
113 

Best Linear Unbiased Estimation and Kriging 

Presented by 

Gordon A. Fenton 

in Stochastic Analysis and Inverse Modeling 



114 

Introduction 

We often want some way of estimating what is happening at 
unobserved locations given nearby observations. Common ways 
of doing so are as follows; 

1. Linear Regression: we fit a curve to the data and use that 
curve to interpolate/extrapolate. Uses only geometry and 
the data values to determine the curve (by minimizing the 
sum of squared errors). 

2. Best Linear Unbiased Estimation (BLUE): similar to 
Linear Regression, except that correlation is used, instead 
of geometry, to obtain the best fit. 

3. Kriging: similar to BLUE except the mean is estimated 
rather than being assumed known. 
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Best Linear Unbiased Estimation (BLUE) 

We express our estimate at the unobserved location Xn+1, as a 
linear combination of our observations, X1, X2, …, Xn; 
 
 
Notice that position does not enter into this estimate at all – we 
will determine the unknown coefficients, βk , using 1st and 2nd 
moment information only (i.e. means and covariances). 
To determine the “Best” estimator, we look at the estimator 
error, defined as the difference between our estimate and the 
actual value; 
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Best Linear Unbiased Estimation (BLUE) 

Aside: If the covariances are known, then they include 
information both about distances between observation points, but 
also about the effects of differing geological units. 
Linear regression considers only distance between points. Thus, 
regression cannot properly account for two observations which 
are close together, but lie in largely independent layers. The 
covariance between these two points will be small, so BLUE will 
properly reflect their effective influence on one another. 
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Best Linear Unbiased Estimation (BLUE) 

To make the estimator error as small as possible, its mean should 
be zero and its variance minimal. The mean is automatically zero 
by the selected form of the estimator; 
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In other words, this estimator is unbiased. 
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Best Linear Unbiased Estimation (BLUE) 

Now we want to minimize the variance of the estimator error: 
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To simplify the algebra, we will assume that μ = 0 everywhere 
(this is no loss in generality). In this case, our estimator simplifies 
to 
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Best Linear Unbiased Estimation (BLUE) 

Our estimator error variance becomes 
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We minimize this with respect to our unknown coefficients, β1, β2, 
…, βn, by setting derivatives to zero; 
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Best Linear Unbiased Estimation (BLUE) 
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in other words,     is the solution to 
1          β β −= → =C b C b

β



121 

BLUE: Example 

Suppose that ground penetrating radar suggests that the mean 
depth to bedrock, μ, in metres, shows a slow increase with 
distance, s, in metres, along the proposed line of a roadway. 
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BLUE: Example 

However, because of various impediments, we are unable to 
measure beyond s = 20 m. The best estimate of the depth to 
bedrock at s = 30 m is desired. 
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BLUE: Example 

Suppose that the following covariance function has been 
established regarding the variation of bedrock depth with distance 
 
 
where σX = 5 m and τ is the separation distance between points. 
 
We want to estimate the bedrock depth, X3, at s = 30 m, given the 
following observations of X1 and X2 at s = 10 m and 20 m, 
respectively : 
      at s = 10 m,  x1 = 21.3 m 
      at s = 20 m,  x2 = 23.2 m 
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BLUE: Example 

Solution: 
We start by finding the components of the covariance matrix and 
vector: 
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Note that b contains the covariances between the observation and 
prediction points, while C contains the covariances between 
observation points only. This means that it is simple to compute 
predictions at other points (C only needs to be inverted once). 
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BLUE: Example 

Now we want to solve              for the unknown coefficients  
 
 
 
Notice that the variance cancels out – this is typical of stationary 
processes. Solving, gives us 
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Thus, β1 = 0 and β2 = e−10/40. 
Note the Markov property: the ‘future’ (X3) depends only on the 
most recent past (X2) and not on the more distance past (X1). 

β =C b β
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BLUE: Example 

The optimal linear estimate of X3 is thus 
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BLUE: Estimator Error 

Once the best linear unbiased estimate has been determined, it is 
of interest to ask how confident are we in our estimate? 
If we reconsider our zero mean process, then our estimator is 
given by 
 
 
which has variance 
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BLUE: Estimator Error 

The estimator variance is often more of academic interest. We are 
typically more interested in asking questions such as: What is the 
probability that the true value of Xn+1 exceeds our estimate by a 
certain amount? For example, we may want to compute 
 
 
where b is some constant. To determine this, we need to know the 
distribution of the estimator error 
If X is normally distributed, then our estimator error is also 
normally distributed with mean zero, since unbiased, 
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BLUE: Estimator Error 

The variance of the estimator error is 

[ ]2 2
1 1

1 1 1

2

2

2

2

Var 2 Cov , Cov ,

2

( )

n n n

E n k n k k j k j
k k j

T T
X

T T T
X

T T
X

T
X

X X X X Xσ β β β

σ β β β

σ β β β β

σ β β β

σ β

+ +
= = =

   = − +   

= + −

= + − −

= + − −

= −

∑ ∑∑
C b
C b b
C b b

b

where we made use of the fact that β is the solution to Cβ = b, or, 
equivalently, Cβ − b = 0 
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BLUE: Conditional Distribution 

The estimator         is also the conditional mean of Xn+1 given the 
observations. That is, 

1
ˆ

nX +

[ ]1 1 2 1
ˆE | , , ,n n nX X X X X+ +=

The condition variance of Xn+1 is just the variance of the 
estimator error; 

[ ] 2
1 1 2Var | , , ,n n EX X X X σ+ =

In general, questions regarding the probability that Xn+1 lies in 
some region should employ the conditional mean and variance of 
Xn+1, since this makes use of all of the information. 
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BLUE: Example 

Consider again the previous example. 
1. compute the variance of the estimator and the estimator error 
2. estimate the probability that X3 exceeds     by more than 4 m. 3X̂
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BLUE: Example 

Solution: 
We had 
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BLUE: Example 

The covariance vector found previously was 
2/ 4

2
1/ 4X

e
e
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The variance of the estimator error is then 
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The standard deviation is thus 2/ 45 1 3.136 mE eσ −= − =

This is less than the estimator variability and significantly less 
than the variability of X (σX = 5). This is due to the restraining 
effect of correlation between points. 
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BLUE: Example 

We wish to compute the probability 
 
We first need to assume a distribution for 
 
Let us assume that X is normally distributed. Then since the 
estimator       is simply a sum of X’s, it too must be normally 
distributed. This, in turn implies that the quantity 
is normally distributed. 
Since      is an unbiased estimate of X3, 
and we have just computed σE = 3.136 m. Thus, 

3 3
ˆP 4X X − > 
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X X Z µ
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Geostatistics: Kriging 

Kriging (named after Danie Krige, South Africa, 1951) is 
basically BLUE with the added ability to estimate the mean. The 
purpose is to provide a best estimate of the random field at 
unobserved points. The kriged estimate is, again, a linear 
combination of the observations, 
 
 
where x is the spatial position of the unobserved value being 
estimated. The unknown coefficients, β, are determined by 
considering the covariance between the observations and the 
prediction point. 
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Geostatistics: Kriging 

In Kriging, the mean is expressed as a regression 
 
 
where gi(x) is a specified function of spatial position x. Usually 
g1(x) = 1, g2(x) = x, g3(x) = x2, and so on in 1-D. Similarly in 
higher dimensions. As in a regression analysis, the gi(x) functions 
should be (largely) linearly independent over the domain of the 
regression (i.e. the site). 
The unknown Kriging weights, β, are obtained as the solution to 
the matrix equation 

1
( ) ( )

m

X i i
i

a gµ
=

=∑x x

β =K M
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Geostatistics: Kriging 

where K and M depend on the mean and covariance structure. In 
detail, K has the form 

where Cij is the covariance between Xi and Xj. 
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Geostatistics: Kriging 

The vectors β and M have the form 

where ηi are Lagrangian parameters used to solve the variance 
minimization problem subject to the non-bias conditions and 
Cix are the covariances between the ith observation point and 
the prediction location, x. 



139 

Geostatistics: Kriging 

The matrix K is purely a function of the observation point 
locations and their covariances – it can be inverted once and then 
used repeatedly to produce a field of best estimates (at each 
prediction point, only the RHS vector M changes). 
 
The Kriging method depends on 

1. knowledge of how the mean varies functionally with 
position (i.e., g1, g2, … need to be specified), and 

2. knowledge of the covariance structure of the field. 
Usually, assuming a mean which is constant (m = 1, g1(x) = 1, 
a1 = μX ), or linearly varying is sufficient. 
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Geostatistics: Kriging 

Estimator Error: 
The estimator error is the difference between the true (random) 
value X(x) and its estimate         . The estimator is unbiased, so 
that 
 
and its variance is given by 
 
 
where βn and Mn are the first n elements of the vectors β and M, 
and Kn×n is the n × n upper left submatrix of K containing the 
covariances. As with BLUE,          is the conditional mean of 
X(x). The conditional variance of X(x) is      .  

ˆ ( )X x

( ) ( )ˆE 0E X Xµ  = − = x x

( ) ( )( ) ( )
22 2ˆE 2T

E X n n n n nX Xσ σ β β×
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x x K M
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2
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Example: Foundation Consolidation Settlement 

Consider the estimation of consolidation settlement under a 
footing. Assume that soil samples/tests have been obtained at 4 
nearby locations. 
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Example: Foundation Consolidation Settlement 

The samples and local stratigraphy are used to estimate the soil 
parameters Cc, eo, H, and po appearing in the consolidation 
settlement equation 
 
 
where S  = settlement 
           N = model error random variable (μN = 1.0, σN = 0.1) 
           eo = initial void ratio 
           Cc = compression index 
            po = initial effective overburden stress 
           Δp = mid-depth stress increase due to applied footing load 
            H  = depth to bedrock 
 

10log
1

c o

o o

C p pS N H
e p

   + ∆
=    +   
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Example: Foundation Consolidation Settlement 

We will assume that the estimation error in obtaining the soil 
parameters from the samples is negligible compared to field 
variability, so this source of error will be ignored. 
 
We do, however, include model error through a multiplicative 
random variable, N, which is assumed to have mean 1.0 (i.e. the 
model correctly predicts the settlement on average) and standard 
deviation 0.1 (i.e. the model has a standard error of 10%). 
 
The mid-depth stress increase due to the footing load, Δp, is 
assumed to be random with 

[ ]
p

E 25 kPa
  5 kPa

p
σ∆

∆ =

=
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Example: Foundation Consolidation Settlement 

Assume that all four random fields (Cc, eo, H, and po) are stationary 
and that the correlation function is estimated from similar sites to be 

( ) 2
, exp

60
i j

i jρ
 − = − 
  

x x
x x
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Example: Foundation Consolidation Settlement 

Using the correlation function, we get the following correlation 
matrix between sample locations: 

We will assume that the same correlation length (θ = 60 m) 
applies to all 4 soil parameters. Thus, for example, the covariance 
matrix between sample points for Cc is  [ ]2

cCσ ρ

We will obtain Kriging estimates from each of the four random 
fields independently – if cross-correlations between the parameters 
are known, then the method of co-Kriging can be applied (this is 
essentially the same, except with a much larger cross-covariance 
matrix). 
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Example: Foundation Consolidation Settlement 

The Kriging matrix associated with the depth to bedrock, H, is 

where we assumed stationarity, with m = 1 and g1(x) = 1. 
If we place the coordinate axis origin at sample location 4, the 
footing has coordinates x = (20, 15) m. The RHS vector for H is 
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Example: Foundation Consolidation Settlement 

Solving the matrix equation                         gives the following 
four weights; 

H H Hβ =K M

We can see from this that samples closest (most highly 
correlated) to the footing are weighted the most heavily. (i.e. 
sample 4 is closest to the footing) 
 
All four soil parameters will have identical weights. 
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Example: Foundation Consolidation Settlement 

The best estimates of the soil parameters at the footing location 
are thus, 

The estimation errors are given by 

( )2 2 2T
E X n n n n nσ σ β β×= + −K M

Since Kn×n is just the correlation matrix, ρ, times the appropriate 
soil parameter variance (which replaces      ), and similarly Mn is 
just the correlation vector times the appropriate variance, the 
variance can be factored out  

2
Xσ

( )2 2 1 2T
E X n nσ σ β ρβ ρ = + − x
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Example: Foundation Consolidation Settlement 

( )2 2 1 2T
E X n nσ σ β ρβ ρ = + − x

where ρx is the vector of correlation coefficients between the 
samples and the footing. For the Kriging weights and given 
correlation function, this gives 

2 20.719E Xσ σ=

The individual parameter estimation errors are thus 
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Example: Foundation Consolidation Settlement 

In summary, the variables entering the consolidation settlement 
formula have the following statistics based on the Kriging 
analysis: 

where v is the coefficient of variation (σ/μ). 
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Example: Foundation Consolidation Settlement 

A first-order approximation to the mean settlement is obtained by 
substituting the mean parameters into the settlement equation; 

10
0.386 177.3 25(1.0) (4.30) log 0.0434 m

1 1.19 177.3Sµ
+   = =   +   
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Example: Foundation Consolidation Settlement 

A first-order approximation to the variance of settlement is given 
by 

2
6

2

1
jS X

j j

S
X

µ

σ σ
=

 ∂
=   ∂ 
∑

where Xj is replaced by the 6 random variables, N, Cc, etc, in 
turn. The subscript μ means that the derivative is evaluated at 
the mean of all random variables. 
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Example: Foundation Consolidation Settlement 

Evaluation of the partial derivatives of S with respect to each 
random variable gives 

so that 2
6

2 5 2

1
18.952 10   m

jS X
j j

S
X

µ

σ σ −

=

 ∂
= = ×  ∂ 
∑

0.0138 mSσ =



154 

Example: Foundation Consolidation Settlement 

We can use these results to estimate the probability of settlement 
failure. If the maximum settlement is 0.075 m, and we assume 
that settlement, S, is normally distributed with mean 0.0434 m 
and standard deviation 0.0138, then the probability of settlement 
failure is 

[ ] ( )0.075 0.0434P 0.075 1 1 2.29 0.01
0.0138

S − > = −Φ = −Φ = 
 
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Conclusions 

• Best Linear Unbiased Estimation requires prior knowledge of 
the mean and the covariance structure of the random field(s) 

• if the mean and covariance structure are known, then BLUE is 
superior to simple linear regression since it more accurately 
reflects the dependence between random variables than does 
simply distance 

• Kriging is a variant of BLUE in which the mean is estimated 
from the observations as part of the unbiased estimation 
process. 
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