Common Distributions

in Stochastic Analysis and Inverse Modeling
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Common Discrete Distributions

Bernoulli Trials:

- form the basis for 6 very common distributions
(binomial, geometric, negative binomial, Poisson,
exponential, and gamma)

Fundamental Assumptions;

1. Each trial has two possible outcomes (0/1, true/false,

success/failure, on/off, yes/no, etc)

2. Trials are independent (allows us to easily compute

probabilities)

3. Probability of “success” remains constant from trial

to trial

Note: if we relax assumptions 1 and 2 we get Markov
Chains, another suite of powerful stochastic models
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Bernoulli Trials

Let X, =1 if the i'th trial is a "success"
=0 if not

then the Bernoulli probability distribution is

P[X
P[X

1]=
0|]=1-p=q
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Bernoulli Trials

E[X]=2_iP[X;=i]=0(q) +1(p)=p

E[X7]= 3 1*P[X, = ]=0(@) +E(p) = 7

Var[ X, ]|=E[ X7 |-E*[X;]=p—p* = pq
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Common Discrete Distributions

Bernoulli Family of Distributions

Discrete Trials Every “Instant” Becomes a Trial

1) Binomial: 4) Poisson:
N, = number of “successes™ N, = number of “successes”
In n trials in time t
2) Geometric: 5) Exponential: (continuous)
T, = number of trials until T, = time to the first
the first “success” “success”
3) Negative Binomial: 6) Gamma: (continuous)
T, = number of trials until T, = time to the k’th

the k’th “success” “success”
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Binomial Distribution

If N, = number of “successes” in n trials, then
N, =X, + X, ++ X, =D X,
=1

since X, =1 if the trial results in a “success” and O if not.

n

Mean: E[Nn]zE{ixi}:gE[Xi]:Zp:np

i1=1
Variance: n n
Var[N, ]= Var{z Xi} = Var[X;] (since independent)
=1 =1

= pg=npq
=1
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Binomial Distribution

ConsiderP[N, =2]=P[{SSFFF } U{SFSFF } -+ U {FFFSS}]
= P[SSFFF ]+ P[SFSFF]+---+ P[FFFSS]
—P[s]P[s]P[F]P[F]P[F]+P[S]P[F]P[S]P[F]P[F]+
=P°0°+ p°g’+-+ P

_ S 2.3
(5]

In general the binomial distribution is

P[N, = k]:@j p g™
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P[Njp=k]

0.1

Binomial Distribution

0.3

0.2

~ P[N, =k] =£Ej ok g

n=10
p=04
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Binomial Distribution: Example

Suppose that the probability of failure, p. , of a slope is
Investigated using Monte Carlo simulation. That is, a
series of n =5000 independent realizations of the slope
strength are simulated from a given probability
distribution and the number of failures counted to be

n. =120. What is the estimated failure probability and
what is the ‘standard error’ (standard deviation) of this
estimate?

Solution: each realization is an independent trial with two
possible outcomes, success or failure, having constant
probability of failure ( p, ). Thus, each realization is a
Bernoulli trial, and the number of failures is a realization
of N_, which follows a binomial distribution.

71



Binomial Distribution: Example
We have n=5000 and n, =120

The failure probability is estimated by
~_number of faillures 120

p; = : = =0.024
number of trials 5000

~ N,
In general p, =
n

A N 1
sothat o =Var[pf]:var{ nﬂ}:(FjVar[n]

npg _ P9

which, for p= p, =0.024 gives us

. - \/0.024(1—0.024) 0,009

5000
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Geometric Distribution

Let T, = number of trials until the first “success”
Consider P[T, =4]=P[FFFS]= pg’

In general P[T, =k]= pg“*
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Geometric Distribution

Because all trials are independent, the geometric
distribution is “memoryless”. That is, it doesn’t matter
when we start looking at a sequence of trials — the
distribution of the number of trials to the next *“success”
remains the same. That is,

m-1

P[T1> j+k]:z::j+k+1 Pq K

P[T,> j+Kk|T,> j]= : =q
PIT.>5] 37 pg™
n=j+1

and



P[T,=k]

0.5

0.4

0.3

0.2

0.1

Geometric Distribution
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Geometric Distribution: Example

A series of piles have been designed to be able to
withstand a certain test load with probability p =0.8. If the
resulting piles are sequentially tested at that design load,
what is the probability that the first pile to fail the test is
the 7°th pile tested?

Solution: If piles can be assumed to fail independently
with constant probability, then this is again a sequence of
Bernoulli trials. We thus want to compute

PIT,=7]= pg’ ™ =(0.8)(0.2)° = 0.00005
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Negative Binomial Distribution

Let T, = the number of trials until the k’th “success”

Consider
P[T, =5]=P[{SSFFS} U{SFSFS}U---U{FFSSS}]
= P[SSFFS]+P[SFSFS]+---+P[FFSSS]

_ 4 3.2
{5

m-1
In general P[T, :m]:(k J p“qm
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Negative Binomial Distribution

The negative binomial distribution is a generalization of
the geometric distribution (the k’th “success”). Its mean
and variance can be obtained by realizing that T, Is the
sum of k independent T,'s. That is

T, =T11 +T12 +---+le

so that

p

e[r,1-€| 3T, | - erm-
and k J_lk
Var(T, |= Var{Zle } = ZVar [T,] (since independent)
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P[T;=k]

0.05

0.15

0.1

Negative Binomial Distribution

3 4 5 6 7 8 9 10 11
k

P[T, =m]= (m _1j p“ g™

k-1

p=0.4
m=3

12 13 14 15 16 17 18 19 20
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Negative Binomial Distribution: Example

A series of piles have been designed to be able to
withstand a certain test load with probability p =0.8. If the
resulting piles are sequentially tested at that design load,
what is the probability that the third pile to fail the test is
the 7°th pile tested?

Solution: If piles can be assumed to fail independently
with constant probability, then this is again a sequence of
Bernoulli trials. We thus want to compute

(k-1 k—m -1 3 7-3
(6 3 4
= j(O.S) (0.2) =0.00082

2
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Poisson Distribution

We now let every instant in time (or space) become a
Bernoulli trial (i.e., a sequence of independent trials)

“Successes” can now occur at any instant in time.

PROBLEM: In any time interval, there are now an
Infinite number of Bernoulli trials. If the probability of
“success” of a trial Is, say, 0.2, then in any time interval
we get an infinite number of “successes”. This Is not a
very useful model!

SOLUTION: we can no longer talk about probability of
“success” of individual trials, p (which becomes zero).
We must now talk about the mean rate of “success”, A.
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Poisson Distribution

Governs many rate dependent processes (arrivals of
vehicles at an intersection, ‘packets’ through an internet
gateway, earthquakes exceeding magnitude M, floods, load
extremes, etc.)

Let N, = number of “successes” (arrivals) in time interval t

The distribution of N, is arrived at in the limit as the
number of trials goes to infinity assuming the probability
of “success” Is proportional to the number of trials (see the
course notes for details). We get

PN, =k]= (ifl)k e

82



-k ]
0.1

P[Ny 5

0.2

0.15

0.05

Poisson Distribution

t=4.5
A=09

P[N, =k] :(}lfl)ke”“t

1T 1T 1T 1T 1T 1T T T T T T T 11
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

k

20
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Poisson Distribution: Example

Many research papers suggest that the arrivals of earthquakes
follow a Poisson process over time. Suppose that the mean
time between earthquakes is 50 years at a particular location.
1. How long must the time period be so that the probability
that no earthquakes occur during that period is at most

0.17

Solution: 2 =1/E|T,|=1/50=0.02
1. Let N, be the number of earthquakes over the time
interval t. We want to find t such that

(At)
0!

et =eg"<0.1

P[N, =0]=

this gives t>—-In(0.1)/ 2 =-In(0.1)/0.02 =115 years
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Poisson Distribution: Example

2. Suppose that 50 years pass without any earthquakes
occurring. What is the probability that another 50 years
will pass without any earthquakes occurring?

Solution:
P[N100 =0N N, :O] _ P[N100 :O]
P[N50 :O] P[N50 :O]

~1001
€

= = e =e™ =0.368

P[Nloo =0] N, :O]:

Note that due to memorylessness,

P[N,, =0]=e>" =e™ =0.368
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Simulating a Poisson Distribution

Since the Poisson process derives from an infinite
number of independent and equilikely Bernoulli trials
over time (or space), its simulation is simple: uniformly
distributed (equilikely) on any interval.

0.8
%

0.6
H

0.2
|
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Common Continuous Distributions

The Bernoulli Family extends to two continuous
distributions when every instant in time (space) becomes
a Bernoulli trial,

1. Exponential: T, = time until the next “success”
(arrival). This is the continuous time analog to the
geometric distribution.

2. Gamma: T, = time until the k’th success (or
arrival). This is the continuous time analog to the
negative binomial distribution.
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Exponential Distribution

Consider the Poisson Distribution which governs the
number of “successes” In time interval t when every
Instant Is an independent Bernoulli trial. We know that the
Poisson distribution specifies that

P[N, =k]=(/1:tl)ke”“t

What is the probability that the time to the first “success”
Is greater than t? If the first “success” occurs later than t,
then the number of successes in time interval t, must be

Zero, 1.e. (1 )O
t
P[T,>t]=P[N,=0]= o
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Exponential Distribution
(At)

If P[T,>t]=P[N,=0]= et g/t

0!

then I:Tl (t)=P :Tl < 1] _1_eH

so that f, (t) =

PDF or CDF

0.4

0.6

dF; (1) et 50

dt
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Exponential Distribution

Again, by virtue of the fact that every instant in time
(space) is an independent Bernoulli trial, the exponential
distribution is also memoryless. That is,

P[T,>t+sNT,>t] P[T,>t+5]

PIT,>t+s|T, >t|= =
T T, > 1 P[T, >1] P[T, >1]

- e—/l(t+s) e
o — At =€
e

but since P[T, > s]=e™ itis apparent that it doesn’t
matter when you start looking. l.e., the probability that
the next “success” iIs time s in the future Is independent of
t (when we start looking).
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Exponential Distribution

The “memoryless” property of the exponential
distribution means that it is a common “lifetime” model
(where “success” Is defined as “failure”!) in systems that
neither improve nor degrade with time — failure
probability remains constant with time.

However, some systems improve with time (e.g. early
strength of concrete) and some systems degrade with time
(e.g. fatigue), which leads to the Weibull distribution to
be discussed shortly.
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Exponential Distribution: Example

Let us assume that earthquakes in a certain region occur on
average once every 50 years and that the number of earthquakes
In any time interval follows a Poisson distribution. Under these
conditions, what is the probability that less than 30 years will
pass before the next earthquake occurs?

Solution: Let T, be the time to the next earthquake. Then, since
the number of earthquakes follow a Poisson distribution, the
time between earthquakes follows an exponential distribution.
Thus, T, follows an exponential distribution with 2 =1/50 = 0.02

earthquakes per year (on average), and

P[T, <30 years|=1-e~*% =0.549
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Gamma Distribution

The last of the Bernoulli Family of distributions is a
generalization of the exponential distribution.

Let T, = time until the k’th “success”

which is evidently the sum of the times between the first
k “successes”, I.e.
T, :T11 +T12 +---+T1k
which leads to the following moments
K
E[Tk] = kE[Tl] = z

Var|T, |=kVar[T,]= x

12
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Gamma Distribution

To determine the Gamma distribution, lets consider an

example: P|T, > t| means the probability that the 3"
“success” occurs after time t.

For this to be true, we must have had no more than 2

“successes” within time interval t. That is, the eventT, >t
Is equivalent to the event N, <2
In other words:

P[T, >t]=P[N, <2]=P[N, =0]+P[N, =1]+P[N, = 2]

_on (A e (A

1! 2!
(A1)’

2
i !

—At

=€
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Gamma Distribution

2 ]
If P[T3>t]:eﬂz(/1_t)
= !
2 ]
then F (t)=P[T St]:l—e‘“Z(%tl)
i J:
In general

k-1 (/1'{)]

=

F (1) =P[T, <t]=1-¢"

IS the Gamma distribution
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f(t)

0.3

0.2

0.1

Gamma Distribution
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Gamma Distribution: Example

As in the previous example, let us assume that earthquakes in
a certain region occur on average once every 50 years and
that the number of earthquakes in any time interval follows a
Poisson distribution. Under these conditions, what is the
probability that less than 150 years will pass before two or
more earthquakes occur?

Solution: Let T, be the time to the occurrence of the second
earthquake. Then, since earthquakes occur according to a
Poisson process, T, must follow a Gamma distribution with
k =2 and A =1/50, which gives us

1
P[T, <150] = F;, (150) =1 " [1+ (150 1/.50) J _0.801

97



Gamma Distribution: Example

Note that since this is a Poisson process, the same result is
obtained by noticing that

P[T, <150]=P[N,, = 2]

so that
P[N150 > 2] =1- P[N150 < 2] =1- P[N150 = O]— P[N150 =1]
—1_ @ 150/50 _ o-150/50 ((150 / 50)1 ]
1!

=0.801

which is one way of determining the CDF for the Gamma
distribution (as we saw earlier).
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Weibull Distribution

generalization of the exponential distribution
now has two parameters for more flexibility in
distribution shape

common lifetime model

Improving system if g <1

degrading system if 5 >1

constant failure probability (exponential) if 5 =1

(0 =L(2x)

Fe(x) =1—g
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f(x)

Weibull Distribution

A=1, B=05
A=1, B=2
A=1/4,=0.5
A=1/4,B=2
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Weibull Distribution: Example

The time to 90% consolidation of a sample of a certain clay has
a Weibull distribution with g = 0.5. A significant number of
tests have shown that 81% of clay samples reach 90%
consolidation in under 5516 hours. What is the median time to
attain 90% consolidation?

Solution: Let X be the time until a clay sample reaches 90%
consolidation. Then we are told that X follows a Weibull
distribution with £ = 0.5. We first need to compute the other
Weibull parameter, A . To do this we make use of the fact that
we know P[ X <5516]=0.81, and sinceP[ X <5516]=F, (5516)
we have y

F(5516) =1—-e ™" =0.81

e—(55162)0‘5 ~0.19
A =1/2000



Weibull Distribution: Example

We are now looking for the median, X, which is the point
which divides the distribution in half. That is, we want to find
ssuch that F (X)=0.5. In other words,

~ 0.5
1—exp{—(T’goj }: 05 = %=960.9 hours



Uniform Distribution

1
UNIFORM fx(X)=—— a<x<p

The uniform distribution is useful in representing random variables which have
known upper and lower bounds and which have equal likelihood of occurring

anywhere between these bounds.

The distribution makes no assumptions regarding preferential likelihood of
the random variable since all possible values are equally likely.

() Let 3and p=7 a+f
o = =
E X j— T e—
[X]= 5

0.25—

Var[X]=0o% = o

» X

I
0 1 2 3 4 5 6 7 8 9

(B-a)

S\

> alternative notation

J
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Normal Distribution

The best known Probability Density Function is the
Normal or Gaussian distribution.

Let X be anormally distributed random variable
with mean and standard deviation given by #, and o, .
In this case the PDF is given by:

1 1 x=p E[X] = u,
fx(x)—axﬂexp{ 2( = j} Var[X]= o2
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NORMAL DISTRIBUTION
u, =100 o, =50




NORMAL DISTRIBUTION

To compute probabilities:

a X—Hx 2
PIX<al|=| f, (x)dx= e( J
(X sa]= [ 1, (o= |
which has no closed form solution. It must be evaluated

numerically = provide tables for probabilities.

Problem: we’d need one table for each possible value of z,
and o, .
Solution:

P[X sa]zp{x o a‘“X}:P{z < a_“X}

Oy
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STANDARD NORMAL DISTRIBUTION

Where Z = X = iy is the standard normal.
Oy

E[z]zE{X;X“X};X E[X - 4,]=0

Var[Z]:Va{X — £ }:%Var[x — iy | = Var[X] =1

2
Oy Oy Oy

Now we need one table for the standard normal, ;, =0 and o, =1
and we standardize:

P X sa]:P{x_ﬂx sa_“X}zF{zsa_“X}

Oy Oy Oy
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STANDARD NORMAL DISTRIBUTION

The Standard Normal distribution is so important that it is
commonly given its own symbols:

Standardized variable: Z = X — Hy
Ox

Density function: &,(2) = \/Z_exp{_; 2}
T

Cumulative Distribution: P[X < a] :CD(a_ﬂx chb(z)
Ox
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STANDARD NORMAL DISTRIBUTION

u, =0 o, =1




Standard Normal Cumulative Distribution Function




Standard
Normal
Function
CDE

Table gives
d(z)for z=0

I B
P(z)= I
@) f_m\/ﬁ“ 4

Notes:

1} for z = i.jk, where , j, and k are digits, enter table at line 4.5 under column .0k (next page for k > 5).
2) 0.9'7327 is short for 0.99997327, etc.

z .00 .01 .02 .03 .04 z
0.0 50000 50398 50797 51196 51595 0.0
0.1 53982 .54379 54775 55171 55567 0.1
0.2 57925 58316 58706 59095 59483 0.2
0.3 61791 62171 62551 .62930 63307 0.3
0.4 65542 65909 66275 66640 67003 0.4
0.5 69146 .69497 69846 70194 J70540 0.5
0.6 72574 72906 73237 J73565 73891 0.6
0.7 75803 16114 76423 16730 JT7035 0.7
0.8 78814 79102 79389 79673 79954 0.8
0.9 81593 .81858 82121 .82381 82639 0.9
1.0 84134 84375 84613 84849 85083 1.0
1.1 86433 86650 .86864 87076 87285 1.1
iy 88493 88686 88876 89065 809251 132
1.3 90319 90490 D0658 90824 D0987 1.3
1.4 91924 92073 92219 .92364 92506 1.4
1.5 93319 93447 93574 93659 93821 1.5
1.6 94520 94630 94738 94844 94949 1.6
T 95543 95636 95728 95818 85907 1.7
1.8 96406 96485 96562 96637 96711 1.8
1.9 97128 97193 97257 97319 97381 1.9
2.0 97724 97778 97830 97882 97932 2.0
2.1 98213 98257 98299 98341 98382 2.1
22 O8609 8644 98679 98712 8745 22
2.3 98927 98055 08982 920006 920358 2.3
2.4 S21802 922023 972239 9%2450 972656 2.4
2.5 983790 .9%3963 974132 .9%4206 94457 2.5
2.6 925338 925472 95603  9*5730 95854 2.6
2.7 926533 976635 (926735 926833 926928 AT
2.8 97444 97522 9*7598  9*T672 9%7744 2.8
2.9 928134 928192 978249 9?8305  .9%8358 29
3.0 08650 978603 928736 08777 9%8817 3.0
31 970323 9%0645 90957 9%1259 91552 3.1
3.2 BP3128 0 9%3363 93590 93810 924023 32
33 95165 935335 935499 9P5657 935811 33
3.4 96630 936751 936868 96982 937091 3.4
3.5 PI673 PTT59 97842 937922 977999 3.5
3.6 SP8408 98469 938526 978582  .9*8636 3.6
3.7 9780922 9%8963 990038 910426 910799 3.7
3.8 22765 93051 93327 913592 93848 3.8
3.9 S15190 945385 995572 945752 945925 3.9
4.0 96832 .9'6964  .9'7090 97211 97327 4.0
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Standard
Normal
Function
CDE

Forz<0
D(z)=1-D(-z)

«1>(z)=f lﬂ e 4 dp
oo P

Notes:

1) for z = i.jk, where i, j. and k are digits, enter table at line i.j under column .0k (next page for k > 5).
2) 0.97439 is short for 0.99997439, etc.

3) ®(—2)=1 - d(2)

z .05 .06 07 .08 .09 z
0.0 51993 52392 52790 53188 53585 0.0
0.1 55961 56355 56749 57142 57534 0.1
0.2 59870 60256 60641 61026 61409 0.2
0.3 63683 64057 64430 64802 65173 0.3
0.4 67364 67724 68082 68438 68793 0.4
0.5 10884 71226 11566 71904 72240 0.5
0.6 74215 74537 74857 75174 75490 0.6
0.7 7337 77637 J7935 78230 78523 0.7
0.8 80233 80510 80784 .81057 81326 0.8
0.9 52894 83147 83397 83645 83891 0.9
1.0 .85314 85542 85769 .85992 .86214 1.0
1.1 87492 87697 87899 88099 88297 1.1
1.2 89435 89616 89795 89972 90147 1.2
1.3 91149 91308 91465 91620 91773 1.3
14 92647 92785 92921 .93056 93188 14
1.5 93942 94062 94179 .94204 .94408 15
1.6 95052 95154 95254 95352 95448 1.6
1.7 95994 86079 96163 96246 96327 1.7
1.8 96784 96855 96925 96994 97062 1.8
1.9 97441 97500 97558 97614 97670 1.9
2.0 97981 98030 98077 98123 98169 2.0
2.1 98422 98461 98499 98537 98573 2.1
22 98777 98808 98839 98869 98898 2:2
23 Q20613 970862 91105 971343 Q%1575 23
24 922857 .9%3053 .9%3244  .9*3430 .9%3612 2.4
2.5 B24613 974766 974915 975059 985201 2.5
2.6 925975 976092 96207  9%6318  .9%6427 26
2.7 927020 927109 9%7197 9*7282 9*7364 27
2.8 927814 977881 97947 928011  .9%8073 2.8
29 928411 9%8461 978511 928558 978605 29
3.0 98855 978893 978929 9?8964 978999 3.0
3.1 S1836 92111 92378 9%2636 972886 3.1
32 934220 974420 9%4622 934800 974990 3.2
33 935959 936102 96241 9%6375 976505 33
34 SP7197 937299 937397 937492 937584 34
35 938073 98145 9’8215  .9°8282 978346 35
3.6 98688 9’8738 98787  .9°8833 978878 3.6
3.7 9158 941504 9Y1837 912158 92467 3.7
3.8 914004 9%4330 94558 994777 914987 3.8
3.9 96092 916252 96406  9'6554 96696 39
4.0 917439 9'7546 .9'7649  9'7748 97843 4.0
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Example calculations using the Standard Normal Function CDF

Example 1:

Permeability measurements have indicated that k is normally distributed
with the properties: g, =4.1x10°m/s and o, =1x10"°m/s

What is the probability that k >4.5x10°m/s ?

5.00E+07 -

fie (k)

4 00E+0T A

J.00E+07 H .
¥ We want this area

2 00E+07 ~

1.00E+07

0.00E+00
0E+00 1E-08 2E-08 3E08 4E08 5E-08 6E0D8 TE08 8E08|9E-0D8

...but tables only give area to the left of a given point...
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5.00E+07
fie (k)
4 00E+07 ~

3.00E+07

2.00E+07 ~

1.00E+07

0.00E+00 7 3
0E+00 1E08 2E08 3E08 4E08 G5E08 G6E08 T7E08 B8E08|IEDS

P[k >4.5x10°]=1-P[k <4.5x107%]

-8 -8
10 4.5x%x10 —42.31><10
1x10

=1-®(0.4)
=1-0.65542
=0.3446 (34%)
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The Reliability Index

The Reliability Index is a measure of the margin of safety in
“standard deviation units”.

For example, if dealing with a normally distributed Factor of Safety
(where FS=7implies failure), the reliability Index is given by:

£ = Hes —1
Ors
If the Factor of Safety is lognornal, the reliability Index is given by:
B = Hin(rs)
On(Fs)

For normally distributed random variables, the “reliability index” ()
is uniquely related to the “probability of failure” (p) through the expression:

oy =1-D(p))
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Consider a normal distribution of the Factor of Safety (FS)

05 1 15 2 FS 25

— _/
Y

S is this distance + the standard deviation

(1.5-1)

oo =238 D, =1-d(2.38) =1—0.991343 = 0.0087

B =
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Lognormal Distribution

Let X be alognormally distributed random variable
with a mean and standard deviation given by x, and o,.

Let the Coefficient of Variation v, = Ox
Ky

If X Is lognormally distributed, this means that In X
IS normally distributed. Let the mean and standard
deviation of this underlying normal distribution of

In X be given by g, and o, , respectively.
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The PDF for a lognormal distribution is given by:

_ 1 1 Inx—p, )
fx (¥ XO_lnx\/ﬂexp{ 2( Oinx J}

If the mean and standard deviation of the lognormal

random variable x are ¢, and o, then the mean
and standard deviation of the underlying normal distribution

of In x are given by:

oy =10 11, —%In{1+vxz}

Oy :\/In {1+VX2}
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Lognormal Distribution

To compute probabilities:

1. convert to normal by taking logarithms on both sides of
the inequality,

2. standardize by subtracting mean and dividing by standard
deviation on both sides of inequality,

3. look up probability in standard normal tables

P[X <a]

P[In X glna]:Pan_’u‘“x < Ina_ﬂ'”x}

|l
-
|
N
IN
>
D
|
=
>
L
|l
S/
AN
>
)
=
X
N



Going In the other direction....

1,
Hy =EXP| Uy +§Glnx

Ox = Hy \/eXp(Gﬁlx )_1

Further relationships involving the lognormal distribution:

Median, =exp( s,y )

MOdex :exp(,umx _Glix)
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SIGNIFICANCE OF THE MEDIAN IN A LOGNORMAL DISTRIBUTION
1, =100 o, =50

0.012
f, (X :
< (X) Median = 89.4
0.01 /\
rd

The area under the
distribution is junity

0.008 / ;}
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Example 2:

Permeability measurements have indicated that k is lognormally distributed
with the properties: g, =4.1x10°m/s and o, =1x10"°m/s

What is the probability that k > 4.5x10°m/s ?

First find the properties of the underlying normal distribution of Ink

-

2) 2
O = |n<1+(ﬁ] > = |In 1+(ij =0.2404
Ay 4.1

.

uo=Inp —%a,ik — In(4.1x10°®) —%(0.2404)2 ~ ~17.0386
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In(4.5x107°) = -16.92

fi (INK)-
1.60 - l

1.40 -

1.20 -

1.00 | We want this area
0.80 -
0.60 -
0.40 -

0.20 1

D.DD 1 1 1 - 1 1 1
-18.5 -18.0 175 7.0 _16.5 160 Ink 155

...but tables only give area to the left of a given point...
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In(4.5x107°) = -16.92

f. (INK) - l
1.60 - /
1.40 1 ...S0 estimate this are
120 - and subtract from 1
1.00 - / /
0.80 - P |
0.60 -
0.40 - ‘
0.20 -
0.00 . : . . . .
185 18.0 475 7.0 16.5 160 Ink  -155

P[k >4.5x10°]=1-P[k <4.5x10°°]
1 @(_16'92 = (—17.0386)]
0.2404
=1-®(0.5075)
~1-®(0.51)
=1-0.69497
=0.3050 (31%) (was 0.3446 using the normal distribution)
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COMPARISON OF NORMAL AND LOGNORMAL DISTRIBUTIONS

uy, =100 (Mean)

V, = Ix (Coefficient of Variation)
Hy

v, =0.1

» /
SO
AR
i \

f |
/ \
f
| \
| |
\

e
e R N """--‘_
\h“?—:;::::‘:'_:---
i ‘“:—h:—n—_q:-
150 X 200

....not much difference for v, <0.3



Calculations involving a single random variable (SRV)

Example of Bearing Capacity

ST A

¢, =0, ¢, KN/m?

What is the relationship between the Factor of Safety (FS) of a conventional
bearing capacity calculation (based on the mean strength) and the
probability of failure (p;)?
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First perform a deterministic calculation

Conventional bearing capacity calculations typically involve high factors of
safety of at least 3.

The bearing capacity of an undrained clay is given by the Prandtl equation:

q, = (2+7)c,
=5.14c,

where C, is a design “mean” value of the undrained shear strength.

If ¢, =100kN/m?, and FS =3 this implies an allowable bearing pressure of:

- 5'14; 100 _ 1 71kNm?

all

129



Now perform a probabilistic calculation

If additional data comes in to indicate that the undrained strength is a lognormal
random variable with z, =100kN/m? and &, =50kN/m* what is the probability
of the actual bearing capacity being less than the factored deterministic value P[q, <171] ?

d, Is a linear function of the random variable ¢, from q, =5.14c,
hence
E[q,]=5.14E[c, ] thus g, =5.14yu, =514

and
Var[g,]=5.14"Var[c,] thus o, =5.140, =257

1

(Note that v, =V, = 2)

Cy
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First find the properties of the underlying normal distribution of Ind,

Oing, = \IN {1V, *} = \/In {1+@T} = 0.47

1 1
Hing, =N 22, —Ealiqu = In(514)—5(0.47)2 =6.13

In171-6.13
P[qu<171]=CD( v j
=®(-2.10)
=1-®(2.10)
=1-0.982

— 0018 (18%) 131



Example of Slope Stability

Dimensionless

strength
1 parameter
2 C= at
DH Vs H
¢u = O’ ch' 7/sat
assume D =2
\ 4 x

If c, Is treated as a random variable
with mean x4, and standard deviation o

what is the relationship between
FS (based on the mean) and the probability of failure p, ?
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FS

2.5

1.5

0.5

Deterministic calculation

For a slope with § =26.57°
and a depth ratio D = 2,

FS =5.88C
He,

Y sarH

where C =

FS

[
[

LT 0=D

0.5
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Probabilistic calculation

1) Note that FS «c C or FS = KC,
hence u.. =Ky, andv, =V,

2) If C is lognormal, then so is FS.
Compute the underlying normal properties o, and g,

3) Find the probability P|FS <1]| from standard tables.

If FS is lognormal, P[FS <1] = P[InFS < In1]

If FS is normal, P[FS <1] = @{ﬂ}
Ors
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Extreme Value Distributions

Most systems fail due to a combination of extremes in load
and/or resistance, so extreme value distributions are very
useful in assessing system reliability.

Let Y, =max(X,X,,...,X,)

and Y, =min(X,,X,,...,X,)

We are interested in determining the distributions of Y_and Y,
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Exact Extreme Value Distributions: Maximum

SinceY, Is the maximum of the X’s, then the eventY, <y
Implies that all of the X’s are also less than y. In other words,

PIY, <y|=P[X,SynX,<yn---nX, <Y]

If it Is assumed that the X’s are independent and identically
distributed, then

F, (y)=P[Y, <y|=P[X,<y]P[X, <y]--P[X, <y]
:[FX(Y)]n
_dFYn(y)

fYn (y)— dy =N fx (y)[Fx(y)]n_l
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Exact Extreme Value Distributions: Example

Suppose that fissure lengths, X, in a rock mass have an
exponential distribution with f, (x)=e™. What, then, does the
distribution of the maximum fissure length, Y, look like for n =
1, 5, and 50 fissures?

Solution:
ITn =1, thenY, Is the maximum of one observed fissure, which
of course Is just the distribution of the single fissure length.

Thus, when n = 1, the distribution of Y, Is just the exponential
distribution;
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Exact Extreme Value Distributions: Example

When n =5, we have
(1) =Pl £ Y] PIX, £ YIPIX. € v )P <] <[ B ()]

1]
_dF, (y)
dy

4

. (¥)

=5¢[1-¢” |

Similarly, when n = 50, we have
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fy (y)

Exact Extreme Value Distributions: Example
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Exact Extreme Value Distributions: Minimum

Since Y, Is the minimum of the X’s, then the event Y, >y
Implies that all of the X’s are also greater than y. In other

words,
PIY,>y|=P[X,>ynX,>yn---n X, >y]

If it Is assumed that the X’s are independent and identically
distributed, then

PIY, > y]=P[X,>y]P[X, > y]---P[X, > y]=[1-F. (V)]
sothat F, (y)=1-[1-F, (y)]

)= o, ()]
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Exact Extreme Value Distributions: Example

A series of 5 soil samples are taken at a site and their shear
strengths determined. Suppose that a subsequent design is
going to be based on the minimum shear strength observed out
of the 5 samples. If the shear strengths of the individual
samples are exponentially distributed with parameter

A =0.025 m?/kN then what is the distribution of the design
shear strength?

Solution:
F

(V)=1-[1-F, ()] =1-[1-(1-e™)] =1-[e™T
:1_6—51y
which is also exponential with ‘rate’ nA
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