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Common Distributions 
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Common Discrete Distributions 

Bernoulli Trials: 
      - form the basis for 6 very common distributions 
         (binomial, geometric, negative binomial, Poisson, 
          exponential, and gamma) 
Fundamental Assumptions; 

1. Each trial has two possible outcomes (0/1, true/false, 
success/failure, on/off, yes/no, etc) 

2. Trials are independent (allows us to easily compute 
probabilities) 

3. Probability of “success” remains constant from trial 
to trial 

 
Note: if we relax assumptions 1 and 2 we get Markov 
Chains, another suite of powerful stochastic models 
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Bernoulli Trials 

 
Let 
 
 
then the  Bernoulli probability distribution is 
 
 
 

1  if the 'th trial is a "success"
0 if not
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Common Discrete Distributions 

Bernoulli Family of Distributions 
 

Discrete Trials Every “Instant” Becomes a Trial 
1) Binomial: 
               = number of “successes” 
                  in n trials 

4) Poisson: 
              = number of “successes” 
                  in time t 

2) Geometric: 
               = number of trials until 
                  the first “success” 

5) Exponential: (continuous) 
              = time to the first 
                  “success” 

3) Negative Binomial: 
               = number of trials until 
                  the k’th “success” 

6) Gamma: (continuous) 
               = time to the k’th 
                  “success” 

nN

1T

kT

tN

1T

kT
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Binomial Distribution 

 
If           number of “successes” in n trials, then 
 
 
 
since            if the trial results in a “success” and 0 if not. 
 
Mean: 
 
Variance: 
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Binomial Distribution 

 
Consider  [ ] { } { } { }
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In general the binomial distribution is 
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Binomial Distribution 
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Binomial Distribution: Example 

Suppose that the probability of failure,     , of a slope is 
investigated using Monte Carlo simulation. That is, a 
series of                 independent realizations of the slope 
strength are simulated from a given probability 
distribution and the number of failures counted to be 
              . What is the estimated failure probability and 
what is the ‘standard error’ (standard deviation) of this 
estimate? 
 
Solution: each realization is an independent trial with two 
possible outcomes, success or failure, having constant 
probability of failure (     ). Thus, each realization is a 
Bernoulli trial, and the number of failures is a realization 
of       , which follows a binomial distribution. 

fp

5000n =

120fn =

fp

nN
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Binomial Distribution: Example 
We have 
 
The failure probability is estimated by 
 
 
 
In general 
 
so that 
 
 
 
which, for                           gives us 
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Geometric Distribution 

Let         number of trials until the first “success” 
 
Consider 
 
In general 
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Geometric Distribution 

Because all trials are independent, the geometric 
distribution is “memoryless”. That is, it doesn’t matter 
when we start looking at a sequence of trials – the 
distribution of the number of trials to the next “success” 
remains the same. That is, 
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Geometric Distribution 

0.4p =

[ ] 1
1P kkT pq −==
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Geometric Distribution: Example 

A series of piles have been designed to be able to 
withstand a certain test load with probability             . If the 
resulting piles are sequentially tested at that design load, 
what is the probability that the first pile to fail the test is 
the 7’th pile tested? 
 
Solution: If piles can be assumed to fail independently 
with constant probability, then this is again a sequence of 
Bernoulli trials. We thus want to compute 
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Negative Binomial Distribution 

Let         the number of trials until the k’th “success” 
 
Consider  
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Negative Binomial Distribution 

The negative binomial distribution is a generalization of 
the geometric distribution (the k’th “success”). Its mean 
and variance can be obtained by realizing that      is the 
sum of k independent       . That is 
 
 
so that 
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Negative Binomial Distribution 
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Negative Binomial Distribution: Example 

A series of piles have been designed to be able to 
withstand a certain test load with probability             . If the 
resulting piles are sequentially tested at that design load, 
what is the probability that the third pile to fail the test is 
the 7’th pile tested? 
 
Solution: If piles can be assumed to fail independently 
with constant probability, then this is again a sequence of 
Bernoulli trials. We thus want to compute 
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Poisson Distribution 

We now let every instant in time (or space) become a 
Bernoulli trial (i.e., a sequence of independent trials) 
 
“Successes” can now occur at any instant in time. 
 
PROBLEM: in any time interval, there are now an 
infinite number of Bernoulli trials. If the probability of 
“success” of a trial is, say, 0.2, then in any time interval 
we get an infinite number of “successes”. This is not a 
very useful model! 
SOLUTION: we can no longer talk about probability of 
“success” of individual trials, p (which becomes zero). 
We must now talk about the mean rate of “success”,    . λ



82 

Poisson Distribution 

Governs many rate dependent processes (arrivals of 
vehicles at an intersection, ‘packets’ through an internet 
gateway, earthquakes exceeding magnitude M, floods, load 
extremes, etc.) 
 
Let          number of “successes” (arrivals) in time interval t 
 
The distribution of      is arrived at in the limit as the 
number of trials goes to infinity assuming the probability 
of “success” is proportional to the number of trials (see the 
course notes for details). We get 
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Poisson Distribution 
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Poisson Distribution: Example 

Many research papers suggest that the arrivals of earthquakes 
follow a Poisson process over time. Suppose that the mean 
time between earthquakes is 50 years at a particular location. 
1. How long must the time period be so that the probability 

that no earthquakes occur during that period is at most 
0.1? 

 
Solution:  
1. Let      be the number of earthquakes over the time 

interval t. We want to find t such that 
 
 
 
this gives 
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Poisson Distribution: Example 

2. Suppose that 50 years pass without any earthquakes 
occurring. What is the probability that another 50 years 
will pass without any earthquakes occurring? 

 
Solution: 
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Simulating a Poisson Distribution 
Since the Poisson process derives from an infinite 
number of independent and equilikely Bernoulli trials 
over time (or space), its simulation is simple: uniformly 
distributed (equilikely) on any interval. 
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Common Continuous Distributions 

The Bernoulli Family extends to two continuous 
distributions when every instant in time (space) becomes 
a Bernoulli trial; 
 

1. Exponential:        time until the next “success” 
(arrival). This is the continuous time analog to the 
geometric distribution. 
 

2. Gamma:          time until the k’th success (or 
arrival). This is the continuous time analog to the 
negative binomial distribution. 

1T =

kT =
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Exponential Distribution 

Consider the Poisson Distribution which governs the 
number of “successes” in time interval t when every 
instant is an independent Bernoulli trial. We know that the 
Poisson distribution specifies that 
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What is the probability that the time to the first “success” 
is greater than t? If the first “success” occurs later than t, 
then the number of successes in time interval t, must be 
zero, i.e. 
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Exponential Distribution 

If 
 
then  
 
so that  
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Exponential Distribution 

Again, by virtue of the fact that every instant in time 
(space) is an independent Bernoulli trial, the exponential 
distribution is also memoryless. That is, 
 
 
 
 
 
 
but since                           it is apparent that it doesn’t 
matter when you start looking. I.e., the probability that 
the next “success” is time s in the future is independent of 
t (when we start looking).  
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Exponential Distribution 

The “memoryless” property of the exponential 
distribution means that it is a common “lifetime” model 
(where “success” is defined as “failure”!) in systems that 
neither improve nor degrade with time – failure 
probability remains constant with time. 
 
However, some systems improve with time (e.g. early 
strength of concrete) and some systems degrade with time 
(e.g. fatigue), which leads to the Weibull distribution to 
be discussed shortly. 
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Exponential Distribution: Example 
Let us assume that earthquakes in a certain region occur on 
average once every 50 years and that the number of earthquakes 
in any time interval follows a Poisson distribution. Under these 
conditions, what is the probability that less than 30 years will 
pass before the next earthquake occurs? 

Solution: Let     be the time to the next earthquake. Then, since 
the number of earthquakes follow a Poisson distribution, the 
time between earthquakes follows an exponential distribution. 
Thus,     follows an exponential distribution with          
earthquakes per year (on average), and 

1T

1T 1/ 50 0.02λ = =

[ ] 30(0.0 )
1

2 0.5P 30 years 1 49eT −= − =<
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Gamma Distribution 

The last of the Bernoulli Family of distributions is a 
generalization of the exponential distribution. 
 
Let          time until the k’th “success” 
 
which is evidently the sum of the times between the first 
k “successes”, i.e. 
 
 
which leads to the following moments 
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Gamma Distribution 

To determine the Gamma distribution, lets consider an 
example:                means the probability that the 3rd 
“success” occurs after time t. 
For this to be true, we must have had no more than 2 
“successes” within time interval t. That is, the event         
is equivalent to the event  
In other words: 
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Gamma Distribution 

If 
 
 
then 
 
 
In general 
 
 
 
is the Gamma distribution  
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Gamma Distribution 
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Gamma Distribution: Example 

As in the previous example, let us assume that earthquakes in 
a certain region occur on average once every 50 years and 
that the number of earthquakes in any time interval follows a 
Poisson distribution. Under these conditions, what is the 
probability that less than 150 years will pass before two or 
more earthquakes occur? 
 
Solution: Let     be the time to the occurrence of the second 
earthquake. Then, since earthquakes occur according to a 
Poisson process,      must follow a Gamma distribution with 
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Gamma Distribution: Example 

Note that since this is a Poisson process, the same result is 
obtained by noticing that 
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which is one way of determining the CDF for the Gamma 
distribution (as we saw earlier). 
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Weibull Distribution 
• generalization of the exponential distribution 
• now has two parameters for more flexibility in 

distribution shape 
• common lifetime model 
• improving system if  
• degrading system if  
• constant failure probability (exponential) if  
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Weibull Distribution 
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Weibull Distribution: Example 
The time to 90% consolidation of a sample of a certain clay has 
a Weibull distribution with              . A significant number of 
tests have shown that 81% of clay samples reach 90% 
consolidation in under 5516 hours. What is the median time to 
attain 90% consolidation? 

0.5β =

Solution: Let X be the time until a clay sample reaches 90% 
consolidation. Then we are told that X follows a Weibull 
distribution with            . We first need to compute the other 
Weibull parameter,    . To do this we make use of the fact that 
we know                                 , and since  
we have 
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Weibull Distribution: Example 

We are now looking for the median,     , which is the point 
which divides the distribution in half. That is, we want to find 
    such that                   . In other words, 

x
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2000

x x
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The uniform distribution is useful in representing random variables which have 
known upper and lower bounds and which have equal likelihood of occurring  
anywhere between these bounds.  
 
The distribution makes no assumptions regarding preferential likelihood of  
the random variable since all possible values are equally likely. 
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2
1 1( ) exp
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The best known Probability Density Function is the 
Normal or Gaussian distribution. 

2

E[ ]
Var[ ]

X

X

X
X

µ
σ

=
=

Let    be a normally distributed random variable 
with mean and standard deviation given by   and  . 
In this case the PDF is given by:

X X

X
µ σ

Normal Distribution 
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( )Xf x

x

NORMAL DISTRIBUTION 
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NORMAL DISTRIBUTION 

To compute probabilities: 
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STANDARD NORMAL DISTRIBUTION 

Where                      is the standard normal. X
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STANDARD NORMAL DISTRIBUTION 

The Standard Normal distribution is so important that it is  
commonly given its own symbols: 
 
Standardized variable: 
 
 
Density function: 
 
 
Cumulative Distribution: 
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STANDARD NORMAL DISTRIBUTION 

z

( )Z zφ

The area under the 
distribution is unity  

0    1µ σ= =Z Z
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are now at 1±



110 

 Standard Normal Cumulative Distribution Function (CDF) 

z

( )Φ z

Standard tables cover z>0 
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Standard 
Normal 
Function 
CDF 

 Φ
Table gives

(z) for z 0 ≥
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For z < 0
Φ(z) = 1- Φ(-z)

Standard 
Normal 
Function 
CDF 
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 Example calculations using the Standard Normal Function CDF 

Example 1: 

Permeability measurements have indicated that k is normally distributed 
with the properties: 8 84.1 10 m/s  and 1 10 m/sk kµ σ− −= × = ×

What is the probability that  84.5 10 m/s  ?−> ×k

( )Kf k

k

We want this area 

…but tables only give area to the left of a given point… 



114 

( )Kf k

k

…so estimate this area 
and subtract from 1 
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The Reliability Index 
The Reliability Index is a measure of the margin of safety in 
“standard deviation units”. 

For normally distributed random variables, the “reliability index” (β)   
is uniquely related to the “probability of failure” (pf) through the expression:  

1fp β= − Φ( )

For example, if dealing with a normally distributed Factor of Safety  
(where FS=1 implies failure), the reliability Index is given by: 

1FS

FS

µβ
σ

−
=

If the Factor of Safety is lognornal, the reliability Index is given by: 

ln( )
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µ
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Consider a normal distribution of the Factor of Safety (FS)

 1.5 
0.21

FS

FS

µ
σ

=

=

β   is this distance ÷ the standard deviation 

FSf

FS

2.38
0.21

β (1.5 −1)
= = 1 2.38) 1 0.991343 0.0087fp = − Φ( = − =

pf is this area 
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Let    be a lognormally distributed random variable 
with a mean and standard deviation given by  and  .X X

X
µ σ

ln ln

If    is lognormally distributed, this means that ln  
is normally distributed. Let the mean and standard 
deviation of this underlying normal distribution of 
ln  be given by  and  respectivelyX X

X X

X µ σ .

Let the Coefficient of Variation  X
X

X

v σ
µ

=

Lognormal Distribution 
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The PDF for a lognormal distribution is given by:

2

ln

lnln

ln1 1( ) exp
22

µ
σσ π

  − = −  
   

Xf X

XX

xx
x

{ }

{ }

2
ln

2
ln

1ln ln 1
2

ln 1

X X X

X X

v

v

µ µ

σ

= − +

= +

If the mean and standard deviation of the lognormal 
random variable  are   and  ,  then the mean 
and standard deviation of the underlying normal distribution 
of ln  are given by:

X Xx

x

µ σ
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Lognormal Distribution 

To compute probabilities: 
1. convert to normal by taking logarithms on both sides of 

the inequality, 
2. standardize by subtracting mean and dividing by standard 

deviation on both sides of inequality, 
3. look up probability in standard normal tables 

[ ] [ ] ln ln

ln ln

ln ln

ln ln

ln lnP P ln P

ln nP

ln

l

X X

X X

X X

X X

X aX a X

a a

a

Z

µ µ
σ σ

µ µ
σ σ

 − −
= =  

 
≤ ≤ ≤

≤
   − −

= = Φ   
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Further relationships involving the :lognormal distribution

( )2
ln lnMode expX X Xµ σ= −

( )lnMedian expX Xµ=

( )

2
ln ln

2
ln

1exp
2

exp 1

X X X

X X X

µ µ σ

σ µ σ

 = + 
 

= −

Going in the other direction....



122 

0

0.002

0.004

0.006

0.008

0.01

0.012

0 50 100 150 200 250 300 350

LOGNORMAL DISTRIBUTION 
100    50µ σ= =X X

( )Xf x

x

Mode 71.6=

Median 89.4=

Mean 100=

The area under the 
distribution is unity  
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SIGNIFICANCE OF THE MEDIAN IN A LOGNORMAL DISTRIBUTION 
100    50µ σ= =X X

( )Xf x

x

Median 89.4=

The area under the 
distribution is unity  

Area = 50% Area = 50%
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Example 2: 

Permeability measurements have indicated that k is lognormally distributed 
with the properties: 8 84.1 10 m/s  and 1 10 m/sk kµ σ− −= × = ×

What is the probability that  84.5 10 m/s  ?−> ×k

First find the properties of the underlying normal distribution of ln k

2 2

ln

2 8 2
ln ln

1ln 1 ln 1 0.2404
4.1

1 1ln ln(4.1 10 ) (0.2404) 17.0386
2 2

k
k

k

k k k

σσ
µ

µ µ σ −

        = + = + =      
       

= − = × − = −



125 

We want this area 

ln k

…but tables only give area to the left of a given point… 

8ln(4.5 10 ) 16.92−× = −
ln (ln )Kf k



126 

ln k

ln (ln )Kf k

8ln(4.5 10 ) 16.92−× = −

…so estimate this area 
and subtract from 1 

( )
( )

8 8[ 4.5 10 ] 1 [ 4.5 10 ]
16.92 ( 17.0386)1

0.2404
1 0.5075

1 0.51
1 0.69497 
0.3050 (31%)   (was 0.3446 using the normal distribution)

P k P k− −> × = − ≤ ×

− − − = − Φ  
 

= − Φ

≈ − Φ

= −
=
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COMPARISON OF NORMAL AND LOGNORMAL DISTRIBUTIONS 

x

( )Xf x

100  (Mean)      (Coefficient of Variation)X
X X

X

v σµ
µ

= =

0.1Xv =

0.3Xv =
0.5Xv =

....not much difference for 0.3Xv <
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Example of Bearing Capacity 

Calculations involving a single random variable (SRV) 

q

What is the relationship between the Factor of Safety (FS) of a conventional 
bearing capacity calculation (based on the mean strength) and the  
probability of failure (pf)? 

20,  kN/mu ucφ =
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Conventional bearing capacity calculations typically involve high factors of 
safety of at least 3. 

25.14 100 171kN/m
3allq ×

= =

2If  100kN/m ,  and 3   this implies an allowable bearing pressure of: uc FS= =

The bearing capacity of an undrained clay is given by the Prandtl equation: 

(2 )
5.14

u u

u

q c
c
π= +

=

where uc is a design “mean” value of the undrained shear strength. 

First perform a  deterministic calculation 
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Now perform a probabilistic calculation 

2 2

If  additional data comes in to indicate that the undrained strength is a lognormal
random variable wi what is the probability 

of the act

th  100kN/m  a

ual bearing c

nd  50kN/

apacity being les

m  

s
u uc cµ σ= =

 than the factored deterministic value   [ 171]  ? uP q <

2

hence
            E[ ] 5.14E[ ]         thus  =5.14 =514 

 is a linear function of the random variable  fro

  

and   
Var[ ] 5.14 Var[ ]    thus  =5.14 =257

(N

m 

ote that

5.1

  

4

u u

u u

u u

u u q c

u u q c

q

u u u u

c

q c

q c

v v

q c q c

µ µ

σ σ

=

=

=

=

=
1)
2
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First find the properties of the underlying normal distribution of ln uq

{ }
2

2
ln

2 2
ln ln

1ln 1 ln 1 0.47
2

1 1ln ln(514) (0.47) 6.13
2 2

u u

u u u

q q

q q q

vσ

µ µ σ

   = + = + =  
   

= − = − =

( )
( )

ln171 6.13[ 171]
0.47

2.10

1 2.10
1 0.982
0.018 (1.8%)

uP q − < = Φ  
 

= Φ −

= − Φ

= −
=
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1
2 H

DH
0, ,

uu c satφ σ γ=

Example of Slope Stability 

If  is treated as a random variable 
with mean  and standard deviation  

what is the relationship between 
 (based on the mean) and the probability of failure  ?

u u

u

c c

f

c

FS p

µ σ

Dimensionless 
strength 
parameter

uc

sat

C
H

µ
γ

=

26.57oβ =

assume 2D =
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For a slope with 7  
and a depth ratio 2,

5.88

o

D
FS C

β = 26.5
=

=

Deterministic calculation 

where uc

sat

C
H

µ
γ

=
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ln ln

2) If  is lognormal, then so is .
    Compute the underlying normal properties  and   FS FS

C FS
σ µ

[ ]3) Find the probability 1  from standard tables.P FS <

1) Note that or ,
   hence    and FS C FS C

FS C FS KC
K v vµ µ

∝ =
= =

[ ] [ ]
ln ln

ln ln

If  is lognormal, 1 ln ln1

ln1 FS FS

FS FS

FS P FS P FS

µ µ
σ σ

< = <

   −
= Φ = Φ −   

   

[ ] 1If  is normal, 1 FS

FS

FS P FS µ
σ

 −
< = Φ  

 

Probabilistic calculation 
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C
C

C

v σ
µ

=

High! 

The MEAN strength 
may be too  
optiminstic…. 
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Extreme Value Distributions 

Most systems fail due to a combination of extremes in load 
and/or resistance, so extreme value distributions are very 
useful in assessing system reliability. 
 
Let 
 
and 
 
We are interested in determining the distributions of  

( )1 2max , , ,n nY X X X= …

( )1 1 2min , , , nY X X X= …

1 and nY Y
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Exact Extreme Value Distributions: Maximum 

Since      is the maximum of the X’s, then the event            
implies that all of the X’s are also less than y. In other words, 

nY nY y≤

[ ] [ ]1 2P Pn ny y X y X yY X≤ ≤ ∩= ≤ ∩ ∩ ≤

If it is assumed that the X’s are independent and identically 
distributed, then 

( ) [ ] [ ] [ ] [ ]
[ ]

21P P P P

( )
nY n

n

n

X

F y Y X Xy y y yX

F y

= = ≤ ≤ ≤

=

≤ 

( ) ( ) ( )[ ] 1( )n

n

nY
Y X X

dF y
f y n y F

d
f y

y
−= =
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Exact Extreme Value Distributions: Example 

Suppose that fissure lengths, X, in a rock mass have an 
exponential distribution with                   . What, then, does the 
distribution of the maximum fissure length,     , look like for n = 
1, 5, and 50 fissures? 
 
Solution: 
 
If n = 1, then     is the maximum of one observed fissure, which 
of course is just the distribution of the single fissure length. 
Thus, when n = 1, the distribution of      is just the exponential 
distribution; 

( ) x
Xf x e−=

nY

nY

nY

( ) ( )
1 XY

yf yf ey −= =
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Exact Extreme Value Distributions: Example 
When n = 5, we have 

( ) [ ] [ ] [ ] [ ] ( )

( ) ( )
5

5

5

5

4

5
5 1 2 5

1

P P P

5 1

P
y

Y

X

Y

Y

y y

Y X X X F y

e

F y

f y e e
d y

y

y y y

d

y

F

−

− −



= = =≤ ≤ ≤ ≤

− 

 −

  

=

= =  



Similarly, when n = 50, we have 

( ) [ ] ( )

( ) ( )
5

0

50

5

0

55
50

0

49

0
P 1

50 1

y

y y
Y

XY

Y

Y F y

d y
dy

F

f

y e

ey e

y

F

−

− −

= = =  

=

 − 

= − 

≤
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Exact Extreme Value Distributions: Example 
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Exact Extreme Value Distributions: Minimum 

Since      is the minimum of the X’s, then the event            
implies that all of the X’s are also greater than y. In other 
words, 

1Y 1Y y>

[ ] [ ]1 21P P nY Xy y X y X y∩ > ∩> ∩= > >

If it is assumed that the X’s are independent and identically 
distributed, then 
 
 
so that 

[ ] [ ] [ ] [ ] [ ]1 21 1P P PP ( )n
n

Xy yXY X Xy Fy y= > > −> => 

( ) ( ) ( )[ ]1

1

11 ( )X
Y n

XY n f y F
dF

y
y

d
y

y
f −= −=

( ) ( )
1

1 1 XY
n

y yF F− −  =
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Exact Extreme Value Distributions: Example 

A series of 5 soil samples are taken at a site and their shear 
strengths determined. Suppose that a subsequent design is 
going to be based on the minimum shear strength observed out 
of the 5 samples. If the shear strengths of the individual 
samples are exponentially distributed with parameter  
                              then what is the distribution of the design 
shear strength? 
 
Solution: 
 
 
 
which is also exponential with ‘rate’  

20.025 k m / Nλ =

( ) ( ) ( )
1

5 55

5

1 1 1 1 1 1

1

y y
Y X

y

F y F y e e

e

λ λ

λ

− −

−

   = − − = − − − = −     
= −

nλ
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