinusoids are independent of one another, that
is that Xk(t) is independent of Xj(t), for all k 6= j. Using this property, we can put
the components back together to find the mean and variance of X(t),

E
[
X(t)

]
= µX +

N∑

k=−N

E
[
Xk(t)

]
= µX (38a)

Var
[
X(t)

]
=

N∑

k=−N

Var
[
Xk(t)

]
=

N∑

k=−N

1
2E

[
C2

k

]
(38b)

In other words, the prescribed mean of X(t) is preserved by the spectral representation
and the variance of the sum is the sum of the variances of each component frequency,
since the component sinusoids are independent. The amount that each component
frequency contributes to the overall variance of X(t) depends on the ‘power’ in the
sinusoid amplitude, 1

2E
[
C2

k

]
.
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Now define the two-sided spectral density function, S(ω), such that

S(ωk)∆ω = Var
[
Xk(t)

]
= E

[
X2

k(t)
]
= 1

2E
[
C2

k

]
(39)

then the variance of X(t) can be written as

Var
[
X(t)

]
=

N∑

k=−N

S(ωk)∆ω (40)

In the limit as ∆ω → 0 and N → ∞, we get

Var
[
X(t)

]
= σ2

X =

∫ ∞

−∞
S(ω) dω (41)

which is to say, the variance of X(t) is just the area under the two-sided spectral
density function.
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S( ωk)       = 0.5 E[ C   ]∆ω 2
k

Figure 1. Two-sided spectral density function, S(ω).

1.3.1 Wiener-Khinchine Relations

We can use the spectral representation to express the covariance function, C(τ). As-
suming that µX = 0 for the time being to simplify the algebra (this is not a restriction,
the end results are the same even if µX 6= 0), we have

C(τ) = Cov
[
X(0), X(τ)

]
, (due to stationarity)

= E


∑

k

Xk(0)
∑

j

Xj(τ)




=
∑

k

∑

j

E
[
Xk(0)Xj(τ)

]

=
∑

k

E
[
Xk(0)Xk(τ)

]
, (due to independence) (42)
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Now, since Xk(0) = Ck cos(Φk) and Xk(τ) = Ck cos(ωkτ +Φk) we get

C(τ) =
∑

k

E
[
C2

k

]
E
[
cos(Φk) cos(ωkτ +Φk)

]

=
∑

k

E
[
C2

k

]
E
[
1
2{cos(ωkτ + 2Φk) + cos(ωkτ)}

]

=
∑

k

1
2E

[
C2

k

]
cos(ωkτ)

=
∑

k

S(ωk) cos(ωkτ)∆ω (43)

which, in the limit as ∆ω → 0 gives

C(τ) =

∫ ∞

−∞
S(ω) cos(ωτ) dω (44)

Thus, the covariance function C(τ) is the Fourier transform of the spectral density
function, S(ω). The inverse transform can be applied to find S(ω) in terms of C(τ),

S(ω) =
1

2π

∫ ∞

−∞
C(τ) cos(ωτ) dτ (45)

so that knowing either C(τ) or S(ω) allows the other to be found (and hence these
are ‘equivalent’ in terms of information). Also, since C(τ) = C(−τ), ie. that the
covariance between one point and another is the same regardless of which point you
consider first, and since cos(x) = cos(−x), we see that

S(ω) = S(−ω) (46)

In other words, the two-sided spectral density function is an even function (see Figure
1). The fact that S(ω) is symmetric about ω = 0 means that we need only know the
positive half in order to know the entire function. This motivates the introduction of
the one-sided spectral density function, G(ω) defined as

G(ω) = 2S(ω), ω ≥ 0 (47)

The factor of two is included to preserve the total variance when only positive fre-
quencies are considered. Now the Wiener-Khinchine relations become

C(τ) =

∫ ∞

0

G(ω) cos(ωτ) dω (48a)

G(ω) =
1

π

∫ ∞

−∞
C(τ) cos(ωτ) dτ (48b)

=
2

π

∫ ∞

0

C(τ) cos(ωτ) dτ (48c)
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and the variance of X(t) is the area under G(ω) (set τ = 0 in Eq. to see this),

σ2
X
= C(0) =

∫ ∞

0

G(ω) dω (49)

∆ω
2
k
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ω

ωk ∆ωG( )       = E[ C   ]

G(     )

Figure 2. One-sided spectral density function, G(ω) = 2S(ω) cor-
responding to Figure 1.

Some commonly used spectral density functions are as follows;

1. White Noise: the SDF has equal power at all frequencies (hence analogy with
white light. The corresponding covariance structure is a delta function – all
points are uncorrelated, which is simple. Unfortunately, the variance of white
noise is infinite. In practice a finite variance band-limited form is usually used,
namely,

G(ω) =

{
Go for ωmin ≤ ω ≤ ωmax

0 otherwise
(50)

where Go is a constant refered to as the white noise intensity. The variance of
this process is Go × (ωmax − ωmin)

2. Fractal Noise: here the SDF varies inversely with frequency,

G(ω) =
Go

ωγ
(51)

This is also called a statistically self-similar process. It is believed to character-
ize a large number of natural phenomenon, but also has infinite variance.

The spectral representation of a stationary Gaussian process is primarily used in situa-
tions where the frequency domain is an integral part of the problem being considered.
For example, earthquake ground motions are often represented using the spectral den-
sity function because the motions are largely sinusoidal with frequency content dic-
tated by resonance in the soil or rock through which the earthquake waves are travel-
ing. In addition, the response of structures to earthquake motion is often performed
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using Fourier response ‘modes’, each having its own resonance frequency. Thus, if a
structure has a 1 Hz primary response mode (single mass-and-spring oscillation), then
it is of interest to see what ‘power’ the input ground motion has at 1 Hz. This is given
by G(ωk)∆ω at ωk = 1 Hz.

In addition, the spectral representation provides a means to simulate a stationary
Gaussian process, namely to simulate independent realizations of Ck and Φk, for
k = 0, 1, . . . , N , and then recombine using the spectral representation. We shall
see more of this in the paper on Simulation.

2 References
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Academic Press, New York, NY.
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Best Linear Unbiased Estimation

Gordon A. Fenton

Dalhousie University, Canada

1 Introduction

We often want some way of best estimating ‘future’ events given past observations.
For example, suppose that we have observedX1, X2, . . . , Xn and we want to estimate
the optimal value for Xn+1 using this information. One possibility is to write our
estimate for Xn+1 as a linear combination of our observations;

X̂n+1 = µn+1 +

n∑

k=1

βk(Xk − µk) (1)

where the hat indicates that this is an estimate of Xn+1 and µk is the mean of Xk.
Note that we need to know the means in order to form this estimate. Equation (1) is
refered to as the Best Linear Unbiased Estimator (BLUE) for reasons we shall soon
see.

The question now is what is the optimal vector of coefficients, β
∼

? We can define
‘optimal’ to be that which produces the minimum expected error between our estimate
X̂n+1 and the true (but unknown) Xn+1. The estimator error, E, is given by

E = Xn+1 − X̂n+1 = Xn+1 − µn+1 −
n∑

k=1

βk(Xk − µk) (2)

To make this error as small as possible, its mean should be zero and its variance
minimal. The first criteria is automatically satisfied by the above formulation since

E
[
E
]
= E

[
Xn+1 − X̂n+1

]
= E

[
Xn+1 − µn+1 −

n∑

k=1

βk(Xk − µk)

]

= µn+1 − µn+1 −
n∑

k=1

βkE
[
Xk − µk

]
= 0 (3)
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We say that the estimator X̂n+1 is unbiased because its mean is the same as that being
estimated, i.e., E

[
X̂n+1

]
= E

[
Xn+1

]
by virtue of the above result.

Now we want to minimize the error variance. Since the mean estimator error is zero,
its variance is just the expectation of the squared estimator error,

Var
[
Xn+1 − X̂n+1

]
= E

[(
Xn+1 − X̂n+1

)2
]
= E

[
X2

n+1 − 2Xn+1X̂n+1 + X̂2
n+1

]

(4)
To simplify the following algebra, we will assume that µi = 0 for i = 1, 2, . . . , n+1.
The final result will be the same even if the means are non-zero, since variances and
covariances are mean centered. In this case, our estimator simplifies to

X̂n+1 =
n∑

k=1

βkXk (5)

and the estimator error variance becomes

Var
[
E
]
= E

[
X2

n+1

]
− 2

n∑

k=1

βkE
[
Xn+1Xk

]
+

n∑

k=1

n∑

j=1

βkβjE
[
XkXj

]
(6)

To minimize this with respect to our unknown coefficients, β1, β2, . . . , βn, we set the
derivative of the error to zero with respect to each unknown,

∂

∂βℓ
Var

[
E
]
= 0 for ℓ = 1, 2, . . . , n (7)

which gives us n equations in n unknowns. Differentiating each term in Eq. (6) leads
to,

∂

∂βℓ
E
[
X2

n+1

]
= 0

∂

∂βℓ

n∑

k=1

βkE
[
Xn+1Xk

]
= E

[
Xn+1Xℓ

]

∂

∂βℓ

n∑

k=1

n∑

j=1

βkβjE
[
XkXj

]
= 2

n∑

k=1

βkE
[
XℓXk

]
(8)

which gives us

∂

∂βℓ
Var

[
E
]
= −2E

[
Xn+1Xℓ

]
+ 2

n∑

k=1

βkE
[
XℓXk

]
= 0 (9)

This means that

E
[
Xn+1Xℓ

]
=

n∑

k=1

βkE
[
XℓXk

]
(10)
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for ℓ = 1, 2, . . . , n. If we define the following matrix and vector components

Cℓk = E
[
XℓXk

]
= Cov

[
Xℓ, Xk

]
(11a)

bℓ = E
[
XℓXn+1

]
= Cov

[
Xℓ, Xn+1

]
(11b)

then Eq. (10) can be written as

bℓ =

n∑

k=1

Cℓkβk (12)

or, in matrix notation
b∼ = C≈ β

∼
(13)

which has solution
β = C≈

−1b∼ (14)

There is some similarity between the above Best Linear Unbiased Estimate and regres-
sion analysis. The primary difference is that regression ignors correlations between
data points and considers only distance between data points (along with the value at
the data point, of course). BLUE replaces ‘distance’ with covariance, but requires
that both the mean and covariance are known ahead of time. We shall see in the next
Section that Kriging relieves us of having to know the mean ahead of time so that
‘distance’ in regression is replaced only by knowledge of the covariance.

Example 1:

Suppose that gravity measurements at a site suggests that the mean gold concentration
along a seam, in parts-per-million, shows a slow increase with the distance s, in
metres, along the seam, that is that

µ(s) = 2000 + 300s (15)

Furthermore suppose that a statistical analysis of a similar site has given the following
covariance function which is assumed to also hold at the current site,

C(τ) = σ2
X exp

{
−|τ |

4

}
(16)

where σX = 500 ppm and where τ is the separation distance between points. We
want to estimate the gold concentration at s = 3 m, given the following observations
at s = 1 and s = 2

at s = 1: x1 = 2130 ppm

at s = 2: x2 = 2320 ppm
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Solution:

We start by finding the components of the covariance matrix and vector;

b∼ =

{
Cov

[
X1, X3

]

Cov
[
X2, X3

]
}

= σ2
X

{
e−2/4

e−1/4

}
(17)

C≈ =

[
Cov

[
X1, X1

]
Cov

[
X1, X2

]

Cov
[
X2, X1

]
Cov

[
X2, X2

]
]
= σ2

X

[
1 e−1/4

e−1/4 1

]
(18)

Substituting these into Eq. (13) gives

σ2
X

[
1 e−1/4

e−1/4 1

]{
β1

β2

}
= σ2

X

{
e−2/4

e−1/4

}
(19)

Notice that the variance cancels out, which is typical when the variance is constant
with position. We now get

{
β1

β2

}
=

[
1 e−1/4

e−1/4 1

]−1 {
e−2/4

e−1/4

}
=

{
0

e−1/4

}
(20)

Thus, the optimal linear estimate of X3 is

x̂3 = µ(3) + e−1/4(x2 − µ(2)) = 2900 + e−1/4(2320− 2000− 300(2))

= 2900− 280e−1/4 = 2681 ppm(21)

Notice that, because of the Markovian nature of the covariance function used in this
example, the prediction of the ‘future’ depends only on the most recent ‘past’. The
prediction is independent of observations further in the ‘past’. This is typical of the
Markov correlation function in one-dimension (in higher dimensions, it is not quite so
simple).

2 Estimator Error

Once the best linear unbiased estimate has been determined, it is of interest to ask how
confident are we in this estimate? Can we assess the variability of our estimator? To
investigate this, let us again consider a zero mean process so that our estimator can be
simply written as

X̂n+1 =

n∑

k=1

βkXk (22)

In this case, the variance is simply determined as

Var
[
X̂n+1

]
= Var

[
n∑

k=1

βkXk

]
= Var

[
β1X1 + β2X2 + · · ·+ βnXn

]
(23)
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The variance of a sum is the sum of the variances only if the terms are independent.
In this case, the X’s are not independent, so the variance of a sum becomes the sum
of all possible covariances,

Var
[
X̂n+1

]
= σ2

X̂
=

n∑

k=1

n∑

j=1

βkβjCov
[
Xk, Xj

]
= β

∼
TC≈ β

∼
(24)

where T means transpose.

However, the above estimator variance is often of limited interest. We are typically
more interested in asking questions such as: What is the probability that the true value
of Xn+1 exceeds our estimate, X̂n+1, by a certain amount. For example, we may
want to compute

P
[
Xn+1 > X̂n+1 + b

]
= P

[
Xn+1 − X̂n+1 > b

]
(25)

where b is some constant. Evidently, this would involve finding the distribution of
the estimator error E = (Xn+1 − X̂n+1). The variance of the estimator error can be
found from Eq. (6) as follows,

σ2
E = E

[
X2

n+1

]
− 2

n∑

k=1

βkE
[
Xn+1Xk

]
+

n∑

k=1

n∑

j=1

βkβjE
[
XkXj

]

= σ2
X
+ β

∼
TC≈ β

∼
− 2β

∼
T b∼ (rearranging terms)

= σ2
X
+ σ2

X̂
− 2β

∼
T b∼ (26)

So we see that the variance of the estimator error (often refered to directly as the
estimator error) is the sum of the variance in X and the variance in X̂ less a term
which depends on the degree of correlation between X and the observations. As
the correlation between the observations and the point being estimated increases, it
becomes less and less likely that the true value of Xn+1 will stray very far from its
estimate. So for high correlations between the observations and the estimated point,
the estimator error becomes small. This can be seen more clearly if we simplify the
estimator error equation. To do this, we note that β

∼
has been determined such that

C≈ β
∼
= b∼, or, putting it another way, C≈ β

∼
− b∼ = 0∼ (where 0∼ is a vector of zeroes). Now

we write

σ2
E = σ2

X + β
∼
TC≈ β

∼
− 2β

∼
T b∼

= σ2
X + β

∼
TC≈ β

∼
− β

∼
T b∼ − β

∼
T b∼

= σ2
X + β

∼
T (C≈ β

∼
− b∼)− β

∼
T b∼

= σ2
X − β

∼
T b∼ (27)

which is a much simpler way of computing σ2
E

and more clearly demonstrates the
variance reduction due to correlation with observations.
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The estimator X̂n+1 is also the conditional mean of Xn+1 given the observations.
That is

E
[
Xn+1 |X1, X2, . . . , Xn

]
= X̂n+1 (28)

The conditional variance of Xn+1 is σ2
E,

Var
[
Xn+1 |X1, X2, . . . , Xn

]
= σ2

E (29)

Generally questions regarding the probability that the true Xn+1 lies in some region
should employ the conditional mean and variance of Xn+1, since this would then
make use of all of the information at hand.

Example 2:

Consider again Example 1. What is the variance of the estimator and the estimator
error? Estimate the probability that X3 exceeds X̂3 by more than 400 ppm.

Solution:

We had

C≈ = σ2
X

[
1 e−1/4

e−1/4 1

]
= (500)2

[
1 e−1/4

e−1/4 1

]
(30)

and

β
∼
=

{
0

e−1/4

}
(31)

so that

σ2
X̂

= Var
[
X̂3

]
= (500)2

{
0 e−1/4

}[
1 e−1/4

e−1/4 1

]{
0

e−1/4

}
= (500)2 e−2/4

(32)
which gives σX̂ = 500e−1/4 = 389.4 ppm.

For the covariance vector found in Example 1,

b∼ = σ2
X

{
e−2/4

e−1/4

}
(33)

the estimator error is computed as

σ2
E = Var

[
X3 − X̂3

]
= σ2

X + β
∼
TC≈ β

∼
− 2β

∼
T b∼

= σ2
X
+ σ2

X̂
− 2σ2

X
{0 e−1/4}

{
e−2/4

e−1/4

}

= (500)2
(
1 + e−2/4 − 2e−2/4

)

= (500)2
(
1− e−2/4

)
(34)
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The standard deviation of the estimator error is thus σE = 500
√
1− e−2/4 = 313.6

ppm. Note that this is less than the variability of the estimator itself and significantly
less than the variability of X , due to the restraining effect of correlation between
points.

To compute the required probability, we need to assume a distribution for the random
variable (X3−X̂3). Let us suppose that X is normally distributed. Since the estimate
X̂ is simply a sum of X’s, it too must be normally distributed, which in turn implies
that the quantity (X3 − X̂3) is normally distributed. We need only specify its mean
and standard deviation, then, to fully describe its distribution.

We saw above that since X̂3 is an unbiased estimate of X3 that

E
[
X3 − X̂3

]
= 0 (35)

so that µE = 0. We have just computed the standard deviation of (X3 − X̂3) as
σE = 313.6 ppm. Thus,

P
[
X3 − X̂3 > 400

]
= P

[
Z >

400− 0

313.6

]
= 1− Φ(1.28) = 0.1003 (36)

3 Geostatistics: Kriging

Kriging is basically best linear unbiased estimation with the added ability to estimate
certain aspects of the mean trend. We will re-introduce the topic from the point of view
of geostatistics (or kriging) in this section, recognizing that some concepts will be
repeated. The application will be to a settlement problem in geotechnical engineering.

The purpose of Kriging is to provide a best estimate of a random field between known
data. The basic idea is to estimate X(x∼) at any point using a weighted linear combi-
nation of the values of X at each observation point. Suppose that X1, X2, . . . , Xn are
observations of the random field, X(x∼), at the points x∼1, x∼2, . . . , x∼n. Then the kriged
estimated of X(x∼) at x∼ is given by

X̂(x∼) =
n∑

i=1

βiXi (37)

where the n unknown weights βi are to be determined to find the best estimate at
the point x∼ . It seems reasonable that if the point x∼ is particularly close to one of
the observations, say Xk, then the weight, βk, associated with Xk would be high.
However, if X(x∼) and Xk are in different (independent) soil layers, for example, then
perhaps βk should be small. Rather than using distance to determine the weights in
Eq. (37), it is better to use covariance (or correlation) between the two points since
this reflects not only distance but also the effects of differing geologic units, etc.
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If the mean can be expressed as in a regression analysis,

µX(x∼) =
M∑

k=1

akgk(x∼) (38)

then the unknown weights can be obtained from the matrix equation

K≈ β
∼
= M∼ (39)

where K≈ and M∼ depend on the covariance structure,

K≈ =




C11 C12 · · · C1n g1(x∼1) g2(x∼1) · · · gM (x∼1)

C21 C22 · · · C2n g1(x∼2) g2(x∼2) · · · gM (x∼2)
.
.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

Cn1 Cn2 · · · Cnn g1(x∼n) g2(x∼n) · · · gM (x∼n)

g1(x∼1) g1(x∼2) · · · g1(x∼n) 0 0 · · · 0

g2(x∼1) g2(x∼2) · · · g2(x∼n) 0 0 · · · 0
.
.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

gM (x∼1) gM (x∼2) · · · gM (x∼n) 0 0 · · · 0




(40)
in which Cij is the covariance between Xi and Xj and

β
∼
=





β1

β2

.

.

.

βn

−η1

−η2
.
.
.

−ηM





M∼ =





C1x

C2x

.

.

.

Cnx

g1(x∼)

g2(x∼)
.
.
.

gM (x∼)





(41)

The quantities ηi are a set of Lagrangian parameters used to solve the variance min-
imization problem subject to non-bias conditions. Beyond allowing for a solution to
the above system of equations, they will be ignored in this simple treatment. The

118 Best linear unbiased estimation

ALERT Doctoral School 2014



covariance Cix appearing in the RHS vector M∼ is the covariance between the ith

observation point and the point x∼ at which the best estimate is to be calculated.

Note that the matrix K≈ is purely a function of the observation point locations and their
covariances – thus it can be inverted once and then Eqs. (39) and (37) used repeatedly
at different spatial points to build up the field of best estimates (for each spatial point,
the RHS vector M∼ changes, as does the vector of weights, β

∼
).

The Kriging method depends upon two things; 1) knowledge of how the mean varies
functionally with position, i.e. g1, g2, . . . need to be specified, and 2) knowledge of the
covariance structure of the field. Usually, assuming a mean which is either constant
(M = 1, g1(x∼) = 1, a1 = µX) or linearly varying is sufficient. The correct order can
be determined by

1. plotting the results and visually checking the mean trend, or by

2. performing a regression analysis, or by

3. performing a more complex structural analysis – see Mining Geostatistics by
Journel and Huijbregts (Academic Press, 1978) for details on this approach.

The covariance structure can be estimated by the methods discussed in the next chap-
ter, if sufficient data is available, and used directly in Eq. (39) to define K≈ and M∼
(with, perhaps some interpolation for covariances not directly estimated). In the ab-
sence of sufficient data, a simple functional form for the covariance function is often
assumed. A typical model is the Markovian one in which the covariance decays expo-
nentially with separation distance τij = |x∼1 − x∼2|;

Cij = σ2
X
exp

{
−2|τij |

θ

}
(42)

As mentioned previously, the parameter θ is called the scale of fluctuation. Such a
model now requires only the estimation of two parameters, σX and θ, but assumes that
the field is isotropic and statistically homogeneous. Non-isotropic models are readily
available and often appropriate for soils which display layering.

3.1 Estimator Error

Associated with any estimate of a random process derived from a finite number of
observations is an estimator error. This error can be used to assess the accuracy of the
estimate. Defining the error as the difference between the estimate, X̂(x∼), and its true
(but unknown and random) value, X(x∼), the estimator mean and corresponding error
variance are given by

µX̂(x∼) = E
[
X̂(x∼)

]
= E

[
X(x∼)

]
= µX(x∼)

σ2
E = E

[(
X̂(x∼)−X(x∼)

)2
]
= σ2

X + β
∼
T

n
(K≈ n×nβ∼n

− 2M∼ n) (43)
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where β
∼n

and M∼ n are the first n elements of β
∼

and M∼ defined in the previous section,
and K≈ n×n is the n × n upper left submatrix of K≈ containing the covariances, also
defined in the previous section. Note that X̂(x∼) can also be viewed as the conditional
mean of X(x∼) at the point x∼ . The conditional variance at the point x∼ would then be
σ2

E .

3.2 Example: Foundation Consolidation Settlement

Consider the estimation of consolidation settlement under a footing at a certain loca-
tion given that soil samples/tests have been obtained at 4 neighboring locations. Fig. 1
shows a plan view of the footing and sample locations.

30 m

50 m

50 m

Footing

Observation Point

1 2

34

15 m

35 m

20 m

Figure 1. Consolidation settlement plan view with sample points.

The samples and local stratigraphy are used to estimate the soil parameters Cc, eo, H ,
and po appearing in the consolidation settlement equation

S = N

(
Cc

1 + eo

)
H log10

(
po +∆p

po

)
(44)

at each of the sample locations. Each of these 4 parameters are then treated as spatially
varying and random between observation points. It is assumed that the estimation error
in obtaining the parameters from the samples is negligible compared to field variabil-
ity, and so this source of uncertainty will be ignored. The model error parameter, N , is
assumed an ordinary random variable (not a random field) with mean 1.0 and standard
deviation 0.1. The increase in pressure at mid-depth of the clay layer, ∆p depends on
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the load applied to the footing. We will assume that E
[
∆p

]
= 0.5 ksf with standard

deviation 0.1.

The task now is to estimate the mean and standard deviation of Cc, eo, H , and po at the
footing location using the neighboring observations. Table 1 lists the soil settlement
properties obtained at each of the 4 sample points.

In Table 1, we have assumed that all 4 random fields are stationary, with spatially
constant mean and variance, the limited data not clearly indicating otherwise. In order
to obtain a Kriging estimate at the footing location, we need to establish a covariance
structure for the field. Obviously 4 sample points is far too few to yield even a rough
approximation of the covariance between samples, especially in two dimensions. Let
us assume that experience with similar sites and similar materials leads us to estimate
a scale of fluctuation of about 60 m using an exponentially decaying correlation func-
tion. That is, we assume that the correlation structure is reasonably well approximated
by

ρ(x∼ i, x∼ j) = exp

{
− 2

60
|x∼ i − x∼j |

}
(45)

Table 1 Derived soil sample settlement properties.

Sample Cc eo H po

Point (inches) (ksf)

1 0.473 1.42 165 3.90

2 0.328 1.08 159 3.78

3 0.489 1.02 179 3.46

4 0.295 1.24 169 3.74

µ 0.396 1.19 168 3.72

σ2 0.009801 0.03204 70.56 0.03460

In so doing, we are assuming that the clay layer is horizontally isotropic, also a reason-
able assumption. This yields the following correlation matrix between sample points;

ρ
≈
=




1.000 0.189 0.095 0.189

0.189 1.000 0.189 0.095

0.095 0.189 1.000 0.189

0.189 0.095 0.189 1.000




(46)

Furthermore, it is reasonable to assume that the same scale of fluctuation applies to all
4 soil properties. Thus, the covariance matrix associated with the propertyCc between
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sample points is just σ2
Cc
ρ
≈ = 0.009801ρ≈. Similarly, the covariance matrix associated

with eo is its variance (σ2
eo = 0.03204) times the correlation matrix, etc.

In the following, we will obtain Kriging estimates from each of the 4 random fields
(Cc(x∼), eo(x∼) independently. Note that this does not imply that the estimates will
be independent, since if the sample properties are themselves correlated, which they
most likely are, then the estimates will also be correlated. It is believed that this is a
reasonably good approximation given the level of available data. If more complicated
cross-correlation structures are known to exist, and have been estimated, the method
of co-Kriging can be applied – this essentially amounts to the use of a much larger
covariance (Kriging) matrix and the consideration of all four fields simultaneously.
Co-Kriging also has the advantage of also ensuring that the error variance is properly
minimized. However, co-Kriging is not implemented here, since the separate Kriging
preserves reasonably well any existing point-wise cross-correlation between the fields
and since little is generally known about the actual cross-correlation structure.

The Kriging matrix associated with the clay layer thickness H is then

K≈ H
=




70.56 13.33 6.682 13.33 1

13.33 70.56 13.33 6.682 1

6.682 13.33 70.56 13.33 1

13.33 6.682 13.33 70.56 1

1 1 1 1 0




(47)

where, since we assumed stationarity, M = 1 and g1(x∼) = 1 in Eq. (38). Placing the
coordinate axis origin at sample location 4 gives the footing coordinates x∼ = (20, 15).
Thus, the right hand side vector M∼ is

M∼ H
=





σ2
H
ρ(x∼1, x∼)

σ2
H
ρ(x∼2, x∼)

σ2
Hρ(x∼3, x∼)

σ2
Hρ(x∼4, x∼)

1





=





(70.56)(0.2609)

(70.56)(0.2151)

(70.56)(0.3269)

(70.56)(0.4346)

1





=





18.41

15.18

23.07

30.67

1





(48)

Solving the matrix equation K≈ H
β
∼H

= M∼ H
gives the following four weights (ignoring

the Lagrange parameter);

β
∼H

=





0.192

0.150

0.265

0.393





(49)

in which we can see that the samples which are closest to the footing are most heavily
weighted (more specifically, the samples which are most highly correlated with the
footing location are the most heavily weighted), as would be expected.

122 Best linear unbiased estimation

ALERT Doctoral School 2014



Since the underlying correlation matrix is identical for all 4 soil properties, the weights
will be identical for all 4 properties, thus the best estimates at the footing are

Ĉc = (0.192)(0.473) + (0.150)(0.328) + (0.265)(0.489) + (0.393)(0.295) = 0.386

êo = (0.192)(1.42) + (0.150)(1.08) + (0.265)(1.02) + (0.393)(1.24) = 1.19

Ĥ = (0.192)(165) + (0.150)(159) + (0.265)(179) + (0.393)(169) = 169

p̂o = (0.192)(3.90) + (0.150)(3.78) + (0.265)(3.46) + (0.393)(3.74) = 3.70

The estimation errors are given by the equation

σ2
E
= σ2

X
+ β

∼
T

n
(K≈ n×nβ∼n

− 2M∼ n) (50)

Since the n × n submatrix of K≈ is just the correlation matrix times the appropriate
variance, and similarly M∼ n is the correlation vector (between samples and footing)
times the appropriate variance, the error can be rewritten

σ2
E
= σ2

X

(
1 + β

∼
T

n
(ρ
≈
β
∼n

− 2ρ
∼x

)
)

(51)

where ρ
∼x

is the vector of correlation coefficients between the samples and the footing
(see the calculation of M∼ H

above). For the Kriging weights and given correlation
structure, this yields

σ2
E = σ2

X(0.719) (52)

which gives the following individual estimation errors;

σ2
Cc

= (0.009801)(0.719) = 0.00705 → σCc = 0.0839

σ2
eo

= (0.03204)(0.719) = 0.0230 → σeo = 0.152

σ2
H

= (70.56)(0.719) = 50.7 → σH = 7.12

σ2
po

= (0.03460)(0.719) = 0.0249 → σpo = 0.158

In summary, then, the variables entering the consolidation settlement formula have the
following statistics based on the preceding Kriged estimates;

Variable Mean SD CV

N 1.0 0.1 0.1

Cc 0.386 0.0839 0.217

eo 1.19 0.152 0.128

H 169 7.12 0.042

po 3.70 ksf 0.158 0.043

∆p 0.50 ksf 0.100 0.20

where CV stands for the coefficient of variation.

Fenton 123

ALERT Doctoral School 2014



A first-order approximation to the settlement, via Eq. (44), is thus

µS = (1.0)

(
0.386

1 + 1.19

)
(169) log10

(
3.7 + 0.5

3.7

)
= 1.64 (53)

To estimate the settlement coefficient of variation, a first order approximation yields,

CV 2
S
=

m∑

j=1

(
∂S

∂Xj

µXj

µS

)2

µ

CV 2
j =

m∑

j=1

S2
jCV 2

j (54)

where the subscript µ on the derivative implies that it is evaluated at the mean of
all random variables and CVj is the coefficient of variation of the jth variable – the
variable Xj is replaced by each of N , Cc, etc., in turn. Evaluation of the derivatives
at the mean leads to the following table;

Xj µXj
CVj Sj S2

j CV 2
j

N 1.0 0.100 1.0 0.01

Cc 0.386 0.217 1.0 0.0471

eo 1.19 0.128 -0.54 0.0048

H 169 0.042 1.0 0.0018

po 3.70 0.043 -0.94 0.0016

∆p 0.50 0.200 0.94 0.0353

so that

CV 2
S
=

m∑

j=1

S2
jCV 2

j = 0.10057 (55)

giving a coefficient of variation for the settlement at the footing of 0.317. This is
roughly a 10% decrease from the result obtain without the benefit of any neighbor-
ing observations. Although this does not seem significant in light of the increased
complexity of the above calculations, it needs to be remembered that the contribu-
tion to overall uncertainty coming from N and ∆p amounts to over 40%. Thus, the
coefficient of variation, CVS , will decrease towards it’s minimum (barring improved
information about N and/or ∆p) of 0.212 as more observations are used and/or ob-
servations are taken closer to the footing. For example, if a fifth sample were taken
midway between the other 4 samples (at the center of Fig. 8.1), then the variance of
each estimator decreases by a factor of 0.46 from the point variance (rather than the
factor of 0.719 found above) and the settlement CV becomes 0.285. Note that the
reduction in variance can be found prior to actually performing the sampling since the
estimator variance depends only on the covariance structure and the assumed func-
tional form for the mean. Thus, the Kriging technique can also be used to plan an
optimal sampling scheme – sample points are selected so as to minimize the estimator
error.
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Once the random field model has been defined for a site, there are ways of analyti-
cally obtaining probabilities associated with design criteria, such as the probability of
failure. For example, by assuming a normal or lognormal distribution for the foot-
ing settlement in the previous section, one can easily estimate the probability that the
footing will exceed a certain settlement given it’s mean and standard deviation. As-
suming the footing settlement to be normally distributed with mean 1.64 inches and
a CV of 0.317 (standard deviation = (0.317)(1.64) = 0.52) then the probability that
the settlement will exceed 2.5 inches is

P
[
S > 2.5

]
= 1− Φ

(
2.5− 1.64

0.52

)
= 1− Φ(1.65) = 0.05 (56)
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Simulation

Gordon A. Fenton

Dalhousie University, Canada

1 Introduction

Stochastic problems are often very complicated, requiring overly simplistic assump-
tions in order to obtain closed-form (or exact) solutions. This is particularly true of
many geotechnical problems where we don’t even have exact analytical solutions to
the deterministic problem. For example, general seepage problems, settlement under
rigid footings, bearing capacity, and pile capacity problems all lack exact analytical
solutions and discussion is ongoing about the various approximations which have been
developed over the years. Needless to say, when spatial randomness is added to the
problem, even the approximate solutions are often unwieldy, if they can be found at
all. For example, one of the simpler problems in geotechnical engineering is that of
‘D’Arcy Law’ seepage through a clay barrier. If the barrier has a large area, rela-
tive to its thickness, and flow is through the thickness, then a 1-D seepage model is
appropriate. In this case, a closed-form analytical solution to the seepage problem
is available. However, if the clay barrier has spatially variable hydraulic conductiv-
ity, then the 1-D model is no longer appropriate (flow lines avoid low conductivity
regions) and even the deterministic problem no longer has a simple closed form so-
lution. Problems of this type, and most other geotechnical problems, are best tackled
through simulation. Simulation is the process of producing reasonable replications
of the real world in order to study the probabilistic nature of the response to the real
world. In particular, simulations allow the investigation of more realistic geotechni-
cal problems, potentially yielding entire probability distributions related to the output
quantities of interest. A simulation basically proceeds by the following steps;

1. by taking as many observations from the ‘real world’ as are feasible, the stochas-
tic nature of the ‘real world’ problem can be estimated. From the raw data,
histogram(s), statistical estimators, and goodness-of-fit tests, a distribution with
which to model the problem is decided upon. Pertinent parameters, such as the
mean, variance, scale of fluctuation, occurrence rate, etc., may be of interest in
characterizing the randomness (see Chapter 5),
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2. a random variable or field, following the distribution decided upon in the previ-
ous step, is defined,

3. a realization of the random variable/field is generated using a pseudo-random
number generator or a random field generator,

4. the response of the system to the random input generated in the previous step is
evaluated,

5. the above algorithm is repeated from step (3) for as many times as are feasi-
ble, recording the responses and/or counting the number of occurrences of a
particular response observed along the way.

This process is called Monte Carlo simulation, after the famed randomness of the
gambling houses of Monte Carlo. The probability of any particular system response
can now be estimated by dividing the number of occurrences of that particular sys-
tem response by the total number of simulations. In fact, if all of the responses are
retained in numerical form, then a histogram of the responses forms an estimate of
the probability distribution of the system response. Thus, Monte Carlo simulations
are a powerful means of obtaining probability distribution estimates for very complex
problems. Only the response of the system to a known, deterministic, input needs to
be computed at each step during the simulation. In addition, the above methodology
is easily extended to multiple independent random variables or fields – in this case the
distribution of each random variable or field needs to be determined in step (1) and a
realization for each generated in step (3). If the multiple random variables or fields are
not independent, then the process is slightly more complicated and will be considered
in the context of random fields in the second part of this chapter.

Monte Carlo simulations essentially replicate the experimental process, and are rep-
resentative of the experimental results. The accuracy of the representation depends
entirely on how accurately the fitted distribution matches the experimental process
(e.g., how well the distribution matches the random field of soil properties). The out-
comes of the simulations can be treated statistically, just as any set of observations can
be treated. As with any statistic, the accuracy of the method generally increases as the
number of simulations increases.

In theory, simulation methods can be applied to large and complex systems and often
the rigid idealizations and/or simplifications necessary for analytical solutions can be
removed, resulting in more realistic models. However, in practice, Monte Carlo simu-
lations may be limited by constraints of economy and computer capability. Moreover,
solutions obtained from simulations may not be amenable to generalization or extrap-
olation. Therefore, as a general rule, Monte Carlo methods should be used only as
a last resort: that is, when and if analytical solution methods are not available or are
ineffective (eg. because of gross idealizations). Monte Carlo solutions are also often
a means of verifying or validating approximate analytical solution methods.

One of the main tasks in Monte Carlo simulation is the generation of random numbers
having a prescribed probability distribution. Uniformly distributed random number
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generation will be studied in Section 2. Some techniques for generating random vari-
ates from other distributions will be seen in Section 3. Finally, techniques of generat-
ing random fields are considered starting in Section 4.

2 Random Number Generators

2.1 Common Generators

Recall that the U(0, 1) distribution is a continuous uniform distribution on the interval
from zero to one. Any one number in the range is just as likely to turn up as any
other number in the range. For this reason, the continuous uniform distribution is the
simplest of all continuous distributions. While techniques exist to generate random
variates from other distributions, they all employ U(0, 1) random variates. Thus, if a
good uniform random number generator can be devised, its output can also be used to
generate random numbers from other distributions (eg. exponential, Poisson, normal,
...), which can be accomplished by an appropriate transformation of the uniformly
distributed random numbers.

Most of the best and most commonly used uniform random number generators are so-
called arithmetic generators. These employ sequential methods where each number
is determined by one or several of its predecessors according to a fixed mathematical
formula. If carefully designed, such generators can produce numbers that appear to
be independent random variates from the U(0, 1) distribution, in that they pass a series
of statistical tests (to be discussed shortly). In the sense that sequential numbers are
not truly random, being derived from previous numbers in some deterministic fashion,
these generators are often called pseudorandom number generators.

A “good” arithmetic uniform random number generator should possess several prop-
erties:

1. the numbers generated should appear to be independent and uniformly dis-
tributed,

2. the code should be fast and not require large amounts of storage

3. have the ability to reproduce a given stream of random numbers exactly

4. should have a very long period.

The ability to reproduce a given stream of random numbers is sometimes useful when
attempting to compare the responses of two different systems (or designs) to random
input. If the input is not the same to the two systems, then their responses will be
naturally different, and it is more difficult to determine how the systems actually differ.
Being able to ‘feed’ the two systems the same stream of random numbers allows the
system differences to be directly studied.
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The most popular arithmetic generators are linear congruential generators (LCGs)
first introduced by Lehmer (1951). In this method, a sequence of integers Z1, Z2, ...
are defined by the recursive formula

Zi = (aZi−1 + c)(mod m) (1)

where m is the modulus, a is a multiplier, c is an increment, and all three parameters
are positive integers. The sequence starts by computing Z1 using Z0, where Z0 is
a positive integer seed or starting value. Effectively, Eq. 1 sets Zi to the remainder
when aZi−1 + c is divided by m. Since the resulting Zi must lie from 0 to m − 1,
we can obtain a [0, 1) uniformly distributed Ui by setting Ui = Zi/m – the [0, 1)
notation means that Ui can be 0, but cannot be 1. The largest value that Ui can take
is (m− 1)/m, which can be quite close to 1 if m is large. Also, because Zi can only
take on m different possible values, Ui can only take on m possible values between 0
and 1. Namely, Ui can have values 0, 1/m, 2/m, . . . , (m − 1)/m. In order for Ui to
appear continously uniformly distributed on [0, 1), then, m should be selected to be a
large number. In addition a, c, and Zo should all be less than m.

One sees immediately from Eq. 1 that the sequence of Zi are completely dependent;
Z1 is obtained from Z0, Z2 is obtained from Z1, and so on. For fixed values of a, c,
and m, the same sequence of Zi values will always be produced for the same starting
seed, Z0. Thus, Eq. 1 can reproduce a given stream of pseudorandom numbers exactly,
so long as the starting seed is known. But will the derived Ui appear independent
and uniformly distributed? It turns out that if a, c, and m are correctly selected, the
sequence of Ui will appear to be largely independent and uniformly distributed.

One may also notice that if Z0 = 3 produces Z1 = 746, then whenever Zi−1 = 3,
the next generated value will be Zi = 746. This property results in a very undesirable
phenomenon called periodicity that quite a number of rather common random number
generators suffer from. Suppose that you were unlucky enough to pick a starting seed,
say Z0 = 83 on one of these poor random number generators that just happened to
yield remainder 83 when 83a+c is divided by m. Then Z1 = 83. In fact, the resulting
sequence of ‘random’ numbers will be {83, 83, 83, 83, . . .}. We say that this particular
stream of random variates has periodicity equal to one.

Why is periodicity to be avoided? To answer this question, let us suppose you are
estimating the average of a system’s response by simulation. The simulated random
input U1, U2, . . . , Un results in responses X1, X2, . . . , Xn. You may then compute
the average response as

X̄ =
1

n

n∑

i=1

Xi (2)

and statistical theory tell you that the standard error on this estimate (± one standard
deviation) is

sX̄ =
s√
n

(3)
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where

s2 =
1

n− 1

n∑

i=1

(Xi − X̄)2 (4)

The standard error (Eq. 3) reduces towards zero as n increases, so long as the Xi’s are
independent. Now, suppose that we set n = 1, 000, 000 and pick a starting seed Z0 =
261. Suppose further that this particular seed results in Zi, i = 1, 2, . . . 106, being
the sequence {94, 4832, 325, 94, 4832, 325, . . .} with periodicity 3. Then, instead of
1, 000, 000 independent input values, as assumed, we actually only have 3 independent
values, each repeated 333,333 times. Not only have we wasted a lot of computer time,
but our estimate of the average system response might be very much in error – we
assume that its standard error is s/

√
106 = 0.001s, whereas it is actually s/

√
3 = 0.6s

– 600 times less accurate than we had thought!

Example 1:

What are the first three random numbers produced by the linear congruental generator

Zi = (25Zi−1 + 55)(mod 96) (5)

for starting seed Z0 = 21.

Solution:

Since the modulus is 96, the interval [0, 1) will be subdivided only into at most 96
possible ‘random’ values. Normally, the modulus is taken to be much larger to give a
fairly fine resolution on the unit interval. However, with Z0 = 21 we get

Z1 = (25(21) + 55)(mod 96)

= 580(mod96)

= 4

Z2 = (25(4) + 55)(mod 96)

= 155(mod96)

= 59

Z3 = (25(59) + 55)(mod 96)

= 1530(mod96)

= 90

so that U1 = 4/96 = 0.042, U2 = 59/96 = 0.615, and U3 = 90/96 = 0.938.

The maximum periodicity an LCG such as Eq. 1 can have is m, and this will occur
only if a, c, and m are selected very carefully. We say that a generator has full period
if its period is m. A generator which is full period will produce exactly one of each
possible value, {0, 1, . . . ,m− 1}, in each cycle. If the generator is good, all of these
possible values will appear to occur in random order.
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To help us choose the values of m, a, and c so that the generator has full period, the
following theorem, proved by Hull and Dobell (1962) is valuable

Theorem 1. The LCG defined by Eq. 1 has full period if and only if the following
three conditions hold:

a) The only positive integer that exactly divides both m and c is 1.

b) If q is a prime number (divisible only by itself and 1) that divides m, then q divides
a− 1.

c) If 4 divides m, then 4 divides a− 1.

Condition (b) must be true of all prime factors of m. For example, m = 96 has two
prime factors, 2 and 3, not counting 1. If a = 25, then a − 1 = 24 is divisible by
both 2 and 3, so that condition (b) is satisfied. In fact, it is easily shown that the LCG
Zi = (25Zi−1+55)(mod 96) used in the previous example is a full period generator.

Park and Miller (1988) proposed a ”Minimal Standard” (MS) generator with constants

a = 75 = 16807, c = 0, m = 231 − 1 = 2147483647

which has a periodicity of m − 1 or about 2 × 109. The only requirement is that the
seed 0 must never be used. This form of the LCG, that is having c = 0, is called a
multiplicative LCG,

Zi+1 = aZi(mod m) (6)

which has a small efficiency advantage over the general LCG of Eq. 1 since the addi-
tion of c is no longer needed. However, most modern CPU’s are able to do a vector
multiply and add simultaneously, so this efficiency advantage is probably non-existent.
Multiplicative LCGs can no longer be full period because m now exactly divides both
m and c = 0. However, a careful choice of a and m can lead to a period of m − 1
and only zero is excluded from the set of possible Zi values – in fact, if zero is not
excluded from the set of possible results of Eq. 6, then the generator will eventu-
ally just return zeroes. That is, once Zi = 0 in Eq. 6, it remains zero forever. The
constants selected by Park and Miller (1988) for the MS generator achieves a pe-
riod of m − 1 and excludes zero. Possible values for Ui using the MS generator
are {1/m, 2/m, . . . , (m− 1)/m} and so both of the endpoints, 0 and 1, are excluded.
Excluding the endpoints is useful for the generation of random variates from other dis-
tributions which involves taking the logarithm of U or (1− U) (since ln(0) = −∞).

When implementing the MS generator on computers using 32 bit integers, the product
aZi will generally result in an integer overflow. In their ran0 function, Press et al.
(1997) provide a 32 bit integer implementation of the MS generator using a technique
developed by Schrage (1979).

One of the main drawbacks to the ”Minimal Standard” generator is that there is
some correlation between successive values. For example, when Zi is very small,
the product aZi can still be very small (relative to m). Thus, very small values are
always followed by small values. For example, if Zi = 1, then Zi+1 = 16807,
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Zi+2 = 282475249. The corresponding sequence of Ui is 4.7 × 10−10, 7.8 × 10−6,
and 0.132. Any time that Ui is less than 1 × 10−6, the next value will be less than
0.0168.

To remove the serial correlation in the ”Minimal Standard” generator along with this
problem of small values following small values, a technique suggested by Bays and
Durham and reported by Knuth (1981) is to use two LCG’s; one a ”Minimal Standard”
generator, and the second to randomly shuffle the output from the first. In this way,
Ui+1 is not returned by the algorithm immediately after Ui, but rather at some random
time in the future. This effectively removes the problem of serial correlation. In their
2nd Edition of Numerical Recipes, Press et al (1997) present a further improvement,
due to L’Ecuyer (1988), which involves combining two different pseudorandom se-
quences, with different periods, as well as applying the random shuffle. The resulting
sequence has a period which is the least common multiple of the two periods, which
in Press et al’s implementation is about 2.3 × 1018. See Press et al’s RAN2 function,
which is what the authors of this book use as their basic random number generator.

3 Generating Non-Uniform Random Variables

The basic ingredient needed for all common methods of generating random variates or
random processes (which are sequences of random variables) from any distribution is
a sequence of U(0, 1) random variates. It is thus important that the basic random num-
ber generator be good. This issue was covered in the previous section, and standard
“good” generators are readily available.

For most common distributions, efficient and exact generation algorithms exist that
have been thoroughly tested and used over the years. Less common distributions may
have several alternative algorithms available. For these, there are a number of issues
that should be considered before choosing the best algorithm;

1. exactness: unless there is a significant sacrifice in execution time, methods
which reproduce the desired distribution exactly, in the limit as n → ∞, are
preferable. When only approximate algorithms are available, those which are
accurate over the largest range of parameter values are preferable.

2. execution time: with modern computers, setup time, storage, and time to gen-
erate each variate are not generally a great concern. However, if the number of
realizations is to be very large, execution time may be a factor which should be
considered.

3. simplicity: algorithms which are difficult to understand and implement gener-
ally involve significant debug time and should be avoided. All other factors
being similar, the simplest algorithm is preferable.

Here, the most important general approaches for the generation of random variates
from arbitrary distributions will be examined. A few examples will be presented and
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the relative merits of the various approaches will be discussed.

3.1 Methods of Generation

The most common methods used to generate random variates are;

1. inverse transform

2. convolution

3. acceptance-rejection

Of these, the inverse transform and convolution methods are exact, while the acceptance-
rejection method is approximate. We will only discuss the exact methods here.

3.1.1 Inverse Transform Method

Consider a continuous random variable X that has cumulative distribution function
FX(x) that is strictly increasing. The normal distribution is an example of a distribu-
tion where FX(x) is strictly increasing for all x. This assumption is invoked to ensure
that there is only one value of FX(x) for each value of x, or, stated in a way more
appropriate for this method, there is only one value of x for each FX(x).

The last means that there is only one value of x for each F (x). In this case, the inverse
transform method generates a random variate from F by:

1. Generate u ∼ U(0, 1)

2. Return x = F−1(u)

-4 -3 -2 -1 0 1 2 3 4

x = F
-1

(u)

0
0.

2
0.

4
0.

6
0.

8
1

F(
x)

 =
 u

Figure 1. Inverse transform random number generation technique.

Note that F−1(u) will always be defined under the above assumptions since u lies
between 0 and 1. Figure 1 illustrates the idea graphically. Since a randomly generated
value of U , in this case 0.78, always lies between 0 and 1, the CDF plot can be entered
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on the vertical axis, read across to where it intersects F (x), then read down to obtain
the appropriate value of x, in this case 0.8. Repetition of this process results in x being
returned in proportion to its density, since more ‘hits’ are obtained where the CDF is
the steepest (highest derivative, and, hence, highest density).

The inverse transform method is the best method when the cumulative of the distri-
bution function for generation can be easily “inverted”. This includes a number of
common distributions, such as the uniform, exponential, Weibull, and Rayleigh.

For example, if X is exponentially distributed, then realizations of X can be obtained
by setting

F (x) = 1− e−λx (7)

equal to a randomly generated value of U . Setting u = F (x) and inverting gives

x = − ln(1− u)

λ
(8)

Note that since (1− U) is distributed identically to U , then this can be simplified to

x = − ln(u)

λ
(9)

Admittedly, this leads to a different set of values in the realization, but the ensemble of
realizations has the same distribution, and that is all that is important. This formula-
tion is also slightly more efficient since one operation has been eliminated. However,
which form should be used also depends on the nature of the pseudo-random number
generator. Most generators omit either the 0 or the 1, at one of the endpoints of the
distribution. Some generators omit both. However, if a generator allows a 0 to occur
occasionally, then the form with ln(1 − u) should be used to avoid numerical excep-
tions (ln(0) = −∞). Similarly, if a generator allows 1.0 to occur occasionally, then
ln(u) should be used. If both can appear, then the algorithm should specifically guard
against an error using if-statements.

The inverse transform approach can also be used on discrete random variates, but with
a slightly modified algorithm:

1. Generate u from the distribution U(0, 1)

2. Determine the smallest xi such that F (xi) ≥ u, and return x = xi.

Another way of stating this algorithm is as follows: since the random variable is dis-
crete, the unit interval can be split up into adjacent subintervals, the first having width
equal to P

[
X = x1

]
, the second having width P

[
X = x2

]
and so on. Then assign x

according to whichever of these subintervals contains the generated u. There is a com-
putational issue of how to look for the subinterval that contains a given u and some
approaches are better than others. In particular if xj , j = 1, 2, . . . ,m, are equi-likely
outcomes, then i = int(1.0+mu), where int(·) means integer part. This also assumes
u can never quite equal 1.0, that is, the generator excludes 1.0 – if 1.0 is possible, then
add 0.999999 instead of 1.0 to mu. Now the discrete realization is x = xi.
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Both the continuous and discrete versions of the inverse-transform method can be
combined, at least formally, to deal with distributions which are mixed, ie. having both
continuous and discrete components, as well as for continuous distribution functions
with flat spots.

Over and above its intuitive appeal, there are three other main advantages to the
inverse-transform method:

1. it can easily be modified to generate from truncated distributions,
2. it can be modified to generate order statistics (useful in reliability, or lifetime,

applications), and
3. it facilitates variance-reduction techniques (where portions of the CDF are ‘polled’

more heavily than others, usually in the tails of the distribution, and then result-
ing statistics corrected to account for the biased ‘polling’)

The inverse-transform method requires a formula for F−1. However, closed form ex-
pressions for the inverse are not known for some distributions, such as the normal, the
lognormal, the gamma, and the beta. For such distributions, numerical methods are
required to return the inverse. This is the main disadvantage of the inverse-transform
method. There are other techniques specifically designed for some of these distribu-
tions which will be discussed in the following. In particular, the gamma distribution
is often handled by convolution (see next), whereas a simple trigonometric transfor-
mation can be used to generate normally distributed variates (and further raising the
normal variate to the power e produces a lognormally distributed random variate).

3.1.2 Convolution

The method of convolution can be applied when the random variable of interest can
be expressed as a sum of other random variables. This is the case for many important
distributions – most notably, recall that the Gamma distribution, with integer α, can be
expressed as the sum ofα exponentially distributed and independent random variables.

For the convolution method, it is assumed that there are independent and identically
distributed random variables Y1, Y2, ..., Ym (for fixed m), each with distribution F (y)
such that Y1+Y2+...+Ym has the same distribution as X . Hence, X can be expressed
as

X = Y1 + Y2 + ...+ Ym (10)

For the method to work efficiently, it is further assumed that random variates for the
Yj’s can be generated more readily than X itself directly (otherwise one would not
bother with this approach). The convolution algorithm is then quite intuitive:

1. Generate Y1, Y2, ..., Ym i.i.d. each with distribution FY (y)

2. Return X = Y1 + ...+ Ym.

Note that some other generation method, eg. inverse transform, is required to execute
Step 1.
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3.2 Generating Common Continuous Random Variates

UNIFORM ON (a, b)

Solving u = F (x) for x yields, for 0 ≤ u ≤ 1,

x = F−1(u) = a+ (b− a)u (11)

and the inverse-transform method can be applied as follows;

1. Generate u ∼ U(0, 1).

2. Return x = a+ (b− a)u.

EXPONENTIAL

Solving u = F (x) for x yields, for 0 ≤ u ≤ 1,

x = F−1(u) = − ln(1− u)

λ

d

= − ln(u)

λ
(12)

where
d

= implies equivalence in distribution. Now the inverse-transform method can
be applied as follows;

1. Generate u ∼ U(0, 1).

2. Return x = − ln(u)/λ.

GAMMA

Considering the particular form of the Gamma distribution discussed in the Review of
Probability Theory Chapter,

fTk
(t) =

λ (λt)k−1

(k − 1)!
e−λt t ≥ 0 (13)

where Tk is the sum of k independent exponentially distributed random variables,
each with mean rate λ. In this case, the generation of random values of Tk proceeds
as follows;

1. generate k independent exponentially distributed random variables,X1, X2, . . . ,
Xk, using the algorithm given above,

2. Return Tk = X1 +X2 + · · ·+Xk

For the more general Gamma distribution, where k is not integer, the interested reader
is refered to Law and Kelton (2000).

WEIBULL

Solving u = F (x) for a Weibull distribution yields, for 0 ≤ u ≤ 1,

x = F−1(u) =

[
− ln (1− u)

]1/β

λ

d

= (− lnu)1/β/λ (14)

and the inverse-transform method can be applied to give
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1. Generate u ∼ U(0, 1).

2. Return x = (− lnu)
1/β

/λ

NORMAL

Since neither the normal distribution function nor its inverse has a simple closed-form
expression, one must use a numerical method to apply the inverse-transform method.
Some packages use the latter however the transformation method suggested by Box
and Muller (1958) is exact, simple to use and thus much more popular.

First, note that given X ∼ N(0, 1), the more general random variable X ′ ∼ N(µ, σ2)
is obtained by setting X ′ = µ + σX . Thus, attention can be restricted to generating
from N(0, 1), ie. standard random variates. The method is simply as follows

1. Generate u1 ∼ U(0, 1) and u2 ∼ U(0, 1).

2. Form x1 =
√−2 lnu1 cos(2πu2) and x2 =

√−2 lnu1 sin(2πu2)

3. Return x1 on this call to the algorithm and x2 on the next call (so that the whole
algorithm is run only on every second call).

The above method generates realizations forX1 andX2 which are independentN(0, 1)
random variates.

LOGNORMAL

Recall that the lognormal distribution results from the following: If Y is normally
distributed with mean µ and variance σ2, then eY is lognormally distributed with
parameters µ and σ2. The generation algorithm is simple;

1. Generate normally distributed Y with mean µ and variance σ2 (see previous
algorithm).

2. Return X = eY .

EMPIRICAL

Sometimes a theoretical distribution that fits the data cannot be found. In this case,
the observed data may be used directly to specify (in some sense) a usable distribution
called an empirical distribution.

For continuous random variables, the type of empirical distribution that can be de-
fined depends on whether the actual values of the individual original observations
x1, x2, . . . , xn are available or only the number of xi’s that fall into each of several
specified intervals. We will consider the case where all of the original data are avail-
able.

Using all of the available observations, a continuous, piecewise-linear distribution
function F can be defined by first sorting the xi’s from smallest to largest. Let x(i)

denote the ith smallest of the xj’s, so that x(1) ≤ x(2) ≤ ... ≤ x(n). Then F is defined
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by

F (x) =





0 if x < x(1)
i−1
n−1 +

x−x(i)

(n−1)(x(i+1)−x(i))
if x(i) ≤ x < x(i+1) for i = 1, 2, ..., n− 1

1 if x(n) ≤ x

(15)
Since the function F (x) is a series of steps of height 0, 1/(n − 1), 2/(n − 1), ...,
(n − 2)/(n − 1), and 1 allows the the generation to conceptually involve generating
u ∼ U(0, 1), figuring out the index i of the step closest to u, and returning x(i).
We will actually interpolate between the the step below u and the step above. The
following algorithm results;

1. Generate u ∼ U(0, 1), let r = (n − 1)u, and let i = int(r) + 1 where int(·)
means integer part.

2. Return x = x(i) + (r − i+ 1)(x(i+1) − x(i)).

3.2.1 Generating Discrete Random Variates

The discrete inverse-transform methods may also be applied to generate random vari-
ables from the more common discrete probability distributions. The fact that these
methods use the inverse-transform is not always evident, however in most cases they
do.

BERNOULLI

If the probability of ‘succcess’ is p, then

1. Generate u ∼ U(0, 1).

2. If u ≤ p, return x = 1. Otherwise, return x = 0.

DISCRETE UNIFORM

1. Generate u ∼ U(0, 1).

2. Return x = i+int
(
(j− i+1)u

)
, where i and j are the upper and lower discrete

bounds and int(·) means the integer part.

BINOMIAL

To generate a binomial distributed random variate with parameters n and p,

1. Generate y1, y2, ..., yn independent Bernoulli random variates, each with pa-
rameter p,

2. Return x = y1 + y2 + ...+ yn.

GEOMETRIC

1. Generate u ∼ U(0, 1).
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2. Return x = int

(
ln u

ln(1− p)

)
.

NEGATIVE BINOMIAL

If Tm is the number of trials until the m’th success, and Tm follows a negative bino-
mial distribution with parameter p, then Tm can be written as the sum of m geometric
distributed random variables. The generation thus proceeds by convolution;

1. Generate y1, y2, . . . , ym independent geometric random variates, each with pa-
rameter p

2. Return Tm = y1 + y2 + · · ·+ ym

POISSON

If Nt follows a Poisson distribution with parameter r = λt, then Nt is the number of
‘arrivals’ in time interval of length t, where ‘arrivals’ arrive with mean rate λ. Since
interarrival times are independent and exponentially distributed for a Poisson process,
we could proceed by generating a series of k exponentially distributed random vari-
ables, each with parameter λ, until their sum just exceeds t. Then the realization of
Nt is k − 1; that is, k − 1 arrivals occurred within time t, the k’th arrival was after
time t.

An equivalent and more efficient algorithm was derived by Law and Kelton (2000) by
essentially working in the logarithm space to be

1. Let a = e−r, b = 1, and i = 0, where r = λt.

2. Generate ui+1 ∼ U(0, 1) and replace b by bui+1. If b < a, return Nt = i.

3. Replace i by i+ 1 and go back to step 2.

4 Generating Random Fields

Random field models of complex engineering systems having spatially variable prop-
erties are becoming increasingly common. This trend is motivated by the widespread
acceptance of reliability methods in engineering design and is made possible by the in-
creasing power of personal computers. It is no longer sufficient to base designs on best
estimate or mean values alone. Information quantifying uncertainty and variability in
the system must also be incorporated to allow the calculation of failure probabilities
associated with various limit state criteria. To accomplish this, a probabilistic model
is required. In that most engineering systems involve loads and materials spread over
some spatial extent, their properties are appropriately represented by random fields.
For example, to estimate the failure probability of a highway bridge, a designer may
represent both concrete strength and input earthquake ground motion using indepen-
dent random fields, the latter time varying. Subsequent analysis using a Monte Carlo
approach and a dynamic finite element package would lead to the desired statistics.
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In the remainder of this chapter, a number of different algorithms which can be used
to produce scalar multi-dimensional random fields are evaluated in light of their ac-
curacy, efficiency, ease of implementation, and ease of use. Many different random
field generator algorithms are available of which the following are perhaps the most
common:

1. Moving Average (MA) methods,

2. Covariance Matrix Decomposition,

3. Discrete Fourier Transform (DFT) method,

4. Fast Fourier Transform (FFT) method,

5. Turning Bands Method (TBM),

6. Local Average Subdivision (LAS) method,

In all of these methods, only the first two moments of the target field may be speci-
fied, namely the mean and covariance structure. Since this completely characterizes
a Gaussian field, attention will be restricted in the following to such fields. Non-
Gaussian fields may be created through non-linear transformations of Gaussian fields,
however some care must be taken since the mean and covariance structure will also be
transformed. In addition, only weakly homogeneous fields, whose first two moments
are independent of spatial position, will be considered here.

The FFT, TBM and LAS methods are typically much more efficient than the first
three methods discussed above. However, the gains in efficiency do not always come
without some loss in accuracy, as is typical in numerical methods. In the next few
subsections, implementation strategies for these methods are presented and the types
of errors associated with each method and ways to avoid them will be discussed in
some detail. Finally the methods will be compared and guidelines as to their use
suggested.

4.1 Moving Average Method

The Moving Average (MA) technique of simulating random processes is a well known
approach involving the expression of the process as an average of an underlying white
noise process. Formally, if Z(x∼) is the desired zero mean process (a nonzero mean
can always be added on later) then

Z(x∼) =

∫ ∞

−∞
f(ξ

∼
) dW (x∼ + ξ

∼
), (16a)

or equivalently,

Z(x∼) =

∫ ∞

−∞
f(ξ

∼
− x∼) dW (ξ

∼
), (16b)
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in which dW (ξ
∼
) is the incremental white noise process at the location ξ

∼
with statistical

properties

E
[
dW (ξ

∼
)
]
= 0,

E
[
dW (ξ

∼
)2
]
= dξ

∼
, (17)

E
[
dW (ξ

∼
)dW (ξ

∼
′)
]
= 0, if ξ

∼
6= ξ

∼
′,

and f(ξ
∼
) is a weighting function determined from the desired second order statistics

of Z(x∼)

E
[
Z(x∼)Z(x∼ + τ∼)

]
=

∫ ∞

−∞

∫ ∞

−∞
f(ξ

∼
− x∼) f(ξ∼

′ − x∼ − τ∼) E
[
dW (ξ

∼
) dW (ξ

∼
′)
]
,

=

∫ ∞

−∞
f(ξ

∼
− x∼) f(ξ∼

− x∼ − τ∼) dξ∼
. (18)

If Z(x∼) is homogeneous, then the dependence on x∼ disappears, and (18) can be written
in terms of the covariance function (note by 17 that E

[
Z(x∼)

]
= 0),

B(τ∼) =

∫ ∞

−∞
f(ξ

∼
) f(ξ

∼
− τ∼) dξ∼

. (19)

Defining the Fourier transform pair corresponding to f(ξ
∼
) in n-dimensions to be,

F (ω∼ ) =
1

(2π)n

∫ ∞

−∞
f(ξ

∼
)e−iω∼ ·ξ

∼ dξ
∼
, (20a)

f(ξ
∼
) =

∫ ∞

−∞
F (ω∼ )e

iω∼ ·ξ
∼ dω∼ , (20b)

then by the convolution theorem Eq. 19 can be expressed as

B(τ∼) = (2π)n
∫ ∞

−∞
F (ω∼ )F (−ω∼ ) e

−iω∼ ·τ∼ dω∼ , (21)

from which a solution can be obtained from the Fourier transform of B(τ∼),

F (ω∼ )F (−ω∼ ) =
1

(2π)2n

∫ ∞

−∞
B(τ∼) e

−iω∼ ·τ∼ dτ∼ . (22)

Note that the symmetry in the left hand side of (22) comes about due to the symmetry
B(τ∼) = B(−τ∼). It is still necessary to assume something about the relationship
between F (ω∼ ) and F (−ω∼ ) in order to arrive at a final solution through the inverse
transform. Usually the function F (ω∼ ) is assumed to be either even or odd.

Weighting functions corresponding to several common one-dimensional covariance
functions have been determined by a number of authors, notably Journel and Hui-
jbregts (1978) and Mantoglou and Wilson (1981). In higher dimensions, the calcu-
lation of weighting functions becomes quite complex and is often done numerically
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using FFT’s. The non-uniqueness of the weighting function and the difficulty in find-
ing it, particularly in higher dimensions, renders this method of questionable value to
the user who wishes to be able to handle arbitrary covariance functions.

Leaving this issue for the moment, the implementation of the MA method is itself a
rather delicate problem. For a discrete process in one dimension, Eq. can be written

Zi =

∞∑

j=−∞
fj Wi,j , (23)

whereWi,j is a discrete white noise process taken to have zero mean and unit variance.
To implement this in practice, the sum must be restricted to some range p, usually
chosen such that f±p is negligible,

Zi =

p∑

j=−p

fj Wi,j . (24)

The next concern is how to discretize the underlying white noise process. If ∆x is
the increment of the physical process such that Zi = Z((i − 1)∆x) and ∆u is the
incremental distance between points of the underlying white noise process, such that

Wi,j = W ((i− 1)∆x+ j∆u), (25)

then fj = f(j∆u) and ∆u should be chosen such that the quotient r = ∆x/∆u is an
integer for simplicity. Figure 2 illustrates the relationship between Zi and the discrete
white noise process. For finite ∆u, the discrete approximation (24) will introduce
some error into the estimated covariance of the realization. This error can often be
removed through a multiplicative correction factor as shown by Journel and Huijbregts
(1978) but in general is reduced by taking ∆u as small as practically possible (and thus
p as large as possible).

Once the discretization of the underlying white noise process and the range p has been
determined, the implementation of (24) in one dimension is quite straightforward and
usually quite efficient for reasonable values of p. In higher dimensions, the method
rapidly becomes cumbersome. Figure 3 shows a typical portion of a 2-D discrete
process Zij , marked by X’s, and the underlying white noise field, marked by dots.
The entire figure represents the upper right corner of a 2-D field. The process Zij is
now formed by the double summation

Zij =

p1∑

k=−p1

p2∑

ℓ=−p2

fkℓ Wi,j,k,ℓ, (26)

where fkℓ is the 2-D weighting function and Wi,j,k,ℓ is the discrete white noise process
centered at the same position as Zij . The i and j subscripts on W are for bookkeeping
purposes so that the sum is performed over a centered neighborhood of discrete white
noise values.
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∆x
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∆u

ξ

weighting function f (ξ )

f-2 f-1 f0 f1 f2

Figure 2. Schematic representation of the moving average process
in one dimension.

In the typical example illustrated in Figure 3, the discretization of the white noise
process is such that r = ∆u/∆x = 3 and a relatively short scale of fluctuation was
used so that p = 6. This means that if a K1 × K2 field is to be simulated, the total
number of white noise realizations to be generated must be,

NW =

(
1 + 2p1 + r1(K1 − 1)

)(
1 + 2p2 + r2(K2 − 1)

)
, (27)

or about (rK)2 for a square field. This can be contrasted immediately with the FFT
approach which requires the generation of about 1

2K
2 random values for a quadrant

symmetric process (note that the factor of one-half is a consequence of the periodicity
of the generated field). When r = 3, some 18 times as many white noise realiza-
tions must be generated for the moving average algorithm as for the FFT method.
Also the construction of each field point requires a total of (2p + 1)2 additions and
multiplications which, for the not unreasonable example given above, is 132 = 169.
This means that the entire field will be generated using K2(2p+ 1)2 or about 11 mil-
lion additions and multiplications for a 200× 200 field. Again this can be contrasted
to the two-dimensional FFT method (radix-2, row-column algorithm) which requires
some 4K2 log2 K or about 2 million multiply-adds. In most cases, the moving aver-
age approach in two dimensions was found to run at least 10 times slower than the
FFT approach. In three dimensions, the moving average method used to generate a
64 × 64 × 64 field with p = 6 was estimated to run over 100 times slower than the
corresponding FFT approach. For this reason, and since the weighting function is
generally difficult to find, the moving average method as a general method of produc-
ing realizations of multi-dimensional random fields is only useful when the moving
average representation is particularly desired.
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Zij

Figure 3. Two-dimensional moving average process. Zij is formed
by summing the contributions from the underlying white
noise process in the shaded region.

It can be noted in passing that the two-dimensional ARMA model suggested by Na-
ganum et al (1987) requires about 50 to 150 multiply-adds (depending on the type of
covariance structure modeled) for each field point. This is about 2 to 6 times slower
than the FFT approach. While this is quite competitive for certain covariance func-
tions, the corresponding run speeds for three-dimensional processes are estimated to
be 15 to 80 times slower than the FFT approach depending on the choice of param-
eters p and r. Also, in a sequence of two papers, Mignolet and Spanos (1992) and
Spanos and Mignolet (1992) discuss in considerable detail the moving average (MA),
autoregressive (AR) and ARMA approaches to simulating two-dimensional random
fields. In their examples, they obtain accurate results at the expense of running about
10 or more times slower than the fastest of the methods to be considered later in this
chapter.

4.2 Covariance Matrix Decomposition

Covariance matrix decomposition is a direct method of producing a homogeneous
random field with prescribed covariance structure C(x∼ i − x∼j) = C(τ∼ ij), where x∼ i,
i = 1, 2, . . . , n are discrete points in the field and τ∼ij is the lag vector between the
points x∼ i and x∼j . If C≈ is a positive definite covariance matrix with elements Cij =
C(τ∼ij), then a mean zero discrete process Zi = Z(x∼i) can be produced (using vector
notation) according to

Z∼ = L≈U∼ (28)
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where L≈ is a lower triangular matrix satisfying L≈L≈
T = C≈ (typically obtained using

Cholesky decomposition) and U∼ is a vector of n independent mean zero, unit variance
Gaussian random variables. Although appealing in its simplicity and accuracy, this
method is only useful for small fields. In two dimensions, the covariance matrix of a
128 × 128 field would be of size 16, 384× 16, 384 and the Cholesky decomposition
of such a matrix would be both time consuming and prone to considerable round-off
error (particularly since covariance matrices are often numerically singular).

4.3 Discrete Fourier Transform Method

The Fourier Transform method is based on the spectral representation of homogeneous
mean square continuous random fields, Z(x∼), which can be expressed as follows (Ya-
glom, 1962)

Z(x∼) =

∫ ∞

−∞
eix∼ ·ω∼ W (dω∼ ) (29)

whereW (dω∼ ) is an interval white noise process with mean zero and varianceS(ω∼ ) dω∼ .
This representation is in terms of the physically meaningful spectral density function,
S(ω∼ ), and so is intuitively attractive. In practice, the n-dimensional integral becomes
an n-dimensional sum which is evaluated separately at each point x∼ . Although po-
tentially accurate, the method is computationally slow for reasonable field sizes and
typical spectral density functions – the DFT is generally about as efficient as the MA
discussed above. Its major advantage over the MA approach is that the spectral density
function is estimated in practice using standard techniques.

In n-dimensions, for real Z(x∼), the Discrete Fourier Transform (DFT) can be written

Z(x∼) =

N1∑

k1=−N1

· · ·
Nn∑

kn=−Nn

Ck1...kn cos (ωk1x1 + · · ·ωknxn +Φk1...kn) (30)

where Φk1...kn is a random phase angle uniformly distributed on [0, 2π] and Ck1k2...kn

is a random amplitude having Rayleigh distribution if Z is Gaussian. An alternative
way of writing the DFT is

Z(x∼) =

N1∑

k1=−N1

· · ·
Nn∑

kn=−Nn

Ak1...kn cos (ωk1x1 + · · ·ωknxn)

+Bk1...kn sin (ωk1x1 + · · ·ωknxn) (31)

where, for a stationary normally distributed Z(x∼), the A and B coefficients are mutu-
ally independent and normally distributed with zero means and variances given by

E
[
A2

k1k2...kn

]
= E

[
B2

k1k2...kn

]
= S(ω∼k∼

)∆ω∼ (32)

In this equation, ω∼k∼
= {ωk1 , ωk2 , . . . , ωkn} and S(ω∼k∼

∆ω∼ is the area under the spec-
tral density function in an incremental region centered on ω∼k∼

.
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As mentioned above, the sum is composed of (2N + 1)n terms (if N1 = N2 = · · · =
N ), where (2N + 1) is the number of discrete frequencies taken in each dimension.
Depending on the shape of the spectral density function, N might easily be of the
order of 100, so that in 3 dimensions roughly 8 million terms must be summed for
each spatial position desired in the generated field (thus, in 3 dimensions, a 20 x 20 x
20 random field would involve roughly 128 billion evaluations of sin or cosine).

This approach is really only computationally practical in one-dimension where the
DFT reduces to

Z(x) =

N∑

k=−N

Ak cos(ωkx) +Bk sin(ωkx) (33)

where

E
[
Ak

]
= E

[
Bk

]
= 0

E
[
A2

k

]
= E

[
B2

k

]
= S(ωk)∆ω (34)

and where the A and B coefficients are mutually independent of all other A’s and B’s.
If the symmetry in the spectral density function is taken advantage of, namely that
S(ω) = S(−ω), then the sum can be written

Z(x) =

N∑

k=0

Ak cos(ωkx) +Bk sin(ωkx) (35)

where now the variances of the A and B coefficients are expressed in terms of the
one-sided spectral density function

E
[
A2

k

]
= E

[
B2

k

]
= G(ωk)∆ωk (36)

and where ∆ω0 = 1
2 (ω1 − ω0) and ∆ωk = 1

2 (ωk+1 − ωk−1).

Simulation proceeds as follows;

1. decide on how to discretize the spectral density (ie. on N and ∆ω),

2. generate mean zero, normally distributed, realizations of Ak and Bk for k =
0, 1, . . . , N each having variance given by Eq. 36

3. for each value of x desired in the final random process, compute the sum given
by Eq. 35.

4.4 The Fast Fourier Transform Method

If both space and frequency are discretized into a series of equispaced points, then
the Fast Fourier Transform (FFT) method developed by Cooley and Tukey (1965) can
be used to compute Eq. 29. The FFT is much more computationally efficient than
the DFT. For example, in one-dimension the DFT requires N2 operations whereas the

Fenton 147

ALERT Doctoral School 2014



FFT requires only N log2 N operations. If N = 215 = 32768, then the FFT will be
approximately 2000 times faster than the DFT. For the purposes of this development,
only the one-dimensional case will be considered and multi-dimensional results will
be stated subsequently. For real and discrete Z(xj), j = 1, 2, . . . , N , Eq. 29 becomes

Z(xj) =

∫ π

−π

eixjω W (dω) = lim
K→∞

K∑

k=−K

eixjωk W (∆ωk)

= lim
K→∞

K∑

k=−K

{
A(∆ωk) cos(xjωk) +B(∆ωk) sin(xjωk)

}
(37)

where ωk = kπ/K , ∆ωk is an interval of length π/K centered at ωk, and the last
step in (37) follows from the fact that Z is real. The functions A(∆ωk) and B(∆ωk)
are independent identically distributed random interval functions with mean zero and
E
[
A(∆ωk)A(∆ωm)

]
= E

[
B(∆ωk)B(∆ωm)

]
= 0 for all k 6= m in the limit as

∆ω → 0. At this point, the simulation involves generating realizations of Ak =
A(∆ωk) and Bk = B(∆ωk) and evaluating (37). Since the process is real, S(ω) =
S(−ω), and the variances of Ak and Bk can be expressed in terms of the one-sided
spectral density function G(ω) = 2S(ω), ω ≥ 0. This means that the sum in (37) can
have lower bound k = 0. Note that an equivalent way of writing (37) is

Z(xj) =

K∑

k=0

Ck cos(xjωk +Φk), (38)

where Φk is a random phase angle uniformly distributed on [0, 2π] and Ck follows a
Rayleigh distribution. Shinozuka and Jan (1972) take Ck =

√
G(ωk)∆ω to be deter-

ministic, an approach not followed here since it gives an upper bound on Z over the
space of outcomes of Z ≤ ∑K

k=0

√
G(ωk)∆ω which may be an unrealistic restric-

tion, particularly in reliability calculations which could very well depend on extremes.

Next, the process Zj = Z(xj) is assumed to be periodic, Zj = ZK+j , with the same
number of spatial and frequency discretization points (N = K). As will be shown
later, the periodicity assumption leads to a symmetric covariance structure which is
perhaps the major disadvantage to the DFT and FFT approach. If the physical length
of the one-dimensional process under consideration is D and the space and frequency
domains are discretized according to

xj = j∆x =
jD

K − 1
(39)

ωj = j∆ω =
2πj(K − 1)

KD
(40)

for j = 0, 1, . . . ,K − 1, then the Fourier transform

Zj =
K−1∑

k=0

Xk e
i(2πjk/K) (41)

148 Simulation

ALERT Doctoral School 2014



can be evaluated using the FFT algorithm. The Fourier coefficients, Xk = Ak − iBk,
have the following symmetries due to the fact that Z is real,

Ak =
1

K

K−1∑

j=0

Zj cos 2π jk
K = AK−k (42)

Bk =
1

K

K−1∑

j=0

Zj sin 2π jk
K = −BK−k (43)

which means that Ak and Bk need only be generated randomly for k = 0, 1, . . . ,K/2
and that B0 = BK/2 = 0. Note that if the coefficients at K − k are produced
independently of the coefficients at k, the resulting field will display aliasing. Thus
there is no advantage to taking Z to be complex, generating all the Fourier coefficients
randomly, and attempting to produce two independent fields simultaneously (the real
and imaginary parts), or in just ignoring the imaginary part.

As far as the simulation is concerned, all that remains is to specify the statistics of Ak

and Bk so that they can be generated randomly. If Z is a Gaussian mean zero process,
then so are Ak and Bk. The variance of Ak can be computed in a consistent fashion
by evaluating E

[
A2

k

]
using (42)

E
[
A2

k

]
=

1

K2

K−1∑

j=0

K−1∑

ℓ=0

E
[
Zj Zℓ

]
cos 2π jk

K cos 2π ℓk
K (44)

This result suggests using the covariance function directly to evaluate the variance of
Ak, however the implementation is complex and no particular advantage in accuracy
is attained. A simpler approach involves the discrete approximation to the Wiener-
Khinchine relationship

E
[
Zj Zℓ

]
≃ ∆ω

K−1∑

m=0

G(ωm) cos 2πm(j−ℓ)
K (45)

which when substituted into (44) leads to

E
[
A2

k

]
=

∆ω

K2

K−1∑

j=0

K−1∑

ℓ=0

K−1∑

m=0

G(ωm) cos 2πm(j−ℓ)
K CkjCkℓ

=
∆ω

K2

K−1∑

m=0

G(ωm)
K−1∑

j=0

CmjCkj

K−1∑

ℓ=0

CmℓCkℓ

+
∆ω

K2

K−1∑

m=0

G(ωm)

K−1∑

j=0

SmjCkj

K−1∑

ℓ=0

SmℓCkℓ, (46)

where Ckj = cos 2π kj
K and Skj = sin 2π kj

K .
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To reduce (46) further, use is made of the following two identities

1)
K−1∑

k=0

sin 2πmk
K cos 2π jk

K = 0

2)
K−1∑

k=0

cos 2πmk
K cos 2π jk

K =





0, if m 6= j
K
2 , if m = j or K − j

K, if m = j = 0 or K
2

By identity (1), the second term of (46) is zero. The first term is also zero, except
when m = k or m = K − k, leading to the results

E
[
A2

k

]
=





1
2G(ωk)∆ω, if k = 0
1
4

{
G(ωk) +G(ωK−k)

}
∆ω, if k = 1, . . . , K

2 − 1

G(ωk)∆ω, if k = K
2

( (47))

remembering that for k = 0 the frequency interval is 1
2∆ω. An entirely similar calcu-

lation leads to

E
[
Bk

]2
=

{
0, if k = 0 or K

2
1
4

{
G(ωk) +G(ωK−k)

}
∆ω, if k = 1, . . . , K

2 − 1
( (48))

Thus the simulation process is as follows;

1. generate independent normally distributed realizations of Ak and Bk having
mean zero and variance given by (47) and (48) for k = 0, 1, . . . ,K/2 and set
B0 = BK/2 = 0,

2. use the symmetry relationships, (42) and (43), to produce the remaining Fourier
coefficients for k = 1 +K/2, . . . ,K − 1

3. produce the field realization by Fast Fourier Transform using Eq. 41.

In higher dimensions a similar approach can be taken. To compute the Fourier sum
over non-negative frequencies only, the spectral density function S(ω∼ ) is assumed to
be even in all components of ω∼ (quadrant symmetric) so that the ‘one-sided’ spectral
density function, G(ω∼ ) = 2nS(ω∼ ) ∀ ωi ≥ 0, and n-dimensional space, can be em-
ployed. Using L = K1 − ℓ, M = K2−m, and N = K3−n to denote the symmetric
points in fields of size K1×K2 in 2-D or K1×K2×K3 in 3-D, the Fourier coefficients
yielding a real two-dimensional process must satisfy

ALM = Aℓm, BLM = −Bℓm (49)
AℓM = ALm, BℓM = −BLm

for ℓ,m = 0, 1, . . . , Kα

2 where Kα is either K1 or K2 appropriately. Note that these
relationships are applied modulo Kα, so that AK1−0,m ≡ A0,m for example. In two
dimensions, the Fourier coefficients must be generated over two adjacent quadrants of
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the field, the rest of the coefficients obtained using the symmetry relations. In three
dimensions, the symmetry relationships are

ALMN = Aℓmn, BLMN = −Bℓmn

AℓMN = ALmn, BℓMN = −BLmn (50)
ALmN = AℓMn, BLmN = −BℓMn

AℓmN = ALMn, BℓmN = −BLMn

for ℓ,m, n = 0, 1, . . . , Kα

2 . Again, only half the Fourier coefficients are to be gener-
ated randomly.

The variances of the Fourier coefficients are found in a manner analogous to the one-
dimensional case, resulting in

E
[
A2

ℓm

]
= 1

8δ
A

ℓm∆ω∼

(
Gd

ℓm +Gd
ℓN +Gd

Ln +Gd
LN

)
(51)

E
[
B2

ℓm

]
= 1

8δ
B

ℓm∆ω∼

(
Gd

ℓm +Gd
ℓN +Gd

Ln +Gd
LN

)
(52)

for two-dimensions and

E
[
Aℓmn

]2
= 1

16 δ
A

ℓmn∆ω∼

(
Gd

ℓmn +Gd
ℓmN +Gd

ℓMn +Gd
Lmn

+Gd
ℓMN +Gd

LmN +Gd
LMn +Gd

LMN

)
(53)

E
[
Bℓmn

]2
= 1

16 δ
B

ℓmn∆ω∼

(
Gd

ℓmn +Gd
ℓmN +Gd

ℓMn +Gd
Lmn

+Gd
ℓMN +Gd

LmN +Gd
LMn +Gd

LMN

)
(54)

in three-dimensions, where for p dimensions,

∆ω∼ =

p∏

i=1

∆ωi, (55)

Gd(ω∼ ) =
G(ω1, . . . , ωp)

2d
, (56)

and d is the number of components of ω∼ = (ω1, . . . , ωp) which are equal to zero. The
factors δA

ℓmn and δB

ℓmn are given by

δA

ℓmn =

{
2 if ℓ = 0 or K1

2 and m = 0 or K2

2 and n = 0 or K3

2

1 otherwise
(57)

δB

ℓmn =

{
0 if ℓ = 0 or K1

2 and m = 0 or K2

2 and n = 0 or K3

2

1 otherwise
(58)
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(ignoring the index n in the case of two dimensions). Thus, in higher dimensions, the
simulation procedure is almost identical to that followed in the 1-D case – the only
difference being that the coefficients are generated randomly over the half plane (2-D)
or the half volume (3-D) rather than the half line of the 1-D formulation.

It is appropriate at this time to investigate some of the shortcomings of the method.
First of all it is easy to show that regardless of the desired target covariance function,
the covariance function Ĉk = Ĉ(k∆x) of the real FFT process is always symmetric
about the midpoint of the field. In one-dimension, the covariance function is given by
(using complex notation for the time being),

Ĉk = E
[
Zℓ+kZℓ

]

= E



K−1∑

j=0

Xj exp
{
i
(

2π(ℓ+k)j
K

)}K−1∑

m=0

Xm exp
{
−i

(
2πℓm
K

)}



=
K−1∑

j=0

E
[
XjXj

]
exp

{
i
(

2πjk
K

)}
, (59)

where use was made of the fact that E
[
XjXm

]
= 0 for j 6= m (overbar denotes the

complex conjugate). Similarly one can derive

ĈK−k =

K−1∑

j=0

E
[
XjXj

]
exp

{
−i

(
2πjk
K

)}
= Ĉk (60)

since E
[
XjXj

]
is real. The covariance function of a real process is also real in which

case (60) becomes simply
ĈK−k = Ĉk. (61)

In one dimension, this symmetry is illustrated by Figure 4. Similar results are observed
in higher dimensions. In general, this deficiency can be overcome by generating a
field twice as long as required in each coordinate direction and keeping only the first
quadrant of the field. Figure 4 also compares the covariance, mean, and variance
fields of the LAS method to that of the FFT method (the TBM method is not defined
in one dimension). The two methods give satisfactory performance with respect to the
variance and mean fields, while the LAS method shows superior performance with
respect to the covariance structure.
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Figure 4. Mean, variance, and covariance of a 1-D 128 point Gauss-
Markov process estimated over an ensemble of 2000 real-
izations generated by the FFT method.

The second problem with the FFT method relates primarily to its ease of use. Because
of the close relationship between the spatial and frequency discretization, considerable
care must be exercised when initially defining the spatial field and its discretization.
First of all the physical length of the field D must be large enough that the frequency
increment ∆ω = 2π(K − 1)/KD ≃ 2π/D is sufficiently small. This is necessary if
the sequence 1

2G(ω0)∆ω,G(ω1)∆ω, . . . is to adequately approximate the target spec-
tral density function. Figure 5 shows an example where the frequency discretization
is overly coarse. Secondly, the physical resolution ∆x must be selected so that the
spectral density above the frequency 2π/∆x is negligible. Failure to do so will result
in an underestimation of the total variance of the process. In fact the FFT formulation
given above folds the power corresponding to frequencies between π/∆x and 2π/∆x
into the power at frequencies below the Nyquist limit π/∆x. This results in the point
variance of the simulation being more accurate than if the power above the Nyquist
limit were ignored, however it leads to a non-uniqueness in that a family of spectral
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density functions, all having the same value of G(ωk) + G(ωK−k), yield the same
process. In general it is best to choose ∆x so that the power above the Nyquist limit is
negligible. The second term involving the symmetric frequency G(ωK−k) is included
here because the point variance is the most important second-order characteristic.

Unfortunately, many applications dictate the size and discretization of the field a-
priori or the user may want to have the freedom to easily consider other geometries
or spectral density functions. Without a good deal of careful thought and analysis, the
FFT approach can easily yield highly erroneous results.

B(τ) = σ2 e−2τ/θ (62)

G(ω) =
4σ2 θ

π(4 + θ2 ω2)

∆ω =
2π(K − 1)

KD
(63)

0 1 2 3 4 5
ω0

0.
5

1
1.

5

G
(ω

)

ω0 ω1 ω2

G(ω0)∆ω/2

G(ω1)∆ω
G(ω2)∆ω

Figure 5. Example of overly coarse frequency discretization result-
ing in a poor estimation of point variance (D = 5 and
θ = 4).

A major advantage of the FFT method is that it can easily handle anisotropic fields
with no sacrifice in efficiency. The field need not be square, although many imple-
mentations of the FFT require the number of points in the field in any coordinate
direction to be a power of two. Regarding efficiency, it should be pointed out that the
time to generate the first realization of the field is generally much longer than that re-
quired to generate subsequent realizations. This is because the statistics of the Fourier
coefficients must be calculated only once (see Eq.’s 47 and 48).

The FFT method is useful for the generation of fractal processes, which are most
naturally represented by the spectral density function. In fact the covariance function
does not exist since the variance of a fractal process is ideally infinite. In practice,
for such a process, the spectral density is truncated above and below to render a finite
variance realization.
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4.5 The Turning Bands Method

The Turning Bands Method (TBM), as originally suggested by Matheron (1973), in-
volves the simulation of random fields in two- or higher-dimensional space by using a
sequence of one-dimensional processes along lines crossing the domain. With refer-
ence to Figure 6, the algorithm can be described as follows,

1. choose an arbitrary origin within or near the domain of the field to be generated,

2. select a line i crossing the domain having a direction given by the unit vector u∼ i

which may be chosen either randomly or from some fixed set,

3. generate a realization of a one-dimensional process, Zi(ξi), along the line i
having zero mean and covariance function B1(τi) where ξi and τi are measured
along line i,

4. orthogonally project each field point x∼k onto the line i to define the coordinate
ξki (ξki = x∼k · u∼ i in the case of a common origin) of the one-dimensional
process value Zi(ξki),

5. add the component Zi(ξki) to the field value Z(x∼k) for each x∼k,

6. return to step (2) and generate a new one-dimensional process along a subse-
quent line until L lines have been produced,

7. normalize the field Z(x∼k) by dividing through by the factor
√
L.

Essentially, the generating equation for the zero-mean discrete process Z(x∼) is given
by

Z(x∼k) =
1√
L

L∑

i=1

Zi(x∼k · u∼ i), (64)

where if the origins of the lines and space are not common, the dot product must be
replaced by some suitable transform. This formulation depends on knowledge of the
one-dimensional covariance function, B1(τ). Once this is known, the line processes
can be produced using some efficient 1-D algorithm.

The covariance function B1(τ) is chosen such that the multi-dimensional covariance
structure Bn(τ∼) in n-dimensional space is reflected over the ensemble. For two-
dimensional isotropic processes, Mantoglou and Wilson (1981) give the following
relationship between B2(τ∼) and B1(η) for r = |τ∼ |,

B2(r) =
2

π

∫ r

0

B1(η)√
r2 − η2

dη, (65)

which is an integral equation to be solved for B1(η). In three dimensions, the rela-
tionship between the isotropic B3(r) and B1(η) is particularly simple,

B1(η) =
d

dη

(
η B3(η)

)
. (66)
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Mantoglou and Wilson supply explicit solutions for either the equivalent one-dimensional
covariance function or the equivalent one-dimensional spectral density function for a
variety of common multi-dimensional covariance structures.

Z(xk)

u1

u2
Z2(ξk2)

Z1(ξk1)

Figure 6. The Turning Bands Method: contributions from the line
process Zi(ξi) at the closest point are summed into the
field process Z(x∼) at x∼k.

In this implementation of the TBM, the line processes were constructed using a 1-
D FFT algorithm as discussed in the previous section. The LAS method was not
used for this purpose because the local averaging introduced by the method would
complicate the resulting covariance function of (65). Line lengths were chosen to be
twice that of the field diagonal to avoid the symmetric covariance problem inherent
with the FFT method. To reduce errors arising due to overly coarse discretization
of the lines, the ratio between the incremental distance along the lines, ∆ξ, and the
minimum incremental distance in the field along any coordinate, ∆x, was selected to
be ∆ξ/∆x = 1

2 .

Figure 7 represents a realization of a 2-D process. The finite number of lines used, in
this case 16, results in a streaked appearance of the realization. A number of origin
locations were experimented with to mitigate the streaking, the best appearing to be
the use of all four corners as illustrated in Figure 6 and as used in Figure 7. The corner
selected as an origin depends on which quadrant the unit vector u∼ i points into. If one
considers the spectral representation of the one-dimensional random processes along
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each line (see 29) it is apparent that the streaks are a result of constructive/destructive
interference between randomly oriented traveling plane waves. The effect will be
more pronounced for narrow band processes and for a small number of lines. For this
particular covariance function (Markov), the streaks are still visible when 32 lines are
used, but, as shown in Figure 8, are negligible when using 64 lines (the use of number
of lines which are powers of 2 is arbitrary). While the 16 line case runs at about the
same speed as the 2-D LAS approach, the elimination of the streaks in the realization
comes at a price of running about 4 times slower. The streaks are only evident in an
average over the ensemble if non-random line orientations are used, although they still
appear in individual realizations in either case. Thus, with respect to each realization,
there is no particular advantage to using random versus non-random line orientations.

Figure 7. Sample function of a 2-D field via TBM using 16 lines.

Since the streaks are present in the field itself, this type of error is generally more
serious than errors in the variance or covariance field. For example, if the field is being
used to represent soil conductivity, then the streaks could represent paths of reduced
resistance to flow, a feature which may not be desirable in a particular study. Crack
propagation studies may also be very sensitive to such linear correlations in the field.
For applications such as these, the Turning Bands method should only be used with
a sufficiently large number of lines. This may require some preliminary investigation
for arbitrary covariance functions. In addition, the minimum number of lines in 3 and
higher dimensions is difficult to determine due to visualization problems.
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Figure 8. Sample function of a 2-D field via TBM using 64 lines.

Note that the Turning Bands Method does not suffer from the symmetric covariance
structure that is inherent in the FFT approach. The variance field and covariance
structure are also well preserved. However, the necessity of finding an equivalent 1-D
covariance or spectral density function through an integral equation along with the
streaked appearance of the realization when an insufficient number of lines are used
makes the method less attractive. Using a larger number of lines, TBM is probably the
most accurate of the three methods considered, at the expense of decreased efficiency,
as long as the 1-D generator is accurate. TBM can be extended to anisotropic fields,
although there is an additional efficiency penalty associated with such an extension
since the 1-D process statistics must be recalculated for each new line orientation (see
Mantaglou and Wilson, 1981, for details).

4.6 The Local Average Subdivision Method

Of the three approximate methods considered, the Local Average Subdivision (LAS)
method is probably the most difficult to implement, but the easiest to use. LAS is a fast
and generally accurate method of producing realizations of a discrete ‘local average’
random process. The motivation for the method arose out of a need to properly account
for the fact that most engineering measurements are actually local averages of the
property in question. For example, soil porosity is ill-defined at the micro-scale –
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it is measured in practice using samples of finite volume and the measured value is
an average of the porosity through the sample. The same can be said of strength
measurements, say triaxial tests on laboratory volumes, or CPT measurements which
record the effects of deforming a bulb of soil around the cone. The variance of the
average is strongly affected by the size of the sample. Depending on the distribution
of the property being measured, the mean of the average may also be affected by the
sample size – this is sometimes called the scale effect. These effects are relatively
easily incorporated into a properly defined random local average process.

Another advantage to using local averages is that they are ideally suited to stochastic
finite element modeling using efficient, low order, interpolation functions. Each dis-
crete local average given by a realization becomes the average property within each
discrete element. As the element size is changed, the statistics of the random prop-
erty mapped to the element will also change in a statistically consistent fashion. This
gives finite element modelers the freedom to change mesh resolution without losing
stochastic accuracy.

The concept behind the LAS approach derived from the stochastic subdivision algo-
rithm described by Carpenter (1980) and Fournier et al. (1982). Their method was
limited to modeling power spectra having a ω−β form and suffered from problems
with aliasing and ‘creasing’. Lewis (1987) generalized the approach to allow the
modeling of arbitrary power spectra without eliminating the aliasing. The stochas-
tic subdivision is a midpoint displacement algorithm involve recursively subdividing
the domain by generating new midpoint values randomly selected according to some
distribution. Once chosen, the value at a point remains fixed and at each stage in the
subdivision only half the points in the process are determined (the others created in
previous iterations). Aliasing arises because the power spectral density is not modified
at each stage to reflect the increasing Nyquist frequency associated with each increase
in resolution. Voss (in Peitgen et al., 1988, Chap. 1) attempted to eliminate this prob-
lem with considerable success by adding randomness to all points at each stage in the
subdivision in a method called ‘successive random additions’. However the internal
consistency easily achieved by the midpoint displacement methods (their ability to re-
turn to previous states while decreasing resolution through decimation) is largely lost
with the successive random additions technique. The property of internal consistency
in the midpoint displacement approaches implies that certain points retain their value
throughout the subdivision and other points are created to remain consistent with them
with respect to correlation. In the LAS approach, internal consistency implies that the
local average is maintained throughout the subdivision.

The LAS method solves the problems associated with the stochastic subdivision meth-
ods and incorporates into it concepts of local averaging theory. The general concept
and procedure is presented first for a one-dimensional stationary process characterized
by its second-order statistics. The algorithm is illustrated by a Markov process, hav-
ing a simple exponential correlation function, as well as by a fractional Gaussian noise
process as defined by Mandelbrot and van Ness (1968). The simulation procedure in
two and three dimensions is then described. Finally some comments concerning the
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accuracy and efficiency of the method are made.

4.6.1 One-Dimensional Local Average Subdivision

The construction of a local average process via LAS essentially proceeds in a top-
down recursive fashion as illustrated in Figure 9. In Stage 0, a global average is
generated for the process. In Stage 1, the domain is subdivided into two regions whose
‘local’ averages must in turn average to the global (or parent) value. Subsequent stages
are obtained by subdividing each ‘parent’ cell and generating values for the resulting
two regions while preserving upwards averaging. Note that the global average remains
constant throughout the subdivision, a property that is ensured merely by requiring that
the average of each pair generated is equivalent to the parent cell value. This is also
a property of any cell being subdivided. We note that the local average subdivision
can be applied to any existing local average field. For example, the stage 0 shown in
Figure 9 might simply be one local average cell in a much larger field. The algorithm
proceeds as follows;

1. generate a normally distributed global average (labeled Z0
1 in Figure 9) with

mean zero and variance obtained from local averaging theory,

2. subdivide the field into two equal parts,

3. generate two normally distributed values, Z1
1 and Z1

2 , whose means and vari-
ances are selected so as to satisfy three criteria:

a) that they show the correct variance according to local averaging
theory,

b) that they are properly correlated with one another,
c) that they average to the parent value, 1

2 (Z
1
1 + Z1

2 ) = Z0
1 .

That is, the distributions of Z1
1 and Z1

2 are conditioned on the value of Z0
1 ,

4. subdivide each cell in stage 1 into two equal parts,

5. generate two normally distributed values, Z2
1 and Z2

2 , whose means and vari-
ances are selected so as to satisfy four criteria:

a) that they show the correct variance according to local averaging
theory,

b) that they are properly correlated with one another,
c) that they average to the parent value, 1

2 (Z
2
1 + Z2

2 ) = Z1
1 ,

d) that they are properly correlated with Z2
3 and Z2

4 .
The third criteria implies conditioning of the distributions of Z2

1 and Z2
2 on the

value of Z1
1 . The fourth criteria will only be satisfied approximately by condi-

tioning their distributions also on Z1
2 .

and so on in this fashion. The approximations in the algorithm come about in two
ways: first the correlation with adjacent cells across parent boundaries is accomplished
through the parent values (which are already known having been previously gener-
ated). Second the range of parent cells on which to condition the distributions will
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be limited to some neighborhood. Much of the remainder of this section is devoted
to the determination of these conditional Gaussian distributions at each stage in the
subdivision and to an estimation of the algorithmic errors. In the following, the term
‘parent cell’ refers to the previous stage cell being subdivided and ‘within-cell’ means
within the region defined by the parent cell.

Stage 0

Stage 1

Stage 2

Stage 3

Stage 4

Z 1
0

Z 1
1 Z 2

1

Z 1
2 Z 2

2 Z 3
2 Z 4

2

Z 1
3 Z 2

3 Z 3
3 Z 4

3 Z 5
3 Z 6

3 Z 7
3 Z 8

3

Figure 9. Top-down approach to LAS construction of local average
random process.

0 D

0 t

Figure 10. Realization of continuous random function, Z , with do-
main of interest (0, D] shown.

To determine the mean and variance of the Stage 0 value, Z0
1 , consider first a continu-

ous stationary scalar random function Z(t) in one dimension, a sample of which may
appear as shown in Figure 10, and define a domain of interest (0, D] within which a
realization is to be produced. Two comments should be made at this point: First, as
it is currently implemented the LAS method is restricted to stationary processes fully
described by their second-order statistics (mean, variance and correlation function or,
equivalently, spectral density function). This is not a severe restriction since it leaves a
sufficiently broad class of functions to model most natural phenomena (Lewis, 1987);
also, there is often insufficient data to substantiate more complex probabilistic mod-
els. Besides, a non-stationary mean and variance can be easily added to a stationary
process. For example Y (t) = µ(t) + σ(t)×X(t) will produce a non-stationary Y (t)
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from stationary X(t) if µ(t) and/or σ(t) vary with t. Secondly, the subdivision pro-
cedure depends on the physical size of the domain being defined since the dimension
over which local averaging is to be performed must be known. The process Z beyond
the domain (0, D] is ignored.

The average of Z(t) over the domain (0, D] is given by

Z0
1 =

1

D

∫ D

0

Z(ξ) dξ (67)

where Z0
1 is a random variable whose statistics

E
[
Z0
1

]
= E

[
Z
]

(68)

E
[
(Z0

1 )
2
]
=

1

D2

∫ D

0

∫ D

0

E
[
Z(ξ)Z(ξ′)

]
dξ dξ′

= E
[
Z
]2

+
2

D2

∫ D

0

(D − τ)C(τ)dτ (69)

can be found by making use of stationarity and the fact that C(τ), the covariance
function of Z(t), is an even function of lag τ . Without loss in generality, E

[
Z
]

will
henceforth be taken as zero. If Z(t) is a Gaussian random function, Eq’s (68) and (69)
give sufficient information to generate a realization of Z0

1 which becomes stage 0 in
the LAS method. If Z(t) is not Gaussian, then the complete probability distribution
function for Z0

1 must be determined and a realization generated according to such a
distribution. We will restrict our attention to Gaussian processes.

Consider now the general case where stage i is known and stage i+1 is to be generated.
In the following the superscript i denotes the stage under consideration. Define

Di =
D

2i
, i = 0, 1, 2, . . . , L, (70)

where the desired number of subintervals in the final realization is N = 2L, and
define Zi

k to be the average of Z(t) over the interval (k − 1)Di < t ≤ kDi centered
at tk = (k − 1

2 )D
i, i.e.

Zi
k =

1

Di

∫ kDi

(k−1)Di

Z(ξ) dξ (71)

where E
[
Zi
k

]
= E

[
Z
]
= 0. The target covariance between local averages separated

by lag mDi between centers is

E
[
Zi
kZ

i
k+m

]
= E

[(
1

Di

)2∫ kDi

(k−1)Di

∫ (k+m)Di

(k+m−1)Di

Z(ξ)Z(ξ′) dξdξ′
]

=

(
1

Di

)2∫ Di

0

∫ (m+1)Di

mDi

B(ξ − ξ′) dξdξ′
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=

(
1

Di

)2∫ mDi

(m−1)Di

(
ξ − (m− 1)Di

)
B(ξ) dξ

+

(
1

Di

)2∫ (m+1)Di

mDi

(
(m+ 1)Di − ξ

)
B(ξ)dξ. (72)

which can be evaluated relatively simply using Gaussian quadrature as

E
[
Zi
kZ

i
k+m

]
≃ 1

4

ng∑

ν=1

wν

[
(1 + zν))C(rν ) + (1− zν)C(sν)

]
(73)

where rν = Di
(
m − 1

2 (1 − zν)
)

, sν = Di
(
m + 1

2 (1 + zν)
)

and the weights, wν ,
and positions zν can be found in Appendix A.4 for ng Gauss points.

With reference to Figure 11, the construction of stage i+1 given stage i is obtained by
estimating a mean for Zi+1

2j and adding a zero mean discrete white noise ci+1 U i+1

j

having variance (ci+1)2

Zi+1

2j = M i+1

2j + ci+1 U i+1

j . (74)

The best linear estimate for the mean M i+1

2j can be determined by a linear combination
of stage i (parent) values in some neighborhood j − n, . . . , j + n,

M i+1

2j =

j+n∑

k=j−n

aik−j Z
i
k. (75)

Multiplying (74) through by Zi
m, taking expectations and using the fact that U i+1

j is
uncorrelated with the stage i values allows the determination of the coefficients a in
terms of the desired covariances,

E
[
Zi+1

2j Zi
m

]
=

j+n∑

k=j−n

aik−j E
[
Zi
k Z

i
m

]
(76)

a system of equations (m = j − n, . . . , j + n) from which the coefficients aiℓ,
ℓ = −n, . . . , n, can be solved. The covariance matrix multiplying the vector {aiℓ}
is both symmetric and Toeplitz (elements along each diagonal are equal). For U i+1

j ∼
N(0, 1) the variance of the noise term is (ci+1)2 which can be obtained by squaring
(74), taking expectations and employing the results of (76)

(ci+1)2 = E
[
(Zi+1

2j )2
]
−

j+n∑

k=j−n

aik−j E
[
Zi+1

2j Zi
k

]
. (77)

j j+1

2j-1 2j 2j+1 2j+2

Figure 11. One-dimensional LAS indexing for stage i (top) and stage
i+ 1 (bottom).
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The adjacent cell, Zi+1

2j−1, is determined by ensuring that upwards averaging is pre-
served – that the average of each stage i+1 pair equals the value of the stage i parent,

Zi+1

2j−1
= 2Zi

j − Zi+1

2j (78)

which incidentally gives a means of evaluating the cross-stage covariances

E
[
Zi+1

2j Zi
m

]
= 1

2E
[
Zi+1

2j Zi+1

2m−1

]
+ 1

2E
[
Zi+1

2j Zi+1

2m

]
. (79)

which are needed in Eq. 76. All the expectations in Equations (76) to (79) are evalu-
ated using (72) or (73) at the appropriate stage.

For stationary processes, the set of coefficients {aiℓ} and ci are independent of position
since the expectations in (76) and (77) are just dependent on lags. The generation
procedure can be restated as follows;

1. for i = 0, 1, 2, . . . , L compute the coefficients {aiℓ}, ℓ = −n, . . . , n using (76)
and ci+1 using (77),

2. starting with i = 0, generate a realization for the global mean using (68) and
(69),

3. subdivide the domain,

4. for each j = 1, 2, 3, . . . , 2i, generate realizations for Zi+1

2j and Zi+1

2j−1
using (74)

and (78),

5. increment i and, if not greater than L, return to step 3.

Notice that subsequent realizations of the process need only start at step 2 and so the
overhead involved with setting up the coefficients becomes rapidly negligible.

Because the LAS procedure is recursive, obtaining stage i+1 values using the previous
stage, it is relatively easy to condition the field by specifying the values of the local
averages at a particular stage. So, for example, if the global mean of a process is
known a priori, then the stage 0 value can be set to this mean and the LAS procedure
started at stage 1. Similarly if the resolution is to be refined in a certain region, then
the values in that region become the starting values and the subdivision resumed at the
next stage.

Although the LAS method yields a local average process, when the discretization size
becomes small enough it is virtually indistinguishable from the limiting continuous
process. Thus the method can be used to approximate continuous functions as well.

Accuracy

It is instructive to investigate how closely the algorithm approximates the target statis-
tics of the process. Changing notation slightly, denote the stage i + 1 algorithmic
values, given the stage i values, as

Ẑi+1

2j = ci+1 U i+1

j +

j+n∑

k=j−n

aik−j Z
i
k (80)

164 Simulation

ALERT Doctoral School 2014



Ẑi+1

2j−1
= 2Zi

j − Ẑi+1

2j . (81)

It is easy to see that the expectation of Ẑ is still zero, as desired, while the variance is

E
[
(Ẑi+1

2j )2
]
= E



(
ci+1 U i+1

j +

j+n∑

k=j−n

aik−j Z
i
k

)2



= (ci+1)2 +

j+n∑

k=j−n

aik−j

j+n∑

ℓ=j−n

aiℓ−j E
[
Zi
k Z

i
ℓ

]

= E
[
(Zi+1

2j )2
]
−

j+n∑

k=j−n

aik−j E
[
Zi+1

2j Zi
k

]
+

j+n∑

k=j−n

aik−j E
[
Zi+1

2j Zi
k

]

= E
[
(Zi+1

2j )2
]

(82)

in which the coefficients ci+1 and aiℓ where calculated using (76) and (77) as before.
Similarly, the within-cell covariance at lag Di+1 is

E
[
Ẑi+1

2j−1
Ẑi+1

2j

]
= 2

j+n∑

ℓ=j−n

aiℓ−j E
[
Zi
ℓ Z

i
j

]
− E

[
(Zi+1

2j )2
]

= 2E
[
Zi+1

2j Zi
j

]
− E

[
(Zi+1

2j )2
]
= E

[
Zi+1

2j−1
Zi+1

2j

]
(83)

using the results of (82) along with (79). Thus the covariance structure within a cell
is preserved exactly by the subdivision algorithm. Some approximation does occur
across cell boundaries as can be seen by considering

E
[
Ẑi+1

2j Ẑi+1

2j+1

]
= 2

j+n∑

k=j−n

aik−j E
[
Zi
k Z

i
j+1

]

−
j+n+1∑

ℓ=j−n+1

aiℓ−j−1

j+n∑

k=j−n

aik−j E
[
Zi
k Z

i
ℓ

]

= E
[
Zi+1

2j Zi+1

2j+1

]
+ E

[
Zi+1

2j Zi+1

2j+2

]

−
j+n+1∑

ℓ=j−n+1

aiℓ−j−1
E
[
Zi+1

2j Zi
ℓ

]
(84)

The algorithmic error in this covariance comes from the last two terms. The discrep-
ancy between (84) and the exact covariance is illustrated numerically in Figure 12 for
a zero mean Markov process having covariance and variance functions

B(τ) = σ2 exp

{
−2|τ |

θ

}
(85)
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γ(T ) =
θ2

2T 2

[
2|T |
θ

+ exp

{−2|T |
θ

}
− 1

]
(86)

where T is the averaging dimension (in Figure 12, T = Di+1) and θ is the scale
of fluctuation of the process. The exact covariance is determined by (72) (for m =
1) using the variance function (86). Although Figure 12 shows a wide range in the
effective cell sizes, 2T/θ, the error is typically very small.

10-2 2 4 6 8
10-1 2 4 6 8

100 2 4 6 8
101 2 4 6 8

102

2T/θ

0
0.

2
0.

4
0.

6
0.

8
1

C
or

re
la

tio
n

Exact Correlation
LAS Correlation

Figure 12. Comparison of algorithmic and exact correlation between
adjacent cells across a parent cell boundary for varying
effective cell dimension 2T/θ.

To address the issue of errors at larger lags and the possibility of errors accumulating
from stage to stage, it is useful to look at the exact versus estimated statistics of the
entire process. Figure 13 illustrates this comparison for the Markov process. It can
be seen from this example and from the fractional Gaussian noise example to come,
that the errors are self-correcting and the algorithmic correlation structure tends to the
exact correlation function when averaged over several realizations. Spectral analysis
of realizations obtained from the LAS method show equally good agreement between
estimated and exact (Fenton, trefFent90). The within-cell rate of convergence of the
estimated statistics to the exact is 1/nsim, where nsim is the number of realizations.
The overall rate of convergence is about the same.
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Figure 13. Comparison of exact and estimated covariance functions
(averaged over 200 realizations) of a Markov process with
σ = 1 and θ = 4.

Boundary Conditions and Neighborhood Size

When the neighborhood size (2n + 1) is greater than 1 (n > 0), the construction
of values near the boundary may require values from the previous stage which lie
outside the boundary. This problem is handled by assuming that what happens outside
the domain (0, D] is of no interest and uncorrelated with what happens within the
domain. The generating relationship (74) near either boundary becomes

Zi+1

2j = ci+1 U i+1

j +

j+q∑

k=j−p

aik−j Z
i
k (87)

where p = min(n, j − 1), q = min(n, 2i − j) and the coefficients aiℓ need only
be determined for ℓ = −p, . . . , q. The periodic boundary conditions mentioned by
Lewis (1987) are not appropriate if the target covariance structure is to be preserved
since they lead to a covariance which is symmetric about lag D/2 (unless the desired
covariance is also symmetric about this lag).

In the implementation described in this paper, a neighborhood size of 3 was used
(n = 1), the parent cell plus its two adjacent cells. Because of the top-down approach,
there seems to be little justification to using a larger neighborhood for processes with
covariance functions which decrease monotonically or which are relatively smooth.
When the covariance function is oscillatory, a larger neighborhood is required in order
to successfully approximate the function.
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Figure 14. Effect of neighborhood size for (a) n = 1 and (b) n = 2
for a damped oscillatory process.

In Figure 14 the exact and estimated covariances are shown for a damped oscillatory
process where

B(τ) = σ2 cos(ωτ) e−2τ/θ. (88)

Considerable improvement in the model is obtained when a neighborhood size of 5 is
used (n = 2). This improvement comes at the expense of taking about twice as long
to generate the realizations. Many practical models of natural phenomena employ
monotonically decreasing covariance functions, often for simplicity, and so the n = 1
implementation is usually preferable.

Fractional Gaussian Noise

As a further demonstration of the LAS method, a self-similar process called fractional
Gaussian noise was simulated. Fractional Gaussian noise (fGn) is defined by Man-
delbrot et al. (1968) to be the derivative of fractional Brownian motion (fBm), and
is obtained by averaging the fBm over a small interval δ. The resulting process has
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covariance and variance functions

B(τ) =
σ2

2δ2H

[
|τ + δ|2H − 2|τ |2H + |τ − δ|2H

]
(89)

γ(T ) =
|T + δ|2H+2 − 2|T |2H+2 + |T − δ|2H+2 − 2δ2H+2

T 2(2H + 1)(2H + 2)δ2H
(90)

defined for 0 < H < 1.
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Figure 15. (a) LAS generated sample function of ω2H−1 noise for
H = 0.95, and (b) corresponding estimated (averaged
over 200 realizations) and exact covariance functions.

The case H = 0.5 corresponds to white noise and H → 1 gives ω−1 type noise. In
practice δ is taken to be equal to the smallest lag between field points (δ = D/2L)
to ensure that when H = 0.5 (white noise), B(τ) becomes zero for all τ ≥ D/2L.
A sample function and its corresponding ensemble statistics are shown in Figure 15
for ω−β type noise (H = 0.95) where β = 2H − 1. The self-similar type processes
have been demonstrated by Mandelbrot (1982), Voss (1985), and many others (Mohr,
1981, Peitgen et al., 1988, Whittle, 1956, to name a few) to be representative of a
large variety of natural forms and patterns, for example music, terrains, crop yields,
and chaotic systems. Fenton (1999) demonstrated the presence of fractal behaviour in
CPT logs taken in Norway.
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4.6.2 Multi-Dimensional Local Average Subdivision

The 2-D LAS method involves a subdivision process in which a ‘parent’ cell is divided
into 4 equal sized cells. In Figure 16, the parent cells are denoted Zi

l , l = 1, 2, . . .
and the subdivided, or child cells are denoted Zi+1

j , j = 1, 2, 3, 4. Although each
parent cell is eventually subdivided in the LAS process, only Zi

5 is subdivided in
Figure 16 for simplicity. Using vector notation, the values of the column vector
Z∼

i+1 = {Zi+1
1 , Zi+1

2 , Zi+1
3 , Zi+1

4 } are obtained by adding a mean term to a random
component. The mean term derives from a best linear unbiased estimate using a 3× 3
neighborhood of the parent values, in this case the column vector Z∼

i = {Zi
1, . . . , Z

i
9}.

Specifically
Z∼

i+1 = A≈
T Z∼

i + L≈U∼ (91)

where U∼ is a random vector with independent N(0, 1) elements. This is essentially
an ARMA model in which the ‘past’ is represented by the previous coarser resolution
stages.

Zi1 Zi2 Zi3

Zi4 Zi5 Zi6

Zi7 Zi8 Zi9

Zi+1
1 Zi+1

2

Zi+1
3 Zi+1

4

Figure 16. Local Average Subdivision in two-dimensions.

Defining the covariance matrices

R≈ = E
[
Z∼

iZ∼
iT
]
, (92a)

S≈ = E
[
Z∼

iZ∼
i+1T

]
, and (92b)

B≈ = E
[
Z∼

i+1Z∼
i+1T

]
, (92c)

then the matrix A≈ is determined by

A≈ = R≈
−1 S≈ (93)
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while the lower triangular matrix L≈ satisfies

L≈L≈
T = B≈ − S≈

TA≈ (94)

The covariance matrices R≈ , S≈ and B≈ must be computed as the covariances between
local averages over the domains of the parent and child cells. This can be done using
the variance function although direct Gauss Quadrature integration of the covariance
function has been found to give better numerical results.

Note that the matrix on the right hand side of Eq. 94 is only rank 3, so that the 4 × 4
matrix L≈ has a special form with columns summing to zero (thus L44 = 0). While
this results from the fact that all the expectations used in Eq.’s 92 are derived using
local average theory over the cell domains, the physical interpretation is that upwards
averaging is preserved, ie. that P5 = 1

4 (Q1 +Q2+Q3+Q4). This means that one of
the elements of Q

∼
is explicitly determined once the other three are known. In detail,

Eq. 91 is carried out as follows

Zi+1
1 =

9∑

l=1

Al1Z
i
l + L11U1 (95a)

Zi+1
2 =

9∑

l=1

Al2Z
i
l + L21U1 + L22U2 (95b)

Zi+1
3 =

9∑

l=1

Al3Z
i
l + L31U1 + L32U2 + L33U3 (95c)

Zi+1
4 = 4Zi

5 − Zi+1
1 − Zi+1

2 − Zi+1
3 (95d)

where Ui are a set of three independent standard normally distributed random vari-
ables. Subdivisions taking place near the field boundaries are handled in much the
same manner as in the one-dimensional case by assuming that conditions outside the
field are uncorrelated with those inside the field.

The assumption of homogeneity vastly decreases the number of coefficients that need
to be calculated and stored since the matrices A≈ and L≈ become independent of po-
sition. As in the 1-D case, the coefficients need only be calculated prior to the first
realization – they can be re-used in subsequent realizations reducing the effective cost
of their calculation.

A sample function of a Markov process having isotropic covariance function

B(τ1, τ2) = σ2 exp{− 2
θ

√
τ2
1
+ τ22 } (96)

was generated using the two-dimensional LAS algorithm and is shown in Figure 17.
The field, which is of dimension 5× 5, was subdivided 8 times to obtain a 256 × 256
resolution giving relatively small cells of size 5

256 × 5
256 . The estimated covariances

along three different directions are seen in Figure 18 to show very good agreement
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with the exact. The agreement improves (as 1/nsim) when the statistics are averaged
over a larger number of simulations. Notice that the horizontal axis on Figure 18
extends beyond a lag of 5 to accomodate the estimation of the covariance along the
diagonal (which has length 5

√
2).

Figure 17. Local Average Subdivision generated two-dimensional sam-
ple function with θ = 0.5.

In three dimensions, the LAS method involves recursively subdividing rectangular
parallelepipeds into 8 equal volumes at each stage. The generating relationships are
essentially the same as in the 2-D case except now 7 random noises are used in the
subdivision of each parent volume at each stage

Zi+1

s =

27∑

l=1

AlsZ
i
l +

s∑

r=1

Lsr Ur s = 1, 2, . . . , 7 (97)

Zi+1

8 = 8Zi
14 −

7∑

s=1

Zi+1

s (98)

in whichZi+1
s denotes a particular octant of the subdivided cell centered at Zi

14. Eq. 97
assumes a neighborhood size of 3 × 3 × 3, and the subdivided cell is Zi

14 at the center
of the neighborhood.
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Figure 18. Comparison of exact and estimated covariance functions
(averaged over 100 realizations) of a two-dimensional isotropic
Markov process with σ = 1 and θ = 0.5.
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Figure 19. Comparison of exact and estimated covariance functions
(averaged over 50 realizations) of a three-dimensional isotropic
Markov process with σ = 1 and θ = 0.5. The dashed
lines show covariance estimates in various directions through
the field.

Figure 19 compares the estimated and exact covariance of a three-dimensional first-
order Markov process having isotropic covariance

B(τ1, τ2, τ3) = σ2 exp{− 2
θ

√
τ2
1
+ τ22 + τ2

3
} (99)

The physical field size of 5 × 5 × 5 was subdivided 6 times to obtain a resolution of
64 × 64 × 64 and the covariance estimates were averaged over 50 realizations.
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4.6.3 Implementation and Accuracy

In order to calculate stage i + 1 values, the values at stage i must be known. This
implies that in the 1-D case, storage must be provided for at least 1.5N values where
N = 2L is the desired number of intervals of the process. If rapid ‘zooming out’ of
the field is desired, it is useful to store all previous stages. This results in a storage
requirement of (2N − 1) in 1-D, 4

3 (N × N) in 2-D, and 8
7 (N × N × N) in 3-D.

The coefficients A≈ and the lower triangular elements of L≈ , which must also be stored,
can be efficiently calculated using Gaussian elimination and Cholesky decomposition,
respectively.

In two and higher dimensions, the LAS method, as presented above with a neighbor-
hood size of 3 in each direction, is incapable of preserving anisotropy in the covariance
structure. The directional scales of fluctuation tend toward the minimum for the field.
To overcome this problem, the LAS method can be mixed with the covariance matrix
decomposition (CMD) method (see Eq. 28). As mentioned in Section 4.3, the CMD
method requires large amounts of storage and is prone to numerical error when the
field to be simulated is not small. However, the first several stages of the local average
field could be produced directly by the CMD method and then refined by LAS in sub-
sequent stages until the desired field resolution is obtained. The resulting field would
have anisotropy preserved at the large scale.

Specifically, in the one dimensional case, a positive integer k1 is found so that the total
number of cells, N1, desired in the final field can be expressed as

N1 = k1(2
m) (100)

where m is the number of subdivisions to perform and k1 is as large as possible with
k1 ≤ kmax. The choice of the upper bound kmax depends on how large the initial
covariance matrix used in Eq. 28 can be. If kmax is too large, the Cholesky decom-
position of the initial covariance matrix will be prone to numerical errors and algo-
rithmic non-positive definiteness (which means that the Cholesky decomposition will
fail). The authors suggest kmax ≤ 256.

In two dimensions, two positive integers k1 and k2 are found such that k1k2 ≤ kmax

and the field dimensions can be expressed as

N1 = k1(2
m) (101a)

N2 = k2(2
m) (101b)

from which the first k1 × k2 lattice of cell values are simulated directly using covari-
ance matrix decomposition (28). Since the number of subdivisions, m, is common to
the two parameters, one is not entirely free to choose N1 and N2 arbitrarily. It does,
however, give a reasonable amount of discretion in generating non-square fields, as is
also possible with both the FFT and TBM methods.

Although Figure 4 illustrates the superior performance of the LAS method over the
FFT method in one dimension with respect to the covariance, a systematic bias in the
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variance field is observed in two dimensions. Figure 20 shows a grey scale image of
the estimated cell variance in a two-dimensional field obtained by averaging over the
ensemble. There is a pattern in the variance field – the variance tends to be lower
near the major cell divisions, that is at the 1/2, 1/4, 1/8, etc. points of the field.
This is because the actual diagonal, or variance, terms of the 4 × 4 covariance matrix
corresponding to a subdivided cell are affected by the truncation of the parent cell
influence to a 3 × 3 neighborhood. The error in the variance is compounded at each
subdivision stage and cells close to ‘older’ cell divisions show more error than do
‘interior’ cells. The magnitude of this error varies with the number of subdivisions,
the scale of fluctuation, and type of covariance function governing the process.

Figure 20. Two-dimensional LAS generated variance field (averaged
over 200 realizations).

Figure 21 depicts the estimated variances along a line through the plane for both the
LAS and TBM methods. Along any given line, the pattern in the LAS estimated vari-
ance seen in Figure 20 is not particularly noticeable and the values are about what
would be expected for an estimate over the ensemble. Figure 22 compares the esti-
mated covariance structure in the vertical and horizontal directions, again for the TBM
(64 lines) and LAS methods. In this respect, both the LAS and the TBM methods are
reasonably accurate.
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Figure 21. Variance along a horizontal line through the two-dimensional
LAS and TBM fields estimated over 200 realizations.

Figure 23 illustrates how well the LAS method combined with the Covariance Matrix
Decomposion (CMD) preserves anisotropy in the covariance structure. In this figure
the horizontal scale of fluctuation is θx = 10 while the vertical scale of fluctuation
is θy = 1. As mentioned earlier the LAS algorithm, using a neighborhood size of 3,
is incapable of preserving anistropy. The anisotropy seen in Figure 23 is due to the
initial CMD. The loss of anisotropy at very small lags (at the smaller scales where the
subdivision is taking place) can be seen in the Figure – that is, the estimated horizontal
covariance initially drops too rapidly at small lags.
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Figure 22. Covariance structure of the LAS and TBM two-dimensional
random fields estimated over 200 realizations.
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Figure 23. Exact and estimated covariance structure of an anisotropic
LAS produced field with θx = 10 and θy = 1. The esti-
mation is over 500 realizations.

It may be possible to improve the LAS covariance approximations by extending the
size of the parent cell neighborhood. A 3 × 3 neighborhood is used in the current
implementation of the 2-D LAS algorithm, as shown in Figure 16, but any odd sized
neighborhood could be used to condition the statistics of the subdivided cells. Larger
neighborhoods have not been tested in two and higher dimensions, although in one
dimension increasing the neighborhood size to 5 cells resulted in a more accurate
covariance function representation, as would be expected.

4.7 Comparison of Methods

The choice of a random field generator to be used for a particular problem or in general
depends on many issues. Table 1 shows the relative run times of the three algorithms
to produce identically sized fields. The times have been normalized with respect to
the FFT method so that a value of 2 indicates that the method took twice as long as
did the FFT. If efficiency alone were the selection criteria, then either the TBM with a
small number of lines or the LAS methods would be selected, with probably the LAS
a better choice if streaking is not desired. However, efficiency of the random field
generator is often not an overriding concern – in many applications, the time taken to
generate the field is dwarfed by the time taken to subsequently process or analyze the
field. Substantial changes in generator efficiency may be hardly noticed by the user.
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Table 1 Comparison of run-times of the FFT, TBM and LAS algorithms in one
and two-dimensions.

Dimension FFT LAS TBM

16 lines 64 lines

1-D 1.0 0.70 – –

2-D 1.0 0.55 0.64 2.6

As a further comparison of the accuracy of the FFT, TBM, and LAS methods, a set
of 200 realizations of a 128 × 128 random field were generated using the Markov
covariance function with a scale of fluctuation θ = 2 and a physical field size of 5×5.
The mean and variance fields were calculated by estimating these quantities at each
point in the field (averaging over the ensemble) for each algorithm. The upper and
lower 90% quantiles are listed in Table 2 along with those predicted by theory under
a normal distribution. To obtain these numbers, the mean and variance fields were
first estimated, then upper and lower bounds were found such that 5% of the field
exceeded the bounds above and below, respectively. Thus 90% of the field is observed
to lie between the bounds. It can be seen that all three methods yield very good results
with respect to the expected mean and variance quantiles. The TBM results were
obtained using 64 lines. Although these results are strictly only valid for the particular
covariance function used, they are believed to be generally true over a wider variety
of covariance functions and scales of fluctuation.

Table 2 Upper and lower 90% quantiles of the estimated mean and variance
fields for the FFT, TBM, and LAS methods (200 realizations).

Algorithm Mean Variance

FFT (−0.06, 0.12) (0.87, 1.19)

TBM (−0.11, 0.06) (0.83, 1.14)

LAS (−0.12, 0.09) (0.82, 1.13)

Theory (−0.12, 0.12) (0.84, 1.17)

Purely on the basis of accuracy in the mean, variance and covariance structures, the
best algorithm of those considered here is probably the TBM method using a large
number of lines. The TBM method is also one of the easiest to implement once an
accurate 1-D generator has been implemented. Unfortunately, there is no clear rule
regarding the minimum number of lines to be used to avoid streaking. In two dimen-
sions using the Markov covariance function, it appears that at least 50 lines should
be employed. However, as mentioned, narrow band processes may require more. In
three dimensions, no such statements can be made due to the difficulty in studying the
streaking phenomena off a plane. Presumably one could use a ‘density’ of lines sim-
ilar to that used in the two-dimensional case, perhaps subtending similar angles, as a
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guide. The TBM method is reasonably easy to use in practice as long as the equivalent
1-D covariance or spectral density function can be found.

The FFT method suffers from symmetry in the covariance structure of the realizations.
This can be overcome by generating fields twice as large as required in each coordinate
direction and ignoring the surplus. This correction results in slower run times (a factor
of 2 in 1-D, 4 in 2-D, etc.). The FFT method is also relatively easy to implement and
the algorithm is similar in any dimension. Its ability to easily handle anisotropic fields
makes it the best choice for such problems. Care must be taken when selecting the
physical field dimension and discretization interval to ensure that the spectral density
function is adequately approximated. This latter issue makes the method more difficult
to use in practice. However, the fact that the FFT approach employs the spectral
density function directly makes it an intuitively attractive method, particularly in time
dependent applications.

The LAS method has a systematic bias in the variance field, in two and higher dimen-
sions, which is not solvable without increasing the parent neighborhood size. How-
ever, the error does not result in values of variance that lie outside what would be
expected from theory – it is primarily the pattern of the variance field which is of
concern. Of the three methods considered, the LAS method is the most difficult to
implement. It is, however, one of the easiest to use once coded since it requires no de-
cisions regarding its parameters, and it is generally the most efficient. If the problem
at hand requires or would benefit from a local average representation, then the LAS
method is the logical choice.
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Application of the Random Finite Element 
Method 
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Delft University of Technology, The Netherlands 
____________________________________________________________________ 

Soil heterogeneity influences material behaviour and geotechnical performance. 
This chapter illustrates, through a series of numerical examples of varying degree of 
complexity, how the random finite element method (RFEM) may be used to assess 
the influence of soil heterogeneity on geotechnical performance and uncertainty. 
This method links random field theory for modelling the spatial variability of soil 
properties with finite elements for modelling geotechnical performance, within a 
Monte Carlo framework. It uses the soil property point and spatial statistics as in-
put, enabling the structural “output” response to be described in terms of either 
reliability or probability of failure. Numerical analyses are presented which demon-
strate the importance of three-dimensionality when considering the effects of heter-
ogeneity; indeed, results demonstrate just how difficult it is to compute 2D failures 
in a heterogeneous material. It is also shown how RFEM provides a self-consistent 
framework for explaining the concept of characteristic values in Eurocode 7, as well 
as providing a means by which reliability-based characteristic values may be de-
termined. Characteristic values are shown to be problem-dependent and a function 
of two competing factors: the spatial averaging of properties along potential failure 
surfaces, which reduces the coefficient of variation of the property values; and the 
tendency of failure mechanisms to follow the path of least resistance, which causes 
an apparent reduction in the property mean. The use of RFEM in assessing the liq-
uefaction potential of sand in two underwater slope case histories is also reported. 

1 Introduction 

Heterogeneity is the spatial variability of soil properties and it occurs at multiple 
scales: at the very small scale, as seen in the arrangement of solid particles in granu-
lar soils and in the fibrous nature of organic soils such as peat; at the centimeter to 
meter scale, as seen in the spatial variability of soil properties within soil layers; at 
the medium scale, as seen in the geological layering of soils of different types; and 
at the very large (e.g. regional) scale. Heterogeneity influences the hydro-
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mechanical behaviour of soils and the performance of geotechnical structures. 
Moreover, the presence of heterogeneity leads to uncertainty in ground conditions 
and thereby to uncertainty in design [Arn01, Hic02]. 
 
This chapter focuses on the heterogeneity that exists in so-called “uniform” soil 
layers, and on the influence that this heterogeneity has on geotechnical performance 
and uncertainty. It includes aspects of the measurement and statistical quantification 
of heterogeneity. In particular, it describes how heterogeneity may be modelled 
using random field theory, and how random fields may be linked with finite ele-
ments within a probabilistic framework to enable computations of reliability of ge-
otechnical structures, a methodology often referred to as the random finite element 
method (RFEM) [Fen01]. The influence of heterogeneity on geotechnical perfor-
mance is illustrated through a series of slope stability applications.  

2 Basics of stochastic analysis 

Figure 1(left) shows the variation in soil property X through a so-called “uniform” 
soil layer. In a conventional (deterministic) analysis, a single “representative” value 
of the soil property is adopted, and, when this is used in the analysis of a geotech-
nical structure, it leads to a single factor of safety. Unfortunately, however, this 
factor of safety tells the engineer nothing about the probability of failure. 
 
In contrast, stochastic analysis makes use of all data from the layer, and expresses 
them in the form of a probability density function, as illustrated by the normal dis-
tribution in Figure 1 (right). This distribution is characterized by the mean and 
standard deviation of X, denoted by  and , respectively, and by the coefficient of 
variation, expressed as V = /. A third statistical parameter, the scale of fluctuation 
θ, is illustrated in Figure 1 (left). This is the distance over which soil properties are 
significantly correlated [Van02] and may be regarded as a function of the distance 
between, for example, adjacent strong or weak zones. Figure 2 illustrates the influ-
ence of θ, relative to the domain dimension D, on the spatial variation of the soil 
property X in two dimensions, in which dark and light zones indicate high and low 
values of X respectively. For small θ/D the property values change rapidly over 
small distances, whereas, for large θ/D, the spatial variation is much more gradual. 
In this figure, the spatial variability is modelled by random fields generated by local 
average subdivision (LAS) [Fen02]. Note that the same scale of fluctuation has been 
used in all directions, so these are examples of isotropic random fields, whereas, in 
practice, the scale of fluctuation will be larger in the horizontal plane due to the 
process of soil deposition. 
 
Stochastic analysis leads to the performance of a structure being expressed in proba-
bilistic terms, rather than in terms of a single factor of safety. For example, structure 
response is often described in terms of probability of failure, or in terms of reliabil-
ity (which is the probability of failure not occurring). Although there are a range of 
approaches to conducting stochastic analysis [Hic02], this chapter focuses on the use 
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of the random finite element method (RFEM). Sections 2.1 to 2.3 briefly summarize 
three stages that may be followed in preparing for, and conducting, an RFEM analy-
sis. 

 

Figure 1: Illustrating the statistics of soil property X; X as a function of depth (left), 
probability density function of X (right) [Sam01]. 

 

 

Figure 2: Two-dimensional random fields of X; θ/D = 0.1 (left), θ/D = 1.0 (right) 
[Sam01]. 

2.1 Pre-analysis stage: statistical site characterization 

The site to be analyzed is characterized by, firstly, identifying the geological layer-
ing (i.e. sand, clay, peat, and so on), and secondly, characterizing the heterogeneity 
of soil properties within layers. Hence, for a given soil layer, the variation of the soil 
property X is represented by its point and spatial statistics. 

 
The point statistics ( and ) may be determined from either in situ or laboratory 
data. However, in situ data are preferable, since these reduce the possibility of exag-
gerated estimates for the standard deviation, due, for example, to sampling or testing 
procedures. Furthermore, in situ data are needed anyway for determining the scale of 
fluctuation. In this respect, the continuous resistance profiles obtained with CPTs are 
particularly useful. 
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The following sequential process may be adopted for the soil property X [Hic08]: 
 Any depth trends in the data are identified; i.e. are  and/or  functions of 

the depth z? 
 Determine (z) and (z), which may be used to define the probability den-

sity function. 
 Remove the depth trend from the raw data and determine the vertical scale 

of fluctuation θv; e.g. by using the method proposed by [Wic01]. 
 By comparing closely-spaced de-trended property profiles, determine the 

horizontal scale of fluctuation θh. This presents the biggest problem, as suf-
ficient data are needed to accurately determine θ [DeG01]. While this is not 
an issue for the vertical direction when using CPT, it has obvious implica-
tions for the required intensity of in situ testing when characterizing spatial 
correlations in the horizontal plane, as highlighted by [Llo01, 02]. 

 
Note that, although the above procedure will result in the characterization of a site in 
terms of the point and spatial statistics of a soil property, the actual heterogeneity 
will only be known at the locations of, for example, the CPTs. However, the statis-
tics are needed to generate numerical predictions (i.e. random fields) of the hetero-
geneity across the whole site. Clearly, if it were possible to test every part of a site 
the heterogeneity would be known everywhere, and then there would be no need for 
numerical predictions of the heterogeneity and no need for a Monte Carlo simula-
tion. Hence the need for RFEM, in assessing the performance of a structure, is not 
due to the soil being heterogeneous; rather, it is needed because there is incomplete 
knowledge about a site and therefore uncertainty about how a structure will perform. 

2.2 Analysis stage: Monte Carlo simulation 

For a given set of soil property statistics, for example as determined from CPT data 
for the site under consideration, a series of random property fields is generated and, 
for each, the geotechnical problem is analyzed to give a range of solutions. Each 
random field generation and subsequent finite element analysis of the structure, 
using that random field, is known as a realization. Hence, RFEM involves multiple 
realizations as part of a Monte Carlo simulation. For all realizations, the random 
fields will look similar, as they will all have been generated using the same set of 
statistics, but they will all be different with respect to the distribution of strong and 
weak zones, and each random field will lead to a different solution when used in a 
finite element analysis. Figure 3 shows four random fields generated using the same 
set of input (soil property) statistics, while Figure 4 shows computed shear strain 
invariant contours at failure for four slopes based on the same input statistics of soil 
shear strength. 
 
Each realization in the Monte Carlo simulation is a standard deterministic finite 
element analysis [Smi01], but with each element in the finite element mesh being 
assigned a different value of X that is mapped onto the mesh from the random field. 
Indeed, it is also possible to assign a different value of X to every element sampling 
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(integration) point, in order to optimize the level of heterogeneity that may be mod-
elled for a given level of finite element discretization. However, whether the random 
field is mapped onto the finite element mesh at the element or sampling point level, 
an approximation is involved, since X is thereby assumed to be constant over each 
element domain (or over that part of the element associated with each sampling 
point): that is, the field is discrete rather than continuous. The aim, therefore, is to 
generate a discrete random field in which the point statistics are adjusted (to account 
for the finite size of an element, or sampling point “domain”) so that they are equiv-
alent to those of the underlying continuous field. For all applications presented here-
in, the random fields have been generated using local average subdivision [Fen02], 
so-named because of its use of local averaging theory. 
 
 

 

Figure 3: Four random fields of X based on the same input statistics [Hic08]. 

 

 

Figure 4: Four slope failure mechanisms based on the same input statistics [Hic08]. 

 
In simple terms, for each realization: (a) a discrete random field of X is generated, 
based on the statistics of X (, , θv, θh); (b) the random field is mapped onto the 
finite element mesh; (c) the problem is analyzed by finite elements. However, many 
problems involve the heterogeneity of more than one material property: that is, X = 
{X1 X2 X3 … Xn}

T, in which n is the number of variables. In such cases, two ap-
proaches are possible: (a) the multivariate approach is to generate a separate random 
field for each variable, and to cross-correlate between fields to account for parame-
ter inter-dependency ([Fen03], [Arn02]), for example, higher friction angles are 
likely to be associated with an increased tendency for dilation; (b) the reduced-
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variate approach is to generate random fields for smaller numbers of parameters 
(e.g. relative density) from which other parameters (e.g. friction angle) may be back-
figured; for example, [Pop01] generated cross-correlated, bi-variate, random fields 
of cone tip resistance and soil classification index, while [Hic06] generated univari-
ate random fields of state parameter [Bee01]. 

2.3 Post-analysis stage: measures of structure performance 

The results of the Monte Carlo realizations are typically presented in the form of a 
“performance” probability density function (PDF) or cumulative distribution func-
tion (CDF). The probability of failure (or of failure not occurring) can then be found, 
either by proportioning the area under the PDF or by reading directly from the CDF. 
The Monto Carlo simulation continues until the output statistics of, for example, 
factor of safety, reach an acceptable level of convergence. Note that the required 
number of realizations in an RFEM analysis will generally be substantially less than 
for a simple probabilistic analysis based only on the point statistics (i.e. 100s rather 
than 1000s), due to the spatial averaging of property values. Indeed, in the limit 
when θ approaches zero, only one realization would be required. 

3  Influence of heterogeneity on slope reliability 

This section investigates the influence of heterogeneity of undrained shear strength 
on the reliability of slopes that are long in the third dimension. Firstly, a simple 2D 
investigation is described, to illustrate some of the basic characteristics of analyses 
involving soil heterogeneity. Next, the influence of heterogeneity on slope failure in 
three-dimensions is highlighted. Finally, the implications for assessing the stability 
of dykes and embankments is illustrated and discussed. In each case, the undrained 
shear strength is represented by a truncated normal distribution to avoid the possibil-
ity of negative values. This is a reasonable distribution for this soil property, due to 
coefficient of variation generally lying in the range 0.0 < V < 0.3 (that is, the very 
small proportion of values that will need to be truncated will have a negligible influ-
ence on the analysis) [Hic07]. 

3.1 Stochastic analysis of 2D slope reliability 

Figure 5 shows the finite element mesh used to model a 1:2 slope characterized by a 
spatially varying undrained shear strength cu [Hic08]. The height of the slope is 10 
m, the volumetric weight of the soil is  = 20 kN/m3, and the statistics of cu are a 
mean that increases linearly with depth, from 10 kPa at the top boundary to 50 kPa 
at the bottom boundary, and a constant coefficient of variation of 0.3. The vertical 
scale of fluctuation is θv = 1.0 m, whereas various horizontal scales of fluctuation 
have been considered [Hic08]. Figure 6 shows a typical ranfom field of cu for ξ = 
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θh/θv = 12, in which the darker zones indicate higher values of cu. The soil has been 
modelled by a Tresca failure surface and the following elastic properties: Young’s 
modulus, E = 100,000 kPa, and Poisson’s ratio,  = 0.3. 
 

 

Figure 5: Geometry, boundary conditions and finite element mesh [Hic08]. 

 

Figure 6: Typical random field for ξ = 12 [Hic08]. 

 
The slope has been analyzed using the strength reduction method. For each random 
field, gravitational loading is applied to generate the in situ stresses in the slope and 
the crest settlement, , due to the soil self-weight, is recorded. The slope is then 
repeatedly analyzed for progressively weaker soil profiles until the slope fails, as 
indicated by a sudden increase in the crest settlement. For each re-analysis, the ran-
dom field of cu is the original random field for the realization generated by the input 
statistics, scaled down by a factor F. The scaling factor that causes failure is the 
factor of safety of the slope (based on the original random field). 
 
Figure 7 shows that, when no heterogeneity is considered, the factor of safety is 
close to the analytical solution of F = 1.6. However, Figure 8 shows that, when het-
erogeneity is considered, there is a wide range of possible solutions. Moreover, the 
mean factor of safety is significantly less than the deterministic solution based on 
the underlying depth-dependent mean. This is because failure mechanisms follow 
the path of least resistance: that is, they are attracted to the weaker zones and try to 
avoid (where possible) the stronger zones. 
 
[Hic08] considered several values of ξ for this boundary value problem and showed 
that the distribution of factor of safety tended to converge for values of ξ  that were 
lower than likely to be encountered on site. This implied that θh need not always be 
accurately known, since a conservative solution could be found by assuming ξ = . 
However, later analyses in 3D, summarized in Section 3.2, have suggested that a 
more accurate knowledge of θh may be important. [Hic07] carried out a detailed 2D 
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investigation to illustrate the importance of accounting for both the anisotropy of the 
heterogeneity (ξ > 1) and the depth-dependency of the underlying mean cu, whereas 
[Hic09] investigated the influence of slope angle. 
 

 
 

Figure 7: Mobilized safety factor versus crest settlement (deterministic solution) 
[Hic08]. 

 

Figure 8: Mobilized safety factor versus crest settlement (stochastic solution, ξ = ) 
[Hic08]. 

3.2 Influence of heterogeneity on 3D slope reliability 

[Spe01, 02] and [Hic10] carried out 3D RFEM analyses for a long slope in a soil 
characterized by a spatially varying undrained shear strength with constant (i.e. 
depth-independent) mean and coefficient of variation. Figure 9 shows the problem 
geometry and mesh details. The 1:1 slope is H = 5 m high and L = 100 m long, and 
is modelled using 8000 20-node brick elements with 2  2  2 Gaussian integration.  
 
As in Section 3.1, the slope has been loaded by applying gravity loading to generate 
the in situ stresses. However, rather than analyzing the slope for a given set of statis-
tics and finding the distribution of factor of safety, this investigation focusses on 
finding the relationship between reliability and factor of safety based on the mean cu. 
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The process starts with F=1.0, which is the mean cu at which the slope would just 
start to fail if there were no spatial variation in cu. Therefore, for  a given value of F 
and ξ, the point and spatial statistics are:  = F=1.0  F;  =   V; θh = θv  ξ, 
where, for this investigation, F=1.0 = 16.1 kPa, V = 0.3 and θv = 1.0 m. These statis-
tics are used to generate N random fields of cu, and, for each realization, the slope is 
analyzed by finite elements. The percentage reliability is then given by R = (1 – 
(Nf/N))  100, where Nf is the number of realizations in which the slope fails under 
its own self weight. 
 

 

Figure 9: Isometric projection of 3D slope and cross-section through mesh [Spe02, 
Hic10]. 

 
Figure 10 shows the relationship between reliability and global factor of safety for a 
2D (i.e. plane strain) analysis. At a factor of safety of 1.0 (based on the mean cu) R < 
50% for all values of ξ, due to failure being attracted to the weaker zones. It is clear 
that, although the solution is dependent on the horizontal scale of fluctuation, the 
solution has converged for ξ > 6 in this example. 
 

 

Figure 10: Influence of degree of anisotropy of the heterogeneity on reliability ver-
sus global factor of safety (2D analysis) [Spe02, Hic10]. 
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Figure 11: Influence of degree of anisotropy of the heterogeneity on reliability ver-
sus global factor of safety (3D analysis) [Spe02, Hic10]. 

 
Figure 11 shows the results of the equivalent 3D analyses. In evaluating these re-
sults, [Spe02, Hic10] identified three categories of failure mode, which are illustrat-
ed by the typical deformed meshes in Figure 12. The failure modes are as follows: 

 Mode 1: For θh < H, the scale of fluctuation is relatively small in all direc-
tions and it becomes harder for failure to propagate through semi-
continuous weaker zones. In particular, for very small values of θh, the fail-
ure mechanism passes through strong and weak zones in almost equal 
measure. There is, therefore, considerable averaging of soil properties over 
potential failure planes, and the soil layer behaves like a homogeneous soil 
characterised by the mean cu. This theory is supported by R increasing from 
0-100% as F passes through 1.0 ( Figure 11), and by failure originating 
from the slope toe and extending along the entire length of the slope (Fig-
ure 12 (left)). 

 Mode 2: For H < θh < L/2, it is possible for failure to propagate through 
semi-continuous weaker zones, which results in discrete (3D) failure mech-
anisms (Figure 12 (centre)). In this case, R is a function of slope length, 
since, as the slope becomes longer, there is an increased possibility of en-
countering a zone weak enough to trigger failure. 

 Mode 3: For θh > L/2, there is an increased likelihood of the failure mecha-
nism extending along the length of the slope (Figure 12 (right)), as in Mode 
1. However, in contrast to Mode 1, there is now a large range of possible 
solutions, due to the depth of the failure mechanism being influenced by the 
distribution of strong and weak “sub-layers”. In this case, the R versus F re-
lationship approaches that obtained for the 2D stochastic analysis. 

 

190 Application of the random finite element method

ALERT Doctoral School 2014



     

Figure 12: Typical deformed meshes and contours of out-of-face displacement for  
various 3D mechanisms (left to right: Mode 1, Mode 2, Mode 3) [Spe02, Hic10]. 

 
A practical implication of the results in Figure 11 is that, for Modes 1 and 3, the 
solution is independent of the slope length, since the failure mechanism is two-
dimensional. In contrast, the solution for Mode 2 is length dependent, because the 
failure mechanism is three-dimensional. This has practical implications, since fail-
ures are generally three-dimensional and it is clearly impractical to analyze very 
long slopes (e.g. dykes and embankments) in 3D. However, [Hic10] carried out a 
detailed stochastic analysis of a 50 m long embankment, and then combined the 
results with simple probability theory to successfully predict the behavior of longer 
embankments that had also been analyzed using 3D RFEM. 

3.3 Influence of heterogeneity on failure consequence 

The investigation in Section 3.2 was extended by [Nut01, Hic11], who implemented 
a simple numerical scheme for automatically computing slide geometries in 3D 
RFEM simulations. Figure 13 shows the results for a similar slope to that analyzed 
in [Hic10], except that, in this case, V = 0.2 and a Von Mises failure criterion has 
been adopted. The figure shows the influence of the horizontal scale of fluctuation 
on reliability versus global factor of safety, as well as on failure volumes and lengths 
for individual realizations (which have been expressed as percentages of the total 
mesh volume and length, respectively). Because the same slope geometry and θv as 
used in [Hic10] have been adopted, the values of ξ in Figure 13 are directly compa-
rable with those in Figure 11. 
 
Figure 13(a) shows that, when θh = H/5, the slide volumes and lengths are consistent 
with those obtained when the slope fails along its entire length (indicating Mode 1 
failure). In contrast, Figure 13(b) shows that, when θh = 1.2H, there is a wide range 
of slide geometries (indicating Mode 2 failure). Similarly, Figures 13(c) and 13(d), 
corresponding to θh ≈ L/8 and θh ≈ L/2, respectively, indicate Mode 2 failure. Alt-
hough Figure 13(e) does reveal an increase in the number of larger slides for θh = L, 
suggesting some Mode 3 failures, it is apparent that most slides are still Mode 2. 
Indeed, although Figure 13(f) shows mainly Mode 3 failures for θh = , [Nut01, 
Hic11] demonstrated just how difficult it is to compute 2D slope failures in a soil 
that is heterogeneous, and presented results for a slope with a foundation layer 
which showed an even greater tendency for Mode 2 failures. 
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The ability to automatically compute slide volumes is an important first step towards 
benchmarking simpler analytical and probabilistic models used in design [Li01, 02]. 
This is because there is a need to quantify slide geometries when comparing with 
methods based on predefined (e.g. cylindrical) failure mechanisms [Cal01, Van01]. 

 

 

Figure 13: Influence of ξ on slide volume and length for a 3D slope; (a) ξ = 1, (b) ξ = 
6, (c) ξ = 12, (d)  ξ = 48, (e) ξ = 100, (f) ξ =  [Nut01, Hic11]. 
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4  Stochastic explanation of characteristic values 

This section considers the issue of heterogeneity within the context of characteristic 
soil property values advocated in Eurocode 7 (EC7) [CEN01]. It is shown that sto-
chastic analysis may be used as an aid to understanding the philosophy and nature of 
characteristic values, as well as providing a framework for deriving reliability-based 
characteristic values in line with EC7 [Hic03, 05, 08]. 

4.1 Extracts from Eurocode 7 

The importance of accounting for the variability of soils is highlighted in Section 
2.4.5.2 of EC7, “Characteristic values of geotechnical parameters” [CEN01]. Table 
1 lists some of the main clauses, including: Clause (4)P, which highlights the spatial 
nature of soil variability, the uncertainty this causes and the problem-dependency of 
characteristic values; Clause (7), which emphasizes the importance of the mean over 
the domain of influence; Clause (8), which considers the special case of local fail-
ure; and Clause (11), which considers the use of statistical methods. 
 
[Hic03] gave a detailed review of Section 2.4.5.2 by explaining selected clauses, 
clarifying the relationship between clauses and addressing areas of potential confu-
sion. In particular, the paper focused on the statistical definition of a characteristic 
value given in Clause (11) and explained how it is, despite first appearances, com-
pletely consistent with Section 2.4.5.2 as a whole, including Clauses (7) and (8) and 
the footnote to Clause (11). 
 
Clause (11) states that “the characteristic value should be derived such that the cal-
culated probability of a worse value governing the occurrence of the limit state un-
der consideration is not greater than 5%”. This implies a minimum level of reliabil-
ity of 95% regarding the response of the structure (before application of partial safe-
ty factors), and appears to contradict Clauses (7) and (8) and the footnote to Clause 
(11) which focus on property values rather than structure response. However, 
[Hic03] used Figure 14 to demonstrate that the latter are merely special cases of 
Clause (11). 

4.2 Reliability-based characteristic values 

Figure 14 (top) shows the probability density function of a material property X, 
which, to simplify the illustration, is assumed to be normal with a mean value Xm. 
The simplest way to derive a reliability-based characteristic value Xk is to proportion 
the area under the distribution as indicated. However, this is not consistent with 
Clause (11), as it merely defines a value of Xk for which there is a 95% probability 
of a larger value. 
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Table 1: Extracts from Section 2.4.5.2 of Eurocode 7 [CEN01, Hic05]. 
 

No. Clause 

(4)P 
 

The selection of characteristic values for geotechnical parameters shall 
take account of the following: 
● geological and other background information, such as data from pre-

vious projects; 
● the variability of measured property values and other relevant infor-

mation, e.g. from existing knowledge; 
● the extent of the field and laboratory investigation; 
● the type and number of samples; 
● the extent of the zone of ground governing the behaviour of the ge-

otechnical structure at the limit state being considered; 
● the ability of the geotechnical structure to transfer loads from weak to 

strong zones in the ground. 

(7) The zone of ground governing the behaviour of a geotechnical structure at 
a limit state is usually much larger than a test sample or the zone of 
ground affected in an in situ test. Consequently the value of the governing 
parameter is often the mean of the range of values covering a large surface 
or volume of the ground. The characteristic value should be a cautious 
estimate of this mean value. 

(8) If the behaviour of the geotechnical structure at the limit state considered 
is governed by the lowest or highest value of the ground property, the 
characteristic value should be a cautious estimate of the lowest or highest 
value occurring in the zone governing the behaviour. 

(11) If statistical methods are used, the characteristic value should be derived 
such that the calculated probability of a worse value governing the occur-
rence of the limit state under consideration is not greater than 5%. 
NOTE: In this respect, a cautious estimate of the mean value is a selection 
of the mean value of the limited set of geotechnical parameter values, with 
a confidence level of 95%; where local failure is concerned, a cautious 
estimate of the low value is a 5% fractile. 

 
Figure 14 (bottom) gives a more general derivation of Xk that is consistent with 
Clause (11) and, by association, with all other clauses in Section 2.4.5.2. This in-
volves proportioning the area under a modified distribution of X that has been back-
figured from the geotechnical response of the structure itself. The modified distribu-
tion is narrower than the underlying property distribution due to the averaging of 
property values over potential failure surfaces. It is also shifted to the left, due to the 
tendency for failure to propagate through weaker zones. Hence, although it may be 
reasonable to take a conservative estimate of the mean property value over a poten-
tial failure surface as the characteristic value for that mechanism, this mean will 
generally be smaller than the mean of the underlying property distribution. Variance 
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reduction methods may therefore give an unsafe solution if no account is taken of 
the reduction in the mean. 
 

 
 

 

Figure 14: Derivation of characteristic property values satisfying Eurocode 7; basic 
definition of Xk (top), general definition of Xk (bottom) [Hic03]. 

 
[Hic03] explained how the modified property distribution is a function of the under-
lying distribution, the spatial correlation of property values, the problem being ana-
lyzed and the quality and extent of site investigation data. Moreover, the modified 
distribution has two limits: 

 When the spatial scale of fluctuation is very small relative to the problem 
domain there is much averaging of soil properties, so that the standard de-
viation approaches zero and the mean tends to the mean of the underlying 
distribution. In this case a cautious estimate of the mean is appropriate, as 
advocated by Clause (7) and the first part of the footnote to Clause (11). 

 When the spatial scale of fluctuation is very large relative to the problem 
domain there is a very large range of possible solutions, so that the modi-
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fied distribution approaches the underlying distribution. In this case Clause 
(8) and the second part of the footnote to Clause (11) are relvant. 

 
[Hic03] also explained how the modified property distribution in Figure 14 (bottom) 
may be derived for general problems, based on earlier work using RFEM by 
[Hic08], while [Hic05] extended this earlier work by illustrating the process for a 3D 
slope. 

4.3 Derivation of characteristic values using RFEM 

[Hic05] analyzed the slope shown in Figure 9, using the same finite element mesh, 
to illustrate the derivation of reliability-based characteristic values. In this case, an 
elastic, perfectly plastic Von Mises model was used, and the statistics of undrained 
shear strength were:  = 40 kPa,  = 8 kPa, θv = 1.0 m; 1.0 < θh < 1000.0 m. 
 
For each value of θh a Monte Carlo simulation was carried out, comprising 250 
realizations, with each realization comprising the following steps: (a) the generation 
of a random field of cu; (b) the finite element analysis of the slope by applying gravi-
ty loading to generate the in situ stresses, assuming a soil unit weight of 20 kN/m3. 
The second step involved the strength reduction method for computing the factor of 
safety F of the slope, in the same manner as described in Section 3.1 [Hic08]. 
Hence, each Monte Carlo simulation resulted in a distribution of factor of safety, 
from which a distribution of “equivalent” values of undrained shear strength were 
back-figured. This was achieved  through relating F and cu via the slope stability 
number [Tay01]. 
 
Figure 15 shows the distributions of F (top) and equivalent cu (bottom) for θh/θv = 
48. The latter distribution is directly comparable to the equivalent distribution in 
Figure 14 (bottom), and so may be used to determine reliability-based characteristic 
values for cu. Figure 16 summarizes the results of all analyses, by plotting the mean 
and standard deviation of the equivalent cu as a function of θh/θv and comparing 
these results with the underlying (i.e. input) mean and standard deviation. For θh/θv = 
1, the prevalence of Mode1 failures is reflected by a mean equivalent cu approaching 
40 kPa and a standard deviation approaching zero. For larger θh/θv, Mode 2 failures 
prevail, resulting in a decrease in the mean (due to the greater relative influence of 
the weaker zones) and an increase in the standard deviation. Finally, as θh exceeds 
about half the length of the slope, as represented by θh/θv = 50, the tendency for 
discrete failures reduces (albeit gradually, as indicated in Figure 13) due to the influ-
ence of the mesh boundaries. Hence, at the same time there is an increasing tenden-
cy for Mode 3 failures initiating at depths influenced by the distribution of weak and 
strong “layers”. This results in the mean approaching the underlying mean of 40 
kPa. However, even though the standard deviation reaches a maximum of around 3 
kPa, it remains well below the underlying standard deviation of 8 kPa due to the 
small value of θv causing considerable averaging of property values in the vertical 
direction. 
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Figure 15: Distributions of factor of safety (top), and equivalent undrained shear 

strength (bottom) [Hic03]. 
 

 
Figure 16: Influence of θh/θv on the mean and standard deviation of the “equivalent” 

cu [Hic03]. 
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5  Influence of heterogeneity on liquefaction potential 

This section uses RFEM to investigate the influence of sand heterogeneity in two 
slope liquefaction case histories. In these analyses, the challenge is to model the 
spatial variability of sand relative density and the impact this has on saturated slope 
stability under rapid loading. Hence this requires a sophisticated soil model and, by 
implication, the spatial variation of numerous cross-correlated material parameters 
over the problem domain. For modelling the liquefaction potential of a site subjected 
to seismic loading, [Fen03] adopted a multi-variate random field approach, whereas 
[Pop01] generated  bi-variate random fields of relative density and soil classification 
index, from which soil property values were back-figured, in order to assess the 
liquefaction potential of an artificial island sand core due to cyclic ice loading. 
 
[Bak01, Hic06, Oni01, Won01] adopted a similar “reduced-variate” approach to 
[Pop01], except that they based their investigations on generating univariate random 
fields of state parameter [Bee01]. The state parameter at a given mean effective 
stress is given by  = e-ecs, where e and ecs are the current and critical state void 
ratios, respectively. Hence, positive and negative values of  indicate loose and 
dense soils. As a rough guide, the following categories of sand state may be suggest-
ed: (a) dense to medium dense, -0.20 <  < -0.10; (b) mildly dense, -0.10 <  <        
-0.05; (c) loose, -0.05 <  < 0.00; (d) very loose,  > 0.00. Figure 17 illustrates the 
undrained triaxial compression behavior of a sand in different states, in which t and 
s represent the deviatoric and mean effective stress invariants. 
 

 
 

Figure 17: Influence of sand state on undrained triaxial compression effective stress 
paths ( = +0.06, -0.05, -0.08, -0.12, -0.17) [Hic06]. 

 
In the investigations of [Bak01, Hic06, Oni01, Won01], the Monot double-
hardening soil model was used to model the sand behavior [Hic01, Mol01]. Five 
material parameters were calibrated, of which four were state parameter dependent: 
these related to the peak friction angle, and the stiffness of the elastic and two plastic 
model components. The fifth parameter was the friction angle corresponding to no-
volume change during shearing, which was assumed to be independent of sand state. 
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5.1 Case history 1: Nerlerk berm 

The Nerlerk berm was designed to be part of a bottom-founded offshore oil explora-
tion platform in the frozen Canadian Beaufort Sea [Hic04]. Although it was one of 
numerous artificial islands constructed during the 1980s in this region, it was unusu-
al, in that it was constructed in a greater water depth than had previously been at-
tempted at other sites: specifically, the water depth was 46 m and the design height 
of the berm was 36 m. This led to two non-standard design decisions. Firstly, in 
order to reduce construction time and transport costs, a local borrow source was 
used to construct the berm. Secondly, there was no equipment available that could 
remove the weak surficial clay layer from the seabed at a depth of 46 m. Hence the 
island construction went ahead using a fill of lesser quality than had been used at 
previous island locations and, also in contrast to other sites, the weak surficial clay 
was not removed prior to the berm construction in 1982. Shortly after the start of the 
second construction season in 1983, when the berm had reached a height of 26 m, 
the structure experienced a series of liquefaction slides and the project was eventual-
ly abandoned with the loss of more than $ 100 million. 
 
[Hic04] investigated possible trigger mechanisms for the liquefaction slides, and 
concluded that the most likely cause of failure was a combination of limited move-
ment in the clay layer triggering liquefaction near the berm crest during rapid load-
ing (due to the berm construction). This investigation had assumed the fill to be in a 
loose and liquefiable state, even though CPT data from the site had indicated a 
mainly denser material. Hence [Hic06] used RFEM to investigate whether it was 
possible for pockets of very loose material to dominate the stability of a predomi-
nantly dilative sand fill. They calibrated the Monot soil model against 74 drained 
and undrained triaxial compression tests on Erksak sand, for a wide range of sand 
states, while state parameter statistics were derived from 71 CPTs from two Beau-
fort Sea sand islands. Based on these statistics and the soil model calibration, multi-
ple realizations of the berm under rapid loading were analyzed. 
 
Figures 18 and 19 (top) show typical realizations of state parameter for a cross-
section taken through the upper half of the Nerlerk berm, for both isotropic and 
anisotropic spatial variability, in which the darker zones indicate the sand in a denser 
state. In both cases, θv = 1.0 m, whereas, for the anisotropic case, the scale of fluctu-
ation along the line of the slope is assumed to be eight times larger than θv. This 
value was chosen based on evidence from closely spaced CPTs at another island 
location [Oni01, Won01]. 
 
Figures 18 and 19 (bottom) show typical contours of shear strain invariant that de-
veloped in the slope for the two types of random field, when the slope was loaded by 
increasing gravity with the soil in an undrained state. For the isotropic case (Figure 
18)  although a rather complicated “spider’s web” typed of mechanism is observed, 
the strains are very small, due to the stronger zones compensating for the weaker 
zones and holding the structure together in a stable state. [Hic06] conducted multiple 
realizations for isotropic spatial variability and showed that, in all cases, the re-
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sponse of the structure was very close to the deterministic response computed for the 
slope based on the mean state parameter. 
 

 
 

Figure 18: Typical random field of state parameter (top) and deformation mecha-
nism (bottom) for isotropic heterogeneity [Hic06] 

 

 
 

Figure 19: Typical random field of state parameter (top) and deformation mecha-
nism (bottom) for anisotropic heterogeneity [Hic06] 

 
In contrast, for the much more realistic anisotropic case (Figure 19), the strains are 
significantly larger and the slope fails due to liquefaction through semi-continuous 
weaker zones arising from deposition-induced anisotropy. [Hic06] showed that, in 
this case, a deterministic analysis based on the mean state parameter gave an upper 
bound solution. All analyses based on a heterogeneous sand gave a weaker response, 
with the lower bound solution appearing to be around the same as that obtained with 
a deterministic analysis using a state parameter equal to the mean minus two stand-
ard deviations. Hence, in some realizations it was the weakest material that dominat-
ed the stability of the entire structure. 
 
[Won01] extended the investigation of Nerlerk berm by considering the whole struc-
ture (including the clay layer) and accounted for the impact of zoning within the 
sand fill due to the method of construction. It was shown that larger-scale spatial 
fluctuations due to zoning were more influential on structure response than smaller-
scale fluctuations normally associated with more uniform soil deposits. 
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5.2 Case history 2: Jamuna Bridge 

[Bak01] investigated the liquefaction of riverbed deposits during the construction of 
a bridge over the Jamuna River in the 1990s. The Jamuna River is a shifting braided 
river, in that it can take the form of multiple channels that rapidly change position 
from one rainfall season to the next. In order to control the lateral movement of the 
river during the bridge’s construction, it was decided to construct two guide bunds, 
one on either side of the main river channel. Each bund was designed to be 30 m 
high with side slopes of 1:3.5-1:5, but, during 1995-96, there were around 30 lique-
faction slides. The side slopes were then redesigned to 1:6 and the bridge was even-
tually completed in 1999. 
 
[Bak01] adopted a similar approach to [Hic06] to investigate the influence of heter-
ogeneity on the liquefaction potential of the riverbed deposits. A total of 22 CPTs 
were evaluated to determine the state parameter statistics and the Monot soil model 
parameters were related to state parameter through calibration against a laboratory 
database. Figure 20 shows a typical CPT profile, including tip resistance (extreme 
left) and state parameter (extreme right). The state parameter from 5-35 m depth has 
been de-trended with respect to the mean, and then normalized to give the probabil-
ity density function shown in Figure 21. The figure shows the ability of different 
theoretical distributions to approximate the data. For this CPT, the best fit has been 
obtained with a normal distribution. 
 

 
 

Figure 20: Data from CPT C330W [Bak01]. 
 
The mean trend line for state parameter in Figure 20 indicates that the mean is al-
most constant with depth. It is approximately -0.07, indicating a mildly dilating 
sand. However, the standard deviation is 0.05, suggesting that the weaker zones in 
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the deposit will be very loose and liquefiable. The vertical scale of fluctuation for 
this CPT profile is 1.0 m, which, from the author’s experience, is on the high side 
for a uniform sand. However, the slightly bi-modal appearance of the PDF in Figure 
21 suggests that there might be a small degree of zoning in the soil, and this is sup-
ported by Figure 20 which suggests a slightly denser zone at around 15 m depth and 
a slightly looser zone at depths greater than 23 m. In other words, the slightly larger 
θv is due to it being the sum of two components: a small θv that is associated with 
heterogeneity within so-called uniform soils, plus a larger θv due to zoning. 
 

 
 

Figure 21: Probability density function of normalized de-trended state parameter for 
CPT C330W [Bak01]. 

 

 
 

Figure 22: Frequency diagram of vertical scale of fluctuation from all CPTs 
[Bak01]. 

 
Figure 22 shows that the vertical scale of fluctuation at the site varies considerably 
from one CPT to another. In general, the following observations have been made: 
for θv < 0.8 m the soil is relatively uniform, as will be apparent by a mono-modal 
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property distribution; for 0.8 < θv < 1.2 m there is likely to be mild to moderate zon-
ing, as indicated by a slightly to moderate bi-modal property distribution; for θv > 
1.2 m there is likely to be significant zoning, which will be obvious by a significant-
ly bi-modal PDF. [Bak01] considered a plan view of the west guide bund, from 
which the CPTs had been taken, and showed that, while the mean state parameter 
did not vary that much across the site, higher values of θv were generally associated 
with those parts of the bund in which slope liquefaction occurred, thereby suggest-
ing that the potential for liquefaction is greater for larger scales of fluctuation. 
 
The influence of heterogeneity was investigated for a 2D cross-section through the 
slope of the west guide bund [Bak01]. Firstly, Figure 23 shows the results of a series 
of deterministic undrained analyses based on uniform soil properties, where the 
slope was loaded by increasing gravity. It is clear that, for very loose and very 
slightly dilatant soils, as represented by positive and small negative values of state 
parameter respectively, the slope can fail under undrained loading. In contrast, for 
mildly and strongly dilatant soils, failure does not occur. 
 

 
 

Figure 23: Undrained slope stability based on mean properties [Bak01]. 
 
Figure 24 shows the results of a small number of realizations for the same cross-
section, assuming a heterogeneous sand with the same state parameter statistics as 
obtained for CPT C330W (Figure 21); that is,  = -0.07,  = 0.05, θv = 1.0 m. A 
horizontal scale of fluctuation of 8.0 m was used, in line with earlier work by 
[Hic06] who also used θh/θv = 8. Indeed, similar conconclusions to those obtained 
for the Nerlerk berm by [Hic06] were found: (a) the computed deterministic 
response based only on the mean state parameter gives an upper bound solution; (b) 
in many analyses, slope stability is dictated by the behaviour of the weakest 
material. Figure 24 compares the computed results with the deterministic solutions 
based on  = +0.04, 0.0 and -0.07. It is seen that the weakest response corresponds 
to a deterministic analysis based on  ≈  - 1.4. However, this is based on a small 
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number of realizations, so it may be that, for a larger number relaizations,  ≈  - 2 
is more realistic as a lower bound. 
 

 
 

Figure 24: Influence of heterogeneity on undrained slope stability for  = -0.07 
[Bak01]. 

6  Conclusions 

This chapter has shown how the random finite element method (RFEM) may be 
applied to practical problems, in order to gain insight into how soil heterogeneity 
influences material behaviour and geotechnical performance. It is apparent that, 
when taking account of heterogeneity in choosing characteristic soil property values, 
there are at least four components that should be considered. Firstly, the 
characteristic value is a function of both the point statistics and spatial correlation 
distances. Secondly, it is a function of the soil type. Thirdly, it is a function of the 
problem being analysed, including the problem geometry and loading and boundary 
conditions. Fourthly, it is a function of the extent of the labortaory and/or site 
investigation: that is, the more knowledge that is available about a site, the greater 
the degree of certainty about the likely range of structure responses. 
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Identifying parameters of a Geomechanical model from field measurements consti-
tutes a typical “inverse problem” and is receiving increasing attention by the Ge-
otechnical community. This text describes the basic concepts and procedures re-
quired to perform this inverse problem or back-analysis in a systematic manner.  A 
Maximum Likelihood Approach is presented as a general framework and it is used 
to introduce the main topics involved. An objective function is defined, depending on 
the differences between the computed and measured variables. The minimum of that 
function corresponds to the parameters that best simulate the measurements. Some 
difficulties arise regarding uniqueness of the solution. The procedure is based on the 
sensitivity matrix computed as the derivatives of the measured variables with respect 
to the parameters. When some prior information on the parameters is available, the 
framework allows its inclusion in a consistent manner. Several examples based on 
the excavation of tunnel or underground caverns are used to illustrate the proce-
dures described. Finally, some comments on other optimization techniques (i.e. 
genetic algorithms) and related topics, as model identification and optimal design of 
experiments are briefly addressed as well.  

1 Introduction 

In Geotechnical Engineering, the determination of soil or rock parameters has been 
usually performed by means of laboratory or field tests. Also, it has been quite 
common to use back-analysis to obtain material parameters in the context of failures 
and forensic geotechnics [Puz10]. In the last two decades, simultaneously to the 
development of numerical methods, new techniques to determine material parame-
ters from field measurements have been proposed. These techniques were first used 
in Geophysics and in Groundwater Hydrology, where it is not possible to character-
ize properly the material in the laboratory. 
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In a typical problem, for a particular geometry, we estimate displacements and pore 
water pressures generated by a change in stresses and/or hydraulic or mechanical 
boundary conditions. To do that, we assume a constitutive law for the materials and 
the corresponding parameters. In this manner we are solving what is called “the 
direct problem”. Sometimes, however, we may know some displacements and/or 
pore water pressures at some specifics points of the geometry and we want to know 
the parameters of the model or the model itself. Then, we are solving the “inverse 
problem”. In a broad perspective the “inverse problem” may refer also to identifying 
the geometry or the boundary conditions.  
 
Nowadays, the most common inverse problem in Geomechanics is the identification 
of parameters of a fixed model from measured displacements. This procedure seems 
to be fully adapted to Geotechnical Engineering practice, where sometimes deci-
sions are taken based on field measurements, as proposed by Terzaghi for the “ob-
servational method” [Ter67]. By using field instrumentation measurements to esti-
mate geotechnical parameters, it is possible to take into account the large scale struc-
ture of the soil or rock, which is outside the possibilities of the other procedures of 
parameter identification.  
 
The identification of parameters results in an optimization problem from a mathe-
matical point of view. In recent times, the development of numerical methods and 
optimization techniques has allowed a more systematic and rational approach to this 
problem. Thus the use of the “observational method” combined with this parameter 
identification techniques could be used in practical applications during the construc-
tion stage. The case of a tunnel excavation has been adopted here as a typical exam-
ple, as measurements are usually performed in a continuous manner. Therefore ma-
terial parameters can be identified and compared with the initial assumptions and 
decisions could be taken for further excavation stages. 
 
It is important to note that the process of parameter estimation presented here is 
carried out in the context of a specified fixed model that includes geometry, bounda-
ry conditions and constitutive laws for the materials. Therefore, the differences be-
tween the measurements and the predictions of the model are assumed to be due to a 
measurement error, as the model is considered correct. The topic of selecting the 
best model or the identification of the model itself is not treated here, although it 
will be briefly commented. Also, the decision about what and where we should take 
measurements could be assisted by the information provided by these identification 
techniques, as they provide an insight into the model structure. 
 
In this text, the Maximum Likelihood Framework is used to present the main con-
cepts related to back-analysis. Also some examples based on tunnel excavation 
problems are used for illustration purposes. Finally, a new hybrid method combing 
genetic algorithms and a gradient-based algorithm is presented, which is particularly 
useful for problems with a large number of parameters being identified. 
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2 Maximum Likelihood Approach 

There are several approaches to cope with the identification of parameters in Geo-
mechanics.  Many significant contributions in this topic have used a deterministic 
point of view, but there are important advantages in adopting a probabilistic frame-
work ([Civ83], [Gen88]). Here, a probabilistic approach based on the maximum 
likelihood concept is presented. There are other alternatives, but in most cases they 
result in the same mathematical formulation, being different the conceptual frame-
work only. 

2.1 Basic formulation 

Let us assume that a deterministic model, M, relates some unknown parameters, p, 
and some variables, x, that is, x = M(p). The measurements are represented by x*. 
Then, the differences between measurements and predictions of the model (x*-x) are 
considered as an error that can be defined in a probabilistic manner. The best estima-
tion of the parameters is assumed to be found by maximizing the likelihood, L, of a 
hypothesis, p, given a set of error measurements, (x*-x). The likelihood of a hypoth-
esis is proportional to the conditional probability of x* given a set of parameters p 
([Edw72], [Tar87]): 

ܮ ൌ ݂݇ሺܘ/∗ܠሻ	                                                 (1) 
 
where k is a proportionality constant. This formulation has conceptual advantages, in 
particular: it does not require reproducing the true system exactly and the differences 
between field measurements and model predictions are due to error measurement 
[Led96a]. Therefore, the probability of measuring x* given a set of parameters p, is 
the probability of reproducing the error measurements (x*-x). Assuming that proba-
bility distribution as multivariate Gaussian, it is possible to write: 

 

ܲሺܠ∗ െ ሻܠ ൌ
ଵ

ඥሺଶగሻ೘	|۱ܠ|
݌ݔ݁ ቂെ

ଵ

ଶ
ሺܠ∗ െ ∗ܠሻିଵሺܠሻ௧ሺ۱ܠ െ  ሻቃ            (2)ܠ

 
where Cx is the measurements covariance matrix representing the structure of the 
error measurements, m is the number of measurements and ( )t represents a trans-
posed matrix. The likelihood is now proportional to the value expressed by (2). 
Maximizing L is equivalent to minimize the “support function”:  S = -2 lnL and it 
follows: 

               ܵ ൌ ሺܠ∗ െ ∗ܠሻିଵሺܠሻ௧ሺ۱ܠ െ ሻܠ ൅ ln|۱ܠ| ൅ ݉lnሺ2πሻ െ 2ln݇                 (3) 
 
If the error structure of the measurements is fixed, only the first term in (3) has to be 
minimized, and the final expression is defined as the “objective function”: 

 
ܬ ൌ ሺܠ∗ െ ∗ܠሻିଵሺܠሻ௧ሺ۱ܠ െ  ሻ                                         (4)ܠ
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If the error structure is not fixed, the problem becomes more complex, although in 
some cases it is possible to incorporate the error structure to the set of parameters to 
be identified [Led96b]. Equation (4) becomes simpler when the measurements are 
independent and their errors have a Gaussian distribution of probability with the 
same variance, x

2, because  ۱ܠ ൌ  ௫ଶ۷ , being I the identity matrix. The objectiveߪ
function to be minimized results in 

 
ܬ	 ൌ ሺܠ∗ െ ∗ܠሻ௧ሺܠ െ  ሻ                                              (5)ܠ

 
Expression (5) represents in fact a least squares criterion and the parameters that 
best characterize the model are those that minimize the square differences between 
the measured and the computed variables. Now the value of  x

2 is not required to 
obtain the minimum of (5). This approach has become very popular in Geotechnical 
back-analysis as field measurements can be considered independent and following a 
Gaussian distribution of probability in many practical situations. In some cases, 
however, measurements are not independent and the corresponding covariance ma-
trix should be used (i.e. when an inclinometer is used, because horizontal move-
ments are obtained by adding previous incremental movements) [Led96a]. Also, if 
there are different types of measurements, each type should have its own covariance 
matrix.  

 
2.2 Numerical implementation 
 
The minimum of the objective function has to be obtained using a suitable numerical 
procedure. As the Finite Element Method is the most popular procedure to solve the 
“direct problem”, it is convenient to combine the algorithm to minimize the objec-
tive function, J, and the Finite Element code. In general, minimization or optimiza-
tion algorithms can be classified in two groups: those that need to compute the gra-
dient of J, and those that evaluate J only. It may be expected that algorithms using 
the derivative of the objective function are more robust and powerful, although more 
difficult to compute, than algorithms using only the values of the function. In the last 
30 years, examples of both types of algorithms applied to Geomechanics have been 
published. Downhill simplex, a typical procedure for unconstrained optimization 
that does not require computing derivatives, was used already by [Gio80]. Genetic 
algorithms have proven to be convenient in this context and do not require compu-
ting the gradient either [Lev09]. 
 
Here, the Gaus-Newton method based on the computation of the gradient of J is 
presented. It has good convergence properties and the derivatives obtained are also 
useful in providing information on the reliability of the parameters identified. The 
procedure is iterative and from a set of parameters at iteration k, the new set of pa-
rameters is: 
 

௞ାଵܘ ൌ ࢑ܘ ൅ ௞ାଵሻܘሺܬ										,							௞ܘ∆ ൑  ௞ሻ                                 (6)ܘሺܬ
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The Gaus-Newton method [Fle81] is based on an expansion of the objective func-
tion into a Taylor series, and gives the value of the advance vector in the parameters 
space, p in iteration k, according to: 
 

ܘ∆ ൌ ሺି࢞۱࢚ۯ૚ۯሻିଵ۱࢚ۯ௫ିଵ∆(7)           ܠ 
 
where x=(x*-x) and the matrix A=x/p is called the sensitivity matrix. If the num-
ber of measures is m and the number of parameters is n, the size of this matrix is 
mn. When there is any convergence problem, an improvement of the algorithm 
proposed by Levenberg and Marquardt can be used [Mar63], in which equation (7) 
is changed into: 

ܘ∆																															 ൌ ሺି࢞۱࢚ۯ૚ۯ ൅ μ۷ሻିଵ۱࢚ۯ௫ିଵ∆(8)          ܠ 
 
where  is an arbitrary real number. If the value of J becomes smaller in the next 
iteration,  is decreased, reaching 0 or a very small value at the minimum. However, 
if J increases then is also increased and the increment of parameters obtained by 
(8) tends towards the gradient of the objective function. The initial value of  and 
the manner it is increased or decreased has to be defined in advance and sometimes 
trial identifications are required. 
 
2.3. Coupling to the finite element method 
 
The procedure outlined above should be associated with a numerical model relating 
measurements and parameters. The finite element Method is appropriate for this and 
it is possible to combine the Gauss-Newton technique with the Finite Element for-
mulation. A simple case that may be considered first refers to some nodal displace-
ments being measured and a linear isotropic elastic model characterized by Young’s 
modulus and Poisson’s ratio. The finite element method gives a linear system of 
equations: 
 

Kx ൌ  f  		 ,   	 K ൌ ׬  ۰௧ܸ݀࡮ࡰ
	
௏

	ࢌ					,					 ൌ ׬	 N௧ܵ݀࣌
	
ௌ

																													ሺ9ሻ	
 
where K is the global stiffness matrix, x is the vector of nodal displacements, f is the 
nodal forces vector, B is the geometry matrix relating strains and nodal displace-
ments, D contains the constitutive law as a relationship between stresses and strains 
and N is the shape function matrix. The vector , for an excavation problem, is the 
vector of stresses acting on the excavation boundary, S. 
 
Expressions (6) and (8) represent the iteration procedure to minimize the objective 
function defined by (4) or (5). Note that in (8) it is necessary to compute the sensi-
tivity matrix A. For this particular case, it is possible to obtain an “exact” evaluation 
of A in the context of the finite element approximation. Deriving the first expression 
in (9) with respect to the parameters and rearranging, we obtain: 
 

డx

பܘ
ൌ ۹ିଵ ቀ

డࢌ

డܘ
െ

డ۹

డܘ
 ቁ                                        (10)ܠ
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If the parameters to be identified are Young modulus and Poisson’s ratio, then 
f/p=0, and 

డx

பܘ
ൌ െ	۹ିଵ ቀ

డ۹

డܘ
						,					ቁܠ

డࡷ

డܘ
		ൌ 			 ׬ ۰௧

డ۲

డܘ
۰ܸ݀

	
௏                    (11) 

 
Hence computing K/p is equivalent to find the stiffness matrix substituting the 
D/p matrix for D which allows an easy implementation in a finite element code. 
In particular, if Poisson’s ratio is assumed known and only Young’s modulus, E, is 
identified, D/E is constant and has to be calculated only once. 
When the identification of the earth pressure coefficient at rest, Ko, is required, equa-
tion (10), for a linear elastic material, results in 
 

డܠ

డ௄೚
ൌ ۹ିଵ డ܎

డ௄೚
                                              (12) 

 
since the stiffness matrix is independent of Ko in that case. The excavation is simu-
lated in one phase, by applying on the excavated boundary the opposite normal forc-
es to the initial stresses. So, from the last equation in (9) we obtain: 
 

డ܎

డ௄೚
ൌ ׬ ௧ۼ డ࢕࣌

డ௄೚
݀ܵ ൌ ׬ ܵ݀∗࢕࣌௧ۼ

	
ௌ

	
ௌ                            (13) 

 
where for typical plane strain problems, o=(Koy

o, y
o, 0), y

o is the initial vertical 
stress at depth “y” and 

y
o, 0, 0). Note that calculating expression (12) be-

comes simple as the finite element routines used to find nodal forces due to excava-
tion can be employed to compute f/Ko by changing only the initial stress field 
from o to o

*.  
This procedure is expected to reduce the numerical errors when calculating the sen-
sitivity matrix A. However, in a general problem involving nonlinear constitutive 
models a finite difference technique is the common procedure to estimate the deriva-
tives of some nodal variables with respect to the parameters. Using a central differ-
ence scheme, two direct problems have to be solved to compute one derivative as: 
 

డܠ

డ௣೔
ቚ
ೖܘୀܘ

ൌ
൫ሺ௣೔ି∆௣೔ሻ൯ܠሺ௣೔ା∆௣೔ሻିܠ

ଶ∆௣೔
ቚ
ೖܘୀܘ

                              (14) 


where pi is the value used to increment parameter “i” while keeping the rest of the 
parameters constant. Defining this increment requires a trial and error procedure in 
advance in order to avoid additional numerical errors. The procedure seems to be 
less robust than the one presented above in equations (9) to (13), where there is a 
direct use of the finite element approximation.  
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2.4. Reliability of the estimation 
 
One of the advantages of using gradient-based procedures to minimize the objective 
function is that the derivatives provide with information on the reliability of the 
estimation. It can be shown [Led96] that a lower bound of the covariance matrix of 
the identified parameters, Cp can be obtained as: 

  11  ACAC xp
t                                            (15) 

 
This matrix agrees with the inverse of the Fisher information matrix, a classical 
concept in optimization and parameter identification [Bur75], [Wal90]. If a particu-
lar measurement is not sensitive to a particular parameter, the corresponding deriva-
tive of the sensitivity matrix will tend to zero and the inverse matrix in (15) will 
provide a large variance for that particular parameter. 

 
It follows from the above expressions that the sensitivity matrix includes a lot of 
information about the structure of the model. Note that typically we have more 
measurements, m, than parameters to identify, n, so therefore, A is a rectangular 
matrix m × n.  If the number of measurements coincides with the number of parame-
ters, there is a unique solution and the problem becomes deterministic.  
 
The value of the objective function at the minimum, Jmin, indicates the global error 
of the problem. When all measurements are of the same type, it is possible to esti-
mate the standard deviation of the measurements, x ,  by means of [Wig72]: 
 

௫ߪ  ൌ ට௃೘೔೙

௠ି௡
                                                 (16) 

Note that this value represents the error assigned to the measurements by the proce-
dure because the model is assumed to be “perfect”. In practice, measurements may 
have less error than that and discrepancy between measurements and the computed 
values may be due to the model adopted in the analysis not representing the real 
behaviour of the material. 

 
 

3. A synthetic example involving a tunnel excavation 
 
To show the capabilities of the formulation and to illustrate some of the difficulties 
related to back-analysis, a synthetic and simple example involving the excavation of 
a tunnel is presented. Two cases are considered, depending on the constitutive law 
used. 
 
3.1. Case 1. Linear elastic model. 
 
A case presented in [Led96] is described here. Only one material is considered and it 
is assumed linear elastic, homogeneous and isotropic with a Poisson’s ratio of 0.49 
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(simulating undrained conditions) and specific weight of 20 kN/m3. The parameters 
to be identified are the Young’s modulus and the Ko coefficient defined using total 
stresses. Figure 1 presents the finite element mesh used in this case including 12 
nodal points where displacements are supposed to be measured. Horizontal dis-
placements in points 1 to 7 represent inclinometric measurements, whereas vertical 
movements in points 8 to 12 represent displacements obtained from an extensome-
ter. Excavation is made in one step and only half of the geometry is considered due 
to symmetry. 
 

 
Figure 1. Finite element mesh and measurement points (after [Led96]). 

 
The case is considered “synthetic” in the sense that measurements are in fact ob-
tained by computing the direct problem for the parameters E=10 MPa and Ko=1. The 
values of these theoretical measurements are presented in Table 1. There is not error 
measurement and the minimum of the objective function should be zero. Because of 
that, the covariance matrix is assumed to be the identity matrix.  
 

Table 1. Computed displacements used as measurements in the synthetic example 
(after [Led96]). 

Horizontal 
movement 

1 2 3 4 5 6 7 
0.316 0.556 2.038 3.550 4.550 3.920 2.427 

Vertical 
movement 

8 9 10 11 12 
Values in cm 

-3.598 -3.905 -4.935 -6.327 -7.048 
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When only two parameters are identified, it is possible to depict the objective func-
tion and to observe the evolution of the iterations. Figure 2 presents contours of the 
objective function in terms of E – Ko. The values E=0.5 MPa and Ko=0.5 were used 
as initial parameters in the iterative procedure. Two paths have been depicted in the 
figure, corresponding to a Gauss-Newton algorithm and to a Levenberg-Marquardt 
algorithm. It can be seen that in a few iterations the minimum corresponding to E = 
10 MPa and Ko=1 is reached. The objective function has a paraboloid-type shape, 
which is very convenient for the Gauss-Newton algorithm and, in general, suggests 
that the problem is well-posed and the solution is unique. 

 
 

 
Figure 2. Contours of the objective function for the simpler synthetic case, indicat-

ing the paths followed by the Gauss-Newton (circles) and Marquardt (squares) algo-
rithms (after [Led96]). 

 
 
Let us consider now that the number of measurements is increased. The procedure 
should indicate to some extent that there is more information available and thus the 
error of the parameters identified should be smaller. In this synthetic case, as there is 
not error in the measurements, we can check the value of expression (15) using the 
identity matrix as covariance matrix. Four analyses have been carried out consider-
ing an increasing amount of measurements: 

a) Case with only two measurements, vertical displacement at point 12 and hor-
izontal displacement at point A in Figure 1. 

b) Case with 12 measurements as described above. 
c) Case with 24 measurements, 15 horizontal from nodes located on the vertical 

line I (figure 1) and 9 vertical located on the vertical line E (figure 1). 
d) Case with 55 measurements. 24 of them are the same as in previous case and 

the rest are horizontal and vertical movements from points distributed on the 
excavation boundary.  
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For these cases the value of expression (15) has been computed at the minimum. 
The parameters at that minimum correspond to E = 10 MPa and Ko = 1 in all cases, 
but the shape of the objective function is different and thus the variance of the pa-
rameters computed. Figure 3 shows the standard deviations of the parameters (pro-
portional to the measurements’s standard deviation) for the four cases considered. 
As expected, increasing the number of measurements improves the quality of the 
identification, reducing the variance of the parameters identified. 
 
 
 

 
Figure 3. Standard deviations of E and Ko when different number of measurements 

are used in the identification process (after [Led96]). 
 
 
3.2. Case 2. Nonlinear elastic model. 
 
An example presented in [Led91] is shown here, in order to explain a case with a 
nonlinear elastic constitutive law and to comment some aspects regarding the 
uniqueness of the solution. Consider the same geometry indicated in previous exam-
ple and the same measurement points (Figure 1). Now the soil is assumed to behave 
according to a hyperbolic model (nonlinear elastic), based on the proposal by Dun-
can and Chang [Dun70]. The model can be formulated in terms of secant stiffness or 
a secant constitutive matrix, DS. For plane strain problems and considering un-
drained conditions that matrix can be expressed as: 

 

܁۲ ൌ
ா࢏ቀଵିோ

಻೅
೎ೠ
ቁ

ሺଵାఔሻሺଵିଶఔሻ
቎

ሺ1 െ ሻߥ ߥ 0
ߥ ሺ1 െ ሻߥ 0

0 0
ሺଵିଶఔሻ

ଶ

቏                               (17) 
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where Ei is the initial Young modulus, the Poisson's ratio, cu the undrained shear 
strength, R is a parameter controlling whether cu is reached asymptotically or not 
and JT is the second invariant of the deviator stress tensor: 
 

்ܬ
ଶ ൌ

ଵ

ଶ
;			ଶ܁ݎݐ 				 ௜ܵ௝ ൌ ௜௝ߪ െ 	௜௝ߜ݌

 
where ij is the stress Cauchy tensor, ij is the Kronecker delta, p is the mean stress 
and tr means trace. In this case, a value of R=1 was adopted and a total stress ap-
proach was used due to the undrained conditions. The advantage of a nonlinear elas-
tic model in this context is that it is still possible to compute the sensitivity matrix in 
an “exact” manner within the finite element framework. Details of that computation 
are presented in [Led91].  
Let us consider two parameters to identify, Ei and cu, and the set of 12 displacements 
measured at the points indicated in Figure 1. The “measured” displacements will 
correspond to the values obtained by computing the direct problem for the following 
cases: 

a) Ei = 10 MPa ,   cu = 0.1 MPa 
b) Ei = 30 MPa ,   cu = 0.3 MPa 
c) Ei = 50 MPa ,   cu = 0.5 MPa 
d) Ei = 100 MPa , cu = 1.0 MPa 

 
The ratio Ei/cu has been kept constant in all cases. Measurements generated have 
been assumed to be independent and with the same variance, so the covariance ma-
trix does not affect the identification process.  
According to [Dav80], a value of cu  0.06 MPa would imply collapse for the partic-
ular geometry adopted. Therefore, case a) can be considered close to failure condi-
tions, whereas case d) is far from collapse and the elastic behaviour will dominate. 
 
Contours of equal value of the objective function for case a), close to failure, are 
depicted in Figure 4(left). The shape of those contours suggest that the problem is 
highly nonlinear: there is a sort of “valley” in which there are several combinations 
of parameters that provide almost the same objective function. This difficulty re-
garding uniqueness of the solution is quite typical in optimization problems. The 
Figure shows also two iterative paths followed by the algorithm, one of them failing 
in obtaining the minimum. The shape of the objective function is dominated by 
valleys following the direction of the Ei axis and this is because close to failure, that 
parameter becomes more difficult to estimate.  
 
Case d), far from failure, is also presented in Figure 4 (right). Note that contours of 
the objective function are almost parallel to cu axis, thus making difficult the identi-
fication of that parameter. In fact, the algorithm was not able to obtain a good value 
of cu. That could be expected, as we are trying to identify a parameter controlling 
failure in a problem mainly elastic. The formulation of the hyperbolic model in-
volves both parameters simultaneously and this is why the contours are not totally 
parallel to one of the axis. However, the shape of the objective function can be even 
worse (regarding the difficulty for minimization) if the constitutive model separates 
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elastic and plastic behaviour. This example suggests that in the context of Geome-
chanics, the identification of parameters by using any optimization procedure may 
require some previous experience regarding which parameters are important and 
which are not relevant in the problem. Mathematically ill-posed problems may be 
just a consequence of improper initial assumptions, i.e. we cannot identify plastic 
parameters if the measured displacements are in the elastic range.  
 
The identification process gives information on the quality of the parameters identi-
fied, through expression (15). Table 2 presents the ratio of variances of the parame-
ters identified, that is, var Ei/var cu, for the cases considered. It can be seen that in 
case a), close to failure, that ratio is quite large, whereas in case d), far from failure, 
the ratio becomes small. 
 
 

 
 
Figure 4. Left: Objective function for case a), close to failure. Right: Objective func-
tion for case d), far from failure, (after [Led91]). 
 
 

Table 2. Ratio of variances of the parameters identified, var Ei/var cu. 
 

Case a) b) c) d) 
var Ei/var cu 62405 1833 537 111 
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4. Including Prior Information 
 
4.1. Extension of the formulation 
 
It is quite common to have some prior information on the parameters before pro-
ceeding with the identification process, typically from laboratory or field tests. The 
maximum likelihood approach can be extended to incorporate that information in 
the identification process in a consistent manner. Now it is assumed that prior in-
formation of the parameters < p > has a multivariate Gaussian probability distribu-
tion. Therefore, it is possible to write: 
 

ܲሺ൏ ܘ ൐	െ ሻܘ ൌ
ଵ

ටሺଶగሻ೙	ห۱ܘ
ห࢕
݌ݔ݁ ቂെ

ଵ

ଶ
ሺ൏ ܘ ൐	െ ܘሻ௧൫۱ܘ

௢൯
ିଵ
ሺ൏ ܘ ൐ െܘሻቃ      (19) 

 
where Cp

o is the “a priori” parameter covariance matrix, based on the available prior 
information and n is the number of parameters. Assuming that the measurements x* 
and the parameters given by the prior information < p > are independent, expression 
(1) is modified to 

ܮ ൌ ݇ܲሺܠ∗ െ ሻܲሺ൏ܠ ܘ ൐ െ			ܘሻ                                   (20) 
 
Then the support function becomes 

ܵ ൌ ሺܠ∗ െ ∗ܠሻିଵሺܠሻ௧ሺ۱ܠ െ ሻܠ ൅ ሺ൏ ܘ ൐ െܘሻ࢚൫۱ܗܘ൯
ିଵ
ሺ൏ ܘ ൐ െܘሻ ൅ 		ln|۱ܠ| ൅ 

 
	൅		lnห۱ܗܘห ൅ ݉lnሺ2πሻ ൅ ݊lnሺ2πሻ െ 2ln݇                      (21) 

 
If the error structure of measurements and parameters are considered fixed, only the 
first two terms must be used in the minimization process, the rest being constant. 
Those two terms define the objective function. As stated before, any optimization 
algorithm can be used. In particular, the Gauss-Newton and Marquardt algorithms 
defined above can be extended to take into account the new second term in (21), 
[Gen88]. Then equation (8), used to iterate in the parameters space, modifies to 
 

ܘ∆ ൌ ܗܘ∆ ൅ ቂۯ௧۱ିܠଵۯ ൅ ൫۱ܗܘ൯
ିଵ
൅ ۷ቃߤ

ିଵ
ܠ∆ଵሺିܠ௧۱ۯ െ   ሻ           (22)ܗܘ∆ۯ

 
where ∆ܗܘ = < p > - p .  
 
 
4.2 Example involving the staged excavation of a cavern in rock 
 
To illustrate the use of prior information, an example presented in [Gen88] is sum-
marized here. It involves the staged excavation of a powerhouse cavern in the Span-
ish Pyrenées. A cross section near the central part of the cavern was selected for the 
analysis so that plane strain conditions could be adopted. The excavation was per-
formed in nine successive steps, but in order to have significant measurement val-
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ues, they were grouped in 3 stages. Figure 5 presents the section considered, show-
ing measurements locations and excavation phases. Displacements were obtained by 
means of extensometers and convergence measurements. In both cases they are 
relative displacements measured in one particular direction between two points. 
Therefore, measurements x* does not correspond to nodal displacements, and a 
transformation has to be carried out for each measurement, xi

*, according to: 
 

∗௜ݔ ൌ  ௜                                                         (23)ܝ௜ۼ௜܂௜ۺ
 
where ui is the vector of nodal displacements of the elements containing measure-
ments points, Ni is the shape function vector for the same elements, Ti is the rotation 
matrix required to transform the components of displacements in the global coordi-
nate system to the measurement direction, and Li is the matrix containing the linear 
combination of displacements corresponding to the type of measurement. When the 
measurement is a relative displacement between two points, Li = (1,-1). Finally the 
sensitivity matrix can be computed as 

ۯ ൌ
డܠ

డܘ
ൌ ۼ܂ۺ

డܝ

பܘ
                                                    (24) 

 
A total of 36 different movements were considered, of which 8 correspond to the 
first phase, 7 to the second and 21 to the third. Note (figure 5) that some instruments 
were installed when stage 2 was finished, so only part of the records are available 
for the 3 phases. 
 
 

 
 
Figure 5. Underground cavern: geometry of the cross section considered in the anal-
yses, excavation phases and measurement points (I,J,K and L are convergences). 
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The rock in the area is schist which shows no oriented texture due to the high degree 
of metamorphism to which was subjected. No significant anisotropy was detected in 
the field data, so the material was assumed linear elastic and isotropic. Poisson’s 
ratio was assumed to be 0.28, based on laboratory experiments on rock samples.  
One of the major uncertainties of the project was the initial stress state in the rock 
massif. In situ measurements prior to the excavation suggested that initial stresses 
were oriented with the cavern axis, being the vertical stress equal to the overburden 
pressure. Therefore it was decided to identify Ko (ratio between horizontal and ver-
tical stresses, working in total stresses) from field measurements. The other one was 
Young’s modulus, E, as a typical parameter of the elastic model. Only two parame-
ters were considered in the identification problem, because it is possible to plot the 
objective function and to analyze the structure of the problem in a visual manner. 
 
First, let us consider the case where only displacements due to the excavation are 
available. There is not prior information, and the measurements can be assumed 
independent with the same variance, so ۱ܠ ൌ  ௫ଶ۷. The objective function becomesߪ
the simple least squares criterion indicated in equation (5). To illustrate the structure 
of the problem, the objective function has been depicted in figure 6 (left). Note that 
there is a sort of valley in which different combinations of E and Ko give similar 
result in terms of squared error. Figure 6 (right) includes a section of the objective 
function along the valley, to highlight the difficulty in finding a global minimum. 
 
The identification process yielded the values: E=0.39·104 MPa and Ko=1.24, with a 
minimum of J=2.89·10-4 m2. Expression (16) in this case results in an estimation of 
the standard deviation of x=2.9 mm. A comparison between computed and ob-
served displacements is presented in Figure 7. Note that the parameters found and 
the model considered achieve a good general approximation to the observed dis-
placements. 
 
 

 
 
Figure 6. Left: Contours of the objective function J. Right: Values of the objective 
function along the valley (A-A’). 
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Figure 7. Measured and computed displacements with the parameters identified 
without prior information. 
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Despite the reasonable agreement between computed and measured displacements, 
the parameters identified were not consistent with the information obtained during 
the design of the cavern. Indeed most of the previous “in situ” tests suggested higher 
values for E and Ko. The Young’s modulus of the rock was determined during the 
design phase using flat jack tests and dilatometer tests. Different orientations were 
considered, but the stiffness was isotropic.  
 
A mean value from all measurements was < E > = 1.5·104 MPa. The “in situ” 
stresses were measured using both flat jack tests and solid inclusion triaxial cells. 
Vertical stresses were always closed to overburden pressure, as expected. However, 
flat jack tests gave values of Ko around 1 and solid inclusion cells provide values of 
Ko in the range 2 to 3. A mean value of < Ko > = 2 was finally adopted. 
 
The first two terms in (21) define the objective function in this case. Considering the 
prior information on the Young modulus, <E>, and on the initial stress ratio, < Ko>, 
the objective function can be written as 
 

ܬ ൌ ሺܠ∗ െ ∗ܠሻ௧ሺܠ െ ሻܠ ൅ ൬
ఙೣ
మ

ఙಶ
మ൰ ሺ൏ ܧ ൐ െܧሻଶ ൅ ൬

ఙೣ
మ

ఙ಼೚
మ ൰ ሺ൏ ௢ܭ ൐ െܭ௢ሻଶ       (25) 

 
where x

2 is the variance of the measurements, E
2

  is the variance of the prior in-
formation on Young’s modulus and Ko

2 is the variance of the prior information on  
Ko coefficient. Note that the value of (E

2
  / x

2) to be used in the analysis depends 
not only on the scatter of the results of the “in situ” tests used to determine E, but, 
also, on the weight that is to be assigned to the prior information. In this case, a 
value of (E

2
  / x

2) = 104 MPa2/m2  was adopted. If x  3 mm (as estimated in the 
analysis without prior information), the range of likely E values will be: 
 

ܧ ൌ൏ ܧ ൐ േ2ߪா ൌ 1.5 ൉ 10ସ േ 0.6 ൉ 10ସ	(26)                     ܽܲܯ 
 
Regarding Ko coefficient, a significant scatter was observed in the field tests. There-
fore, the value (Ko

2
  / x

2) = 4·104 m-2 was used. Assuming again the value of x  3 
mm, this gives a likely range of Ko: 
 

௢ܭ ൌ൏ ௢ܭ ൐ േ2ߪ௫ ൌ 2 േ 1.2                                   (27) 
 
With these conditions the minimum of the objective function (25) was found for the 
point: E = 0.77·104 MPa and Ko = 2.36. The value of the minimum was 3.24·10-4 m2 
which corresponds to a standard deviation of 3.1 mm by using expression (16). This 
value of 3.1 mm is very close to the standard deviation obtained when no prior in-
formation was considered. 
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Figure 8. Measured and computed displacements using parameters identified with 

prior information. 
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Figure 8 presents the comparison between measured and computed displacements 
using this new set of parameters identified. The comparison is as reasonable as the 
one presented in Figure 7. It can be stated, however, that now the solution incorpo-
rates in a global manner all the information available: a priori field tests from the 
design phase and measurements obtained during the construction stage. Note that the 
identified Ko lies in the likely range, according to (27). However, E, lies outside the 
range expected in (26). There may be several reasons explaining that discrepancy. 
 
The most important one is related to the assumptions of the model and the actual 
rock behaviour. Note that field measurements during construction take larger times 
compared to “in situ” tests and that may be the reason for the difference in E if any 
viscous effect is present. Stress-strain nonlinearity (plastification, effects of discon-
tinuities, …) could be a reason for discrepancy as well. 
Finally, it should be pointed out that assigning statistical properties to the prior in-
formation (i.e., mean and variance) is usually a difficult task. Particularly, assigning 
the weight of the prior information with respect to the measurements during con-
struction is always complex. In some cases it is possible to incorporate those weights 
as additional parameters to be identified [Led88], [Led96b].  
 
 

5. Additional related topics 
 
5.1. Capabilities of the Maximum Likelihood Approach 
 
In the previous sections, the Maximum Likelihood Approach and the Gauss-Newton 
Method have been the fundamental tools to solve the problem of identifying parame-
ters of a defined model from field measurements. The maximum likelihood formula-
tion is a general framework that allows different options when deciding how to pose 
the inverse problem: it may include the error structure of the measurements, it may 
include different types of measurements in a consistent manner and also it may in-
clude prior information if necessary. Obviously it is always possible to adopt a more 
traditional approach considering the covariance matrices just as weighing matrices 
without using the probabilistic framework. 
 
In order to show the capabilities of the formulation, most of the examples included 
only two parameters and an elastic model. That is, a set of simple examples were 
preferred to present the basis of the procedure. More sophisticated examples can be 
found in the literature since late nineties and only some particular citations follow. 
[Gen96] shows the application of the standard method to the identification of 4 pa-
rameters (3 Young’s modulus corresponding to 3 materials and Ko). A discussion on 
the reliability of the solution is also presented. [Led97] applies the formulation to the 
identification of two parameters of the Cam-clay model from displacements and 
pore water pressures measured in a centrifuge test concerning a tunnel excavation 
problem. Finally, [deS12] presents the identification of Ko and the stiffness of the 
joints from the lining of a segmental tunnel from London Underground, using the 
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measurements of segment rotations at different times. In this case a coupled H-M 
elastic-perfect plastic model (Mohr-Coulomb type) was used to simulate soil behav-
iour, but the optimization was obtained through simple inspection of the objective 
function. 
 
The use of the Gauss-Newton algorithm (or any algorithm based on the computation 
of the derivatives of the objective function) seems to be very robust, but it may be-
come very expensive if the number of parameters involved is large. In this case, 
methods that only compute the objective function (and not its derivatives) may be 
more appropriate. Some comments on this topic are included in section 5.4. 
 
5.2. Identification of models 
 
One of the first questions that arise from the above described procedures is whether 
the model can be identified or not from the field data as well as the parameters. The 
discrepancy between measurements and computations, assigned to error measure-
ments, is quite often a consequence of an inappropriate model. 
 
In some particular problems it is quite easy to improve a model by incrementing 
additional “extension” terms [Haf98], but this is more difficult in the context of 
Geomechanics. Different models in Geotechnical problems may imply moving from 
elastic to elastoplastic behaviour or changing the geometry itself. That change seems 
to be too fundamental to be represented by an “extension” term. However, there are 
promising new “soft computing” techniques in which the model evolves and learns 
according to the measurements available (i.e. neural network based procedures), 
[Has10].  
 
A classical and still possible approach consists on comparing objective functions 
directly: the objective function that gives the minimum value is the one with “less 
error” between measured and computed variables. If the measurement points are the 
same and only the model changes, this process allows discriminating between com-
peting models. However, in many practical situations, there is external information 
about the problem that helps in deciding which model is suitable for each case. De-
spite that, the comparison between objective functions is always an objective man-
ner of discriminating between models and it can be useful, particularly when inter-
preting laboratory and field tests or when identifying the geometry. 
 
 
5.3. Optimal design of experiments 
 
When thinking in terms of “inverse problems” there is always an issue regarding 
where to install the instrumentation in order to obtain as much information as possi-
ble from measurements. The classical idea is to measure where we expect the maxi-
mum movements or the maximum pore water pressure changes, but quite often it is 
difficult to know that in advance.  
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The procedure described here provides information on the quality of the parameters 
identified. From expression (15) it becomes clear that we should minimize the vari-
ances of the identified parameters in order to obtain the maximum information from 
the measurements. That requires large values of the sensitivity matrix, A, which 
means that measurements are highly dependent on the parameters. Therefore, an 
optimum design of a field test or any experiment would require evaluating A, look-
ing for measurement points where the sensitivity is maximized.  
 
There are different criteria to define that maximum, i.e., we could maximize the 
determinant of matrix AtA [Haf98] or a combination of its terms that has statistical 
meaning [Fin05]. The key aspect, however, is that sensitivity matrix depends in 
general on the parameters, so the maximum sensitivities are obtained at different 
points according to the values of the parameters. As an example, the optimal points 
for measuring displacements may be different depending on soil stiffness [Mur88], 
[Xia03].  
 
In some particular cases, it is possible to evaluate the sensitivity matrix and to check 
its tendency or just check if any term may become always zero. It has been shown 
[Led03] that in the context of tunneling and for elastic models, measurements in any 
point at 45 degrees provides the larger error (assuming vertical and horizontal direc-
tions as principal stress directions). Then, it is possible to decide where not to meas-
ure in this particular geometry.  
 
It can be concluded that the design of any experiment can be, to some extent, opti-
mized to obtain the maximum information, but it is necessary to know in advance 
the range of the values of the parameters. 
 
 
5.4. Alternative approaches 
 
The number of contributions dealing with inverse problems in Geomechanics has 
increased significantly since 1980, when the initial works were published [Gio80]. 
Before that, back-analysis was performed in an “ad hoc” manner. Many of the pa-
pers used the Least Squares criterion and the Gauss-Newton algorithm for optimiza-
tion purposes, although other approaches were also developed: Kalman Filter ap-
proach [Mur88], Bayesian approach [Civ83], and the described maximum likelihood 
approach. During the last two decades, some published works improved the optimi-
zation procedure in several aspects as in [Cal04], where the parameters that can be 
identified simultaneously are defined according to its correlation (i.e., parameters 
highly correlated should not be identified simultaneously). This particular aspect 
improves the uniqueness of the solution. 
 
In recent years, there is an increasing amount of works using “soft computing” tech-
niques as optimization procedures. This is a general label used for heuristic based 
techniques including genetic algorithms, [Lev09], [Lev10], neural networks, 
[Obr09], [Has10], and particle swarm optimization, [Zha09], among others. General-
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ly, this type of methods does not require computing the derivatives of the objective 
function, a cumbersome task when the number of parameters is large. To illustrate 
this type of procedures, an example combining genetic algorithms and gradient 
based methods is briefly presented in next section. 
 
 
6. An example of hybrid method 
 
In this section an optimization procedure based on the combination of genetic algo-
rithms and Gauss-Newton method is briefly presented. The procedure is described in 
more detail in [deS14]. Let us consider again a synthetic case involving a tunnel 
excavation problem in a homogeneous material as shown in Figure 9. An extensom-
eter measuring vertical displacements, 2 m away from the tunnel side, is also depict-
ed in the Figure. 
 

 
 

Figure 9. Geometry and measurement points considered for the hybrid analyses. 

 
The code Plaxis [Bri08] was used for the analyses and the soil was assumed to be-
have according to the Hardening-Soil model [Sch99], one of the constitutive laws 
implemented in Plaxis. The parameters to identify are the coefficient of lateral earth 
pressure (Ko) and the reference Young's modulus for unloading and reloading condi-
tions (Eur

ref), to the reference pressure (pref). 
 
A genetic algorithm is an optimization method proposed by [Hol75] and based on 
Darwin’s theory of evolution. An objective function based on a least squares criteri-
on as defined in (5) was adopted. The value of the objective function defines how 
good an individual is (that is, how good a set of parameters is).  
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First of all, the range of the parameters (the search space) should be defined and an 
initial random population is generated. The objective function for each individual is 
computed and we can check what the best group of individuals is. Then we need a 
criterion to generate a new population of individuals with the aim of improving their 
fitness (decreasing their objective function values). That criterion is based on opera-
tions called “crossover” and “mutation”. After a few iterations creating new sets of 
populations, it is possible to define a zone in the parameter’s space where the mini-
mum is probably located. The method does not guarantee that a global minimum is 
found, but it is expected to obtain relatively close solutions. Therefore it is conven-
ient to combine the method with a classical gradient method that looks for the mini-
mum in a strict sense.  
 
Table 3 shows the parameters used to generate the measurements. The simulation 
was carried out in three stages: Phase 1: Tunnel excavation using the Plaxis method 
ΣMStage to simulate a volume loss close to 0.5% (ΣMStage = 0.2); Phase 2: Tunnel 
construction activating the lining; Phase 3: Dissipation of all the excess of water 
pressure caused by the tunnel construction process (consolidation). 
 
Ten points located on the extensometer 2 m away from the tunnel side were consid-
ered and the final vertical displacements after all phases corresponding to the values: 
Eur

ref=75000kN/m2 and K0=1.5 were considered as “measured” displacements. Fig-
ure 10 presents the initial population on the objective function. As only two parame-
ters are involved, it is possible to see directly the evolution of the procedure. After 3 
generations and evaluating 120 individuals (that is, 120 direct analyses), it was de-
cided to apply the gradient method. An elliptic zone was defined including all the 
individuals with an error less than a threshold value. Inside that zone, the gradient 
method was applied starting from the center of the ellipse. In this particular example 
the starting point was: Eur

ref = 84150kN/m2 , K0 = 1.511 (Figure 11). 
 
Table 3. Parameters used to generate the measurements of the tunnel excavation. 
γunsat: unsaturated soil weight, γsat: saturated soil weight, E50

ref: secant stiffness in 
standard drained triaxial test, Eoed

ref: tangent stiffness for primary oedometer loading, 
Eur

ref: unloading / reloading stiffness, cref: cohesion, φ: internal friction angle, Rinter: 
interface strength factor and K0: coefficient of lateral earth pressure. After [deS14]. 
 

Parameter Value 
γunsat 19 [kN/m3] 
γsat 21 [kN/m3] 
Permeability 0.026 [m/day] 
E50

ref 25000 [kN/m2] 
Eoed

ref 20000 [kN/m2] 
Eur

ref 50000 - 350000 [kN/m2] 
cref 10 [kN/m2] 
φ 28 [deg] 
Rinter 0.6 
K0 0.4 - 2 
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Figure 10. Analysis using genetic algorithm: Initial population. K0 is represented in 
the vertical axis and Eur

ref [kN/m2] in the horizontal one. After [deS14]. 

 

 

Figure 11. Best individuals from all genetic algorithm generations and new search 
space (ellipse) for the Gauss-Newton method. After [deS14]. 
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After five additional iterations the Gauss-Newton method reached the correct 
parameters. In this case the sensitivity matrix was evaluated using a finite difference 
scheme.  
 
In general it is less expensive, in computational terms, combining both Genetic 
Algorithm and Gauss-Newton method than using just Genetic Algorithms only. Also 
this “hybrid” method is more robust than using an individual algorithm only. When 
the number of parameters increases, this procedure seems to be a promising method 
to perform back-analysis in a systematic manner. 

 
 
7. Concluding remarks 
 
A description of the procedures available to carry out an inverse analysis in the con-
text of Geotechnical Engineering has been presented. The Maximum Likelihood 
Approach has been used as a global framework to describe some fundamental con-
cepts related to these techniques: objective function, minimization algorithms, 
uniqueness of the solution, sensitivity matrix, the role of error measurements, incor-
porating prior information and reliability of the parameters identified. Several syn-
thetic examples and a real case have been used to illustrate the capabilities of the 
formulation and the difficulties encountered when performing back-analysis. 
 
The text also includes some comments on related topics, as the optimal design of 
experiments or the identification of models in Geomechanics. Also, a list of alterna-
tive procedures is presented, leading to the description of a hybrid method, combin-
ing genetic algorithms and Gaus-Newton algorithm. 
 
Nowadays the procedures available to perform back-analysis in a systematic manner 
in Geomechanics are quite mature, but still the methods are not fully used by the 
Geotechnical community. Most probably, in the near future, the commercial ge-
otechnical finite element codes will incorporate an identification module. It is not 
the matter of substituting the judgment of an experimented engineer, but the fact that 
measurements provide valuable information that can be incorporated to our design 
in a consistent and rational manner. 
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When a model is calibrated by iteratively changing the estimates of the model input 
parameters until the value of an objective function, which quantifies the match be-
tween observed and computed results, is minimized we are dealing with inverse 
analysis. The major advantage of an inverse modelling is the automatic and objec-
tive calculation of the parameter values that produce the best fit between measured 
data (often called observations) and computed results. The main difficulties are 
related to the complexity of most numerical models, which sometimes cause prob-
lems of non-uniqueness and instability of the solution or insensitivity of the results to 
changes in the values of the parameters. This chapter presents the main aspects 
related to inverse analysis techniques used to calibrate the parameters of soil consti-
tutive laws. It comprises three main sections respectively dealing with: a computer 
code designed to allow inverse modeling posed as a parameter estimation problem; 
the use of inverse analysis to calibrate soil models from results of laboratory exper-
iments; an inverse analysis procedure to update the design predictions of a support-
ed excavation system using monitoring data collected during construction. 

1 Introduction 

Model calibration means “tuning” the parameters and/or the components of a given 
model so that values measured within a real system (e.g., results of laboratory or 
field tests, monitoring data from engineering projects) are matched by equivalent 
computed values until the resulting calibrated model accurately represents the main 
aspects of the system. Despite their apparent utility, inverse analysis techniques are 
used, to this purpose, much less than expected and most typically numerical models 
are calibrated using trial-and-error methods. With an inverse modeling approach, a 
model is calibrated by iteratively changing the estimates of the model input parame-
ters until the value of an objective function, which quantifies the match between 
observed and computed results, is minimized. Inverse analysis works in the same 
way as a non-automated calibration approach: parameter values and other aspects of 
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the model are adjusted until the model’s computed results match the observed be-
havior of the system. However, use of an inverse model provides additional results 
and statistics that offer numerous advantages in model analysis and, in many in-
stances, expedites the process of adjusting parameter values [Cal02]. The fundamen-
tal benefit of inverse modeling is its ability to automatically calculate parameter 
values that produce the best fit between observed and computed results. In addition 
other benefits are derived, including: substantial time saving over traditional trial-
and-error calibration methods; statistics that quantify quality of calibration, data 
shortcomings and reliability of parameter estimates and predictions; identifications 
of issues that are easily overlooked during non-automated calibration. The main 
difficulties inherent to inverse modeling algorithms are related to the complexity of 
real systems, almost always modeled non-linearly, which sometimes leads to prob-
lems of: insensitivity, when the observations do not contain enough information to 
support estimation of the parameters; non-uniqueness, when different combination 
of parameter values match the observations equally well; instability, when slight 
changes in model variables radically change inverse model results. 

2 A model independent inverse analysis algorithm: 
UCODE 

UCODE [Poe98] is a computer code designed to allow inverse modeling posed as a 
parameter estimation problem. UCODE can be effectively used in geotechnical 
modeling because it works with any application software that can be executed in 
batch mode. Its model-independency allows the chosen numerical code to be used as 
a “closed box” in which modifications only involve model input values. Figure 1 
shows a detailed flowchart of the parameter optimization algorithm used in UCODE. 
Note that the minimization requires multiple runs of the finite element code. 

The weighted least-squares objective function S(b) is expressed by: 

 

 ܵܾሻ ቒݕ െ ሺܾሻቓ′ݕ
்
 	ቒݕ െ ሺܾሻቓ′ݕ ൌ ்݁	݁ (1) 

where: b is a vector containing values of the number of parameters to be estimated; 
y is the vector of the observations being matched by the regression; y’(b) is the vec-
tor of the computed values which correspond to observations;  is the weight ma-
trix; e is the vector of residuals. 

Non-linear regression is an iterative process. The modified Gauss-Newton method 
used to update the input parameters is expressed as: 

 

 ൫்ܥ 	ܺ௥
்		 	ܺ௥	ܥ ൅ ௥	ଵ݀ିܥ௥൯݉ܫ ൌ ்ܥ 	ܺ௥

்	 ൬ݕ െ ൫′ݕ 	ܾ௥൯൰ (2) 

 ܾ௥ାଵ ൌ ௥݀௥ ൅ ܾ௥ (3) 
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where: dr is the vector used to update the parameter estimates b; r is the parameter 
estimation iteration number; Xr is the sensitivity matrix (Xij=∂yi/∂bj) evaluated at 
parameter estimate br; C is a diagonal scaling matrix with elements cjj equal to 
1/√(XT X)jj; I is the identity matrix; mr is a parameter used to improve regression 
performance; r is a damping parameter. 

 

 

Figure 1: Parameter optimization algorithm flowchart [Fin05]. 

Multiple runs of the FE model are required to update the input parameters at a given 
iteration because the sensitivity matrix Xr is computed using a perturbation method. 
At any iteration every input parameter bk is independently perturbed by a fractional 
amount to compute the results’ response to its change. Sensitivities are calculated by 
forward or central differences approximations. For these approximations each itera-
tion requires (NP+1) and (2NP+1) runs, respectively, to estimate a new set of updat-
ed parameters, where NP is the number of parameters optimized simultaneously. 
Computation time may become an issue for very complicated finite element models, 
depending on how much time is needed for a single model run. At a given iteration, 
after performing the modified Gauss-Newton optimization (Eq. 2 and 3), UCODE 
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decides whether the updated model is optimized according to two convergence crite-
ria. The parameter estimation is said to converge if either: i) the maximum parame-
ter change of a given iteration is less than a user-defined percentage of the value of 
the parameter at the previous iteration; ii) the objective function, S(b), changes less 
than a user-defined amount for three consecutive iterations. When the model is op-
timized the final set of input parameters is used to run the model one last time and 
produce final “updated” results. 

2.1 Model fit statistics 

Different quantities can be used to evaluate the model fit. At first, one can consider 
the magnitude of the weighted and unweighted residuals and their distribution both 
statistically and relative to independent variable values such as location and time. In 
initial model runs large residuals and weighted residuals can indicate gross errors in 
the model, in the data, in how the observed quantity is simulated, or in the 
weighting. In subsequent model runs, after the gross errors have been corrected, 
other statistics become increasingly important. A commonly used indicator of the 
overall magnitude of the weighted residuals is the model error variance, s2: 

 

ଶݏ  ൌ
ௌ൫௕൯

ே஽ିே௉
 (4) 

where: S(b) is the objective function; ND is the number of observations; NP is the 
number of estimated parameters. 

The value of the objective function (Eq.1) is also used to indicate model fit infor-
mally, because its variation indicates by how much an optimized model improves 
with respect to the initial simulation of a problem. Graphical analyses are also useful 
to assess the validity of the model optimization. Ideally, weighted residuals are scat-
tered evenly about 0.0, and their size is not related to the simulated values. Weighted 
residuals plotted on maps or time graphs should not show any discernible patterns 
and should appear random. When weighted observations are plotted against 
weighted simulated values ideally the points should fall close to a line, with slope 
equal to 1.0 and an intercept of zero, and the correlation coefficient between the two 
series should be close to 1.0. 

2.2 Parameter statistics 

The relative importance of the input parameters being simultaneously estimated can 
be defined using parameter statistics, such as: the sensitivity of the predictions to 
changes in parameters values, the variance-covariance matrix, confidence intervals 
and coefficients of variation. To evaluate the sensitivity of the predictions to param-
eters changes, it is useful to investigate one percent sensitivities, dssij, scaled sensi-
tivities, ssij, and composite scaled sensitivities, cssj: 

242 Calibration of soil constitutive laws by inverse analysis

ALERT Doctoral School 2014



 
 

 

௜௝ݏݏ݀  ൌ
డ௬೔ᇱ

డ௕ೕ

௕ೕ
ଵ଴଴

 (5) 

௜௝ݏݏ  ൌ ൬
డ௬೔ᇱ

డ௕ೕ
൰ ௝ܾ߱௜௜

ଵ ଶ⁄  (6) 

௝ݏݏܿ  ൌ ቎∑ ቆ൬
డ௬೔ᇱ

డ௕ೕ
൰ ௝ܾ߱௜௜

ଵ ଶ⁄ ቇ
ଶ

อ
௕

ே஽
௝ୀଵ ൗܦܰ ቏

ଵ ଶ⁄

 (7) 

where: y′i is the ith simulated value; yi/bj is the sensitivity of the ith simulated value 
with respect to the jth parameter; bj is the jth estimated parameter; jj is the weight of 
the ith observation. 

One percent scaled sensitivities represent the amount that the simulated value would 
change if the parameter value increased by one percent. Scaled sensitivities are di-
mensionless quantities that can be used to compare the importance of different ob-
servations to the estimation of a single parameter or the importance of different 
parameters to the calculation of a simulated value. Composite scaled sensitivities 
indicate the total amount of information provided by the observations for the estima-
tion of one parameter. 

The reliability and correlation of parameter estimates can be analyzed by using the 
variance-covariance matrix, V(b′), for the final estimated parameters, b′, calculated 
as: 

 

 ܸ൫ܾ′൯ ൌ ܺ൯		ଶ൫்ܺݏ
ିଵ

 (8) 

where: s2 is the error variance; X is the sensitivity matrix;  is the weight matrix. 

The diagonal elements of matrix V(b′) equal the parameter variances, the off-
diagonal elements equal the parameter covariances. Parameter variances and covari-
ances are most useful when used to calculate other statistics: confidence intervals for 
parameter values, CI; coefficients of variation, covi; correlation coefficients cor(i,j): 

 
	:ܫܥ  ௝ܾ	േ	t൫݊, 1.0 െ ߙ

2ൗ ൯ߪ௕ೕ (9) 

௜ݒ݋ܿ  ൌ
௜ߪ
ܾ௜ൗ  (10) 

,ሺ݅ݎ݋ܿ  ݆ሻ ൌ ,ሺ݅ݒ݋ܿ ݆ሻ ൫ඥݎܽݒሺ݅ሻඥݎܽݒሺ݆ሻ൯⁄  (11) 

where: t(n,1.0-/2) is the student-t statistic for n degrees of freedom and a signifi-
cant level of ; bj is the standard deviation of the jth parameter. i is the standard 
deviation of parameter bi, cor(i,j) indicate the correlation between the ith and jth pa-
rameter; cov(i,j) equal the off-diagonal elements of V(b′); var(i) and var(j) refer to 
the diagonal elements of V(b′). 
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A confidence interval is a range that has a stated probability of containing the true 
value of the estimated variable. The width of the confidence interval can be thought 
of as a measure of the likely precision of the estimate, with narrow intervals indicat-
ing greater precision. The coefficients of variation provide dimensionless numbers 
with which the relative accuracy of different parameter estimates can be compared. 
Correlation coefficients close to –1.0 and 1.0 are indicative of parameters that can-
not be uniquely estimated with the observations used in the regression. 

2.3 Observations’ weighting 

The weights assigned to the observations are an important part of the regression 
analysis because they influence the value of the objective function, and thus the 
regression results. UCODE uses a diagonal weight matrix. Weighting is used to 
reduce the influence of observations that are less accurate and increase the influence 
of observations that are more accurate. For problems with more than one kind of 
observation, weighting also produces weighted residuals that have the same units, so 
that they can be squared and summed. The weight of every observation, ii, is equal 
to the inverse of its error variance, i

2: 

 
 ߱௜௜ ൌ 1 ⁄௜ଶߪ  (12) 

Users assign the weight of an observation by specifying a value for its variance, 
standard deviation or coefficients of variation. At the end of the regression analysis, 
the value of the model error variance, s2 (Eq.4), can be used to evaluate the con-
sistency between the model fit and the measurement errors, as expressed by the 
observations’ weights. Values larger than 1.0 indicate that the model fits the data 
less well than would be accounted for by expected measurement error. 

2.4 On constraining parameters during optimization 

While limiting constraints on parameter values may, at times, appear to be neces-
sary, UCODE users are not allowed to set upper or lower limits on parameters to be 
estimated, as this practice might disguise model inaccuracies [Hil98]. Indeed, unre-
alistic optimized input parameter values are likely to indicate either a more funda-
mental model error (thus, users are prompted to find and correct the error) or obser-
vations not containing enough information to estimate the parameters. Responses to 
the second circumstance could be: the exclusion of the parameter from the optimiza-
tion, the use of prior information on the parameter value. Using prior information 
allows direct measurements of model input parameters to be included in the regres-
sion and tends to produce estimates that are close to specified parameter values. The 
effect that the prior information has, in “forcing” an estimated parameter to remain 
close to a specified value, depends from its weight. Users must treat the prior infor-
mation like an extra observation point. Its influence in conditioning the response of 
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the regression analysis depends on both the number of observations included and the 
weight of the prior information relative to the weight of the other observations. A 
problem with the “unconstrained approach” used by UCODE is that many geotech-
nical parameters have natural constrains. Many soil models’ input parameters, for 
instance, admit only positive values (e.g. Young’s modulus, cohesion), and some of 
them are bounded by upper and lower physical limits (e.g. Poisson’s ratio, friction 
angle). To address the first problem UCODE allows the user to optimize the log-
transformed value of the native parameter. This produces an inverse problem that 
prevents the actual parameter value from becoming negative. Nothing is directly 
implemented in UCODE to address the second problem. However, users can specify 
functions of the parameter values to be used as input to the application model. Users 
can thus relate the input parameter to a bounded “mapping function.” For example, 
the input parameter to be constrained, x, can be mapped by a hyperbolic function 
expressed in terms of ex. Figure 2 shows such a function, its expression given by: 

 

 ݂ሺݔሻ ൌ ଵݕ ൅ ݁௫ ቀ݁
௫

ሺݕଶ െ ଵሻݕ
ൗ ൅ 1

ܶܽ݊ൗ ቁൗ  (13) 

where: x is the native parameter, y1 is the lower limit of x, y2 is the upper limit of x, 
and Tan is the initial tangent in the y-ex space. 

To “center” the mapping function around a specific value y0, Tan must be equal to: 

 
 ܶܽ݊ ൌ ሺݕ଴ െ ଶݕଵሻሺݕ െ ଵሻݕ ሺݕଶ െ ⁄ଵሻݕ  (14) 
 

 

Figure 2: Hyperbolic mapping function to constrain an input parameter value. 
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3 Calibration of modified cam-clay model from triax-
ial test results 

This section deals with inverse analysis used to calibrate modified cam-clay (MCC) 
parameters from results of one drained and one undrained triaxial compression tests 
on specimens of compressible Chicago glacial clays [Cal02]. This approach couples 
a finite element code and the inverse analysis algorithm UCODE to minimize the 
differences between computations of stress-strain response and experimental data. 
The soil specimens used for the laboratory tests are undisturbed samples of lightly 
overconsolidated low-to-medium plastic clays from downtown Chicago [Fin02]. 
The MCC model [Ros58] is an isotropic, work hardening, non-linear, elasto-plastic 
model. The responses are defined in terms of three state variables: the mean normal 
stress p′, the deviatoric stress q, and the void ratio e. The first two variables are de-
fined as: 
 
′݌  ൌ ଵܫ 3⁄  (15) 

ݍ  ൌ ඥ3	ܬଶ (16) 

where: I1=σ11+σ22+σ33 is the first Cauchy stress invariant, and J2=1/6[(σ11-σ22)
2+(σ11-

σ33)
2+(σ22-σ33)

2+6σ12+6σ13+6σ23] is the second deviatoric stress invariant. 

The four MCC input parameters are: λ, κ, M and G. Table 1 shows their meaning 
and the conventional way of estimating them. Parameters λ and κ define the model 
hardening law, M locates the Critical State Line (CSL) in the p′-q space, and G, 
along with κ, defines the elastic behavior inside the yield surface. Beside the initial 
values of the state variables, the initial conditions include a parameter expressing the 
stress history of the soil, pc*, and the critical state void ratio, ecs, defining the posi-
tion of the CSL in the e-p′ space. The initial estimates of κ and λ are based on results 
from consolidation tests; M is estimated assuming a straight failure line passing 
through zero in p′-q space; G is estimated by averaging the secant shear stiffness at a 
shear stress level of 50% of the failure value. The initial value of pc*, assuming the 
soil OCR ≅ 1, is set equal to the consolidation stress of the test modeled, and ecs is 
estimated as the value of the CSL at p′=1 kPa. 

 
Table 1: Modified Cam Clay input soil parameters to optimize. 

Parameter Meaning Initial estimate 

λ 
Slope of rebound isotropic 

consolidation curve 
Cr / 2.303 

κ 
Slope of virgin isotropic 

consolidation curve 
Cc / 2.303 

M 
Slope of the failure line 

in q-p’ space 
6 sin φ / (3 – sin φ) 

G Shear modulus q/γ at 50% qfailure 
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Two triaxial compression tests form the basis of the optimization shown herein: one 
performed in drained conditions (D1) and one in undrained conditions (U1). Both 
specimens were isotropically consolidated and then sheared by increasing the verti-
cal principal stress to failure. The finite element code JFEST was used to simulate 
the triaxial tests [Fin91]. The behavior of the samples was considered elemental, 
thus one single 8-noded isoparametric element was used to model the specimen. To 
evaluate the match between the soil response and the FE predictions, two curves 
were used to calibrate the objective function for each type of test: the changes in 
principal stress difference (q-εa) and the volumetric changes (εv-εa) with axial strain 
for the drained test D1; the changes in principal stress difference (q-εa) and pore 
pressures (u-εa) with axial strains for the undrained test U1. Figure 3 shows the ex-
perimental results and the observation points used for the drained and undrained 
stress-strain curves respectively. The stress-strain curves of the drained test were 
discretized by considering one observation point every 0.5% axial strain up to εa = 
12%. Curves for the undrained test were discretized using one observation point 
every 0.15% axial strain up to εa = 4.5%. Therefore, 108 observations were used to 
calibrate the MCC model. The weight of the observations was assigned through 
coefficients of variation equal to 5%. 

 

       

Figure 3: Discretization of experimental results for tests D1 and U1. 

Visual examination of the stress-strain plots provides the simplest way to evaluate 
the fit between experimental and modeled response and thus evaluate the effective-
ness of the inverse analysis. Figure 4 shows a comparison between experimental 
data and computed results when the initial estimates of soil parameters are used to 
simulate the model response. The computed slightly underpredict the deviatoric 
stress response of the drained test, and they are not able to capture the initial re-
sponse of the undrained test. The behavior of the soil, as predicted by the numerical 
simulation, is softer that the real behavior of the clay sample. Figure 5 shows a com-
parison between experimental data and computed results when the optimized esti-
mates of soil parameters are used to simulate the model response. The computed 
results match the overall test results extremely well for both tests at either small or 
large strain levels. Table 2 shows the values of the four MCC input parameters be-
fore and after the optimization. Only small changes in values of κ, λ and M are 
needed to obtain the best-fit values, whereas the optimized value of G is almost 3 
times larger than the initial one. Note that four MCC input parameters are not opti-
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mized independently and that the same set of parameters is used to simulate the two 
tests. Results of the optimization are consistent with what a “knowledgeable” ge-
otechnical engineer would have guessed by looking at Figure 4. The initial set of 
input parameters underestimates the stiffness of the soil samples, which in the MCC 
model is mainly (but not uniquely) expressed by parameter G. Indeed G was the 
parameter that varied the most. However, one could not say a priori by how much 
the value of G was underestimated in the initial predictions. Moreover, it is very 
doubtful that one could have estimated by trial-and-error the small fractional change 
of the first three parameters to arrive at the fit illustrated in Figure 5. Note that if one 
tries to optimize the value of the stiffness parameter only, keeping the other parame-
ters to their initial value, the fit between experimental data and computed results 
never become as good [Cal02]. 

 

 

Figure 4: Visual fit between experimental data and computed results for initial esti-
mates of soil parameters. 

 

 

Figure 5: Visual fit between experimental data and computed results for optimized 
estimates of soil parameters. 
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Table 2: Input parameter values before and after optimization. 

 Input parameter Visual fit 

 λ κ M G (kPa) D1 (q-εv) U1 (q-u) 

Initial 0.017 0.130 1.09 4000 
marginal 

good 
marginal 
marginal 

After 
optimization 

0.021 0.096 1.04 11054 
good 
good 

good 
good 

 

Table 3 shows a summary of the values of statistics indicating model fit. The statis-
tics clearly show that the optimization of the input parameters improves the fit sig-
nificantly. Indeed, the objective function value decreased by almost 90%, the model 
variance is less than 1.0, indicating that the fit is consistent with the error of the 
observations as expressed by the weighting, and the correlation coefficient is very 
close to 1.0. Before the optimization the same statistics show that the fit between 
experimental data and simulated response is inadequate. 

Figure 6 shows, in a graphical format, the values of the four MCC input parameters 
before and after the optimization as well as, on the secondary y-axis, the composite 
scaled sensitivities of the input parameters, cssj (Eq. 7). For nonlinear problems, the 
sensitivity is different for different input values, thus cssj are plotted for the initial 
and the optimized parameters values. Results, however, show that the difference 
between sensitivity values at the beginning and at the end of the regression analysis 
is not significant. This indicates that, despite the non-linearity of the model, the 
influence of a given parameter on the results is relatively constant. If, during the 
iterative regression analysis, the sensitivities were to vary too much from iteration to 
iteration it is doubtful that the modified Gauss-Newton optimization method used in 
UCODE would have been so efficient. Composite scaled sensitivities vary from 
values smaller than 4 for parameters κ and G, to values larger than 7 for parameter λ 
and 15 for parameter M. These values indicate that changes of M have the largest 
impact on the computed values (the higher the sensitivity value of a parameter, the 
more impact that parameter has on the computed results). This was to be expected 
since the compression tests were conducted on specimens of lightly overconsolidat-
ed clays reconsolidated in the laboratory to stresses greater than or equal to the field 
value of vertical effective stress. This loading history establishes the stress at the 
start of the shearing portion of the test very close to or at yield, and hence the pa-
rameters associated with plastic hardening and failure (M and λ) would have the 
most effect on the computed results. However, this does not mean that one can ex-
clude the least sensitive parameters from the regression analysis. Results show that 
the sensitivities relative to different parameters are all within the same order of 
magnitude. This indicates that all parameters have a quantifiable effect on the mod-
eled results. Indeed, the least sensitive parameters, G, is the one that changes the 
most to reach its optimal value. 

Figure 7 shows the values of some of the parameter statistics derived from the vari-
ance-covariance matrix. A bar chart is used to indicate by what percentage the opti-
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mized parameter values changed compared to their initial estimate. The plot also 
shows the parameters’ 95% confidence intervals (Eq. 9). Confidence intervals re-
sults indicate that estimates of the κ, λ and M values calculated by the regression 
algorithm are accurate. 

Finally, Table 4 shows the values of the correlation coefficients for the four input 
parameters (Eq. 11). All the values are very far from either 1.0 or –1.0, indicating 
that none of the parameters is correlated to any other one. This trend suggests that 
the observations used in the regression provide enough information for the four 
parameters to be simultaneously estimated. 

 
Table 3: Input parameter values before and after optimization. 

 Model fit statistics 

 
Objective 
function 

Model 
variance 

Correlation 
coefficient 

Iterations 

Initial 789 7.59 80.1%  

After optimization 93.8 0.90 97.5% 5 
 

 

 

Figure 6: Input parameters value and their composite scaled sensitivity before and 
after optimization. 
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Figure 7: Percentage change between optimized and initial parameter values and 
confidence intervals. 

 
Table 4: Correlation coefficients among input parameters. 

 Correlation coefficients 

 λ κ M G 

λ 1 .374 -.035 .451 

κ .374 1 .539 .150 

M -.035 .539 1 -.372 

G .451 .150 -.372 1 
 

In this section the inverse analysis algorithm UCODE was used to calibrate, from 
triaxial test results, the four input parameters of the MCC soil model. Inverse analy-
sis calibration proved to be more effective in defining these model parameters than 
conventional estimation methods. Indeed, the use of an optimization algorithm to 
calibrate the MCC model yielded: 

1. almost perfect fit between experimental results and the response computed 
from the finite element simulation of the tests; 

2. objective estimation of the model input parameters; 

3. useful model fit statistics, which can be used to evaluate the adequacy of the 
soil model to simulate the experimental soil response; 

4. very valuable parameter statistics, which can help geotechnical engineers in in-
terpreting the features of a soil model. 

The most important parameter statistic is probably the composite scaled sensitivity, 
a powerful statistical measure to detect the parameters that most affect the test re-
sults. 
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4 Update design predictions using monitoring data: a 
supported excavation case study 

4.1 Inverse analysis and the “observational method” 

For many geotechnical engineering projects, especially in urban environments, it is 
critically important to predict the magnitude and distribution of the ground move-
ments caused by the construction procedures. In such cases, a monitoring program is 
generally planned to record, during construction, ground movements and/or move-
ments of adjacent structures. The  monitoring data can be used to evaluate how well 
the actual construction process is proceeding in relation to the predicted movements 
as well as to control the construction process and update predictions of movements 
given the measured deformations at early stages of constructions. The procedure to 
accomplish the latter task is usually referred to as the “observational method” 
[Pec69], a framework wherein construction procedures and details are adjusted 
based upon observations and measurements made as construction proceeds. Employ-
ing observed movements in a timely enough fashion to be of practical use in a typi-
cal project is generally a difficult task. To obtain inclinometer or optical survey data, 
process it, and use it to “calibrate” the results of a numerical model of the geotech-
nical system is a time-consuming process and thus, without employing inverse anal-
ysis techniques, this updating process can be done in a timely fashion only with the 
commitment of significant human and economic resources. 

As already discussed in the previous sections, inverse analysis algorithms allow the 
simultaneous calibration of multiple input parameters. However, identifying the 
important parameters to include in the inverse analysis can be problematic and, in 
most practical problems, it is not possible to use the regression analysis to estimate 
every input parameter of a given model. The number and type of input parameters 
that one can expect to estimate simultaneously depend upon many factors, including 
the characteristics of the selected soil model, how the model parameters are com-
bined within the element stiffness matrix in a finite element formulation, the site 
stratigraphy, the number and type of observations available, the characteristics of the 
simulated system, and computational time issues. Figure 8 shows a procedural 
flowchart that can be used for the identification of the soil parameters to optimize 
with inverse analysis algorithms [Cal04]. The total number of parameters can be 
reduced, in three steps, to the number of parameters that are likely to be optimized 
successfully. In Step 1, the number of relevant and uncorrelated parameters of the 
constitutive model chosen to simulate the soil behavior is determined. The number 
depends upon the characteristics of the model, the type of observations available, 
and the stress conditions in the soil. Composite scaled sensitivity values can provide 
valuable information on the relative importance of the different input parameters of 
a given model. Parameter correlation coefficients can be used to evaluate which 
parameters are correlated and are, therefore, not likely to be estimated simultaneous-
ly. In Step 2, the number of soil layers to calibrate and the type of soil model used to 
simulate the layers determine the total number of relevant parameters. An additional 
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sensitivity analysis may be necessary, within this step, to check for correlations 
between parameters relative to different layers. In Step 3, a final reduction of the 
number of parameters to optimize simultaneously may be prompted by the total 
number of observations available and computational time issues. 

 

  

Figure 8: Identification of soil parameters to optimize by inverse analysis [Cal04]. 

This section shows how inverse analysis based on displacement monitoring data can 
be used to objectively update the predicted performance of supported excavation 
systems. To this aim, movements of the soil surrounding an excavation are recorded 
by inclinometers, which measure lateral deformations at various depths at discrete 
locations around the construction site. Within the proposed inverse analysis proce-
dure, the recorded data are used to control the construction process and update pre-
dictions of movements at early stages of construction. In particular, any time a new 
set of monitoring displacements are available, the finite element model of the exca-
vation system is “recalibrated” to provide the best fit to the field observations. 

4.2 The case study 

An inverse analysis procedure that uses construction monitoring data to update pre-
dictions of deformations for supported excavation systems is presented. The numeri-
cal procedure is used to optimize the finite element model of a deep excavation 
through Chicago glacial clays [Cal03, Cal04, Fin05]. The excavation consisted of 
removing 12.2 m of soft to medium clay within 2 m of a school supported on shal-
low foundations. The support system consisted of a secant pile wall supported by 
one level of cross-lot bracing and two levels of tie-backs. Ground movements during 
construction were recorded using inclinometers installed around the excavation site. 
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The commercial software PLAXIS 7.11 was used to compute the response of the 
soil around the excavation in plane-strain conditions (Figure 9). The Figure shows 
the central portion of the finite element mesh and the elevations at the interfaces of 
the different soil layers. The soil stratigraphy was assumed to be uniform across the 
site. Eight soil layers were modeled: a fill layer overlaying a clay crust, a compressi-
ble clay deposit consisting of four distinct clay layers, and a relatively incompressi-
ble deposit consisting of two clay layers. The fill layer was modeled as an elastic-
perfectly plastic Mohr–Coulomb material, whereas all clays layers were modeled 
using the H-S model [Sch99]. This effective stress model is formulated within the 
framework of elastoplasticity; plastic strains are calculated assuming multisurface 
yield criteria; isotropic hardening is assumed for both shear and volumetric strains; 
the flow rule is nonassociative for frictional shear hardening and associative for the 
volumetric cap. The calculation phases used in the finite element simulations were 
21, starting with the construction of both the tunnel tubes and the school adjacent to 
the excavation. Table 5 shows the five phases for which the model predictions are 
updated. Observations from two inclinometers on opposite sides of the excavation 
were used to compare computed displacements with the field data. 

 

     

Figure 9: Schematic of numerical model of excavation system [Cal04]. 

 
Table 5: Excavation stages considered for updating model predictions. 

 
 Construction day 

Stage Plaxis phase WEST EAST 

Initial Beginning of project 0 0 

1 Drill piles 11 18 

2 Excavate and put struts 60 73 

3 Excavate and prestress tiebacks (1st level) 88 95 

4 Excavate and prestress tiebacks (2nd level) 105 109 

5 Excavate to final depth [-7.9m] 112 123 
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Figure 10 shows the soil profile, a schematic of the support system and the observa-
tion points retrieved from the inclinometer data for the five construction stages con-
sidered. Inclinometer readings were taken in the field every two feet. Not every 
reading, however, could be used as an observation for the inverse analysis because 
the finite element displacements were computed only at the intersection between the 
finite element mesh and the inclinometer location. Thus, 13 observation points were 
used for the east side and 11 observation points for the west side. The observations 
for the last two stages on the west side are not reported because the inclinometer was 
destroyed by construction activities after Stage 3. 

 

     

Figure 10: Schematic of retaining system and observations points used from incli-
nometer readings [Fin05]. 

Table 6 shows the initial values of the six basic H-S input parameters for the five 
clay layers that are calibrated by inverse analysis. These parameters are: friction 
angle, ; cohesion, c; dilation angle, ; reference secant Young’s modulus at 50% 
stress level, E50

ref; reference oedometer tangent modulus, Eoed
ref ; exponent m. The 

latter parameter relates the reference moduli to the stress level dependent moduli E 
(E50, Eoed, and Eur): 

 

ܧ  ൌ ௥௘௙ܧ ቀ
௖	௖௢௧ఝିఙయᇱ

௖	௖௢௧ఝା௣ೝ೐೑
ቁ (17) 

 

where: pref  = reference pressure equal to 100 stress units; 3’ =  minor principal 
effective stress. 
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Layers 1 to 5 refer to the Upper Blodgett, Lower Blodgett, Deerfield, Park Ridge, 
and Tinley layers, respectively. The initial estimates of the input parameters for 
Layers 1 to 4 were based on triaxial test results. Because few laboratory data existed 
for the very stiff Layer 5 soil and very small movements were observed in that stra-
tum, the initial values of the parameters for Layer 5 were selected to minimize 
movements in that stratum. 

 
Table 6: Initial values of Hardening-Soil parameters for the clay layers. 

Parameter Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 

 23.4 23.4 25.6 32.8 32.8 

c (kPa) 0.05 0.05 0.05 0.05 0.05 

y 0 0 0 0 0 

E50
ref (kPa) 226 288 288 413 619 

Eoed
ref (kPa) 158 202 202 289 433 

m 0.8 0.8 0.85 0.85 0.85 
 

4.3 Definition of the inverse analysis problem 

The input parameters optimized by inverse analysis using UCODE were chosen 
following the procedure described in Fig. 8. The observations, soil movements, and 
the many types of loading paths associated with the excavation simulation are very 
different from the stress–strain data used as observations in the triaxial compression 
tests. The results of a sensitivity analysis performed on the H-S basic parameters 
indicated that the parameters that are most relevant to the excavation problem are 
E50

ref, m and  [Cal04]. Figure 11 shows the composite scaled sensitivities of the 
three relevant parameters for layers 1 to 5. The bar chart refers to sensitivities com-
puted using all the observations, the line charts refer to sensitivities computed from 
the observations of the different layers. From a simulation perspective, results show 
that the parameters that most influence the simulation are the ones relative to layers 
1, 3, and 4. Layer 1 is the softest soil layer, thus its major influence on the displace-
ment results is expected. Layer 3 is the stratum wherein the excavation bottoms out. 
Layer 4 is the stiff clay layer below the bottom of the excavation into which the 
secant pile wall is tipped. The high sensitivity values of this stratum indicate that the 
strength and the stiffness of the clay below the excavation have significant impact 
on movements. The Figure also shows that the observations relative to a soil layer 
are mainly influenced by changes in that soil layer’s parameters. Table 7 shows the 
correlation coefficients between the three parameters at every layer. The rather high 
correlation between E50

ref and m indicate that these parameters are not likely to be 
simultaneously and uniquely optimized, even though the results of the analysis are 
sensitive to both. For calibration purposes parameter E50

ref , rather than parameter m, 
was chosen to “represent” the stiffness of the H-S model because changes in E50

ref 
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values also produce changes in the values of parameters Eoed
ref (equal to 0.7 times 

E50
ref ) and Eur

ref (equal to 0.7 times E50
ref), thus its calibration can be considered as 

representative of the calibration of all H-S stiffness parameters. 

 

 

Figure 11: Composite scaled sensitivities of Eref
50, m and  for layers 1 to 5. 

A final reduction of the parameters to optimize was necessary to establish a “well-
posed” problem where the solution converged [Cal04]. To this aim, layers 1 and 2 
were combined because: layer 2 had a much lower impact on the computed results, 
as indicated by the low values of composite scaled sensitivities; the two layers are 
derived from the same geologic stratum. Moreover, the stiffness parameters (E50

ref) 
were chosen over the failure parameters () because: the excavation-induced stress 
conditions in the soil around this excavation were, for the most part, far from failure; 
the laboratory estimated values of  are judged to be more accurate than E50

ref. Note 
that, when the stiffness and failure parameters are optimized simultaneously or only 
the failure parameters are calibrated, the regression analysis never converged to 
reasonable values. This emphasizes the point that convergence does not necessarily 
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ensure that reasonable results are attained when optimizing a nonlinear problem 
such as a supported excavation in soil. Table 8 shows the H-S parameters updated 
by the regression algorithm. Fifteen parameters were updated at every iteration, but 
only three of them (E1, E3, and E4) were directly estimated by the optimization 
algorithm. Note that changing the values of E50

ref is not the same as merely changing 
the elastic parameters of an elastoplastic or linear elastic soil model because the 
hardening soil responses are nonlinear below the cap and the stiffness depends on 
more than E50

ref. A summary of the inverse analysis setup is presented in Table 9. 

 
Table 7: Correlation coefficients between Eref

50, m and  at every layer. 

Layer 
Between 

parameters 
Value 

Between 
parameters 

Value 
Between 

parameters 
Value 

1 

Eref
50 

and 
m 

-.70 

Eref
50 

and 
 

-.42 

m 
and 
 

.33 

2 -.85 -.59 .41 

3 -.87 -.58 .25 

4 -.99 -.07 -.14 

5 -.95 .39 -.56 
 

Table 8: Parameters updated by inverse analysis. 

Layer 
Parameter 
optimized 

Related parameter 

1 E1=Eref
50(1) Eoed

50(1)=0.7E1 Eur
50(1)=3E1 

2 E2=Eref
50(2)=E1 Eoed

50(2)=0.7E2 Eur
50(2)=3E2 

3 E3=Eref
50(3) Eoed

50(3)=0.7E3 Eur
50(3)=3E3 

4 E4=Eref
50(4) Eoed

50(4)=0.7E4 Eur
50(4)=3E4 

5 E5=Eref
50(5)=1.5E4 Eoed

50(5)=0.7E5 Eur
50(5)=3E5 

 

 
Table 9: Summary of the inverse analysis setup. 

G
eo

te
ch

ni
ca

l 
va

ri
ab

le
s 

Observations readings from inclinometers (west, east) 

Input parameters 1 parameter (E50ref) per layer (5 layers) 

Initial calibration by inverse analysis from triaxial tests 

Discretization (west) 11 readings per construction stage 

Discretization (east) 13 readings per construction stage 

O
th

er
 

va
ri

ab
le

s Observations' weighting 2 = measurement error variance
Convergence criteria TOL = SOSR = 5% 

Regression variables MAX-CHANGE = 0.5 

Sensitivity calculation PERTURBATION = 0.01 
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4.4 Results 

The simplest way to evaluate the difference between the results of the numerical 
simulations based on the initial estimates of the parameters and the optimized ones 
is to compare the inclinometer data with the computed horizontal displacements for 
the two cases. Figure 12 shows the visual fit between the observations and the re-
sults computed before (i.e., initial) and after (i.e., best-fit) the calibration by inverse 
analysis. The comparison shows that the initial simulation computes displacements 
significantly larger than the measured ones at every construction stage (the maxi-
mum computed displacements at stage 5 are about two times the measured ones) and 
the computed displacement profiles result in significant and unrealistic movements 
in the lower clay layers. When the model is calibrated by inverse analysis, the fit 
between the computed and measured response is extremely good. At the end of the 
construction the maximum computed displacement exceeds the measured data by 
less than 10% and the distributions of lateral deformations are consistent throughout 
the excavation. Note that the good fit shown in the Figure refers to the final optimi-
zation, i.e. all observations (stages 1-5) were used to calibrate the finite element 
model of the excavation. Yet, the simulation was calibrated starting at stage 1 and 
re-calibrated at every subsequent construction stage using the inclinometer data 
available up to that stage [Fin05]. 

Figure 13 shows the initial and the final values of error variance and objective func-
tion at each optimization stage. The graphs allow the comparison between the over-
all magnitude of weighted residuals relative to the initial estimates of the parameters 
and the fit resulting from the calibrated models. Results show that error variance 
values decrease by more than two orders of magnitude at every stage. In all cases, 
the final error variance values are close to 1.0, indicating that the computed differ-
ences are consistent with the measurement errors. More importantly, the results 
show that stage 1 observations improved the predictions by two orders of magnitude 
and that, by the end of stage 3, the recalibration of the model is essentially complete. 
In essence, they indicate that early observations are able to recalibrate the finite 
element simulation in a way that is beneficial to the predictions of movements at 
later stages. Note that, in this case, stage 1 refers to the installation of secant pile 
walls inducing movements throughout the compressible clay layers. A satisfactory 
calibration at this stage indicates that these movements were large enough to “exer-
cise” the constitutive laws of all soil layers subsequently affected by the excavation. 
The variation of the input parameters at the five optimization stages is shown in 
Figure 14 above a bar chart, representing the progress of the excavation, in which 
the excavation depth is normalized with respect to the excavation width. Results 
show that the maximum changes in parameter values occur at Stage 1, when the 
observations relative to the installation of the secant pile wall are used. The results 
indicate that the initial estimates of the stiffness parameters are significantly lower 
than the optimized values of the parameters. This trend could be expected because 
the initial values were based on results of triaxial compression tests on specimens 
taken from thin-wall tubes. Yet, if an analyst was to arbitrarily increase the initial 
stiffness parameters prior to optimization, the magnitude of the increase would be a 

Calvello 259

ALERT Doctoral School 2014



 
 

matter of much judgment and, most likely, the parameter values would still require 
subsequent adjustments to provide good fits to the observed data. 

The fact that initial parameters based on the laboratory data led to optimized param-
eters that resulted in a good fit, and made sense from a geotechnical viewpoint, illus-
trate the utility of the method. As implied in Figure 13, portions of the increase in 
optimized stiffness between stages 2 and 3 may be a result of end effects of the ex-
cavation. The simulated excavation is really a threedimensional problem modeled in 
plane strain. When the excavated depth is small, most of the wall can be adequately 
modeled as plane strain and, hence, little changes in parameters are noted between 
stage 1 and 2. As the excavation deepens, the ratio between excavation depth and 
excavation width increases and higher parameter values compensate for the lack of 
constraints in the out-of-plane direction. 

 

 

Figure 12: Measured and computed horizontal displacements for initial and best-fit 
estimates of parameters [Cal04]. 

 

     

Figure 13: Error variance and objective function at each optimization stage [Fin05]. 
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Figure 14: Best-fit parameter values and normalized excavation depth at different 
optimization stages [Fin05]. 

5  Conclusions 

The inverse modeling procedures described in this work employ a parameter optimi-
zation algorithm (UCODE) to efficiently calibrate soil models by minimizing the 
errors between experimental observations and model response. The chapter showed 
how inverse analysis techniques could be effectively used for two very different 
geotechnical purposes: to calibrate the parameters of a soil constitutive law based on 
triaxial experimental results; to control the construction process of an excavation by 
updating the predictions of movements during construction based on the field moni-
toring data. 
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Analysing time dependent problems

Cristina Jommi and Patrick Arnold

Delft University of Technology, The Netherlands

Inverse analysis for time dependent problems is discussed in this chapter. When time
dependent processes are analysed, further uncertainties come from initial conditions
as well as from time dependent boundary conditions and loads, in addition to model
parameters. Inverse modelling techniques have been specifically developed for this
class of problems, which exploit the availability of a set ofmeasurement and/or mon-
itoring data at given locations at subsequent time instants. Sequential Bayesian data
assimilation is introduced, and a brief review of filtering techniques is given. In fil-
tering the problem unknown is the time evolution of the probability density function
of the system state, described by means of appropriate time dependent variables and
time invariant parameters, conditioned to all previous observations. Particle filtering
is chosen to conceptually illustrate the methodology, by means of two simple introduc-
tory examples.

1 Introduction

Many engineering systems, and most often geotechnical systems, show time depen-
dent response, due to time dependent loads and boundary conditions, as well as to
multiphysics coupling. To assess time dependent,dynamic, systems and to predict
their evolution in time, a proper model to describe the behaviour of the soil has to
be conceived and calibrated, the initial state has to be known, and the time evolution
of boundary conditions and of loads has to be described. Thisadds further uncer-
tainty to the comprehensivemodelwe use to describe the physical system. Moreover,
small scale laboratory tests can usually give only partial information on the material
properties, which have to be upscaled to properly describe the response of the sys-
tem at the field scale. This is true, in general, for any geotechnical property, but even
more for the hydraulic behaviour of soils, which typically shows high non-linearities
due to multiphysics coupling, and which is usually stronglyaffected by scale effects
and heterogeneity. Without loss in generality, in this chapter reference is made to
the hydraulic behaviour, although the derivations can be equally applied to any other
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multiphysics process.

Iterative adjustment of the model parameters, including the soil property values, the
initial conditions of the system, and the time dependent boundary conditions, is a
powerful tool to infer the future state of a system, given thehistory of its observed
previous response.Sequential data assimilationutilises inverse modelling to estimate
the state of the dynamic system at each time a measurement or an observation from
the system becomes available. In this context, we speak about measurementwhen
a variable describing the state of the system is measured directly (e.g. pore water
pressure), and aboutobservation, when the state variable is inferred by measuring a
related quantity, like water content or porosity from electro-magnetic sensors.

When looking at a general time dependent physical system, neither its “real (true)
state”, x̂, nor the“real (true) observation”, ŷ, at the current time,t+1, are known in
reality. The true state is a function of the true history of the statêx|0→t+1, the true and
time invariant soil parameterŝp = {p̂1, p̂2, ...} and the true history of the boundary
conditionsû|0→t+1, while the true observation is a function of the true state ofthe
system at that time

x̂t+1(x̂|0→t+1, p̂, û|0→t+1) (1)

ŷt+1(x̂t+1) (2)

with x̂ ∈ RNx̂ , whereNx̂ is the dimension of the vector describing the system state
at a given location, and̂y ∈ RNŷ is the observation vector of dimensionNŷ.

In order to analyse and infer the response of a time dependentsystems, two types of
models are required; (a) a modelM of some form describing the transient processes
affecting the state, and (b) a modelG relating some observation of the processes to the
system state.

(a) The state of a dynamic system is commonly assessed using adiscrete-time ap-
proach. Thepredicted state(s), x, may be defined as a first order Markov pro-
cess, that is, the system state at the current time,t+ 1, is only a function of the
state at the previous time stept. Hence

xt+1 = M(xt,p,ut) + ǫt+1
x (3)

whereM is the model operator describing the non-linear physical process as
a function of the statext at time t, the time invariant model parametersp ∈
RNp and the prescribed model boundary conditionsut at timet. The Gaussian
(white) noise termǫx ∼ N (0, σ2

ǫx) (see Chapter 1, [Fen14]) is adding stochastic
diffusion and has a mean of zero and a variance ofσ2

ǫx .

The state can be also written as an augmented state variable

zt+1 = (xt+1,pt+1) (4)

[e.g. RHV10, MDS12]. As the parameters in Equations 3 are time invariant,
this augmented state variable may be used to describe the estimation of the
parametersp with respect to the state at timet+ 1.
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(b) The observation att+ 1 can be computed by

yt+1 = G(xt+1,p) + ǫt+1
y (5)

whereG is the measurement function of the system response andǫy ∼ N (0, σ2
ǫy )

is the Gaussian noise term of the observation.

For most time dependent non-linear soil processes, the inference of the state, as well
as of the soil property values, from direct inversion using closed-from analytical
frameworks is virtually impossible, as already discussed in the previous chapters
[Led14, Cal14]. The local gradient-based search algorithms, previously introduced to
iteratively determine the local minimum within a maximum likelihood and weighted
least square framework, become more likely to fail in findingthe global minimum
with increasing non-linearity of the system. Indeed, thesealgorithms are not designed
to handle highly multivariate problems with multiple localoptima in parameter space
and multiple domains of attraction, and they become less andless effective with in-
creasing domain size or in the presence of discontinuous responses [VSW+08]. More
robust global optimisation algorithms have been developed, that use multiple searches
from different starting points within the parameter space,to reduce the risk of attrac-
tion towards a single local domain. The classical inferencemethods for non-linear
dynamic systems are theKalman filtersand its variants, which have been have been
successfully applied to many non-linear problems. An alternative sequential Monte
Carlo method, theparticle filter, has been chosen here to introduce the potentials and
the limitations of global optimisation methods for time dependent processes. After
a brief general introduction to sequential Bayesian data assimilation, a review of se-
quential inference is given. The Particle Filter is then briefly illustrated, and discussed
by means of two introductory examples.

2 Inverse modelling

2.1 Bayesian basics

A background on Bayesian theory is provided in Chapter 1 [Fen14] or in specific
monographs [e.g. BT92, Gre05] and thus will be summarised here only briefly. The
basic form of Bayes’ theorem in a continuous version is

P [Ei|A] =
P [A|Ei]P [Ei]

P [A]
(6)

whereEi is the event, i.e. the state to be predicted,A is the occurrence, i.e. the
observed data/measurments,P [Ei] is the prior distribution or expectation defining
the prior knowledge of the eventi (

∫
P [Ei] = 1), P [A|Ei] ∝ P [Ei|A]P [A] is the

likelihood function (
∫
P [A|E] 6= 1), P [Ei|A] is the posterior distribution estimating
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the eventEi given the observed dataA (
∫
P [E|A] = 1) andP [A] represents the

marginal distribution ofA (
∫
P [A] = 1), i.e. the normalisation factor

P [A] = P [A|E]P [E] + P [E|Ac]P [Ac]

= P

[
n⋃

i=1

(A ∩ Ei)

]
=

n∑

i=1

P [A ∩ Ei] =

n∑

i=1

P [A|Ei]P [Ei] (7)

Inserting Equation 7 into Equation 6 the posterior distribution can be written as

P [Ei|A] =
P [A|Ei]P [Ei]∑n
i=1 P [A|Ei]P [Ei]

(8)

A simple example will illustrate how a Bayesian scheme can beapplied. Let us as-
sume that the volumetric water contentθ has to be inferred to describe the state of an
unsaturated soil, and that, based on previous experience, laboratory tests, or database,
we know thatθ ∼ N (µθ, σ

2
θ) with a variance ofσ2

θ = 0.0009. A set of new direct
laboratory measurements ofθ from soil samples retrieved in the field becomes avail-
able, which allows updating our prior knowledge on the meanµθ. Given the prior of
the meanµθ = Θ ∼ N (µΘ, σ

2
Θ)

f(Θ) =
√
2πσ2

Θ exp

{
− (µΘ −Θ)

2

2σ2
Θ

}
(9)

the likelihood of the mean given one measurementθ is proportional to the likelihood
of the sample mean̄θ for a set ofNs independent measurements.

p(θ|Θ) =
√
2πσ2

θ exp

{
− (θ −Θ)

2

2σ2
θ

}
∝ Ns

√
2πσ2

θ exp

{
−
(
θ̄ −Θ

)2

2σ2
θ/Ns

}
(10)

Therefore, the likelihood is normally distributed with a meanΘ, a varianceσ2
θ/Ns

and the shape being controlled by the sample size. The posterior distribution is then
obtained via multiplication of the prior and likelihood function

p(Θ|θ) ∝ exp

{
−
(
θ̄ −Θ

)2

2σ2
θ/Ns

− (µΘ −Θ)2

2σ2
Θ

}
(11)

wherep(Θ|θ) ∼ N (µ̃, σ̃)with a meañµ =
Θσ2

θ/Ns+σ2
Θθ̄

σ2
Θ+σ2

θ/Ns
and variancẽσ =

σ2
Θσ2

θ/Ns

σ2
Θ+σ2

θ/Ns
.

It’s worth noting that the example can be extended to the caseof unknown mean and
variance, given that the state variable can be described by anormal or log-normal
distribution.

The quality of the prior information and the advantage provided by the new measure-
ments are illustrated in Figure 1, whereNs is the number of samples available. Given
f(Θ) ∼ N (0.42, 0.0009) andp(θ|Θ) ∼ N (0.33, 0.182/Ns) taking only three sam-
ples the likelihood is low, and the prior distribution dominates the posterior (Figure
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Figure 1: Example of Bayesian inference of normally distributed mean estimateµθ of
a sampleθ.

1(a)). With increasing sample size, the confidence in the observation increases and the
prior information becomes less significant for the posterior prediction (Figure 1(b-c)),
The difference between the prior and the posterior distributions indicates that the prior
information was poor in this case.

Two simplifying assumptions were implicitly introduced inthe previous derivation:
(i) that the water content does not change in time, and (ii) that it can be sampled by
means of direct measurement. In a more realistic scenario, (i) the water content in the
field will be time dependent, as it is the result of soil-atmosphere interaction and of the
position of the groundwater table, and (ii) non-invasive observations, often based on
electromagnetic techniques, are usually preferred to track the physical process. There-
fore, the information available usually refers to a sequential distribution of states, and
a model, including its own uncertainty (Equation 5), has to be introduced to translate
the observations into water content sampling. To deal with information referring to a
time dependent sequence of states, the Bayesian scheme can be extended over time.

2.2 Sequential Bayesian Data Assimilation

Given the initial jointprobability density function(PDF) of the statep(x0|y0) ≡
f(x0), wherey0 indicates no observation, the aim of this assimilation process is to
sequentially infer the posterior statep(x0:t+1|y1:t+1) at present time conditioned by
any observation which became available in time. This characterisation of the distri-
bution state of the hidden Markov tracking process is referred to asfiltering [DJ11].
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Given the stateE = z (Equation 4), and the observationA = y (Equation 5), Equation
8 gives the conditional posterior PDF at timet+ 1

pZ|Y(z0:t+1|y1:t+1) =
pY|Z(y1:t+1|z0:t+1)pZ(z

0:t+1)

pY(y1:t+1)
(12)

wherepY|Z(y1:t+1|z0:t+1) is the likelihood,pZ(z0:t+1) is the prior andpY(y1:t+1)
is scaling the numerator to satisfy

∫
pZ|Y(z0:t+1|y1:t+1) = 1. For simplicity the

subscriptsZ andY, indicating the random nature ofz andy, will be omitted from
here on.

The above posterior distribution (Equation 12) joins information of all past states and
is commonly referred to asoptimal filtering problem[e.g. DJ11]. Recursion of Equa-
tion 12 satisfying the marginal filtering posterior distributionp(zt+1|y1:t+1), holding
only information of the current state, can be written as

p(zt+1|y1:t+1) =
g(yt+1|zt+1)p(zt+1|y1:t)

p(yt+1|y1:t)
(13)

whereg is the homogeneous likelihood (state and observation densities are time inde-
pendent) and the prior distribution is estimated as

p(zt+1|y1:t) =

∫

zt

f(zt+1|zt,y1:t)p(zt|y1:t) dzt =
∫

zt

f(zt+1|zt)p(zt|y1:t) dzt

(14)
also known asChapman-Kolmogorov equation, which simplifies to the second term
due to the first order Markov process [DJ11, MDS12]. The likelihoodg is commonly
described by a Gaussian with zero mean and a given variance. The normalisation
factor may be predicted using the augmented state as intermediate variables [MDS12].

p(zt+1|y1:t) =

∫

zt+1

g(yt+1|zt+1)p(zt+1|y1:t) dzt+1 (15)

Equation 15 is commonly referred to as thepredictive/evolutionstep and Equations 12
with 14 are referred to as theupdating/correctionstep [e.g. DdG01, CGM07, DJ11].

2.3 Sequential inference of soil water dynamic processes

In geotechnical engineering, the use of inverse models in sequential schemes is still
lagging behind. Explicit analysis of transient processes by using advanced constitu-
tive models implemented in numerical frameworks is usuallypreferred, also due to
the difficulties in obtaining a comprehensive body of statistically valuable in situ mea-
surements. The state and the parameters of transient processes have been inferred by
using gradient based optimization algorithms, with their application ranging, for ex-
ample, from deep staged excavations [e.g. RLF08, TK09] to laboratory pulse test [e.g.
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GGA+11]. However, in these schemes the different sources of uncertainty are not ac-
counted for, and no or only limited information on the state and parameters are being
carried from one measurement time step to the next one. The Bayesian framework
presented in Section 2.2 is not exploited in these cases.

Sequential data assimilation is a very commonly applied tool, for instance, in weather
forecasting, hydrological modelling and flood protection assessment. For most soil
water dynamic processes the non-linearity in the soil response and transient boundary
conditions, alongside with the non-Gaussianity of the distributions, makes an analyti-
cal solution of the Equations 13-15 untraceable [e.g. CGM07, PCP12]. To overcome
this limitation, [Eve94] developed a recursive data-processing algorithm known as the
ensemble Kalman filter(EnKF), which is an extension to the originalKalman filter
[Kal60] and theextended Kalman filter[Jaz70]. The EnKF is based on aMarkov
chain Monte Carlo(MCMC) method, propagating a large ensemble of model states
to approximate the prior state error in time by using the updated states of the previous
time step, to predict the current ensemble via forward integration of a stochastic dif-
ferential equation describing the model dynamics [e.g. BvE98, Eve03, Eve09]. More
information, examples and codes can be found on Geir Evensen’s EnKF-homepage1.

The EnKF is one of the most commonly used non-linear filter forstate and parame-
ters updating in many fields such as hydrological modelling [e.g. MSGH05, PCP12,
SNH12], but it has not often been adopted in the assimilationof geotechnical systems
[e.g. HMHV10, CCZ10].

Theparticle filter (PF), which is asequential Monte Carlo(SMC) method, presents
one alternative to the EnKF. The PF method is very flexible, easily implementable,
strongly parallelisable and, most importantly, it approximates the probability densi-
ties directly via a finite number of samples, often referred to asparticles [DdG01,
AMTC02]. A large number of different PF methods was developed in recent years.
Some tutorials and state-of-the-art reports provide a goodintroduction and allow for
a more complete overview [e.g. DdG01, DJ11, LW01, AMTC02, CGM07, van09,
CR11]. Some useful resources on SMC and PF methods have been compiled by Ar-
naud Doucet2.

Most PF frameworks are based on asequential importance sampling(SIS) andsam-
pling importance resampling(SIR) algorithm. The SIS is the most basic Monte Carlo
method to approximate the prediction and the updating steps(Equations 12-15). It
uses a finite set of random samples with associated weights todirectly represent the
posterior distribution at current time step, and subsequently updates this particles in
order to obtain the posterior at the next time step. However,for non-linear systems
the sample may tend to degenerate, that is, only a limited number of particles being
around the“real” state exclusively carry the weights, whilst the remaining majority
of samples only carry a negligible weight. To increase the effectiveness of the filter
and avoid errors accumulation, the SIR algorithms may be used. SIR introduces a re-
sampling stage at each time step, in which particles with a low weight are eliminated

1EnKF sources:http://enkf.nersc.no/
2SMC and PF sources:http://www.stats.ox.ac.uk/~doucet/smc_resources.html
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and regenerated in zones in which particles carry a high weight, which renders the
approximation of the posterior. Other PF methods include auxiliary particle filters,
marginalised particle filters, Markov chain particle filters and may incorporate some
particle smoothing algorithm [e.g. AMTC02, CGM07, DJ11]. Sequential smoothing
makes use of the estimates of the past states and thus tends toprovide a better filter
for the current state.

In recent years the PF method became popular and performed well in the assimilation
of the state and parameters of different hydrological soil water dynamic processes [e.g.
MHGS05, MDS12, KdD05, SF09, QLY+09, RHV10, MMW+11, NTSK11, PDD+12,
RVS+12]. A comparison between the EnKF and PF performance using acoupled
surface-subsurface flow model has been presented by [PCP12].

In geotechnical engineering the use of the PF method is not common. However, Mu-
rakami and co-workers [SMN+12, MSN+13] recently demonstrated that the elastic-
plastic Cam Clay model parameters can be successfully inferred using a coupled
hydro-mechanical Finite Element program in a PF framework,both on synthetic ob-
servation data for soil element loading tests and the construction of a soil embankment,
as well as on real observation data related to the construction of the Kobe Airport Is-
land.

3 A simple SIR particle filter implementation

The posterior (Equation 13) is approximated using a discrete set ofNs samples

p(x0:t+1|y1:t+1) =

Ns∑

k=1

wt+1
k δ

(
x̂t+1 − xt+1

k

)
(16)

wherewt+1
k are the normalised particle weights

wt+1
k =

wt+1
k∗∑Ns

k=1 w
t+1
k∗

(17)

When using the transient prior as importance function, i.e.q(xt+1
k |xt

k,y
t+1) =

p(xt+1|xt
k), the updated sequential estimates of the importance weights are

wt+1
k∗ ∝ wt

k∗
p(yt+1|xt+1

k )p(xt+1|xt
k)

q(xt+1
k |xt

k,y
t+1)

= wt
k∗ p(yt+1|xt+1

k ) (18)

which represent the key part of the SIS filter [e.g. AMTC02, MHGS05, DJ11].

The implementation of a simple SIR filter based on [MHGS05] isschematised in
Figure 2. The process can be split into three stages.

Initialisation stage:
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Figure 2: Schematic description of a simple SIR PF.

In this first stage the process and the observation model,M andG, (Equations 3 and
5) as well as the stochastic model, e.g. the number of particles (samples)Ns and
the error functionsǫ, are set up. The initial statex0 is computed based on a set of
parametersp0 representing the prior knowledge, and an initial set of uniform weights
w0

k is assigned to each particlek.

Simulation stage:

In the simulation stage, the filtering of the state att + 1 is performed. By means of
the state and the observation models,xt+1 andyt+1 are computed for each particle.
Subsequently the homogeneous likelihood functiong is estimated to compute the fil-
tering posterior (Equations 13 and 16). Utilising Equations 17 and 18 the weights
are assigned to each the particle. Given that the effective particle sizeNs∗ is smaller
than a minimum effective particle sizeNsr, representing a resampling threshold below
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which degeneration of the samples occurs, the resampling stage is entered.

Resampling stage:

Different schemes for state and parameters resampling havebeen proposed. Using
one of the systematic schemes [e.g. AMTC02, DJ11], the particles are resampled by
relating acumulative distribution function(CDF) for the particle,c, to a uniform CDF,
u. After the update of the particle states and parameters, theresampled parameter
estimatẽpt

k is perturbed to obtain

pt+1
k = p̃t

k + ηtp (19)

with ηtp ∼ N (0, s2σ2
p) being a Gaussian noise term, as suggested by [LW01] and

[MHGS05]. The variance of the parameter particles,σ2
p, is multiplied by a small

tuning parameters, which determines the exploration radius around each particle, and
for which values between 0.005 and 0.025 have been commonly used [MDS12].

4 Examples

Two introductory examples will be discussed in this sectionto demonstrate the work-
ing principle and the efficiency of the simple SIR PF implementation. In the first
benchmark example synthetic observations are used, while the second example refers
to a typical field case where direct measurements are available.

4.1 Example 1: an analytical benchmark

The first example has been used as benchmark as well as for illustrative purpose by
several authors [e.g. KdD05, MHGS05]. The non-linear statemodel and the obser-
vation function are both one-dimensional and described by the following analytical
functions

xt+1 =
1

2
xt + a

xt

1 + (xt)2
+ b cos (1.2t) + ǫx (20)

yt+1 =
(xt+1)2

20
+ ǫy (21)

wherea = 25 andb = 8 are theparameters, ǫx ∼ N (0, σ2
ǫx) andǫy ∼ N (0, σ2

ǫy ) are
the random noise terms for the state and the observation respectively, withσ2

ǫx = 10
andσ2

ǫy = 1. The initial state is taken asx0 = 10 andNs = 500 particles are used.
The initial parameter estimates area0 = 30 andb0 = 4.

Figure 3 shows the state, the observation and the inferred parametric response with
time, using a sampling time interval of∆t = 1. The results of the simulation show
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that the sequential assimilation technique succeeds in predicting quickly and accu-
rately the state, with some negative peaks not being detected until the end of the sim-
ulation. During the time lapse analysed, also the parameters converge close to the real
values (ma100 = 25.1 andmb100 = 7.869). The remaining variation of the parameters
depends partly on the tuning parameters, which ensures that the filter were able to
react to any significant variation in the observation.

In this benchmark case, resampling was required in most of the time steps to avoid de-
generacy. Figure 4 exemplary illustrates the resampling scheme for the last time step
t = 100. The reduction of the variance of the filtering posterior from (b) to (d) due to
resampling allows for a more effective use of the particles.A more detailed descrip-
tion of the filtering and resampling process can be found for instance in [NTSK11],
[MDS12] and [SMN+12].
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Figure 3: Sequential assimilation of state and parameters using a SIR PF with 500
particles showing the statex and observationy response as well as the evolution of
the parametersa andb with time t. Subscriptsr indicate the synthetic“real” values,
m the sample mean and 90% the 90% bounds, respectively.
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posterior, (c) the weights assigned to each particle and (d-e) the resampled posterior
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andm the sample mean, respectively.

4.2 Example 2: response of pore water pressure below a dike

In the assessment of dikes, different failure mechanisms have to be analysed. Most of
them are likely to be initiated by the transient pore groundwater response to the time
dependent external forcing conditions. The worst conditions are not necessarily as-
sociated to the steady state pore water distribution in equilibrium with the maximum
expected water height. Therefore, proper assessment of thepotential failure mech-
anisms requires the analysis of the fully coupled time dependent hydro-mechanical
response of the water defense structure, including the dikebody and the subsoil.

Explicit coupled numerical finite elements analyses can be performed to this aim, but
the computational effort needed to include uncertainty in the model is still high. A
valuable alternative consists in relying on simplified analytical solutions of the cou-
pled hydro-mechanical consolidation process, and performan inverse analysis able
to sequentially assimilate the parameters of the simplifiedmodel by comparison with
observation in time. Figure 5 gives a simplified illustration of the hydro-mechanical
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Figure 5: Simplified description of the hydro-mechanical response of a dike subsoil
subjected to cyclic hydraulic boundary conditions

Table 1: Parameters of the simplified consolidation model.

Variable Unit p̂ p0

Thickness of clay layer dc [m] 2.0 −
Thickness of sand layer Ds [m] 7.0 6.25
Sat. hydr. conductivity of clay layer Kc [m s-1] 0.00001 −
Sat. hydr. conductivity of sand layerKs [m s-1] 0.0005 0.005
Compressibility of clay layer αc [m kN-2] 0.005 −
Compressibility of sand layer αs [m kN-2] 0.0000001 −

processes taking place in the typical foundation subsoil ofa dike, with a pervious
aquifer underlying an impervious surficial layer, subjected to a cyclic variation of the
pore water pressure at the boundary representing the river bed. The effective simple
analytical solution proposed by Baudin & Barends [BB88] forthis problem has been
used in this second example.

The adopted analytical solution gives the pore pressure distribution in the two layers
at any given distance from the river bed, and is a function of the variables listed in
Table 1. The response of the system depends on the thickness,on the compressibility
and on the hydraulic conductivity of the two layers, and on the period of the forcing
boundary condition. Table 1 summarises the synthetic soil property valueŝp repre-
senting thereal state of the system̂x (Equation 1) assumed to be represented by the
analytical solution. Prior investigation using Monte Carlo simulations had shown that
the response of the hydraulic headH(x) in the sand layer is most sensitive to varia-
tions in the saturated hydraulic conductivity of the sand layerKs, while the thickness
of the sand layerDs has a less dominating role. For the sake of simplicity, in this
example the random model parameters are limited to this two variables, for which the
initial guess isp0 = {Ds,Ks} = {6.25, 0.005}, and the remaining four parameters
are assumed to be known.
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We assumed - as this is the case in the field test to which this example refers to - that
a piezometer is installed in the sand layer at a distancex = 18.6m from the river bed,
where a direct measurement of the pore water pressure is taken at each hour. These
pore pressure measurements are used for sequential data assimilation, using the SIR
PF previously described.

The period of the forcing function isT = 10d (86 400s), and the measurements are
taken at each hour (3 600s). The total time was set to 200h (720 000s), the number of
particles toNs = 400 ands to 0.005. The maximum hydraulic head at the river was
normalised toh0(x = 0) = 1.0m.

Figure 6 shows the parameter estimate with time. The hydraulic conductivity con-
verges very rapidly to the synthetic“real” value, confirming the high potential of
the adopted algorithm in sequential data assimilation. On the contrary, the conver-
gence for the thickness of the sand layer is much slower, and the uncertainty does not
decrease monotonically. Indeed, the two variables were chosen with the purpose of
assessing the performance of the algorithm in identifying parameters which have dif-
ferent relative weights on the prediction. The hydraulic conductivity of the pervious
layer, which dominates the response of the system, could be rapidly inferred. As for
the thickness of the same layer, a reasonable convergence could be achieved, in spite
of its minor role in the response of the synthetictruesystem.
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Figure 6: Estimation of the thickness of sand layer,Ds, and the saturated hydraulic
conductivity of the sand layer,Ks, using a SIR PF. The subscriptsr indicate the
syntheticreal soil property values, the superscript0 the initial state, andm ands the
sample mean and standard deviation, respectively.
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5 Final remarks

In this last chapter, a basic introduction to the inverse analysis of time dependent
problems was given. The provided overview is far from being acomplete review, and
to this aim the reader is referred to the references for further reading.

The two basic aims of this contribution were: (i) to combine the theoretical and numer-
ical developments on random fields, presented in the first part of this book, with the
general concepts on inverse analysis illustrated in the previous two chapters; and (ii)
to open a window on sequential data assimilation, which can be fruitfully exploited
in the practice, when time dependent problems have to be analysed. The examples
discussed at the end of this chapter are meant just as an introduction to the powerful
approaches which can be adopted in these cases. Nonetheless, they suggest that if
information from measurement and monitoring inspaceof a time dependent system
is accompanied by a thorough analysis of the observed behaviour in time, identifica-
tion of the variables and parameters dominating the response of the models can be
effectively accomplished by means of rather simple dedicated algorithms.
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