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Introduction 

• Many reliability questions are far too complex to determine 
analytically 

• In this lecture we will investigate the technique of solving 
reliability assessment questions via Monte Carlo simulation 

• We will start by looking at how to generate numbers which 
appear to be uniformly distributed between 0 and 1. 

• We will then consider how to transform the U(0,1) variates 
into variates from arbitrary distributions (e.g. normal) 

• Finally we will discuss how random fields are simulated. 
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Monte Carlo Simulation 

Consider the problem of estimating P[ X  < a], where X is a complex function of 
other random variables. For example, suppose that 
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where c and    are random. The analytical determination of the distribution of X is 
prohibitively difficult. 
 
One simple solution is to simulate a series of possible realizations for both c and    , 
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Monte Carlo Simulation 

• Monte Carlo Simulation (MCS) involves 
– generating a realization of a random variable (or set of 

random variables) according to its prescribed 
distribution 

– computing the ‘system’ response 
– repeating the above two steps many times to assess 

probabilities/statistics (accuracy increases as the number 
of realizations increases) 

• MCS is sometimes computationally intensive 
• MCS has the advantage over first- and second-order 

methods of being able to estimate the entire distribution of 
the response. 
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Example: Monte-Carlo Simulation of Slope Stability 

Choose soil properties (µ,σ,θ) 

Generate the Random field and map the properties 
onto the finite element mesh 

Apply gravity and perform the elasto-plastic  
slope stability analysis (no strength reduction) 

Record whether the slope fails or not 

Output statistics stable? No Yes Stop 
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Accuracy of Monte Carlo Simulation Estimates 

• each realization is an independent “observation” of a trial 
• to estimate the probability of failure, we compute 

 
 
where Nn = number of trials which failed, and 
            n  = total number of trials (realizations) 

• since Nn follows a binomial distribution, we have 
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Accuracy of Monte Carlo Simulation Estimates 

• If our maximum tolerable error on the estimated probability 
of failure, p, at 95 % confidence is e, then we must produce 
at least n realizations, where 
 
 
 

• For example, if we expect the probability of failure to be 
around 0.001 and we want to estimate the probability of 
failure to an accuracy of better than 0.0001 (e.g. a relative 
error of 10%) with 95% confidence, then we require 
 
 
realizations. 
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Accuracy of Monte Carlo Simulation Estimates 

Since we are generally unable to achieve highly accurate 
probability estimates for low probability events, we often rely on 

• distribution fitting to estimate probabilities in the tails – 
this assumes that there is some “persistence” in the 
relationship between the distributions of the input and 
response – since the response of geotechnical systems can 
often be approximated by a sum, or product, the central 
limit theorem suggests that fitting a distribution is 
appropriate. 

• variance-reduction techniques, where the variance of the 
response is reduced through simulation “tricks”, e.g. use 
antithetic variates (which are negatively correlated) to 
improve the accuracy of the estimate. 
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Pseudo-Random Number Generators 

• The uniform distribution on the interval (0,1) is the 
simplest of distributions – it says that all numbers in the 
interval are equally likely to turn up. 

• The most basic random number generator is one which 
“generates” random values that are uniformly distributed 
between 0 and 1. 

• As we shall see, the numbers are not at all truly random, 
they just appear to be random – hence we call these 
pseudo-random number generators. 

• The current standard in uniform random number generators 
are arithmetic generators in which each number is 
determined by one or more of its predecessors according to 
a fixed mathematical formula 
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Linear Congruential Generators 

Linear Congruential Generators (LCGs) are currently the most 
popular type of arithmetic generators. In this method, a sequence 
of integers, Z1, Z2, … are defined by the recursive formula 
 
where m = modulus, a is a multiplier, c is an increment, and all 
three parameters are non-negative integers. 
 
Example: what are the first three “random” numbers produced by 
the LCG 
 
using the starting seed Z0 = 21? 

( )( )1 modi iZ aZ c m−= +

1(25 55)(mod 96)i iZ Z −= +
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Linear Congruential Generators 

Solution: with Z0 = 21, we get 

( )( )
( )( )
( )( )

1

2

3

25(21) 55 mod 96 580(mod 96)   4

25(4) 55 mod 96  155(mod 96)  59

25(59) 55 mod 96 1530(mod 96) 90

Z

Z

Z

= + = =

= + = =

= + = =

Comments: 
• The modulus defines how many possible different random 

numbers can be produced by the LCG. For example, the 
above LCG can produce 96 different “random” numbers: 
0, 1, …, 95. 

• If we divide each Zi by the modulus, m, the result lies in 
the interval [0,1). 
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Linear Congruential Generators 

• Zi will be a number from 0 to m – 1 
• Ui will be a number from 0 to (m – 1)/m on the interval 

[0,1) 
• Ui divides the unit interval up into m possible values – in 

order for this to appear continuous, m should be large. 
• a, c, and Z0 should all be less than m. 
• the sequence of Zi are actually completely dependent, but 

they appear to be independent to most tests. 
• the LCG can reproduce a stream of numbers simply by 

starting with the same seed, Z0. 

( )( )1 mod           i
i i i

ZZ aZ c m U
m−= + → =
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Linear Congruential Generators 

Periodicity: 
• If Z0 = 3 produces Z1 = 746, then whenever Zi-1 = 3, the 

next number will be Zi = 746. 
• This property leads to an undesirable phenomenon called 

periodicity that quite a number of rather common 
generators suffer from (actually, all generators have 
maximum periodicity m, but some have periodicity much 
less than m). 

• Suppose that you are unlucky enough to select the starting 
seed Z0 = 83 that just happens to yield remainder 83 when 
(83a + c) is divided by m. Then Z1 = 83. In fact, your 
“random” sequence will be {83, 83, 83, …}. This particular 
stream of random numbers has periodicity equal to 1. 
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Testing Random Number Generators 

Below we have plotted the pairs (Ui, Ui+1) for Numerical Recipes 
RAN2 generator (right) and the LCG 
(left) 

1(25 55)(mod 96)i iZ Z −= +
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Generating Non-Uniform Random Variables 

• The basic initial ingredient needed is a good U(0,1) 
generator. 

• For most common distributions, efficient and exact 
generation algorithms exist which should be used. 

• Three common methods of generating non-uniform random 
variables exist: 

– inverse transform 
– convolution 
– acceptance-rejection 

• of these, the inverse transform and convolution methods are 
exact, while the acceptance-rejection method is only 
asymptotically exact (and computationally wasteful). 
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Inverse Transform Method 

The basic idea of the inverse transform method is that since Ui is 
uniformly distributed between 0 and 1, it could represent a 
probability. 
Setting Ui = P[ X < xi ] and calculating the value of xi which 
satisfies this equation gives a way of simulating realizations of X. 
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Inverse Transform Method: Example 

Suppose that undersea slopes in the Baltic Sea fail at a mean rate 
of one every 400 years, and that the time between failures are 
independent and  exponentially distributed. Generate two 
possible inter-failure times. 
 
Solution: we start by generating two realizations of a uniformly 
distributed random variable on (0,1): say u1 = 0.27 and u2 = 0.64. 
We know that for the exponential distribution 
 
where λ = 1/400 in this case. Setting u = F(x) and inverting gives 

( ) 1 xF x e λ−= −

ln(1 )ux
λ

− −
=
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Inverse Transform Method: Example 

We note that (1 – U) has exactly the same distribution as (U) so 
that realizations of X can be also computed from 
 
 
Using this form, we get the following two possible realizations of 
the inter-failure times 
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Inverse Transform Method 

Advantages: 
1. exact, efficient, and intuitive, 
2. can be easily modified to generate from truncated 

distributions 
3. can be modified to generate order statistics 
4. facilitates variance-reduction techniques (where portions of 

the CDF are ‘polled’ more heavily than others, usually in the 
tails of the distribution, and then resulting statistics corrected 
to account for the biased ‘polling’ 

Disadvantage: 
1. Requires a formula for F −1, which is not easily available for 

some distributions (e.g. normal, lognormal, beta, Gamma)  
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Special Case: Normal Distribution 

The inverse CDF for the normal distribution involves solving the 
following for x, 
 
 
which must be done numerically. Box and Muller (1958) came up 
with an alternative way of generating standard normally 
distributed variates (zero mean, unit variance) using a radial 
transformation: 

1. generate u1 and u2 from U(0,1) 
2. form 

This is exact, very simple, and efficient (for each pair of u’s we 
get a pair of independent N(0,1) random variates). 

21 1exp
22

x su dsµ
σσ π −∞

 −  = −  
   

∫

1 1 2 2 1 22ln cos(2 )   and   2ln sin(2 )x u u x u uπ π= − = −
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Example 

The plots below show histograms of a standard normal simulation 
using n = 50, 500, and 5000. 

n = 50 n = 500 n = 5000 
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Other Common Simulation Algorithms 

Uniform on (a, b): 
1. generate u from U(0,1) 
2. return x = a + (b − a)u 

Exponential: 
1. generate u from U(0,1) 
2. return x = −ln(u)/λ 

Weibull: 
1. generate u from U(0,1) 
2. return 

Lognormal: 
1. generate normally distributed Y from N( μlnX , σlnX ) 
2. return X = eY 

1/( ln ) /x u β λ= −

( ) ( )1 xF x e
βλ−= −
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Simulation 

Most  spread-sheet programs include random number generators, 
often of questionable accuracy. Compilers include random 
number generators, also of questionable accuracy. 
 
For serious simulation problems, get a good uniform random 
number generator (or at least ensure that your application makes 
use of one of these better generators). In particular, watch out for 
“periodicity” (where the random numbers start repeating after a 
bit – this is a Monte Carlo disaster!). See the 2nd Edition of 
Numerical Recipe’s Ran2 program for a good generator (but 
avoid 1st Ed. version!). 
 
 



Simulation of Random Fields 
Several methods are available: 

1) Covariance Matrix Decomposition: 

Given a sequence of points in the random field, X ={X1, X2, …, Xn }T then 
the values of X can be simulated using 

µ= +X LG
where      is the mean at each point in the field, 

 
           G  is a vector of n independent zero mean, unit variance, normally 
                distributed random variables, 
           L   is a lower triangular matrix satisfying LLT = C 
           C   is the matrix of covariances, Cov[ Xi , Xj ] 
 
L is sometimes referred to as the square root of C. It is commonly computed 
using a Cholesky Decomposition. 
The computation of L becomes numerically unstable as n increases (e.g. a 
200 x 200 field has n = 40000, so L and C are both 40000 x 40000 matrices) 

µ

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Simulation of Random Fields 
2) Fast Fourier Transform (FFT) 

The random field is represented as a sum of sinusoids. 

( )X t ( )1 1 1cosC tω= +Φ

( )2 2 2cosC tω+ +Φ

( )3 3 3cosC tω+ +Φ

In general 
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The FFT Simulation Method 
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The FFT Simulation Method 

Anisotropic Field: 
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Simulation of Random Fields 

3) Turning Bands Method (TBM) 
      - 2 and 3-D fields constructed from a series of 1-D processes 

( )
1

1( )
L

k i k i
i

Z x Z x u
L =

= ⋅∑
  
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The Turning Bands Method 

L = 16 
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The Turning Bands Method 

L = 64 
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Simulation of Random Fields 

4) Local Average Subdivision (LAS) 

• produces local averages over a discrete set of cells 
• appealing because almost all engineering properties are based on  

“local average” measurements (e.g. friction angle, cohesion, conductivity, etc.) 
• statistics of the cell values correctly adjusted as the cell size changes 
• top-down recursive algorithm is very efficient 
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Local Average Subdivision 
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Local Average Subdivision 
Comparison of LAS and FFT 

93 



Local Average Subdivision 
Fractional Gaussian Noise 

94 



Local Average Subdivision 
Isotropic Correlation 
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Local Average Subdivision 
Anisotropic Correlation 
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Simulation of Random Fields 

• reasonably efficient 
• good for anisotropic processes 
• need to know spectral density function 
• covariance structure is symmetric about midpoint (to solve, 

generate fields twice as large as necessary) 
• care must be taken with field discretization (to ensure 

frequency domain discretization is adequate) 
 
 

 

Summary of Approximate Methods 

FFT 
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Simulation of Random Fields 

Turning Bands Method: 
• reasonably efficient (depends on number of lines) 
• accurate if sufficient number of lines are used 
• not simply defined for anisotropic, nor non-standard, 

processes 
• constructive/destructive interference leads to streaked 

appearance – difficult to quantify in higher dimensions. 

Summary of Approximate Methods 
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Simulation of Random Fields 

• very efficient 
• easy to use (hard to code – boundary conditions are 

difficult to deal with) 
• generates local averages – good for finite element modeling 
• variance shows systematic pattern (of minor importance, 

although upon transformation to the lognormal distribution, 
the grid pattern shows up in the mean field – can be solved 
by shifting the field on each realization) 

LAS 

Summary of Approximate Methods 
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The method involves a combination of 
Random Field Theory (e.g. Fenton and Vanmarcke 1990) 
with the  
Finite Element Method (e.g. Smith and Griffiths 2004) 

The method takes into account of the mean, standard deviation and 
spatial correlation length of the input parameters. 

The method takes full account of local averaging of properties 
over the finite elements. 

The method is applied in a Monte-Carlo framework. 

Repeated calculations with the same input properties eventually lead 
to stable output statistics of the design parameters. 

The Random Finite Element Method 
RFEM 
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e.g. 2-d steady confined seepage (random permeability) 

Dark zones indicate high permeability. Note how the equipotentials bunch  
together in the lighter zones where the permeability is low 

Dam with two cut-off walls 
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Both slopes may have the same mean and standard deviation of shear strength, 
But quite different spatial correlation lengths. 

The correlation length recognises that soil samples “close” together in the field are more likely 
to have similar properties that if they are “far apart” 

H 

Low spatial correlation 

0.2Hθ =

High spatial correlation 

2Hθ =

RFEM IN SLOPE STABILITY  ANALYSIS 
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RFEM IN BEARING CAPACITY ANALYSIS 
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RFEM IN BEARING CAPACITY ANALYSIS 
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"worst case" correlation length

1B
θ ≈



109 

H
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pP

RFEM IN EARTH PRESSURE ANALYSIS 
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Concluding Remarks 

The Random Finite Element Method (RFEM) offers many advantages over 
conventional probabilistic analysis tool—especially for nonlinear analysis. 
 
 

-no a priori judgment relating to the shape or location of the  
 failure surface. The FE analysis “seeks out” the  critical mechanism. 
 
-a “worst case” spatial correlation has been clearly identified leading to  
  the highest probability of failure. This has important implications for design. 
 
-probabilistic tools that essentially analyze “homogenized” problems, 
 albeit with corrected properties that account for spatial correlation 
 via local averaging are unable to detect this effect 
 
-the RFEM results show that simplistic probabilistic tools may be  
 unconservative for correlation lengths close to the “worst case” value. 
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The Random Finite Element Programs described above 
are already available for free download as part of the textbook: 

 
“Risk Assessment in Geotechnical Engineering” 

by 
Gordon A. Fenton and D.V. Griffiths 

Wiley (2008) 

rbear2d Bearing capacity (2d) 
rdam2d Freesurface flow (2d) 
rearth2d Limiting earth pressure (2d) 
rflow2d Steady seepage (2d) 
rflow3d Steady seepage (3d) 
rpill2d Mine pillar stability (2d) 
rpill3d Mine pillar stability (3d) 
rsetl2d Footing settlement (2d) 
rsetl3d Footing settlement (3d) 
rslope2d Slope stability (2d) 

www.engmath.dal.ca/rfem 
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