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Editorial

The ALERT Doctoral School 2015 entitled Coupled and multiphysics phenomena is
organized by Bernhard Schrefler, Lorenzo Sanavia (both University of Padova) and
Frédéric Collin (University of Liège). The commitment of the school organizers and
contributors of this printed volume must be highly appreciated!

Going through the contributions of their book, it becomes obvious how far we have
proceeded from Terzaghi’s theory of consolidation, which is perhaps one of the first
works in this field. Nevertheless, looking at curricula of geotechnical courses at most
universities, the impression can arise that time stands still and there is no need to
teach more than Terzaghi’s theory. The presented book demonstrates the opposite. It
covers in a comprehensive manner various subjects of physical phenomena coupled
together into powerful theories. It is fascinating to see excursions to environmental
engineering, medicine or geology and to realize that we can describe those fields with
a common language. I am convinced that the book will be useful not only to students
attending the Doctoral School but to anybody with interests on modern geosciences.
As usual, the pdf file of the book can be downloaded for free from the website of
ALERT Geomaterials – http://alertgeomaterials.eu.

On behalf of the ALERT Board of Directors I wish all participants a successful ALERT
Doctoral School 2015!

Ivo Herle
Director of ALERT Geomaterials
Technische Universität Dresden

ALERT Doctoral School 2015





Contents

Foreword
B.A. Schrefler, L. Sanavia, F. Collin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

Thermo-hydro-mechanical issues in geomaterials: physical mechanisms and experi-
mental determination
P. Delage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

General theory of mixtures. Physical chemistry of mixtures and swelling
J.M. Huyghe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Finite deformation poromechanics with application to heart muscle and blood perfu-
sion
J.M. Huyghe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Thermodynamically Constrained Averaging Theory (TCAT) to model the coupled be-
havior of multiphase porous systems
W.G. Gray, C.T. Miller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Generalized Plasticity modelling of geomaterials: the role of dilatancy
D. Manzanal, M. Pastor, J.A. Fernández-Merodo, P. Mira, M. Martı́n Stikle, A. Yagüe,
Y. Javanmardi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

An introduction to numerical modelling of coupled problems in geomechanics
M. Pastor, P. Mira, J.A. Fernández-Merodo, M. Martı́n Stickle, D. Manzanal, A. Yagüe
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Coupled and multiphysics phenomena:
Foreword

The contributions assembled in the present volume proceed from the lectures of the
2015 ALERT Geomaterials Doctoral School devoted to Coupled and Multiphysics
Phenomena. The school has been organized and coordinated by Bernhard Schrefler
(Università degli Studi di Padova), Lorenzo Sanavia (Università degli Studi di Padova)
and Frédéric Collin (Université de Liège).

When dealing with the behaviour of multiphase porous systems, e.g. geomaterials,
instances of complexity and interaction are numerous, mainly because of the coexis-
tence of several constituents and phases, their physical and mechanical interactions,
their reactivity and their often non-linear behaviour. The study of these coupled pro-
cesses deals with a large number of applications, e.g. in geomechanics: underground
structures (storage, tunnelling), surface structures (earth and concrete dams, embank-
ments) as well as the exploitation of geo-resources (petroleum and gas extraction,
mines and quarries).

This volume contains nine chapters in which emphasis is given to the presentation of
the fundamental and new concepts that help understanding coupled and multiphysics
phenomena in porous systems. The contributions cover experimental, theoretical, as
well as numerical aspects. The school is divided into three main parts: the descrip-
tion of the couplings in multiphysics phenomena, including the experimental develop-
ments; the mathematical modelling of all these coupled processes, with an introduc-
tion to the constitutive modelling taking into account the dilatancy, which character-
izes the mechanical behaviour of geomaterials; the numerical implementation of the
mathematical models, comprising constitutive equations as well as balance equations
and finally numerical modelling through advanced applications.

The experimental aspects of coupled and multiphysics phenomena are described in
Chapter one. Pierre Delage introduced the different techniques to measure and control
the environmental variables such as suction and temperature. The results obtained
through advanced experimental techniques are presented, providing a global overview
of the knowledge in this particular field.
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Additional coupling phenomena are described by Jacques Huyghe in Chapters two
and three, dealing with physical chemistry of mixtures and swelling, discussing mix-
tures of a liquid with a dissolved substance and considering electrolytic solutions and
osmosis in biological tissues. For their mathematical description, theory of mixtures
has been summarised. Moreover, Chapter three presents insights in finite deformation
poromechanics with application to soil mechanics, poromechanics of the heart muscle
and blood perfusion.

Chapter four by William Gray and Cass Miller deals with thermodynamically con-
strained averaging theory TCAT, which is the most advanced and most general method
to develop governing equations of physical problems able to describe the complex sys-
tem of couplings in the behaviour of multiphase porous systems. This theory is based
on thermo-dynamic principles applied at microscale and averages all quantities from
the microscale to the macroscale in a consistent and well-defined manner, so that the
connection between microscale and macroscale quantities is explicitly known.

Manuel Pastor introduces in Chapter five the constitutive modelling of geomaterials
based on Generalized Plasticity Theory. The underlying idea is to show how this
general framework for the development of a constitutive law can be extended from a
purely mechanical case to hydro-mechanical context. This helps in exhibiting the role
of dilatancy in modelling of the most relevant phenomena in soils behaviour such as
liquefaction, bonding and de-bonding due to chemical processes or changes in satura-
tion conditions and influence of particle breakage.

The third part of this book is opened by Manuel Pastor with Chapter six, which in-
troduces the numerical implementation of the mathematical models described in the
previous chapters. The aim is to provide the reader with an overview both of the tech-
niques and the difficulties encountered when modelling this type of problems. The
analysis is restricted to the simplest case where only one fluid filling the pores is con-
sidered, as the main difficulties can be more easily explained and understood.

Then, with the last three chapters, the complexity of the problems increases step by
step by considering variably saturated problems, thermo-hydro-mechanical problems
and, finally, bio- chemo- thermo- hydro-mechanical problems. Hydraulic fractur-
ing, the first numerical modelling of advanced applications, is presented by Bernhard
Schrefler. Fluid-driven fracture propagating in porous media is a common problem in
geomechanics. It is used, for example, to enhance the recovery of hydrocarbons from
underground reservoirs.

Chapter eight by Lorenzo Sanavia presents a fully coupled and non-linear finite ele-
ment model for the analysis of non-isothermal variably saturated soils in dynamics.
Attention is given to the validation step when dealing with the development of numer-
ical models.

In the last chapter, Frédéric Collin introduces the modelling of municipal waste con-
sidered as a bio-chemo-thermo-hydro-mechanical model. This latter material is a per-
fect example of porous media with coupled and multiphysics phenomena. As a con-
sequence of the numerous physical processes, it is proposed to follow a step by step
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approach where each single aspect is introduced. The couplings are first presented
through closed form solutions for simplified cases and then numerically modelled
with all their complexity.

We believe that this volume may provide to postgraduate students, researchers and
practitioners, a valuable introduction and a sound basis for further progress in the
challenging fields of coupled and multiphysics phenomena in porous systems.

Bernhard Schrefler (Università degli Studi di Padova)

Lorenzo Sanavia (Università degli Studi di Padova)

Frédéric Collin (Université de Liège)
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_____________________________________________________________________________________ 

Thermo-hydro-mechanical issues in geo-

materials: physical mechanisms and exper-

imental determination 

P. Delage 

 
Ecole des Ponts ParisTech, Navier/CERMES  
____________________________________________________________________ 

Thermo-hydro-mechanical issues in (water) saturated and multi-phase porous geo-

materials concern various aspects of civil, environmental engineering as well as 

energy production, with particular interest devoted to geo-energy issues, to radioac-

tive waste disposal, to conventional and unconventional oil and gas production and 

also to CO2 sequestration. Various geomaterials are concerned, including unsatu-

rated not swelling and swelling soils, porous oil and gas reservoir rocks and also 

low permeability rocks, with particular interest to claystones and shales that may 

play a role either as impervious caprocks, geological host for waste disposal, or 

even reservoir rocks for oil and gas. In this context, this paper presents some physi-

cal phenomena related to microstructure, multi-phase pore fluids, and heat effects in 

soils and rocks and describes how this phenomena can be explored and character-

ized through experimental determination in the laboratory. 

1 Introduction 

Thermo-hydro-mechanical (THM) issues in geomaterials concern either water satu-

rated or multi-phase soils and rocks in which changes in water content and tempera-

ture have significant effects. They are related to various aspects of civil, environ-

mental engineering and energy production, including geothermal issues, radioactive 

waste disposal, conventional and unconventional oil and gas production from porous 

and low porosity rocks and also CO2 sequestration. As a consequence, growing 

attention has been paid to THM issues in geomaterials in the last decades. 

 

The nature and morphology of pores in geomaterials strongly control their THM 

response. There is a significant difference between water contained in the pores of 

clays where water molecules are submitted to physico-chemical interactions and 

where the pore morphology is dependent of the clay microstructure, and water in 
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porous rocks like sandstone or in the cracks of non clayey rocks in which physico-

chemical interactions are negligible.  

 

In saturated soils, couplings are satisfactorily accounted for by using Terzaghi’s 

notion of effective stress. By using in soils effective stress analyses that only con-

cerned the granular skeleton, the nature and the complexity of the multi-physics 

processes involved, particularly in clays, have been somewhat hidden. The im-

portance of hydro-mechanical processes perhaps appeared when researchers consid-

ered in soils some situations where coupling could not be properly accounted for by 

using standard effective stress analysis. Typically, this was illustrated by the impos-

sibility of the Bishop’s tentative extended “effective stress” for unsaturated soils to 

properly account for the phenomenon of collapse that occurs in unsaturated soils 

when wetted under load. This phenomenon is illustrated in Figure 1 in the case of a 

low plasticity loess of Northern France.  

 

 

Figure 1 : Collapse of a loess sample under wetting [Muñ11] 

In Figure 1, three oedometer compression curves are represented together: 

- a compression curve at constant initial water content (wi = 14%). The un-

saturated sample is characterised by a suction s defined by the relation 

s = ua – uw (ua and uw respectively being the air and water pressures). This 

notion will be described in more details further on 

- a compression curve obtained after having soaked the sample under 3 kPa 

and hence reduced the suction down to zero. This curve shows a higher 

compressibility under a zero suction  
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- a compression curve where the sample has been first loaded at 

w = wi = 14% up to 200 kPa and then soaked. A 5% collapse is observed 

and the compression curve at higher stresses after soaking coincides with the 

soaked curve. 

[Bis59] proposed an expression supposed to extend the effective stress to unsaturat-

ed soils as follows : 

’ =   ua +  (ua – uw)            (1) 

with 0 < < 1, with  equal to 0 for dry soils and to 1 for saturated soils. 

As commented by [Jen62], Bishop’s stress should decrease during soaking since 

(  ua) remains constant (ua being equal to atmospheric pressure) and since the 

suction (ua – uw) decreases during soaking, with also  > 0. A decrease in effective 

stress should cause an increase in volume of the sample which  is obviously not the 

case when considering the collapse observed in Figure 1.  

Due to this drawback, the necessity of adopting two independent stress variables 

([Col64], [Fre77]) to properly describe coupled hydro-mechanical behaviour in 

unsaturated soils appeared. In other words, the existence of two immiscible fluids 

(here fluid and air) in geomaterials clearly illustrated the complexity of multiphysics 

couplings where capillary and physico-chemical processes made necessary the use 

of more independent stress variables as compared with the better known case of 

saturated geomaterials where the use of a unique effective stress is satisfactory. 

THM couplings were considered in situations where the effects of temperature on 

geomaterials appeared, in particular in the case of deep geological radioactive waste 

disposal (see for instance [Hue90]). Beside problems related to the differential ther-

mal expansion of solids and fluids and to the related thermal excess pore pressure 

(water submitted to temperature elevation dilates 5 times more than minerals), ther-

mal effects appeared to be particularly sensitive in normally consolidated clays. 

Growing interest was also devoted more recently on the thermal behaviour of clay-

stones and shales in which geological radioactive waste disposal at great depth was 

considered.  

Hydromechanical coupling also appeared in energy production in oil porous reser-

voir rocks (sandstone, chalk) where three phases co-exist (water, oil and gas). Petro-

leum engineers are mainly concerned about oil recovery and they mainly considered 

fluid retention and transfer phenomena in reservoir rocks. However, subsidence 

effects as those observed in some North Sea reservoir chalks in the past 20 years 

demonstrated that a process similar to the collapse of unsaturated soils appeared due 

to chalk waterflooding for enhanced oil recovery [Cha02], [Deg04], [Sch02].  
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2 Microstructure aspects 

2.1 Granular geomaterials 

Most often, soils and soft rocks are represented as an assemblage of grains with a 

given level of bonding between them, with pores delimited by the contours of the 

grains. This is valid for sands (no inter-grains bonding) and sandstones (with either 

calcareous or silica bonding agent). This is also true for chalk, where elementary 

grains are small coccoliths grains (1 m diameter) with bonding due to calcite crys-

tallisation. The parameter that accounts for microstructure effects in granular assem-

blage is the porosity, although some more subtle microstructure effects can play a 

role in grain assemblages at same porosity (see for instance [Ben04], who showed 

that aggregates of sand grains could affect the susceptibility to liquefaction of loose 

sands at same porosity). Various considerations on sand structure are also described 

by [Mit05], among which the preferential sub-horizontal inter-grains contacts orien-

tation that has been observed in natural and pluviated sands. Other important param-

eters related to the density of granular geomaterials are the grain size distribution 

and the angularity and surface roughness of the grains. In all these geomaterials, the 

status of the pore water is described as that of free water, with no mineral-water 

physico-chemical interactions.  

When granular geomaterials contain various immiscible fluids, capillary actions 

govern most of the interaction between grains and the fluids. In unsaturated sands, 

the situation is schematically described as shown in Figure 2, where the meniscii 

created at the interface between the wetting phase and the non-wetting phase are 

located in the smaller pores close to the inter-grains contacts. In granular geomateri-

als, the wetting fluid is water. The non-wetting fluid is air in unsaturated soils and 

oil in reservoir porous rocks. 

In the case of a loose assemblage of grains, the scheme of Figure 2 provides a sim-

ple interpretation of the collapse phenomenon described in Figure 1.  

 

Figure 2 : Schematic view of granular a geomaterial with two fluids  

When load is applied on the unsaturated loose assemblage, stability is ensured by the 

additional normal inter-grains local stress created by the menisci. Up to a point, the 

Capillary 
meniscus 
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strength of this bond increases when suction increases due to drying. When the soil 

is soaked, the reduction in normal inter-grain stress no longer ensures the assem-

blage stability because the reduced normal local stresses in some locations are no 

longer able to sustain the tangential stresses, according to the friction properties of 

the inter-grains contacts. 

In reality, things are less simple, as observed in the SEM photo of an aeolian low 

porosity loess (n = 40-45%) from Northern France presented in Figure 3a (Muñ11). 

The photo clearly shows the angular shape of the silt grains (10-20 m diameter) 

that were produced by erosion by the ice sheet between 15 000 and 20 000 years BP 

and transported from Southern England by North-West cold, dry and violent winds. 

Actually, the collapse observed on this loess (see Figure 1) is due only to some local 

reorganisation in some locations where very large pores (> 10 m) exist.  

 

 
a)                                                             b) 

Figure 3 : a) SEM photo of a collapsible loess from Northern France (Muñ11); b) 

SEM photo of Lixhe chalk [Cha02] 

Two large pores of this type can be observed in the Figure 3. This loess is also char-

acterised by a heterogeneous repartition of aggregated clay particles. Indeed, some 

grains appear very clean whereas the inter-grains porosity of others are filled with 

aggregated clay particles that obviously contribute to the stability of the structure. 

Apparently, volume decrease due to collapse is due to the local collapse of some 

largest pores located between clean grains. Similar local collapse phenomenon of 

largest pores has been observed in the Eastern Canada sensitive clay presented in 

Figure 6.          

Figure 3b presents a SEM photo of the chalk of Lixhe (Belgium) that belongs to the 

same geological level as the Ekofisk reservoir chalk in which a 20 m subsidence has 

been observed since enhanced oil recovery by waterflooding started 20 years ago. 

The high porosity (average value n = 45%) is related to the large pores observed 

between the elementary 1 m diameter coccoliths made up of pure calcite that char-

acterise this chalk. Two intact circular arrangements of the unicellular alguae that is 
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typical of this chalk can also be observed. The photo shows that some pores are 

much larger (5 m) than the elementary coccolith (1 m). In the corresponding 

reservoir chalk full of oil and water, capillarity appears to be the main factor ex-

plaining the waterflooding induced collapse. 

2.2.  Fine-grained soils 

Fine grained soils are characterised by a given amount of clay minerals that are quite 

different in size, shape and nature from the grains represented in the previous Fig-

ures. Clay minerals are platy minerals smaller than 2 m made up of the stacking of 

various (10 to various hundreds) elementary layers. The mineralogical composition 

of elementary clay layers is briefly described in Figure 4. The basic components of 

clay are: 

- a tetrahedral layers composed of one atom of silica (Si) surrounded by 4 ox-

ygen ions (O
--
), with a general chemical composition typical of silica (SiO2) 

- an octahedral layer composed of a metal ion (generally aluminium) located 

in the centre of the octahedron and surrounded by four OH
-
 hydroxyls ions. 

 

 
a)                                                     b) 

Figure 4 : Molecules of montmorillonite (a) and kaolinite (b) [Mit05] 

Clays are composed of a combination of these layers together that is made possible 

by the geometric correspondence between the corners of the tetrahedrons (O
--
) and 

the sides of the octahedrons (OH
-
). As shown in the Figure, OH

- 
are replaced by O

--

at the contacts between the octahedral and the tetrahedral layers:  

- Kaolinite is made up of one tetrahedral and one octahedral layer with a 7 Å 

(0.7 nm) thickness. The link between two elementary layers of kaolinite 

takes place between a layer of O
-- 

(upper tetrahedral layer) and OH
- 
(bottom 

OH 
-
). This link is mainly governed by hydrogen bonding and is rather 

strong. For this reason, stacks of kaolinite that are composed of 10 to 1000 
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elementary layers (see [Mit05]) are stable. When kaolinite is hydrated, water 

does not infiltrate in between the elementary layers; 

- Montmorillonite is made up of two tetrahedral and one octahedral layers 

with a 9 Å (0.9 nm) thickness 

Illite is similar to montmorillonite (9 Å thickness) with strong bonds between the 

elementary layers permitted by fixed potassium cations (K
+
). Like in kaolinite, water 

cannot penetrate the inter-layer space and illite stacks remain stable during hydra-

tion. Clays are characterised by an electric charge deficiency resulting from the 

isomorphic substitution of AL
+++

 by other metals (generally Mg
++

) inside the octa-

hedral layer. As a result of this electric charge deficiency, an electric field is devel-

oped near the clay layer surface, with noticeable effect on the cations dissolved in 

the pore water that come attracted towards the clay surface (exchangeable cations). 

This is one of the reasons why an attraction is exerted by clay on water molecules 

that correspond to the plasticity properties of clay and clay soils.  

This is particularly true in the case of montmorillonite where, unlike kaolinite and 

illite, there are no strong bonds between to elementary layers. During hydration, 

water molecules can come and adsorb along the elementary layer surfaces. This 

mechanism is related to the macroscopic swelling that is typical of plastic clays. Due 

to electrical effects and weak bonds, this interlayer space is also the place where 

most chemical reactions occur between soluble chemical compounds and clay. 

Hence, plastic clay with significant amount of smectite (another name for montmo-

rillonite type clays) will be more sensitive to water than lower plastic clays contain-

ing kaolinite and illite. 

Since they can separate when hydrated, montmorillonite stacks can become quite 

thin when hydrated to low suction, with less than 10 layers of 9 Å thickness (see 

[Tes90]). Actually, it has been demonstrated by using X-Ray diffractometry at low 

angles in various smectites that the hydration of a dry smectite occurs in an ordered 

manner, as described in Figure 5 [Sai00]. 

The Figure shows that only one layer of water molecules is adsorbed to the elemen-

tary clay layer described in Figure 4 at suction higher than 50 MPa. This corre-

sponds to an internal interlayer distance of 12.6 Å (1.26 nm). When suction is de-

creased during hydration between 50 and 7 MPa, two layers of water molecules 

(interlayer distance of 15.6 Å) progressively adsorb. Finally, a third layer (interlayer 

distance of 18.6 Å) starts adsorbing below 7 MPa and a fourth one at 100 kPa. Sim-

ultaneously, the thickness of the stacks reduces with 300 elementary layers above 50 

MPa, 150 at 7 MPa. At lower suction, the number stabilises at 10 layers per stack. 

Inside a saturated aggregate, pores comprised between stacks that reduce in thick-

ness progressively develop, giving rise to three types of pores:  

- laminar interlayer pores; 

- inter-stacks pores (inside the aggregates); 
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- inter-aggregates pores. 

 

2 layers 

3 layers 
4 layers 

1 layer 

 

 

Figure 5 : Hydration mechanism of a dry compacted FoCa clay [Sai00] 

In natural soils, it is now admitted that due to higher densities, clays are character-

ised by aggregates of clay stacks, the aggregation of which being favoured by salt 

contents higher than 1 mg/l, which is generally the case in Nature.  

A theory called the diffuse double layer theory has been developed to model the 

distribution in water of exchangeable cations generated by the electrical field along 

the clay layer. As in any electrical field, cations are distributed in the water close to 

the mineral surface with a concentration that decreases when the distance to the 

surface decreases. The so-called “diffuse layer” has been described through the 

Gouy-Chapman Theory (see [Mit05]), which gives the expression of the concentra-

tion of cations as a function of the distance from the mineral. More precisely, the 

diffuse double layer (DDL) is defined by a “thickness” defined by the following 

relation: 

22
0n8

DkT
x


               (2) 

where D is the dielectric constant of the medium, k the Boltzmann constant 

(k = 1,38 10
-16

 erg/°K), T the absolute temperature, n0 a reference ionic concentra-

tion in a point far from the clay,  ( = 1,6 x 10
-19

 Coulomb) the elementary electron-
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ic load,  the cation valence. This expression shows that the DDL thickness increas-

es with increased dielectric constant and temperature and decreased salt concentra-

tion and cation valence.  

When two clay layers are close one from another, the effect of the two positively 

charged DDL is repulsive. The dependency of the DDL thickness versus the valence 

shows that a montmorillonite suspension made up of the same concentration of soil 

will have a much larger void ratio in the case of a sodium (Na
+
) montmorillonite 

than in the case of a calcium (Ca
++

) montmorillonite. For this reason [Mar01] ob-

tained void ratios respectively equal to 11.5 and 3.9 when preparing slurries with Na 

and Ca clays at a water content w = 1.1 wl. [Bol56] Bolt (1956) and [Sri82] Sri-

dharan and Jayadeva (1982) proposed a model based on DDL concept to describe 

the compressibility of smectite suspensions. The DDL theory was also used by 

[Lam58] to propose a model of the microstructure of compacted soils.  

Figure 6a shows the microstructure of a sensitive St Marcel clay from Eastern Cana-

da, mostly composed of illite with no montmorillonite.  

5 µm

2 µm

 
                                  a)                                                              b) 

Figure 6 : SEM observation of a) Eastern Canada sensitive clay ([Del84]); b) heavily 

compacted swelling clay for nuclear waste isolation ([Cui02]). 

A typical aggregate microstructure is apparent with large inter-aggregates pores 

(0.5 – 1 m in diameter) and also some silt grains. It was demonstrated that, in these 

sensitive clays, aggregates were not affected by remoulding that only concerned 

inter-aggregates bonds. Figure 6b presents a view of a heavily compacted smectite 

considered as a possible component of engineered clay barrier for the isolation at 

great depth of high activity and long life nuclear waste (Japanese Kunigel clay). As 

in other dry compacted soils ([Ahm74] Ahmed et al. 1974, [Del96] Delage et al. 

1996) the photo shows that clay stacks made up of elementary layers are aggregated 

together. The photo clearly confirms that large pores remain present in compacted 

clays, even at high specific mass (2 Mg/m
3
). Obviously, the microstructure observed 

in the Figure should play a role in swelling mechanisms that indeed cannot be ex-
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plained only at the elementary level described in Figure 4. It has been observed that 

a first stage of hydration and swelling corresponded to the filling of the inter-

aggregate voids by aggregate exfoliation. This process progressively conducts to a 

more homogeneous matrix microstructure in which the inter-stacks actions progres-

sively take place. 

 

Figure 7a presents a SEM photo of the Callovo-Oxfordian (COx) claystone, with a 

schematic representation of its microstructure also presented in Figure 7b. The COx 

claystone is considered as a possible host rock for radioactive waste disposal in 

France. The photo shows the clay matrix (50% clay fraction at 490 m depth in the 

area of the Bure underground Research Laboratory in the East of France) constituted 

of a dense assembly of platelets of inter-layered illite-montmorillonite minerals. 

Detritic grains of quartz and calcite are scattered into the clay matrix. The presence 

of montmorillonite provides some swelling properties to the COx claystone that 

exhibits quite interesting self-sealing properties. The main size of the pores is quite 

small with an average of 30 nm entrance diameter representative of the average 

thickness of the platelets schematically represented in Figure 7b ([Men14]). 

 

  

Figure 7: a) SEM photo of the Callovo-Oxfordian claystone [Men14]; b) schematic 

representation of the COx microstructure ([Yve07]) 

3  Multiphase geomaterials 

Unsaturated granular soils have been briefly described in Figure 2. In fine grained 

soils, the situation can be schematically represented as shown in Figure 8 ([Del00a]).  
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Figure 8. Schematic view of a fine grained unsaturated soil 

The unsaturated soil exerts an attraction on water either by capillary action between 

the grains of the soil or by physico-chemical clay-water interactions. The energy of 

the water contained in an unsaturated soil is described by a potential, also known as 

suction or, less satisfactorily, by negative pressure. This suction gives the energy 

necessary to extract water from the unsaturated soil. For instance, a dense compact-

ed swelling clay used for engineered barriers in nuclear waste confinement will have 

a suction higher than 10 MPa, which means that the links between the soil and water 

molecules are very strong. Conversely, a sand, in which only capillary interaction 

occurs in the smaller pores located at the intergranular contacts, will have maximum 

suctions not higher than several tens of kPa. If water and air pressures are respec-

tively noted ua and uw, the suction (expressed in kPa) is equal to the difference in 

pressure between air and water: 

s = ua - uw               (3) 

Eq. (3) shows that, if ua = 0 (0 being the atmospheric pressure), a positive value of 

suction corresponds to a negative value of uw. 

The value of the suction in a soil depends of various parameters, including the water 

content: a dry soil (high suction) will have a low water content and a low degree of 

saturation Sr
1
, whereas a wet soil will have a low suction and high water content and 

degree of saturation.  

3.1 Water retention properties 

The relation suction/water content in a soil is defined by the so-called water reten-

tion curve of the soil. The experimental determination of the water retention curve is 

made using the Richards cell presented in Figure 9. 

                                                           
1
 The degree of saturation of a soil is defined by : Sr = Vw/Vv, = wnat/wsat , where Vw and Vv are respec-

tively the water and porous volumes and wnat and wsat are the natural (unsaturated) and saturated water 

contents 
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Figure 9. Richards’s cell for the determination of water retention curves 

This cell permits the control of suction according to the so-called axis-translation 

system [Van08] (Other techniques of controlling suction include the osmotic tech-

nique [Del08] and the vapour equilibrium method, [Del98], [Bla08]). The cell is air-

pressure proof, and its base is composed of a ceramic low porosity porous stone, 

called high air entry value (HAEV) porous stone. The principle of the system is that 

the pores of the ceramic are so small that the air pressures imposed in the cell during 

the water retention curve remain too small to desaturate it. In other words, the capil-

lary air-water menisci located at the surface of the ceramic can resist to the air pres-

sure, according to Laplace-Jurin law, which writes:  

r

cos2
uu s

wa


             (4) 

where r is the pore radius, s the surface air-water tension and  the contact angle 

between the meniscus and the solid. For water, s = 72,75 kN/m and cos  = 1. 

Figure 10 [Cro52] shows the retention curve of a clayey sand. The curve was deter-

mined by placing the saturated sand in the cell, and by applying increasing air pres-

sures in a step by step progression.  
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Figure 10. Water retention curve of a clayey sand [Cro52] 

For a given applied air pressure, a time period of 4-5 days is waited for to allow for 

suction equilibration. Then, the sample is quickly withdrawn and weighed to deter-

mine the water content. The sample is afterwards placed in the cell so as to increase 

the pressure, reach a new equilibrium under higher suction and lower water content 

and degree of saturation, and so on. The curve shows an important characteristic of 

porous media, i.e. the hysteresis observed in a drying wetting path: at a given suc-

tion, the water content obtained when desaturating is still higher than that obtained 

when wetting the samples. Various explanations of this standard feature are given in 

[Del00a].  

In petroleum engineering, retention curves are called capillary pressure curves, since 

capillarity is the dominant interaction between the fluids and the solid phase. The 

retention properties of the oil-water couple of fluids in reservoir rocks (sandstones, 

chalks) is of utmost importance for oil recovery, particularly in the case of enhanced 

recovery by waterflooding when seawater is injected in the reservoir rock to help oil 

extraction. The oil-water retention of Lixhe Chalk from Belgium [Pri04] is presented 

in Figure 11. Lixhe chalk is belonging to the same geological level as the reservoir 

chalk of the Ekofisk reservoir that presented subsidence problems that were consid-

ered in the Pasachalk European research projects [Pas03].  
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Figure 11. Oil-water retention of Lixhe Chalk [Pri04]. 

The chalk sample was initially saturated with water and oil was infiltrated under 

controlled oil-water suction condition (axis translation method). The curve shows 

that a degree of saturation in water Srw close to 6% is reached at a 1.3 MPa suction. 

A good similarity is observed between the axis translation water drainage curve 

obtained from various samples and a curve derived from the mercury intrusion po-

rosimetry test obtained on one sample. Oil was afterwards infiltrated under constant 

decreasing oil-water suction that was controlled using the osmotic technique. The 

curve shows that a residual degree of saturation in water close to 70% appears at the 

end of the oil infiltration phase. This is one of the criteria used when qualifying the 

wettability of reservoir rocks. A residual degree of saturation of 70% shows that the 

chalk considered is water wet. Note that some other North Sea reservoir chalks, as 

the Valhall chalk for instance, are oil wet, due to the adsorption and coating of hy-

drocarbon components along the surface of the chalk grains. The wettability of res-

ervoir rocks is a key property in petroleum engineering. As further commented later 

on, interest towards the water retention properties of claystones used as geological 

host in radioactive waste disposal recently grew due to their significant sensitivity to 

changes in water content. Figure 12 shows the changes in water content (a) and 

porosity (b) of the Callovo-Oxfordian claystone with respect to suction starting from 

an initial state with a porosity of 17%, a water content of 7.2% and a suction of 14 

MPa. Claystones exhibit standard features like hysteresis and are also characterised 

by significant swelling properties and some shrinkage, as indicated in Figure 12b.  
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Figure 12. Air-water retention properties of the Callovo-Oxfordian claystone 

[Wan14] 

The concepts of water adsorption in montmorillonites helps interpret the water re-

tention properties of compacted bentonites. Compacted bentonites are considered in 

radioactive waste disposal to make water proof plugs in cells and galleries. In some 

options, they are also planned to be placed between the waste canisters and the host 

rock. This is the case in particular in the Swedish concept of waste disposal in gran-

ite. Their initial suction can be very large, up to more than 100 MPa. Figure 13 

shows the water retention curve of a FoCa7 compacted bentonite in both free swell-

ing and no volume change conditions. One can then consider, according to the data 

of Figure 5, that only one layer of water molecules is present at initial state (suction 

113 MPa), whereas two layers are adsorbed when hydrating and decreasing suction 

to 50 MPa. The Figure shows that a significant difference occurs between the free 

swelling and the constant volume condition close to 9 MPa, i.e. at the suction at 

which the third layer start to adsorb. This confirms that the hydration energy level of 

the third layer of water molecules is lower than the previous two layers. 

 

Figure 13. Water retention properties of compacted FoCa7 bentonite [Yah01] 
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The water retention curves of many compacted bentonites have been investigated, 

showing the predominant effect of physico-chemical interactions compared to 

capillary actions. As a consequence, the water retention curves of compacted 

bentonites are independent of the density. 

3.2  Water and gas flows in multiphase geomaterials 

In the following, the case of water and air transfer in unsaturated soils is presented. 

Phenomena are roughly similar in other multiphase geomaterials like reservoir rocks 

except when considering the compressibility of the non wetting fluid (air in unsatu-

rated soil and oil in reservoir rocks). Actually, various techniques from oil engineer-

ing have been adapted to unsaturated soils.  

The determination of water transfers in unsaturated soils is necessary to predict 

infiltration in unsaturated soil masses like in the vadose zone, in unsaturated slopes 

and in engineered barriers or liners. The water permeability of an unsaturated soil 

changes with its water content or degree of saturation, which makes permeability 

determinations more delicate than in saturated soils. Various techniques exist and 

are described in [Del00a] and [Mas08]. Here, only the so-called instantaneous pro-

file method is described, since it provides at the same time an interesting insight in 

the mechanism of water infiltration in an unsaturated soil. 

 

 

Unsaturated water permeability : the instantaneous profile method  

The method consists in placing a cylindrical sample of soil in a horizontal column 

(length L, area A), and in infiltrating water, at a constant flow for instance, in the 

column from one side [Dan82]. During infiltration, changes in suction with time are 

monitored at various distances from the infiltration side. Suction is measured using 

tensiometer for lower suctions (s < 80 kPa) in sands or low plasticity silts, and with 

thermocouple psychrometers in clays (s < 500 kPa). In parallel, the wetting path of 

the water retention curve of the soil is determined. Hence, it is possible to draw the 

isochrones of suction and water content at various periods of time, as shown in Fig-

ure 14. 
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Figure 14. Isochrones of suction and volumetric water content obtained at various 

periods of time during the infiltration of a column [Dan84] 

The calculation of the permeability as a function of water content is based on the 

calculation of the hydraulic gradient i and of the flow q in various points of the dia-

grams of Figure 14 : 

- the determination of the gradient i is simple, since i is given by the slope of the 

suction vs distance curves, as showed in Figure 14b 

- the unit flow is obtained from the water content isochrones of Figure 14a, by 

integrating the volumetric water content profiles between xi and L at time t + t and 

t. The water volume V passed at a distance xi is given by : 


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the unit flow q, calculated between t et t+t is equal to :  

t

dxdx

Aq

L

x
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L
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tt

ii



   





          (6) 

The permeability is derived from the unit flow and the average gradient between t  

and t + t, as follows : 

 ttt ii5,0

q

A

1
K


           (7) 

Air permeability 

Air permeability measurements can be measured using the device presented in Fig-

ure 15 [Yos63]. Basically, the principle is similar to that used in variable head de-

termination of water permeability. A U-tube is connected to an air-tank and to a 

standard oedometer cell. In a first stage, a small air pressure is imposed in the U-

tube, giving rise to a difference in level of water in both sides of the U-tube. In a 

second step, the U-tube is disconnected from the air reservoir and connected to the 

cell, and air is circulated through the sample under a decreasing pressure related to 

the difference in water level in the U-tube. The decreasing level change is monitored 

as a function of time. According to [Yos63], the intrinsic permeability is given by 

the following relation: 
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
        (8) 

where V is the reservoir volume, h and S respectively the sample thickness and sec-

tion, a dynamic viscosity of air, pa the atmospheric pressure. Experiments show 

that the air permeability is only depending of the air void ratio ea = e (1 - Sr), ac-

cording to the two parameters (a, n) following relation: 

 nra )S1(eaK             (9) 
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Figure 15. System for air permeability measurements [Yos63] 

 

Figure 16. Typical two phase permeabilities in an undeformable porous medium 

[Vac74] 

Typical results in terms of relative permeabilities (kr = k(Sr)/k(100%)) of air and 

water permeabilities measured at various degrees of saturation in a sand using the 

instantaneous profile method are presented in Figure 16 (Vachaud et al. 1974). The 

figure shows the decreasing air permeability between Sr = 0 and 75%, showing that 

the air is occluded above 75%. Similarly, there is no water continuity between Sr = 0 

and 25% and most of the water permeability occurs between 75 and 100%. The 

trends observed in Figure 16 are also valid in the case of reservoir porous rocks 

(chalks, sandstones) considered in petroleum engineering. In clays, things are less 

simple due to the clay-water interactions, which induce soil deformations when Sr 
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changes. The relative permeability curves of reservoir rocks are quite similar to that 

of Figure 16.  

Air and water permeability can also be measured simultaneously [Fle95] using a 

more sophisticated device initially proposed by [Cor57] where air and water pres-

sures are simultaneously controlled. A similar device can be used for oil reservoir 

rocks. 

3.3 Mechanical testing of unsaturated soils 

Figure 17 presents the triaxial suction controlled apparatus developed by [Bis62].  

 

Figure 17. Suction controlled triaxial apparatus Bishop and Donalds (1962) 

Oedometers based on the axis translation system were also developed [Esc73]. The 

sample, cell and pistons are placed inside an air pressure proof cell, and the base 

porous stone is a ceramic HAEV stone.  

Two important behaviour features of the behaviour of unsaturated soils are present-

ed in Figure 18, which presents isotropic (a) and triaxial shear (b) test results per-

formed under controlled suction comprised between 200 and 1500 kPa. Basically, 

the stiffness and shear resistance of unsaturated soils increase when the soil is dried 

(decreasing Sr), i.e. when suction is increased. Thus, the compression index decreas-

es and the yield pressure (equivalent to the preconsolidation pressure in saturated 

soils) increases with increased suction, as quoted initially in the Barcelona Basic 

Model [Alo90] (Figure 18a). Similarly, the shear modulus and the shear resistance 

increase with increased suction (Figure 18b).  
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Figure 18a. Compressibility and shear strength of unsaturated soils [Cui96] 

4  Thermal issues in clays and claystones 

As commented above, the interest devoted to thermal issues in clays and claystones 

is mainly linked to deep geological disposal of high level exothermic radioactive 

waste. Investigation initially concerned clays with particular attention to Boom clay, 

a possible host rock deeply studied in Belgium. More recently, investigation were 

also carried out in claystones, with particular attention devoted to the Opalinus clay 

in Switzerland and to the Callovo-Oxfordian claystone in France. 

Thermal issues in clays and claystones include the changes in mechanical response 

with temperature, of significant importance when attempting to predict the response 

of the host rock in the close field near the disposal cells. This includes thermal vol-

ume changes under elevated temperature and the effect of temperature on the shear 

strength behaviour of clays and claystones (elastoplastic response and failure proper-

ties). Another important point is the thermal pressurisation of the pore water in heat-

ed clays and claystones that will be commented in more details. 

4.1 Thermal testing of clays 

Testing clays and claystones at various temperatures between 20 and 100°C is not 

that difficult, since triaxial cells can easily be heated, for instance, using electrical 

heating wires placed around the cell. This system was considered in the first thermal 

triaxial system developed by [Bal85]. Thermocouple sensors placed in the cell fluid 

provide a simple and accurate way of controlling temperature (0.1°C).  
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Figure 19 [Del00b] presents an isotropic thermal compression cell developed to 

investigate the thermal behaviour of the Boom clay. The confining pressure and 

back pressures are applied through pressure-volume controllers (GDS Brand) that 

also monitor thermal volume changes, thanks to temperature controlled baths in 

which the connecting tubes are immersed between the cell and the pressure-volume 

controllers. A detailed presentation of the systems developed up to now including 

system using internal heaters is made in [Cek05] in which a novel triaxial system 

with internal heaters is also presented. 

When testing a clay that exhibits some swelling properties like the Boom clay, it is 

important to impose in-situ stress conditions prior to saturating the specimen. Actu-

ally, clay specimens that have been correctly extracted exhibit a suction value close 

to the average effective stress and a direct contact with water and no stress applied 

would release the suction and result in some swelling [Del07] that degrades the clay 

mechanical properties.  

When heating a saturated soil, the soil minerals and the pore water thermally expand 

with different thermal expansion coefficients m andw, according to: 

Vm = m Vm T  and   Vw = w Vw T      (10) 

where m  is in the order of 10
-5

°C in clays. For water, [Bal88] proposed to adopt an 

expression given by Juza, that accounts for the effects of temperature and pore water 

pressure pw as follows : 

m (T,pw) = 0 + (1  + 1T) ln mpw + (2 + 2T) (ln mpw)
2
    (11) 

with 0 = 4.505 10
-4

°C, 1 = 9.156 10
-5

°C, 2 = 6.381 10
-6

°C, 1 = -1.2 10
-6

°C
-2

, 

2 = -5.766 10
-8

°C
-2

, m = 15 MPa
-1

. 

Since the thermal expansion coefficient of water is significantly larger than that of 

the soil minerals, differential thermal expansion will give rise to significant water 

pore pressures if heating is too fast with respect to drainage conditions. With stand-

ard triaxial specimens (38 mm in diameter and 76 in length), calculations and exper-

iments showed that a heating rate as low as 1°C per hour was necessary to ensure 

drained conditions with no thermal pore pressure generation during heating. 

The subsequent dissipation of pore pressures is called thermal consolidation 

([Paa67], [Hou87], [Del00b]). It occurs in clay soils and is fairly similar to standard 

consolidation. It may be of some importance in saturated host clay rocks in the near 

field of nuclear waste disposal at great depth, and should affect the gallery stability. 
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Figure 19. Isotropic compression high pressure thermal cell [Del00b] 

At elevated temperature, the viscosity of water decreases resulting in easier move-

ment through the pores of the soil and a decrease in permeability (in m/s) as shown 

in Figure 20a from data of Boom clay [Del00b]. However the changes in intrinsic 

permeability (Figure 20b) indicate no significant effect of temperature on the intrin-

sic permeability. This a simple and important feature when computing water trans-

fers in saturated soils at elevated temperature. 

 

  
a)                                                           b)  

Figure 20. Effect of temperature on the permeability of Boom clay [Del00b] 

The effect of elevated temperature on the mechanical properties of soils can be con-

sidered as opposite to that of suction, i.e. the soil becomes weaker and exhibits 

smaller shearing resistance. As far as volume changes are concerned, there is little 

influence on the elastic and plastic compression indexes in clay soils [Cam68], 

[Cek04]. However, a specific dependence on the overconsolidation ratio has been 

observed by various authors. Overconsolidated soils behave as any material, i.e. 

dilates under increased temperature due to the thermal dilation of the components; 

the thermal dilation occurs up to a maximum temperature which depends on the 

thermo-mechanical history of the sample. It is followed by a thermal contraction, as 

seen in Figure 21a [Sul02] where dilation strains are negative. Consolidated soils 
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contract under heating, due to the weakening of clay-water links with temperature, 

which liberates some layers of water molecules. 

 
a)                                                       b) 

Figure 21. a) Volume change response of Boom clay heated under various constant 

isotropic loads [Sul02]; b) Normalized yield envelope of Kaolin at T = 22 and 90°C 

[Cek04]. 

Figure 21b [Cek04] shows the reduction of the normalised yield envelope of a satu-

rated kaolin when the testing temperature is increased from 22 to 90°C. This result 

confirms earlier findings by [Hue90]. 

4.2 Thermal testing of claystones and shales 

Claystones are one or two order of magnitude less permeable than clays, with intrin-

sic permeabilities around 10
-20

 - 10
-21

 m
2
 corresponding to permeabilities of 10

-13
 - 

10
-14 

m/s and the issues of satisfactory drainage conditions and homogeneous pore 

pressure field conditions are important concerns. Experience also shows that core 

specimens of claystones and shales are unsaturated once extracted. Actually, unlike 

clays that in most case remain saturated when extracted because the resulting suction 

is smaller than the air-entry value [Del07], the larger stress release observed in clay-

stones results in suction once extracted of several tens of MPa, larger than their air-

entry value that is close to 10 MPa in the case of the Callovo-Oxfordian (COx) clay-

stone. 
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Saturation and drainage conditions 

Given their significant sensitivity to changes in water content, the saturation proce-

dure adopted (or not adopted) during testing is an important question as well. Like 

unsaturated soils, they become significantly stronger when desaturated. As shown in 

Figure 22, [Pha07] observed increases in unconfined compression strength (UCS) 

from 28 MPa to 58 MPa in samples submitted to desaturation by imposing con-

trolled relative humidities (RHs) of 98% and 32% respectively, with corresponding 

water contents decreasing from 5.24% to 1.65%. The data of Figure 22 clearly indi-

cate that partial saturation may overestimate the mechanical characteristics of clay-

stones.  

 

Figure 22. Water sensitivity of COX clay, UCS tests [Pha07]. 

 

a)                                                                    b) 

Figure 23. Testing devices with short drainage lengths: a) small triaxial device (10 

mm in diameter and 20 mm in height, [Hu13]; b) hollow cylinder triaxial (100 mm 

external, 60 mm internal diameter, 70 mm height, [Mon11a]  

In low permeability geomaterials, the resaturation procedure as well as the quality of 

the drainage and the resulting homogeneity in pore pressure field is conditioned by 

the drainage length of the testing device. It is known that standard triaxial specimens 

drained at both bottom and top require excessively long saturation periods or low 

Delage 29

ALERT Doctoral School 2015



strain rate when testing. The solution is to adopt small drainage length and various 

devices have been developed accordingly, as shown in Figure 23. 

In the small triaxial device in which the specimen is drained on top and bottom, the 

drainage length is equal to half the sample height, i.e. 10 mm. In the hollow cylinder 

where drainage is ensured on top, bottom and on the internal and external faces by 

means of a geotextile, the drainage length is equal to half the cylinder thickness, i.e. 

10 mm. The effect of this enhanced drainage system has been calculated by 

[Mon11a] and is presented in Figure 24a. 

 

Figure 24. a) Computed excess pore pressure profiles in half the thickness of the 

sample during isotropic compression under different drainage conditions; b) Un-

drained loading test to determine the B Skempton parameter [Mon11a]. 

Figure 24b presents the results of an isotropic “undrained” compression test in 

which the pore pressure increment u is presented with respect to the increment in 

total stress .  

In the framework of poro-elasticity (see for instance [Det93]), the expression of B is 

as follows: 

d s d s

d s w s
( )

c c c cu
B

c c c c S 

 
  
   

                            (12) 

where S is the storage coefficient that can be written as: 

d s w s
– ( )S c c c c  

                                                 

(13)

 

where  is the porosity, 
d

c  is the drained compressibility of the claystone, cs is the 

compressibility of the solid grains, and cw is the compressibility of water. Parameter 

s
c  can be determined by a so-called unjacketed compression test in which the back 
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pressure and the confining stress are simultaneously and equally increased while 

measuring the volume changes of the specimen. 

In soils, good saturation corresponds to B values close to one. In porous rocks, this is 

no longer true given the form of Eq. (2) and the fact that in porous stones 
s

c  is no 

longer negligible compared to 
d

c . 

Actually, an “undrained” test is in fact a test in which the drainage valves connected 

to the cell base are closed. In low porosity rocks, it is not fully undrained given that 

some water exchanges occur between the porosity of the compressed specimen and 

that of the porous elements surrounding it. This effect has also to be accounted for 

when comparing the experimental value and the theoretical expression given in Eq. 

(2). Detailed calculations made in [Mon13] show that a corrected theoretical value 

of 0.89 is obtained that compares favourably with the slope (B = 0.86) calculated 

from the data of Figure 24b (with 
w

c = 0.449 GPa
–1

, 
d

c = 0.348 GPa
–1

, cs = 0.02 

GPa
–1

 for the Opalinus clay).  

Thermal volume changes in claystones 

The response of a specimen of Opalinus clay to a drained thermal cycle between 

25 °C and 80 °C under in situ mean stress conditions (total mean stress p = 4.1 MPa 

and pore pressure pw = 2.2 MPa) is presented in Figure 25. The test was conducted at 

a heating rate of 1°C/h so as to ensure fully drained conditions with the enhanced 

drainage system (see above).   

 

Figure 25. Drained thermal volume changes of Opalinus clay under in-situ mean 

stress conditions [Mon11b]. 

The subsequent cooling phase is characterized by a thermo-elastic contraction with a 

slope approximately parallel to that of the first heating phase, confirming the re-

versible nature of the response. The corresponding thermal expansion coefficients 
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are d = 5.9 × 10
–5

 °C
–1

 along the heating phase and 6.3 × 10
–5

 °C
–1

 along the cool-

ing phase. Note that these thermal expansion coefficients are comparable, although 

somewhat larger, to those of the solid phases in the claystone (between 1 × 10
–5

 °C
–1

 

and 3.4 × 10
–5

 °C
–1

). 

The thermal irreversible contraction observed during the first heating phase above 

65°C is comparable to that observed in normally consolidated plastic clays (e.g. 

[Bal88] and [Del00] on Boom clay). In fine grained soils, this phenomenon is under-

stood as a thermal consolidation of the sample which corresponds to the rearrange-

ment of the grains after a critical temperature. It seems that the claystone has kept 

the memory of its maximum supported temperature like over-consolidated soils 

conserve the memory of the maximum supported load. Once heated up to 83°C after 

the first cycle, the sample keeps expanding up to 80 °C (the new maximum tempera-

ture supported) during the second cycle, forgetting the previous temperature thresh-

old of 65°C. It is interesting to relate this first temperature threshold to the maxi-

mum temperature previously experienced by the Opalinus clay. From geological 

arguments the maximum burial depth of the Opalinus clay at Mont Terri is 1350 m. 

Assuming a geothermal gradient of about 0.03 °C/m, the value of 65 °C appears as a 

plausible maximum temperature experienced by the material before our test. The 

observed behaviour is typical of thermal hardening, with an elastic thermal expan-

sion observed below the maximum supported temperature, followed by a plastic 

contraction at yielding once the maximum temperature is attained. 

Thermal pressurization in claystones 

To investigate thermal pressurization, an isotropic thermal compression device with 

reduced drainage path is presented in Figure 26.  

 

 

Figure 26. Isotropic compression cell [Moh12]. 

The aim of the test is to measure the thermal pore pressure developed when the 

specimen is submitted to temperature elevation under a given stress level. As com-

mented before, this thermal pore pressure generation is due to the fact that the ther-

mal expansion coefficient of water is significantly higher than that of the solid 

phase. 
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The cell is presented in Figure 26a and the heating and loading device is shown in 

Figure 26b. The cell is a standard high pressure isotropic compression cell accom-

modating a disk-shaped specimen (oedometer type) having a diameter of 70 mm and 

a height of 10 mm. Drainage is ensured by a geotextile at the base of the sample 

resulting in a small length of drainage of 10 mm. Two water ducts connect the sam-

ple bottom to either a pressure volume controller for back pressure (PVC, GDS 

brand) or a pressure gauge. 

Figure 26b presents the connections to the two PVC and the temperature controlled 

bath (± 0.1 °C) in which the cell is immersed. Note that the pressure transducer is 

located outside the bath. Special care was devoted to the saturation procedure that 

was carried out under stress conditions close to in situ. Given that the drainage 

length is equal to 10 mm (the height of the specimen drained at bottom), saturation 

periods comparable to that obtained with the hollow cylinder triaxial were observed. 

The determination of satisfactory values of the Skempton coefficient B was also 

made. 

In a perfect undrained THM test carried out in an elastic porous material, the pore 

pressure increase is given by the following expression: 

 u B T                                                     (14) 

where the thermal pressurization coefficient  is defined by the following equation: 

w s

d s w s

( )

( )

u

T c c c c

  





 
   

                                             (15) 

As in the case of the determination of the Skempton coefficient B, corrections are to 

be made in the determination of  with respect to perturbations due to the effects of 

the porous elements in contact with the specimen (see [Gha09]; [Moh11]). 

The data shown in Figure 27a show the response in pore pressure obtained in a COx 

sample along a ramp of stepwise progressive temperature elevation between 25 °C 

and 70 °C. The comparison with the response obtained with a dummy metal sample 

indicates that the first peak of temperature corresponds in fact to the instantaneous 

response of the water contained in the permeable porous elements. A period of time 

has to be waited for to get equilibration between the pore water and that contained in 

the porous elements, corresponding to the drainage of pore water from the specimen 

to the porous elements. When considering the equilibration points, one obtains the 

curve presented in Figure 27b. It can be observed from the results of two tests that 

the thermal coefficient  decreases with temperature from 0.116 to 0.063 MPa/°C 

between 42 °C and 56 °C in test No. 1 and from 0.145 to 0.107 MPa/°C between 

32°C and 62°C in test No. 2. 
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a)                                                                      b) 

Figure 27. a) Comparison between thermally induced pore pressure with a COx 

claystone and a dummy metal sample; b) Changes in thermal pressurization coeffi-

cient with temperature [Moh11]. 

As commented in more details in [Moh11], the use of Eq. 15 to correctly predict the 

experimental changes of  with respect to temperature observed in Figure 27b re-

quires the adoption of a non-constant value of the drained compressibility changing 

with either the applied stress or temperature. Indeed, thermal pressurization (in un-

drained conditions) is a complex combination of increase in pore pressure that re-

sults in a corresponding decrease in effective stress. The decrease in effective stress 

mobilises the specimen’s compressibility besides the thermal dilation coefficients of 

water and of the solid phases. 

5  Conclusions 

The THM issues dealt with in this text mainly come from the experience gained by 

the author in problems related with radioactive waste disposal at great depth, with 

also some insights from standard unsaturated soils and multiphase chalks. The re-

sponse of both water saturated and multiphase geomaterials to changes in hydric, 

mechanical and thermal conditions can be roughly summarised as follows: 

- Drying (or increasing the non wetting phase) tends to strengthen geomateri-

als; 

- Temperature elevation has the opposite effect of weakening. 

In terms of hydric effects, a significant difference arises from the nature of the inter-

action between the pore fluid and the geomaterials. In non clayey materials like for 

instance sands, sandstones or chalk, the main interaction comes from capillarity that 

governs the potential of water (also called suction). In clayey geomaterials, physico-

chemical interactions play a dominant role with a level of energy that can be signifi-

cantly higher. Whereas the order of magnitude of suction is of several to several tens 

of kPa in granular geomaterials, it can be equal to several hundreds of kPa in clayey 

materials and finally reach several tens of MPa in plastic soils like for instance com-

pacted bentonites used in radioactive waste disposals to ensure water tightness. In 

other words, the level of attraction of water molecules along the surfaces of the clay 
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minerals can be very high. In smectites (another name of montmorillonites), the 

mechanisms of adsorption of water molecules along the minerals are fairly well 

known and can be useful in interpreting some macroscopic features. Actually, 

montmorillonite are often present as inter-layered illite-smectite platelets in clay-

stone and their role is essential in terms of radionuclides confinement: active clay 

minerals are prone to retain radionuclides through physico-chemical interactions; the 

sealing properties of claystone is also due to smectites minerals that, when hydrated 

insides cracks, are able to fill the volume of the cracks and to bring back the perme-

ability of the damaged claystone back to that of the intact one. 

Thermal issues in geomaterials attracted more and more in the past years for various 

reasons. Besides the necessity of knowing how the mechanical characteristics 

change when temperature is elevated, two issues have been also investigated: the 

volume changes of clays and claystones under elevated temperature and thermal 

pressurisation. It is well established that normally consolidated clays tend to exhibit 

plastic contraction when heated, whereas over-consolidated clays dilate with respect 

to their over-consolidation ratio. Actually, it is not established that claystones be-

have like over-consolidated clays, given that the long period of diagenesis they have 

been submitted to (158 millions years for the Callovo-Oxfordian claystone) result in 

the fact that they don’t necessarily kept the memory of the maximum load they sup-

ported. As observed here on the Opalinus clay, they may exhibit plastic contraction 

and thermal hardening. 

THM issues in geomaterials remain a topic of wide interest and active researches are 

still carried out, with on-going researches related to radioactive waste and to sus-

tainable storage of various fluids like CO2, or of compressed air in caverns or reser-

voir rocks as an energy storage option. Claystones and shales attract growing inter-

est in unconventional oil and gas recovery. Thermal effects are also essential when 

interpreting geothermal issues, including thermal piles in which thermo-mechanical 

coupling concern the long-term stability of buildings founded on piles submitted 

potentially to many cycles in temperature at the pile/soil interface, a zone supporting 

high levels of shear. Hydro-mechanics couplings as investigated in unsaturated soils 

have proven their efficiency to analyse couplings in reservoir rocks as well, provid-

ing a sound explanation of the subsidence observed above oil or gas fields.  

Besides the developments of sound experimental techniques that enlighten some 

important mechanisms governing the THM response of geomaterials, constitutive 

models and numerical codes that have been validated on both in-situ and laboratory 

experiments now provide some useful and efficient prediction of complex THM 

problems of growing importance. 
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General theory of mixtures. Physical
chemistry of mixtures and swelling

J.M. Huyghe

Bernal Institute, University of Limerick, Ireland

We present a description of the mechanical behaviour of mixtures, substances consist-
ing of several components. A component is defined in this context as a set of material
constituents that moves jointly in the mixture. In this chapter we will derive a general
form of the theory of mixtures. The description has mainly be taken from a publica-
tion of Bowen [Bow76]. Then we will discuss mixtures of a liquid with a dissolved
substance, also called solutions. As an introduction we will first consider mixtures of
ideal gasses. Then we will consider solutions in which the solved particles are elec-
trically neutral: the non-electrolytic solutions. Finally we consider the electrolytic
solutions, in which the solved matter falls apart in charged ions and we have to take
electroneutrality into account. Particularly concepts like electrochemical potential
and (Donnan) osmosis will be discussed. Traditionally this is the field of the physical
chemistry. We will follow the procedures that are usual in that field. The relations that
are found here however, can also be derived from the general theory of mixtures. The
subject matter in this chapter has largely been taken from textbooks about physical
chemistry applied to biological systems [Cha81, KC65, Ric80].

1 Quantities of mixtures

Let’s consider a general mixture of ν components. Microscopically, only one com-
ponent is present at a certain moment at a certain place in space. Furthermore, the
composition of the mixture will differ in general from one spot to the other. In the
theory of mixtures we try not to describe the behaviour of every separate particle. We
use a continuum approach instead, in which we spread the properties of the compo-
nents over a representative volume unit (RVU) ∆V . This volume has to be big enough
to provide a good continuum representation of the quantities on microscopic level,
but also small enough to avoid averaging of macroscopic variations. If the RVU is
displaced through every possible position in the mixture and the average quantities
are ascribed to the position of the centre of the RVU, we can determine the average
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quantities as a function of the position in the mixture (figure 1). A consequence of
the averaging concept is that every component, that is present in the mixture, occupies
every position x in that mixture. We express the amount of component α in terms of
mass mα or moles nα.

In the theory of mixtures we usually take the apparent density ρ of the components,
concerned with the RVU, V , and the present amount of mass, mα, in it:

ρα =
mα

V
, α = 1, . . . ,ν (1)

If component α is immiscible with other components, the volume of component α
is indicated with V α. The real intrinsic density ρα

i of the components of immiscible
components is then:

ρα
i =

mα

V α , α = 1, . . . ,ν (2)

We define the volume fraction φα of an immiscible component as:

φα =
V α

V
, α = 1, . . . ,ν (3)

in which V α is the volume occupied by component α within volume V . It will be
obvious that:

ν

∑
α=1

φα = 1 (4)

and

ρα = φαρα
i , α = 1, . . . ,ν (5)

We define the density ρ of the whole mixture as:

ρ =
ν

∑
α=1

ρα (6)

2 Kinematics and stress

2.1 Kinematics

We consider the mixture of ν components again. The collection of material points ξ
˜of a component α (α = 1, . . . ,ν) is indicated with Bα. These points occupy an area

Gα in the three-dimensional space at time t:

Gα(t) = {xα = χα(ξ
˜

α, t) |∀ξ
˜

α ∈ Bα}. (7)

44 General theory of mixtures. Physical chemistry of mixtures and swelling

ALERT Doctoral School 2015



DV

Figure 1: Illustration of the averaging procedure for a mixture of a solid and a fluid.

The areas Gα (α = 1, . . . ,ν) coincide according to the theory of mixtures and every
position x is occupied by particles of every single component at the same time. There-
fore, the following holds:

x(t) = x1(t) = x2(t) = · · ·= xα(t) = · · ·= xν(t) (8)

We can now define a deformation tensor Fα per component:

Fα = (∇α
0 xα)c. (9)

In this equation the symbol ∇α
0 represents the gradient operator concerning the state

of reference of component α. We define the Green-Lagrange strain tensor Eα with
respect to component α as:

Eα =
1
2
{(Fα)c ·Fα− I} . (10)

The velocity vα of a material point from component α is defined as:

vα =
∂χα(ξ

˜
α, t)

∂t

∣∣∣∣∣ξ
˜

α
. (11)
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We define the velocity of the whole mixture v as the mass weighed average of the
velocities of the components1:

v(x, t) =
1
ρ

ν

∑
α=1

ραvα(x, t) (12)

We can point several velocities in every point of the continuum. Therefore several ma-
terial time derivatives are defined. Let’s consider a quantity aα, a quantity a connected
to the component α. We now define two material time derivatives of aα:

ȧα =
Daα

Dt
=

∂aα

∂t
+ v ·∇aα (13)

àα =
Dαaα

Dt
=

∂aα

∂t
+ vα ·∇aα (14)

Using time derivative ȧα we move with the average velocity of the mixture, while we
move with the component α if we use àα.

We define the deformation velocity tensor Dα and the rotational velocity tensor Ωα

as:

Dα =
1
2

{
F̀α · (Fα)−1 +(F̀α · (Fα)−1)c

}
(15)

Ωα =
1
2

{
F̀α · (Fα)−1− (F̀α · (Fα)−1)c

}
(16)

In these definitions we take the material time derivative of the deformation tensor Fα

while we move with component α.

Finally we define the velocity uα of component α with respect to the velocity of the
mixture as:

uα = vα− v. (17)
1Already at this point, there is a major distinction between definitions in mixture theory and definition

handled in classical small deformation poromechanics. Classical books on strength of materials [GT09],
elasticity and poromechanics define quantities such as velocity, pressure, stress or strain as a function of x
and t, just like in mixture theory. However, the quantity x has a different meaning. In infinitesimal solid
mechanics theory, the x is the position vector in the initial state, not the current state. In fluid mechanics
and mixture theory, x refers to the current state. That is why in infinitesimal solid mechanics [GT09, Bio41,
Bio56] write for velocity ∂u

∂t while a fluid mechanics or mixture mechanics textbook never does so. Because,
by definition, the partial time derivative ∂

∂t assumes the variable other than time to be constant, and that the
other variable in infintesimal theory is the initial position vector, the partial time derivative in infinitesimal
solid mechanics is a material time derivative as in eq. (11). As in our case, the meaning of x in eq. (12) is
the current position, a partial time time derivative does not represent a material time derivative but rather
a spatial time derivative. To keep the notation consistent throughout the book, we handle the same (fluid
mechanics) notation throughout the book, even when infinitesimal deformation is assumed
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2.2 Stress

Let’s consider a small surface with normal unit vector n0 and surface area A0 in this
mixture. We can subdivide a force f , that works on this surface, in several contribu-
tions f α, working on each of the components α in the mixture. As a result of the force
f the surface deforms, during which it gets a normal unit vector n and a surface area
A. We now define the partial stress vector tα as the force working on component α,
divided by the total surface area:

tα =
f α

A
(18)

For the choice of size of the averaging surface A the same considerations apply as for
the averaging volume V . We now define the partial Cauchy stress tensor σα:

tα = σα ·n. (19)

The tensor σα projects the normal unit vector n of a surface to the partial stress vector
tα, that represents the force that is applied per unit of surface area of the mixture of
component α.

3 Balance of mass, momentum and moment of momen-
tum

3.1 Balance of mass

We consider an arbitrary volume V in space with surface area A. The balance of mass
for component α reads in integral form:

∂
∂t

∫

V

ρα dV =−
∫

A

ραvα ·n dA+
∫

V

ĉα dV. (20)

An extra source term is added that accounts for the variation in mass of component
α with respect to interactions with other components. The quantity ĉα is defined as
the rate of mass transfer from component α to other components changes per unit
volume of mixture. We can think of phase-changes (mass-exchange between liquid
and vapour), variation of ionisation (mass-exchange between the ion-component and
the solid phase), or chemical reactions. Applying Gauss’ theorem yields the local
form of the balance of mass per component α:

∂ρα

∂t
+∇ · (ραvα) = ĉα. (21)
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The exchange of mass between the mutual components may not influence the total
mass:

ν

∑
α=1

∫

V

ĉα dV = 0. (22)

At a local level this results in the local balance of mass for the whole mixture:
ν

∑
α=1

ĉα = 0. (23)

3.2 Balance of momentum

We consider the arbitrary, but fixed part of space with volume V and surface area A
again. In integral form the balance of momentum for component α is given by:

∂
∂t

∫

V

ραvα dV =−
∫

A

(ραvα)vα ·n dA

+
∫

V

ραqα dV +
∫

A

tα dA+
∫

V

(p̂α + ĉαvα) dV. (24)

The integral form for one-phase materials is completed with an interaction-term. The
volume force that works upon α is indicated with qα. The term in tα represents the
force per unit surface area mixture on component α. Based on (18) a contribution of
the surface forces has to be calculated by integrating the partial stress vectors tα over
the surface of the mixture A. In the interaction term the volume force p̂α represents
the momentum transfered from other components to component α , counted per unit
volume mixture and per unit of time. Transition of momentum occurs for example in
friction forces, that are a result of relative movement of the components. The term
ĉαvα represents momentum transfer associated with the exchange of mass ĉα. It is
assumed that the added mass of component α gets the same velocity as the already
present mass of component α. Using Gauss’ theorem we find the local form of the
balance of momentum per component α again:

ρα
{

∂vα

∂t
+ vα ·∇vα

}
= ραv̀α = ∇ · (σα)c +ραqα + p̂α, (25)

in which σα represents the partial Cauchy stress tensor. The term ĉαvα doesn’t show
up again in this equation, because we used the balance of mass (21). For the total
mixture applies that the net conversion of momentum with respect to the interaction
terms has to be zero, so the local balance of momentum for the total mixture holds:

ν

∑
α=1

(ĉαvα + p̂α) = 0. (26)
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3.3 Balance of moment of momentum

The integral form of the balance of moment of momentum for component α is:

∂
∂t

∫

V

xα×ραvα dV =−
∫

A

(xα×ραvα)vα ·n dA

+
∫

V

xα×ραqα dV +
∫

A

xα× tα dA

+
∫

V

(xα× (ĉαvα + p̂α)+ m̂α) dV (27)

The last term accounts for the transfer of the moment of momentum from other com-
ponents to component α. The term xα× (ĉαvα + p̂α) is the moment of momentum
transfer associated with the momentum interaction (ĉαvα + p̂α).The term m̂α repre-
sents the direct moment of momentum transfer to component α by the other compo-
nents, counted per unit of volume mixture and per unit of time. An example of such
direct moment of momentum interaction is the case of friction forces transfered from
fluid to solid in flow through helical pore structure with preferential helicity. The local
form of the balance of moment of momentum is:

M̂α
= (σα)c−σα (28)

in which M̂α is the anti-symmetric tensor corresponding to the axial vector m̂α, defined
such that for all vectors a applies:

m̂α×a = M̂α ·a (29)

The reader is referred to specialized literature for the proof of eq.(28). At this moment
we consider M̂α as a quantity, analogous to the terms ĉα and p̂α.
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4 Thermodynamics

4.1 The first law

We formulate the first law of thermodynamics for a component α in the mixture as the
first law for a one component continuum, completed with an interaction term :

∂
∂t

∫

V

ρα (Ũα + 1
2 vα · vα) dV dV =

−
∫

A

ρα (Ũα + 1
2 vα · vα)vα ·n dA+

∫

V

ραqα · vα dV

+
∫

A

tα · vα dA+
∫

V

ραr̃α dV −
∫

A

hα ·n dA+
∫

V

êα dV

+
∫

V

(
vα · p̂α +

1
2

Ωα : M̂α
+ ĉα(Ũα + 1

2 vα · vα)

)
dV, (30)

in which Ũα represents the specific internal energy of component α, hα represents the
heat flux density vector for component α and r̃α represents the specific heat supply to
component α by heat sources. In the second of these term the symbol êα represents
the direct energy transfer from the other components to component α, calculated per
unit volume mixture and per unit of time. The last term represents the energy supply
caused by interaction effects with respect to the exchange of mass ĉα , the exchange of
momentum p̂α and the exchange of moment of momentum M̂α. Using Gauss’ theorem
and the balance of mass, momentum and moment of momentum the local form of the
balance of energy per component α is derived:

ρ `̃Uα = ραr̃α−∇ ·hα +σα : Dα + êα. (31)

Equation (31) shows that only the term êα is added in the mixture. In analogy to
the other balance laws, we demand that the balance of energy for the components is
consistent with the balance of energy for the total mixture:

ν

∑
α=1

(
êα +uα · p̂α + ĉα(Ũα + 1

2 uα ·uα)
)
= 0. (32)

Notice that the velocities uα, defined in (17), are found in this equation, i.e. the com-
ponent velocities with respect to the mixture velocity.

4.2 The second law

The second law of thermodynamics describes thermodynamic properties of a system.
For a mixture it isn’t clear how the system has to be defined: is the system formed

50 General theory of mixtures. Physical chemistry of mixtures and swelling

ALERT Doctoral School 2015



by the total mixture or forms every component a system on its own? In the last case
the entropy production per component has to be greater or equal to zero. In the first
case this demand applies for the total mixture, and there can be components for which
the entropy production is less than zero. We formulate the second law for the whole
mixture as this is the only restriction which is agreed upon by the whole scientific
community. We postulate the local form of the second law for the whole mixture:

ν

∑
α=1

{
ρα `̃Sα− ραr̃α

T α +∇ ·
(

hα

T α

)
+ ĉαS̃α

}
≥ 0. (33)

in which S̃α is the specific entropy of component α, and T α is the temperature of
component α. The term ∑ ĉαS̃α discounts the interaction between the components
again. If we eliminate the term ραr̃α using the balance of energy per component (31)
and eliminate the term ∑ êα using the balance of energy for the total mixture (32), it
follows that:

ν

∑
α=1

{
ρα `̃Sα− ρα `̃Uα

T α +
σα : Dα

T α − p̂α ·uα

T α +hα ·∇
(

1
T α

)

− ĉα

T α (Ũ
α + 1

2 uα ·uα +T αS̃α)

}
≥ 0. (34)

If we finally define the Helmholtz free energy per unit mass for component α as,

F̃α = Ũα−T αS̃α, (35)

we can divert (34) into:
ν

∑
α=1

1
T α

{
−ρα( `̃Fα− S̃αT̀ α)+σα : Dα + p̂α ·uα

−T αhα ·∇
(

1
T α

)
− ĉα(F̃α + 1

2 uα ·uα)

}
≥ 0. (36)

5 Thermodynamic potentials

5.1 Partial quantities

The total mass of a mixture is equal to the sum of the masses of the components of
which the mixture consists. The total volume V of a mixture is generally not equal to
the sum of the component volume:

V 6=
ν

∑
α=1

V α. (37)

This is caused, because the interaction between molecules of the same constituent is
generally different from that between molecules of different constituents. To account
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Table 1: Balance laws for mixtures.

quantities balance law for component (c) and mixture (m)

mass c ρ̀α +ρα∇ · vα = ĉα

m ∑ ĉα = 0

momentum c ραv̀α = ∇ · (σα)c +ραqα + p̂α

m ∑(ĉαvα + p̂α) = 0

moment of momentum c σα− (σα)c = M̂α

energy c ρ `̃Uα = ραr̃α−∇ ·hα +σα : Dα + êα

m ∑
{

êα +uα · p̂α + ĉα(Ũα + 1
2 uα ·uα)

}
= 0

entropy m ∑
{

ρα `̃Sα− ραr̃α

T α +∇ ·
(

hα

T α

)
+ ĉαS̃α

}
≥ 0.

the independence of mixture composition partial quantities are used. We define the
partial molar volume V̄ α of component α as:

V̄ α =

(
∂V
∂nα

)

p,T,nβ,β 6=α
, α = 1, . . . ,ν (38)

So, V̄ α represents the increase of the volume of a mixture as a result of adding a lit-
tle amount of component α, figured per mol of the added component. Furthermore,
the thermodynamic state of the mixture, here characterized by p and T , has to stay
constant, as well as the composition of the mixture. If V̄ α is independent of the com-
position of the mixture, then integration of (38), yields:

V =
ν

∑
α=1

nαV̄ α. (39)

Generally the partial volume of a component in a mixture is not equal to the molar
volume of the pure component. If this is the case, we say the mixture is ideal.

5.2 Ideal media

Also for mixtures we can define potentials [KC65]. We will restrict ourselves to an
ideal mixture of ν components, in which an amount nα moles of every component α
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is present. In the former chapter it turned out that for an ideal medium the Gibbs free
energy G is a function of the pressure p and the temperature T . In the mixture, G
isalso a function of the mixture composition:

G = G(T, p,n1, . . . ,nν) (40)

For variations dG the following differential applies:

dG =

(
∂G
∂T

)

p,nα
dT +

(
∂G
∂p

)

T,nα
d p

+
ν

∑
α=1

(
∂G
∂nα

)

p,T,nβ,β6=α
dnα (41)

We now define the partial molar Gibbs free energy Ḡα of a component α in a mixture
as:

Ḡα =

(
∂G
∂nα

)

p,T,nβ,β6=α
(42)

We can consider Ḡα as an increase in free energy of the mixture if we add one mole
of component α to that mixture. The partial molar Gibbs free energy is usually called
the chemical potential µα:

µα = Ḡα =

(
∂G
∂nα

)

p,T,nβ,β6=α
(43)

Now (41) can be diverted into:

dG =

(
∂G
∂T

)

p,nα
dT +

(
∂G
∂p

)

T,nα
d p+

ν

∑
α=1

µαdnα (44)

The part of the chemical potential in thermodynamics is comparable with that of the
potential energy in mechanics. To illustrate this statement, let’s consider a process –
for a constant temperature and pressure – in which an amount dnα of component α is
converted from state A to state B. The variation dG in Gibbs free energy then reads:

dG = (µα
B−µα

A)dnα. (45)

According to (45) the convertion from A to B will initiate spontaneously if dG is
negative, i.e. if µα

A > µα
B. If µα

A < µα
B, the process will go in the opposite direction.

In equilibrium dG = 0 applies, such that µα
A = µα

B. The chemical potential therefore
indicates in what direction the process will go. We will see in section 7 that we can
describe processes like osmosis well using the chemical potential.

5.3 Non-ideal media

For mixtures of ideal media we could characterize the state of stress per component
with the total pressure of the mixture p and the mixture composition n1, . . . ,nν (40),
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because these quantities fix the partial pressures pα totally. For mixtures of non-
ideal media the state of stress has to be described with a whole stress tensor σα, that
cannot be derived unambiguously from the total mixture stress σ and the mixture
composition. Therefore we have to make G explicitly dependent on all component
stresses. We characterize the state of stress per component with the second Piola-
Kirchhoff stress tensor Sα.

For mixtures of ideal media, like gasses, it is in addition usual to express the amount
of a component in moles, indicated with nα. For non-ideal media it is sometimes
more convenient to convert to masses mα. The Gibbs free energy G for mixtures of
non-ideal media can therefore be written as:

G = G(T,S1, . . . ,Sν,m1, . . . ,mν) (46)

For the variation of the Gibbs free energy after adding a small amount of component
α, counted per unit mass, now applies:

µ̃α =

(
∂G

∂mα

)

T,P1,...,Pν,mβ,β 6=α
(47)

We call µ̃α the specific chemical potential of component α.

6 Mixtures of ideal gasses

We first consider a pure ideal gas. For a constant temperature the differential of the
Gibbs free energy of the gas is :

dG =V d p (48)

in which V is the volume of the gas and p its pressure.

If we now increase the pressure of the gas from p0 to p, the variation of the Gibbs free
energy ∆G is written:

∆G = G−G0 =
∫ G

G0

dG =
∫ p

p0

V d p (49)

For an ideal gas applies:

pV = nRT (50)

in which R represents the universal gas constant (8.314 J ·K−1·mol−1) and n is the
amount of gas in moles. Substitution of (50) into (49) yields after integration:

G−G0 = nRT ln
p
p0

(51)
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This equation shows the Gibbs free energy of a gas with respect to the state of refer-
ence (p0,G0). For the chemical potential of the gas it follows that:

µ̄ = µ̄0 +RT ln
p
p0

(52)

Let’s consider a mixture of ideal gasses. We take an amount nI of gas I and an amount
nII of a gas II. Both gasses are subjected to a reference pressure p0, and have the
volumes V I and V II . During mixing of these gasses an ideal mixture with volume V
and pressure p is created, for which:

V = V I +V II (53)
p = p0 (54)

The partial pressures pI and pII of the gasses in the mixture measure:

pI = xI p0 pII = xII p0, (55)

in which the molar fractions x of the components are defined as:

xI =
nI

nI +nII , xII =
nII

nI +nII (56)

Substitution of the pressures from (55) into (52) now yields for the chemical potential
of the gasses:

µ̄I = µ̄I
0 +RT lnxI , µ̄II = µ̄II

0 +RT lnxII (57)

We know that the mixing process as described above occurs spontaneously. We can
also see this by calculating the mixing-energy. The total Gibbs free energy before
mixing amounts:

Gbe f ore = nI µ̄I
0 +nII µ̄II

0 (58)

For the total Gibbs free energy after mixing applies:

Ga f ter = nI{µ̄I
0 +RT lnxI}+nII{µ̄II

0 +RT lnxII} (59)

We can now derive for the mixture energy ∆Gmix:

∆Gmix = Ga f ter−Gbe f ore

= (nI +nII)RT{xI lnxI + xII lnxII} (60)

Because xI as well as xII are smaller than 1, ∆Gmix < 0, which means that the mixing
process occurs indeed spontaneously.

7 Non-electrolytic solutions

From the former we saw that for mixtures of ideal gasses the chemical potential de-
pends on the composition of the mixture following (57). In general the chemical
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6

?

water water + solved matter

∆π

Figure 2: Illustration of the phenomenon osmotic pressure.

potential for mixtures of ideal media depends on the pressure p and the temperature
T . We now define an ideal mixture as a mixture in which the following relation applies
for the chemical potential of the components α:

µ̄α(p,T,xα) = µ̄α
0 (p,T )+RT lnxα (61)

We therefore assume that µ̄α depends the same way on the composition of the mixture
as a mixture of ideal gasses does. For a mixture of ideal gasses we found the con-
centration dependency through the partial pressures of the gasses. In definition (61)
we take the pressure dependency separately into account in the term µ̄α

0 (p,T ). If the
mixture has an equilibrium, we know that for every component:

∇µ̄α = 0. (62)

If all components move freely through the mixture, this means, using (61), that there
are no gradients in concentration. If this free movement is hampered, a concentration
gradient generally will be present in the equilibrium.

This last situation is demonstrated in the experiment, shown in figure 2. In the right
compartment there is a solution of ne moles of a substance e, for example a protein,
in nw moles of a solvent w, for example water. In the solution the protein consists of
neutral particles. In the left compartment only the solvent is present, water. The com-
partments are separated by a semi-permeable membrane, that only allows transport of
water. Therefore equation 62 applies across the membrane for water, but not for the
protein.

Initially there is no hydrostatic pressure difference between both compartments. For
the chemical potential of the water applies:

µ̄w
l = µ̄w

0 +RT lnxw
l = µ̄w

0 (because xw
l = 1) (63)

µ̄w
r = µ̄w

0 +RT lnxw
r < µ̄w

0 (because xw
r < 1) (64)
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in which we indicate the chemical potential of the water with µ̄w, in the left (index
1) and the right (index r) compartment and in pure (index 0) state. The chemical
potential of the water therefore appears to be lower on the right hand side than that on
the left hand side. This difference causes a net transport of water from the left to the
right, which results in a hydrostatic pressure difference. The net transport reaches an
equilibrium, as soon as the chemical potentials on the left and on the right are equal.
In this equilibrium the hydrostatic pressure difference is equal to ∆π, the osmotic
pressure difference. We calculate the size of the osmotic pressure difference. The
total differential of the Gibbs free energy G is:

dG =

(
∂G
∂T

)

p,nα
dT +

(
∂G
∂p

)

T,nα
d p+

ν

∑
α=1

µ̄αdnα, (65)

in which the chemical potential µ̄α is defined as:

µ̄α = Ḡα =

(
∂G
∂nα

)

p,T,nβ,β6=α
. (66)

We now state for the volume V and the entropy S of the mixture:

V =

(
∂G
∂p

)

T,nα
(67)

S =−
(

∂G
∂T

)

p,nα
(68)

The partial derivative of the chemical potential with respect to the pressure is:
(

∂µ̄α

∂p

)

T,nα
=

(
∂

∂p

(
∂G
∂nα

)

p,T,nβ,β6=α

)

T,nα

=

(
∂

∂nα

(
∂G
∂p

)

T,nα

)

p,T,nβ,β 6=α

, (69)

which can be rewritten, using (67), into:
(

∂µ̄α

∂p

)

T,nα
=

(
∂V
∂nα

)

T,p,nβ,β6=α
= V̄ α (70)

in which V̄ α is the partial molar volume of the component α in the mixture. Applied
to the water-component in the situation of figure 2, we find:

(
∂µ̄w

∂p

)

T,nw,ne
= V̄ w = V̄ w

0 (71)

The last ’=’-sign can be justified for a dilute solution, in which the partial molar vol-
ume of the water is equal to that of pure water. We determine the difference in chemi-
cal potential of the water in both compartments, as a result of the pressure difference
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pr− pl , through integration of (71), considering that the partial molar volume of the
water is independent of the pressure:

µ̄w
r − µ̄w

l =
∫ pr

pl

V̄ w
0 d p = V̄ w

0 (pr− pl) (72)

In equilibrium the chemical potential of the water left and right is the same:

µ̄w
l = µ̄w

r = µ̄w
0 +RT lnxw

r +V̄ w
0 (pr− pl) (73)

Because µ̄w
l = µ̄w

0 , the osmotic pressure difference ∆π is:

∆π = pr− pl =−
RT
V̄ w

0
lnxw

r (74)

It is usual to relate the osmotic pressure to the concentration of the solution, the pro-
tein. For this, we use:

lnxw = ln(1− xe)≈−xe =− ne

nw +ne ≈−
ne

nw (75)

and the following expression for the volume V of the solution:

V = nwV̄ w +neV̄ e ≈ nwV̄ w
0 . (76)

Substitution of these relations in (74) yields:

∆π =
ne

V
RT = ceRT, (77)

in which the concentration ce is expressed in moles·m−3. This relation has also been
discovered empirically by Van’t Hoff, indicating that the basic assumption for an ideal
mixture, defined in (61), applies for dilute solutions. We define the osmotic pressure
of a solution as:

π =−RT
V̄ w

0
lnxw, (78)

which is well approximated by van ’t Hoff’s equation in a dilute solution:

π = c RT. (79)

in which c is the concentration of the solved substances. Further, we specify expres-
sion (61) for the chemical potential of a component α, using (73):

µ̄α = µ̄α
0 (T )+RT lnxα + pV̄ α. (80)

with particularly for water:

µ̄w = µ̄w
0 (T )+RT lnxw +V̄ w

0 p = µ̄w
0 (T )+V̄ w

0 (p−π) (81)

In other words, the chemical potential consists of a pressure dependent part (the pres-
sure potential) and a concentration-dependent part (the osmotic potential) for isother-
mal conditions. Deviations of the ideal situations are taken into account using the so
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called activity coefficient γα. The molar fraction xα is corrected to an ’active molar
fraction’, or activity aα:

aα = γαxα, (82)

The expression for the chemical potential then becomes:

µ̄α = µ̄α
0 (T )+RT lnaα + pV̄ α. (83)

8 Electrolytic solutions

In biology we often have to deal with solutions of ionized high-molecular proteins.
In this paragraph we will consider solutions of a protein, (component e) and a low-
molecular salt (component z) in water (component w). We will indicate the protein
with PXz. We assume that in a solution of this protein an equilibrium will be estab-
lished in which a protein molecule falls apart in a high molecular negative ion Pz− and
z small positive ions X+:

PXz ⇀↽ Pz−+ zX+. (84)

In general there are also ions present of a low-molecular electrolyte in such a protein
solution, indicated with MZ. We assume that a solution of this electrolyte results in
monovalent positive and negative ions:

MX ⇀↽M−+X+. (85)

In this situation the M−- and the X+-ion are called the ’co-ion’ and the ’counter-ion’
respectively.

Since the time constant, corresponding to the establishment of a local electrostatic
equilibrium, is very short, we can assume that at every moment electroneutrality ap-
plies.

8.1 The electrochemical potential of an ionic component

In the former the chemical potential of a component α was defined as the partial molar
Gibbs free energy. This means that we considered the change of the Gibbs free energy
if we added one mole of component α to the mixture, during wich we kept the amounts
of the other components constant. For a solution of an electrolyte, for example the salt
MZ, the movement of cations or anions is not exclusively controled by the chemical
potential, as was the case for the water in the porous medium [HB03]. Reason for this
is, that the charged particle is also sensitive for an electric-potential field. One mole
of a monovalent ion has a charge equal to the constant of Faraday, F . The force that
works on an ion in an electric-potential field ξ is:

F∇ξ (86)
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Therefore, we do not use the chemical potential for an ionic component but the electro-
chemical potential, of which the gradient does not only contain the mechanical and
chemical forces, but also the electric forces:

µ̄α = µ̄α
0 +RT lnaα + pV̄ α + zαFξ α =+,− (87)

Here, zα is the valence of the ion, from which it follows that for a salt in water the
chemical potential is:

µ̄z = µ̄z
0 +RT lnaz + pV̄ z, (88)

We see that the activity of the salt is,

az = a+a−, (89)

that the reference-potential is,

µ̄z
0 = µ̄+0 + µ̄−0 , (90)

and that the partial molar volume is,

V̄ z = V̄++V̄−. (91)

We now define the activity coefficients for the ions γ+ and γ−, in analogy to (82), as:

a+ = γ+x+, a− = γ−x−, (92)

in which x+ and x− represent the (equal) molar fractions of the anion and the cation.
We can now derive the activity of the salt az:

az = γ+x+γ−x− = (γ±x)2, (93)

in which we defined the average activity coefficient of the salt γ± as:

γ± = (γ+γ−)1/2, (94)

and used x+ = x− = x. The activity coefficients can be determined experimentally
from electro-chemical experiments. A theoretical foundation of the relations above
is provided for strongly diluted solutions by Debye and Hückel in 1923 [DH23]. In
this course we consider the relations as empirical ones. It is obvious that the relations
for the chemical potential of a salt as mentioned above do not apply for a pair of
ions, present in a porous medium with fixed charges, because in that case the co-ionic
charge and the counter-ionic charge do not neutralize one another and therefore one
cannot speak of a salt (=electric neutral molecule) in a solution.

8.2 The Donnan-effect

The Donnan-effect occurs in a saturated electrically charged porous solid. We consider
two neighbouring points in the charged porous medium. Between these two points
there is a difference in fixed charge concentration. The two points are now considered
to be two containers, between which water and ions (M− en X+) can move freely. The
fixed charges (Pz−), however, cannot move from one container to the other. In other
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water Pz−
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∆π

Figure 3: Illustration of the Donnan-effect.

words, the containers communicate through a semi-permeable medium (figure 3). To
fix our thoughts and without loss of generality, we assume that the left container has
no fixed charge. An equilibrium is established, in which no net transport of particles
through the membrane takes place. This equilibrium is characterized by the condition,
that the (electro)-chemical potential for substances, that are able to pass the medium
freely, is equal in the left as well as the right container:

µ̄w
l = µ̄w

r (95)
µ̄α

l = µ̄α
r α =+,− (96)

Using (83) we can write these relations as:

µ̄w
0 +RT lnaw

l + plV̄ w = µ̄w
0 +RT lnaw

r + prV̄ w, (97)
µ̄α

0 +RT lnaα
l + plV̄ α + zαFξl =

µ̄α
0 +RT lnaα

r + prV̄ α + zαFξr α =+,−. (98)

Now, we first consider the ionic equilibrium. As the solution is dilute, the contribution
pV̄ α is negligible with respect to the term RT lnaα. With this the summation of (98),
for α =+,−, reduces to the condition:

a+l a−l = a+r a−r (99)

Using (93) this leads, after conversion to concentrations, to:

(γ±)2
l c+l c−l = (γ±)2

r c+r c−r (100)

Beside this condition, the condition of electroneutrality for the solution in the left as
well as the right compartment should be kept. Deviation from electroneutrality would
lead to - relative strong - electric forces, restoring electroneutrality almost immedi-
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ately. Therefore:

c+l = c−l (101)
c+r = c−r + zce

r , (102)

in which ce is the concentration of the macromolecule to which z fixed charges are
attached. For the concentrations of M−- and X+-ions in the left and right compartment
a combination of (100) – (102) yields:

c+r =
1
2


zce

r +

√
(zce

r)
2 +4

(γ±l )2(c−l )
2

(γ±r )2


 (103)

c−r =
1
2


−zce

r +

√
(zce

r)
2 +4

(γ±l )2(c−l )
2

(γ±r )2


 (104)

In a dilute solution we are allowed to equate the activity coefficients γ±l and γ±r . We
now see that the concentration c+ of the X+-ions is different between left and right,
as is the concentration c− of the M−-ions (Fig. 6). This difference in concentration
is called the Donnan-effect. We also see, that the Donnan-effect decreases for an
increasing salt concentration. The osmotic pressure difference between the left and
the right compartment ∆π can now be determined from the equilibrium for the water.
Therefore, we rewrite (98) as:

∆π = pr− pl =−
RT
V̄ w ln

aw
r

aw
l
, (105)

If we suppose that the activity coefficients for water are equal left and right, we can
switch to molar fractions:

xw
l =

cw
l

cw
l + c+l + c−l

= 1− c+l + c−l
cw

l + c+l + c−l
(106)

xw
r =

cw
r

cw
r + c+r + c−r + ce

r
= 1− c+r + c−r + ce

r

cw
r + c+r + c−r + ce

r
(107)

Because the water concentration is much higher than the other concentrations, we can
use the first order approximation ln(1+ x)≈ x and we will find:

∆πV̄ w

RT
=

c+r + c−r + ce
r

cw
r

− c+l + c−l
cw

l
, (108)

This expression can be simplified further, because cw
l ≈ cw

r = 1/V̄ w ≈ 1/V̄ w
0 , which

gives:

∆π = RT (c+r − c+l + c−r − c−l + ce
r) (109)

In many cases the valence z of the protein is very high and therefore the contribution
of the protein concentration ce is negligible, compared to the concentrations of the
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small ions. If we define the osmotic pressure, in this case, as:

π = RT (c++ c−) (110)

we find the former expression for the osmotic pressure difference back. In the non-
ideal situation equation (110) is extended with an osmotic coefficient Γ:

π = ΓRT (c++ c−) (111)

-5 0 5 10 15 20 25 30 35 40 45

0.2 M 0.6 M 0.2 M 0.6 M NaCl

0

0.05

0.1

0.15

0.2

Figure 4: Measured swelling pressure in a copolymer of acrylic acid and acrylamid
during step-wise changes in external salt concentration. The equilibrium values at a
given external salt concentration are reproducible. The transient from one swelling
pressure to the next is a measure of the diffusion speed of ions through the gel
[OdHH+95].

From equation (98) also the Donnan-potential difference between the left and right
compartment follows:

ξr−ξl =
RT
F

ln
a+l
a+r

=
RT
F

ln
a−r
a−l

(112)

8.3 Donnan osmosis in biological tissues

The semi-permeable membrane exists in many forms in nature: for example as a cell
membrane, as a layer endothelial cells (covering the inner side of blood vessels), or as
elastic lamina (a layer that is found in the wall of arteries). The transmembrane po-
tential observed across the membrane of a living cell is a Donnan-potential. However,
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Figure 5: Measured relation between the equilibrium swelling pressures and external
salt concentration (4) in the synthetic material discussed in Fig. 4. The drawn line
represents relation (114), with parameter values Φ = Φ∗ = 0.93, f = 1 and c f c =
0.24 ·103mol·m−3.

one should realize that many biological tissues function as a semipermeable medium
leading to the Donnan-effect (and to osmosis) as a continuous osmotic pressure gra-
dient across the tissue. Therefore the Donnan-effect occurs in, for example, cartilage,
where the huge, ionized proteoglycan molecules are tangled in a network of collagen
and elastine fibers. The charge of the proteoglycan molecules is caused by the negative
carboxyl groups (COO−) and sulphate groups (SO−3 ). Hence, it is not the concentra-
tion of big molecules ce, but the concentration of negatively combined charge zce, that
characterizes the material. This concentration is often called fixed charge density c f c.
We come across several small ions in biological tissues like Na+, K+, Ca2+ en Cl−.

For studying the properties of biological tissues, synthetic model materials are devel-
oped, consisting of ionised polymer chains [dH94].

The Donnan-osmotic effect can be used to determine the fixed charge density c f c in
these materials. The model material (’the right compartment’) is therefore exposed
to an external solution of a known concentration (’the left compartment’) (Fig. 3),
after which the osmotic pressure in the material is measured. In figure 5 the mea-
sured equilibrium osmotic pressure is plotted against the external salt concentration.
From a combination of the relations (100) – (104) and (109) we can eliminate the
concentration of free ions in the model material, which will result in:

∆π = RT{c f c2
+4 f 2c2}1/2−2cRT, (113)

in which c= c+l = c−l is the (known) concentration of ions in the external solution, and
f is a short notation for the relation between the activity of salt in the external solution
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Figure 6: The partition coefficients c+r
c+l

and c−r
c−l

of Na+ and Cl− is measured in a

copolymer of acrylic acid and acrylamid gel. The continuous line is the prediction by
eq. (104-104) for ideal Donnan (γ±r = γ±l ) [LSSH98].

and that in the material f = γ±l /γ±r . We have to realize, that several approximations
have been introduced when deriving expression (109). A more elaborate derivation
leads to:

∆π = ΦRT (c f c2
+4 f 2c2)1/2−2Φ∗cRT, (114)

with osmotic coefficients Φ and Φ∗. The unknowns in this relation can be determined
by fitting the experimental data. From figure 5, we see that the relation between the
measured concentration and the osmotic pressure can be described well using relation
(114).

9 Chemical potential and mass transport

In the former it is stated, that the direction in which thermodynamic processes go, is
dependent of differences in chemical potential. We will now specify this statement for
the flow of a dissolved substance in a solution. The ’derivation’ is meant to give better
insight and not to be mathematically precise.

As an introduction we consider a simple one dimensional system, characterized by a
mass m and a friction coefficient k, to which a force f is applied, that is related to a
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potential µ̄. The system model for such a system reads:

f = ∇µ̄ = ma+ kv, (115)

in which v and a are the velocity and the acceleration of the system. Some time
after the force is applied to the system a stationary state will be established, in which
the acceleration equals zero, so the velocity v is proportional to the gradient of the
potential µ̄:

v =
1
k

∇µ̄ (116)

Similarly the flow of a constituent α in a solution can also be considered. If we state
again, that the friction term is linear in velocity, we find:

vα = Lα ·∇µ̄α, (117)

in which Lα is a second order tensor. Substitution of expression (80) for the chemical
potential yields:

vα = Dα ·∇xα +Kα ·∇p (118)

If a pressure gradient is absent, we recognize the law of Fick for diffusion of con-
stituents caused by a concentration gradient. In the absence of a concentration gradient
the equation reduces to the law of Darcy for flow of a fluid through a porous medium
caused by the influence of a pressure gradient. The tensor Kα therefore represents
a permeability tensor, while Dα is a diffusion tensor. If we deal with an isotropic
system, these tensors reduce to Kα I and Dα I, respectively.
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Finite deformation poromechanics, with
application to heart muscle and blood
perfusion

J.M. Huyghe

Bernal Institute, University of Limerick, Ireland

In this chapter we analyse a mixture of an incompressible liquid and an incompress-
ible porous solid. This type of saturated porous medium is a good model for numerous
types of soil mechanics problems and is therefore studied since many years in civil
engineering. It can also be used in the field of biomechanics to model the coupling
between fluid flow and mechanical loading in e.g. cartilage or skin. We will highlight
this subject in a somewhat gradual fashion. The equations are first derived in the engi-
neering style of Terzaghi for a simple one-dimensional infinitesimal strain case. This,
together with a number of illustrating exercises, ensures that the reader first keeps
his/her attention on the physics of the phenomenon. In a subsequent derivation we use
the rigorous approach from the mixture theory for the case of three-dimensional finite
deformation. As a application, a multiporosity description of finite deformation of a
porous solid is developed using the theory of mixtures. Unlike existing multiporosity
models from the literature this formulation includes anisotropy of interfaces between
porosities. Each porosity is dealt with as a separate component. Fluid flow between
porosities are mass exchange term between components. Rather than accounting for a
discrete number of porosities a continuous spectrum of intercommunicating compart-
ments is introduced. Conservation laws for mass and momentum have been derived
and additionally appropriate formulations for the constitutive behaviour of the con-
stituents are proposed. A finite element description of the hierarchical mixture model
has been implemented. 2-D, axi-symmetric and 3-D elements can be used in finite
deformation analysis. An example of application is blood perfused biological tissue.
A simulation of a blood perfused contracting skeletal muscle is presented.
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1 The concepts

1.1 Permeability

The French engineer Darcy initiated a number of experiments in the context of the
design of fontains in the city of Dijon. These experiments aimed at quantifying the
permeation of water through sand beds [Dar56]. In the experiments water saturated
cylindrical sand samples were subjected to a constant pressure gradient. The flow
through the specimens was measured for varying pressure difference, cross-sections
and lengths of the specimens (Figure 1).

These experiments showed that the flow is proportional to the pressure difference p1−
p2 and the cross-section A of the sample and inversely proportional to the length L of
the sample:

Q =
K(p1− p2)A

L
(1)

The proportionality constant K is the permeability. Experiments showed that biologi-
cal tissues complies with Darcy’s law reasonably well [MB68, Mar79] when the fluid
is a physiological salt solution. In soil mechanics Darcy’s law has been shown valid
for sand and coarse lime. For clays a conclusive experiment has never been done.
When different Newtonian fluids are used in the same sand samples, the permeabil-
ity of the sample has been shown to be inversely proportional to the viscosity of the
fluid. The permeability depends on the size and the structure of the pores of the sam-
ple also. If the sample is compressed, the permeability drops. Different relationships
between permeability and fluid volume fraction are proposed in the literature. In very
deformable porous media, like soft biological tissues, only the viscous forces of the
flowing liquid is sufficient to cause compression of the porous medium and thus a
reduction of the permeability.

1.2 Effective stress

Consider a mixture of an incompressible solid and an incompressible liquid (figure 2).

We assume that the solid is composed of grains - to focus the attention and without
loss of generality. The dimensions of the grains and the pores between the grains
are small relative to the macroscopic dimensions of the material. Every grain is sub-
ject to two types of external load: (1) the liquid pressure (2) the contact forces with
neighbouring grains. The liquid pressure is an isotropic load which cannot result into
deformation of the grains as they are incompressible. Only the contact forces with
neighbouring grains result into a stress field in the grains and thus deformation of the
solid skeleton. The latter stress field, averaged over a large number of grains and mea-
sured per unit mixture surface is the effective stress. The effective stress in a mixture
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Figure 1: Darcy’s experiment

liquid pressure
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Figure 2: The mechanical stress in a fluid solid mixture.
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of an incompressible solid and an incompressible liquid is that part of the stress that
causes deformation. The total stress σ is given by the sum of the effective stress σe
and the hydrostatic pressure −pI:

σ = σe− pI (2)

In this example we assumed that only the pressure of the liquid contributes to the total
stress. In principle every component - and therefore also the liquid component - can
contribute to the effective stress in a mixture. Therefore it is wrong to consider (2) a
division of the stress in an effective stress caused by the solid and a pressure caused
by the liquid. In general both components contribute to both terms. In soil and rock
mechanics, the fields from which the effective stress concept originates, the effective
stress is often called the grain stress, because for lots of soil mixtures contribution of
the liquid to the the effective stress is negligible.

In the former chapter we saw that in the more recent theory of mixtures, it is common
practise to subdivide the total stress in a mixture in partial stresses, in analogy to the
much older concept of partial pressure from the kinetic theory of gasses. These partial
stresses can be associated with every individual component. For the porous medium
this means:

σ = σs +σ f (3)

The stress-strain relation becomes a relation between the effective stress and the pres-
sure in a porous medium. Notice that in force equilibrium the total stress appears.

2 Theory of consolidation of Terzaghi

During this presentation of porous media mechanics the historical development will
be followed, because that is the easiest way to comprehend it.

One of the major enemies of civil engineering is the phenomenon of consolidation.
After constructing a big building or a bridge the foundation of the construction ap-
pears to sink several inches into the ground. As long as this sinking is distributed
homogeneously over the total area of the foundation consequences are not yet disas-
trous. If there is differential sinking, the consequences can be catastrophic. Cracks in
the construction, leakage in case of a dam or pulling a building out of position (tower
of Pisa). Consolidation can usually be attributed to the construction pushing the fluid
beneath the foundation aside. Therefore, this problem can only be studied with porous
media mechanics.

The problem of consolidation has been studied by Terzaghi in the nineteen twenties.
Terzaghi restricted himself to a one dimensional consolidation, in which the liquid
flow and the displacement of the solid occur in only one direction. This situation is
reasonable for a very wide foundation plate where the sideward outflow of fluid is only
a local boundary effect. We can create this situation on purpose in a one dimensional
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filter

piston/
loadcell

specimencontainer

Figure 3: Setup for a one dimensional consolidation test.

consolidation experiment (figure 3), which is often used to study cartilage. In this
experiment a cylindrical specimen is placed in a fitting rigid cylinder. The bottom
of the specimen has contact with a porous filter in which the permeability is much
higher than the permeability in the specimen itself. The top of the cylinder has contact
with an impermeable piston with surface area A, that is loaded with an axial force P.
For an incremental increase of the force P, this force will first be intercepted by the
hydrostatic pressure (2), because no deformation of the solid has taken place yet.

p =
P
A

0< z< h, t = 0+ (4)

At z= 0 a steep pressure gradient appears that causes the liquid to flow out of the spec-
imen. This outflow of liquid results in a smooth downward motion of the piston. The
deformation of the sample causes an effective stress within the sample that gradually
will take over the load from the hydrostatic pressure.

We now consider Terzaghi’s way to derive the equations that describe this process. We
restrict ourselves to small deformations. Consider a layer [z,z+ dz] of a one dimen-
sional medium that is subjected to consolidation. The medium consists of a porous,
incompressible, elastic solid saturated with an incompressible fluid. Analogue to (1)
we subdivide the total stress σ in a hydrostatic pressure p, present in the liquid + solid
(pressure positive, see figure 2) and an elastic stress caused by deformation σe, mea-
sured per unit surface area (extension positive). The liquid flux per unit mixture area
is indicated with a q (z-direction positive). If we neglect the forces of inertia and the
volume forces, we can write the balance of momentum as:

σe(z+dz)−σe(z)− p(z+dz)+ p(z) = 0 (5)
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Figure 4: One dimensional consolidation of a porous medium.

 

Figure 5: Dimensionless pressure P versus dimensionless position Z at different times
during linear, one dimensional consolidation.
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After dividing by dz, we find:
∂σe

∂z
− ∂p

∂z
= 0 (6)

Because of incompressibility the balance of mass reduces to the balance of volume:

du(t +dt)−du(t)−q(z)dt +q(z+dz)dt = 0 (7)

After division by dzdt, we find:

Ds

Dt
∂u
∂z

+
∂q
∂z

= 0 (8)

In addition to the balance laws we need two constitutive equations. The first is the
Darcy equation :

q =−K
∂p
∂z

(9)

in which we consider the permeability K a constant. Substitution of (9) in (8) yields:

Ds

Dt
∂u
∂z
− ∂

∂z
K

∂p
∂z

= 0 (10)

The second constitutive relation is the law of Hooke:

σe = H
∂u
∂z

(11)

in which H is the compressive modulus. We consider H a constant, i.e. linear elastic-
ity. The compressive modulus is related to the modulus of elasticity, E, and Poisson’s
ratio, ν, for an isotropic medium:

H = E
1−ν

(1+ν)(1−2ν)
(12)

The equations (6), (8), (9) and (11) form a complete set of partial differential equa-
tions. Integration of equation (6) yields:

σ(z, t)− p(z, t) =−p0(t) (13)

with p0(t) the top load. For a classical consolidation test the top load is a step function:
p0 =

P
A f or t > 0 otherwise zero. After applying this step the function is constant in

time, so1:
Dsσe

Dt
− Ds p

Dt
= 0 for t > t0 (14)

Substitution of (11) in (14), yields

H
Ds

Dt
∂u
∂z
− Ds p

Dt
= 0 for t > t0 (15)

1In standard infinitesimal solid mechanics notation, we would use ∂
∂t in stead of Ds

Dt
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Substitution of (15) and (9) in (8) yields the consolidation equation of Terzaghi:

Ds p
Dt
−KH

∂2 p
∂z2 = 0 (16)

Notice the analogy with the diffusion equation. The characteristic time that is needed
to start the consolidation process of a porous layer with thickness ∆z, permeability K
and compressive modulus H, follows from (16):

∆p
∆t

= KH
∆p

(∆z)2 (17)

or:

∆t =
(∆z)2

KH
(18)

The consolidation time t is therefore inversely proportional to the permeability K and
the stiffness H, and proportional to the square of the thickness of the layer ∆z. The
analytical solution for the consolidation equation (13) for a specimen with thickness
h holds:

P =
∞

∑
n=0

2
M

sin(MZ)e−M2T (19)

with

P =
p
p0

(20)

M =
π
2
(2n+1) (21)

Z =
z
h

(22)

T =
KHt
h2 (23)

Notice that for T > 1 the consolidation process of the specimen is largely completed
(see figure 5).

3 Mixture description of saturated porous media

We shall derive equations applicable to the behaviour of elastic incompressible fluid
saturated porous media from mixture theory. The resulting equations are a special
case of Biot’s finite porous media theory [Bio72].

3.1 Assumptions

We consider the porous medium as a two-component mixture, composed of a solid
(superscript s ) and a fluid component (superscript f ):

φs +φ f = 1. (24)
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Eq. (24) is the saturation condition. We assume that no mass-exchange occurs be-
tween the components. Each component is assumed incompressible :

ρα
i =

ρα

φα = constant, α = s, f . (25)

The apparent densities ρα however do change as a function of time. We consider
processes which are sufficiently slow so as to ensure that inertia forces are negligible.
Volume forces are neglected as well. We assume that all components have the same
temperature and no gradients in temperature are present either in time or space.

3.2 Conservation laws

3.2.1 Conservation of mass

In the absence of mass exchange the local law of conservation of mass of component
α reduces to :

∂ρα

∂t
+∇ · (ραvα) = 0, α = s, f . (26)

Using eq. (25) we can rewrite (26) :

∂φα

∂t
+∇ · (φαvα) = 0, α = s, f . (27)

Summation of the eqs. (27) yields the local mass balance of the mixture :

∇ · (φsvs)+∇ · (φ f v f ) = 0, (28)

or :
∇ · vs +∇ ·

(
φ f (v f − vs)

)
= 0. (29)

The first term of (29) represents the rate of volume increase of a unit volume of mix-
ture. The second term represents the fluid flux from this unit volume. Eq. (29) states
that every volume-increase or decrease of the mixture is associated with an equal
amount of in- or outflux of liquid. At this point it is useful to refer current descriptors
of the mixture with respect to an initial state of the porous solid. As is usual in contin-
uum mechanics, we define the deformation gradient tensor F mapping an infinitesimal
material line segment in the initial state onto the corresponding infinitesimal line seg-
ment in the current state. The relative volume change from the initial to the current
state is the determinant of the deformation gradient tensor J = detF . If we introduce
volume fractions

Φα = Jφα (30)

per unit initial volume, we can rewrite the mass balance equation (27) as follows:

DsΦα

Dt
+ J∇ · [φα(vα− vs)] = 0 (31)

or:
Ds

Dt
J = J∇ · vs (32)
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3.2.2 Conservation of momentum

Considering the assumptions stated earlier momentum balance reduces to :

∇ · (σα)c + p̂α = 0, α = s, f . (33)

The momentum interaction p̂α arises e.g., as a consequence of friction between the
fluid and the solid. We assume no moment of momentum interaction between fluid
and solid. Therefore we tacitly assumed the symmetry of the partial Cauchy stress
tensor in (33). Summation of the equations (33) yields the local momentum balance
for the mixture as a whole :

∇ ·σs +∇ ·σ f = ∇ ·σ = 0, (34)

if we use :
p̂s + p̂ f = 0, (35)

3.2.3 The entropy inequality

The local form of the entropy inequality applied to the mixture as a whole, reduces to:

∑
α=s, f

(
−ρα `̃αF +σα : Dα− p̂α ·uα

)
≥ 0. (36)

We introduce the strain energy function

W = J ∑
α=s, f

ραF̃α = J ∑
α=s, f

ψα (37)

as the Helmholtz free energy of a mixture volume which in the initial state of the solid
equals unity. ψα is the Helmholz free energy of constituent α per unit mixture volume.
Rewriting the inequality (36) for the entropy production per initial mixture volume -
i.e. we multiply inequality (36) by the relative volume change J - we find:

−Ds

Dt
W + Jσ : ∇vs + J∇ · [(v f − vs) ·σ f − (v f − vs)ψ f ]≥ 0. (38)

3.3 Constitutive restrictions

We use the entropy inequality to derive constitutive restrictions for the mixture. The
entropy inequality should hold for an arbitrary state of the mixture, complying with
the balance laws and with incompressibility. There are two ways to comply with these
restrictions. One is substitution of the restriction into the inequality, resulting in elim-
ination of a field variable. The other is by introduction of a Lagrange multiplier. The
mass balance of the mixture (29) is accounted for by means of a Lagrange multiplier.
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Other balance laws and the incompressibility conditions (25) are accounted for by
means of substitution. From the inequality 38 we see that the apparent density and the
momentum interaction p̂α is already eliminated from the inequality. In other words
the conditions of incompressibility and the momentum balance of the constituents
have already been substituted into the second law. The divergence of the partial stress
tensor of the solid ∇ ·σs and the heat supplies rα also are absent from 38. Thus the mo-
mentum balance of the mixture and the energy balance have already been substituted
in the second law. Therefore, restrictions still to be fulfilled are the mass balances of
the constituents (26) and mass balance of the mixture (29). The latter is substituted by
means of a Lagrange multiplier p:

−Ds

Dt
W + Jσe : ∇vs

+J[σ f +(pφ f −ψ f )I] : ∇(v f − vs)

+J(v f − vs) · (−∇ψ f + p∇φ f +∇ ·σ f )≥ 0. (39)

in which the effective stress σe is defined as

σe = σ+ pI (40)

3.3.1 Choice of independent and dependent variables

We choose as dependent variables the dynamic variables appearing in inequality 39
: W , ψ f , σe, σ f + pφ f I, ∇ ·σ f + p∇φ f . Their number should equate the number of
unknown variables appearing in the balance equations minus the number of balance
equations. The number of dependent variables should be as small as possible to de-
scribe the state of the tissue well. Their choice is a key assumption of the continuum
theory and is based on insight in the physical phenomena involved in the behaviour
of the material. If the dependent variables include only variables describing the local
state of the tissue (e.g. E), the theory is a local theory. If the dependent variables
include variables describing the state of the tissue some distance away from the point
of consideration (e.g. ∇E), the theory is a non-local theory. Throughout this book
we consider only local dependent variables. We choose as independent variables the
kinematic variables : the Green strain of the solid Es, the fluid volume fraction Φ f and
the fluid velocity relative to the solid v f − vs. For reasons of objectivity we need to
transform all the vectors and tensors among the dependent and independent variables
back to the initial state. This yields for the constitutive relationships:

W = W (Es,Φ f ,v f s),

ψ f = ψ f (Es,Φ f ,v f s),

σe = F ·Se(Es,Φ f ,v f s) ·Fc,

σ f −φ f pI = F ·S f (Es,Φ f ,v f s) ·Fc

p̂ f − p∇φ f = F · P̂ f
(Es,Φ f ,v f s) (41)
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with
v f s = F−1 · (v f − vs) (42)

The principle of equipresence requires that all dependent variables appear in each of
the constitutive relationships. The choice of the independent variables is paramount
for the form of the constitutive relationships that are derived. E.g., including for the
solid Green strain only and no measure of strain rate, implies elasticity of the solid.
In mixture mechanics it is also important to realise that each of the variables is an
averaged value of a physical quantity over an averaging volume. It may seem surpris-
ing that the shear rate of the fluid is not included in the list of independent variables,
although the viscosity of the fluid is absolutely essential for the behaviour of the mix-
ture. The reason for this is that in a porous medium the shear rate at one side of the
pore has a sign opposite to the shear rate at the other side of the pore. The expectation
value of the shear rate in a representative elementary volume is therefore the shear rate
of the solid, i.e. a generally very low value, not representative for the dissipation in
the fluid. It is therefore more obvious to use the fluid velocity relative to the solid as a
macroscopic measure of the microvalues of the shear rate. The fluid volume fraction
Φ f is not independent of the Green strain because of incompressibility :

Φ f = detF−1+φ f
0 =

√
det(2Es + I)−1+φ f

0 (43)

Because of the strong non-linearity of equation (43), elimination of one of the vari-
ables is tedious. In fact, the way we deal with the interdependence of these two vari-
ables is by means of the Lagrange multiplier p. The condition 29 is in fact a dif-
ferentated form of eq. (43). This legitimises the use of Es and Φ f as independent
variables.

3.3.2 Constitutive relationships

Applying the chain rule for time differentiation of W :

DsW
Dt

=
∂W
∂Es :

DsEs

Dt
+

∂W
∂Φ f

DsΦ f

Dt
+

∂W
∂v f s (44)

and substituting the mass balance of the constituents (31) for the elimination of DsΦ f

Dt
from the inequality 39 :

(Jσe−F · ∂W
∂E
·Fc) : ∇vs +

∂W
∂v f s ·

Ds

Dt
v f s

+J[σ f +(µ f φ f −ψ f )I] : ∇(v f − vs) (45)
+J(v f − vs) · (−∇ψ f +µ f ∇φ f +∇ ·σ f )≥ 0.

in which µ f is the chemical potential of the fluid:

µ f =
∂W
∂Φ f + p (46)
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Eq. (45) should be true for any value of the state variables. Close inspection of the
choice of independent variables and the inequality (45), reveals that the first term of
(45) is linear in the solid velocity gradient ∇vs, the second term linear in Ds

Dt v f s and the
third term linear in the relative velocity gradients ∇(v f −vs). Therefore, by a standard
argument, we find:

σe =
1
J

F · ∂W
∂E
·Fc (47)

∂W
∂v f s = 0 (48)

σ f = (ψ f −µ f φ f )I (49)

leaving as inequality:

J(v f − vs) · (−∇ψ f +µ f ∇phi f +∇ ·σ f )≥ 0. (50)

Eq. (47) indicates that the effective stress of the mixture can be derived from a strain
energy function W which represents the free energy of the mixture. Eq. (48) shows
that the strain energy function cannot depend on the relative velocity of fluid versus
solid. Thus, the effective stress of a biphasic medium can be derived from a regular
strain energy function, which physically has the same meaning as in single phase
media . According to eq. (49) the partial stress of the fluid and the ions are scalars.
Transforming the relative velocities to their Lagrangian equivalents, we find in stead
of (50):

v f s · [−∇0ψ f +µ f ∇0φ f +∇0 ·σ f ]≥ 0. (51)

in which ∇0 = Fc ·∇ is the gradient operator with respect to the initial configuration.
Note that as µ f ∇0φ f +∇0 ·σ f depends on v f s according to the constituive relationships
(41), the lefthandside of inequality (51) is not a linear function of v f s and therefore it
is incorrect to equate the factor −∇0ψ f +µ f ∇0φ f +∇0 ·σ f to zero. From a physical
point of view it is obvious that unlike the elastic deformation of the solid the flow of
fluid relative the solid results in an entropy production. If we assume that the system
is not too far from equilibrium, we can express the dissipation (51) associated with
relative flow of fluid and ions as a quadratic function of the relative velocities:

−∇0ψ f +µ f ∇0φ f +∇0 ·σ f = B · v f s (52)

B is a semi-positive definite matrix of frictional coefficients. Substituting eq. (49) into
eq. (52) yields the Lagrangian form of Darcy’s law :

−φ f ∇0µ f = B · v f s (53)

The constitutive behaviour of the fluid-solid mixture is thus described by a strain en-
ergy function W and frictional tensor B. From the strain energy function we derive
both the effective stress and the chemical potential of the fluid.
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3.4 Physical interpretation of the constitutive variables

Comparing eq. (40) with eq. (2) reveals that the Lagrange multiplier p should be
interpreted as the hydrostatic pressure in fluid.

∇ ·σe−∇p = 0. (54)

If we define the permeability tensor K as:

K = (φ f )2B−1 (55)

eq. (53) becomes:

φ f (v f − vs) =−K ·∇(p+
∂W
∂Φ f ). (56)

Eq. (56) is the threedimensional form of Darcy’s law (9). The difference between the
chemical potential µ f and the pressure p is the matric potential. The matric potential
accounts for adsorption and capillary forces. It can be quantified experimentally using
capillary rising heights (figure 6). In Terzaghi’s consolidation theory the matric poten-
tisal is neglected, not because it is negligible in absolute terms but because its gradient
is negligible in an homogenous medium with limited variation of fluid volume fraction
and coarse pore structure.

Figure 6: Matric potential as a function of fluid volume fraction φ f for stratum
corneum

3.5 Resulting equations

The resulting equations are: Momentum balance of the mixture:

∇ ·σe−∇p = 0 (57)
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Mass balance of the mixture:

∇ · vs−∇ · (φ f (v f − vs)) = 0 (58)

Darcy’s law:
v f − vs = φ f B−1 ·∇µ f (59)

Stress-strain relationship:

σe = (detF)−1F · ∂W
∂Es ·Fc, (60)

Constitutive law for the chemical potential of the fluid:

µ f = p+
∂W
∂Φ f (61)

The total stress in the mixture is composed of an effective stress and a hydrodynamic
pressure: σ = σe− pI. The effective stress σe is derived from the strain energy func-
tion of the mixture W . In eq. (60) F is the deformation gradient tensor of the solid
and Es the Green strain tensor of the solid. The strain energy W in a function of the
solid strain E. In one dimensional space eq. (57) reduces to eq. (6) from Terzaghi’s
confined compression theory.

Dynamic boundary conditions are:

[(σe− pI) ·n] = 0 (62)

with n the outer normal along the boundary and the square brackets represent the
difference between the value at either side of the boundary.

[V f µ f ] = 0, (63)

with as a special case the evaporation boundary condition:

V f µ f = RT ln
pd

pd
s

(64)

Eq. (63) and eq. (64) enforces continuity of molar chemical potential. Discontinuity
of chemical potential would lead to an infinite fluid flux which is physically impos-
sible. For this reason we can claim that even if the material properties are sharply
discontinuous the chemical potential should be continuous. This is not true for the
pressure p. E.g. at the interface between a sand layer and a clay layer the pressure
is not continuous, at least if capillary effects are not neglected. Similarly interstititial
pressure along the surface of the skin is not equal to atmospheric pressure. We use
the molar chemical potential in stead of the volumetric chemical potential because the
volumetric chemical potential can be used only for incompressible media. Although
the medium we consider is incompressible, the medium outside the boundary need not
be incompressible as is the case for evaporation. Kinematic boundary conditions are:

[u] = 0 (65)

[(v f − vs) ·n] = 0 (66)
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4 Remarks

We derived the equations, that describe the behaviour of a porous medium, in two
different ways. The traditional approach of Terzaghi has the advantage that we know
the physical meaning of the parameters from the start. It is a disadvantage that we have
little insight in the assumptions that we - often unconsciously - took. For example, it
appears from comparison of the resulting equations with mixture theory equations that
we neglected the capillary forces.

In the second approach, using the theory of mixtures, all effects are taken into account,
and simplifications have to be done explicitly. It is done by neglecting specific terms
in the balance laws or by the choice of the independent variables. This approach is
also suitable for generalisation to mixtures with more components, like we will see in
chapter 6. A disadvantage of this approach is the complexity of the derivation.

5 Unconfined compression

In the beginning of the chapter, we showed that Terzaghi’s problem - known as linear
one-dimensional consolidation or confined compression - has an analytical solution
19. The experiment of confined compression requires a sample that fits tightly into a
cylinder. Typically, collagen fibres in a confined compression test are never stretched:
the radial strain is zero and the axial strain is negative. Therefore only the compres-
sive properties of the proteoglycan gel are tested in this experiment. An analytical
solution of a different test is available [Man53], known as unconfined compression,
where the cylindrical sample is squeezed between two impervious plates. This exper-
iment is generally more easy to perform, because it does not require the sample to fit
exactly into a cylinder. It measures a different set of properties, because under axial
compression the radially oriented collagen fibers are stretched. The fluid flow in an
uncomfined compression test is radially oriented while the compressive load is axial.
The test is therefore intrinsically two-dimensional. The stiffness is typically higher
than in comfined compression because linear elasticity does not hold for cartilaginous
tissues. Under tension cartilaginous tissues are stiffer than under compression.

6 Finite element formulation of poroelasticity without
matric potential.

In this section a set of equations is derived suitable for a FE implementation. To
describe the poroelastic medium, the balance of momentum (57), and the mass balance
(58) are used. To obtain the weak formulation the equations are multiplied by arbitrary,
time independent weighing functions and integrated over the volume of the mixture
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Flow

Force

Figure 7: The cartilage sample is sueezd between two impervious plates. The fluid
flow is radially oriented

(Ω). The momentum equation is multiplied by a weighing function ~wx. The mass
equation is multiplied by the weighing functions wp. After partial integration and
applying the divergence theorem, we find,

∫

Ω
(∇~wx)

c : σ dΩ =
∫

Γ
~wx · (σ ·~n) dΓ ,

∫

Ω0

wpJ̇ dΩ0 +
∫

Ω0

(K∗∇0 p) ·∇0wp dΩ0 =
∫

Γ0

wp (K∗∇0 p) · ~n0 dΓ0 ,

(67)

in which Γ is the current outer surface of the medium and Γ0 is the initial outer surface
of the medium . Since the model is time dependent and concerning future applications,
we chose to use a total Lagrange formulation. The gradient operator is transformed
according to,

∇ = F−c ·∇0 (68)

For the mass balance a time discretization scheme is applied,

~χ = θ~χ(tn +∆t)+(1−θ)~χn (69)

The scalar, θ, can be varied between 0 and 1. This way, the time discretization scheme
can be varied easily from implicit Euler (θ = 1) to explicit Euler (θ = 0).

6.1 Linearization

The set of equations equations are nonlinear with respect to the unknown position
field and pressure field. Therefore an iteration scheme needs to be adopted to find a
solution. The Newton-Raphson iteration procedure is used to determine a sequence of
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approximate solutions until the balance equation is satisfied up to a given accuracy. If
the exact solution of the position field is ~̂x, and ~x is an estimate of the exact solution,
then we can write,

~̂x =~x+δ~x (70)

with δ~x the error in the estimate. All quantities appearing in the balance equations can
be expressed in a similar way.

6.2 Discretization

A separate interpolation for the error in the position field δ~x and pressure δp are intro-
duced within one element Ωe:

δ~x|Ωe =
n

∑
i=1

Φi(x,y,z)δ~xei = Φ
˜

T δ~̂x
˜e

δp|Ωe =
m

∑
i=1

Ψi(x,y,z)δpei = Ψ
˜

T δp
˜ e

(71)

Quadratic interpolation functions (Φ
˜

) are used for the position field and weighing
function ~ww. Linear interpolation functions (Ψ

˜
) are taken for the discretization of the

pressure and its corresponding weighing function wp. The components δ~̂x
˜e are gath-

ered in the column δ~x
˜e. Substitution of these expressions into the linearized equations

results in a set of linearized equations for a single element Ωe, which is written as,

S
¯

−L
¯

δu
˜

−R
˜=

−L
¯

T −K
¯

δp
˜

U
˜
−T

˜ 1 +T
˜ 2

S
¯

=
∫

Ω0
[(~∇0Φ~e)−C : S ·~∇0Φ~e+(~∇0Φ~e)C : ∂S

∂E : ~∇0Φ~e] dΩ0

L
¯

=
∫

Ω0
F−C ·~∇0 ·Φ~epJ dΩ0

K
¯ αβ = θ

∫
Ω0

~∇0Ψ
C ·K∗αβ · ~∇0Ψ∆t dΩ0

R
˜

= −∫
Γ0

Φ~e ·F−1 ·~n0JdΓ0−
∫

Ω0
Se : FC ·~∇0ΦI~e dΩ0 +

∫
Ω0
~∇ ·Φ~epJ dΩ0

U
˜

=
∫

Ω0
Ψ
˜
(J− Jn) dΩ0

T
˜ 1 = θ

∫
Ω0

(K∗ ·~∇0 p) ·~∇Ψ
˜

∆t dΩ0

T
˜ 2 = (1−θ)

∫
Ω0

(K∗ ·~∇0 pn) ·~∇Ψ
˜

∆t dΩ0

(72)

7 Application to the modelling of heart muscle

The heart consists of two pumps, the right and the left heart, connected to each other
in series and anatomically intimately linked together into one organ ( Figure 8 ). The
right heart maintains blood flow in the pulmonary circulation, whereas the left heart
maintains blood flow in the systemic circulation. The left heart is by far the strongest
of both heart pumps. During each heart cycle it develops a pressure of about 16 kPa,
which is four to five times the pressure developed by the right heart. Consequently
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more musculature is developed in the left than in the right ventricular myocardium.
The initial stages of cardiac disfunction are found generally in the left ventricle. Be-
cause of the functional and clinical importance of the left heart this chapter is mainly
devoted to left ventricular modelling, although many aspects could equally well apply
to the right ventricle.
The mechanical performance of the left ventricle is the result of a cooperative contrac-
tile action of the muscle cells in the left ventricular wall. Therefore, insight into the
mechanics at the level of muscle cells is important to understand global left ventricu-
lar mechanical performance. For that reason, quantifications of local ventricular wall
mechanics have been one of the main concerns in heart research in the past century.
This interest was stimulated by the following facts:

• Myocardial wall stress and deformation are some of the primary determinants
of myocarcial oxygen consumption.

• Myocardial oxygen supply is dependent upon coronary blood perfusion, which
has been shown to depend greatly upon the mechanical state of the myocardical
tissue.

• Wall deformation is believed to be the feedback signal that governs myocardial
growth. For example, ventricular hypertrophy is the result of excessive loading
of the heart.

• Diagnosis of the heart is usually done on the basis of global data of cardiac
function. Interpretation of these data in terms of local myocardial disfunction
requires a thorough insight into the fundamental principles underlying ventricu-
lar mechanics.

Important quantities for the description of local left ventricular mechanics are defor-
mation and stress. At present, local deformation can be measured accurately only at a
limited number of sites in the left ventricular wall simultaneously. Reliable measure-
ment of left ventricular wall stress is difficult, because insertion of a force transducer
damages the tissue. Because of these experimental limitations, mechanical models
have been developed in helping to understand left ventricular mechanics. Initially,
a simple left ventricular geometry such as a sphere, a cylinder or an ellipsoid, and
isotropic linear elastic material properties were used in analytical models. Gradually,
more realistic left ventricular geometries and anisotropic nonlinear elastic material
properties were introduced, often using the finite element method. Generally these
models, predicted maximum stresses (during systole) to occur in the subendocardial
(i.e. inner) wall layers (which is not strange, recalling the solutions for a thick walled
cilinder under internal and/or external pressure). All models mentioned so far com-
pute stresses and strains from given rheological and geometrical data of the left heart
muscle and a given external load (usually the left ventricular pressure). More recent
developments allow to account for the influence of intramyocardial coronary blood
volume upon the stress distribution in the tissue. In the related models anisotropic
contractile material properties, with active stresses depending on time, fiber strain and
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Figure 8: Anatomy and direction of blood flow in the heart
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strain rate, were used to describe the mechanics of the systolic left ventricle.

7.1 Poromechanics of the heart muscle

Like most other biological tissues, the heart muscle tissue is a mixture of many differ-
ent components: muscle fibres, collagen fibres, coronary vessels, coronary blood and
interstitial fluid. There are many ways to treat these kinds of complex materials.

O

f  sX  =  X  

sx  

fx  

Figure 9: mixture of interacting continua

Assume that in some point P in space we want to know the velocity of component
α. Normally, some small elementary volume is defined around P. The velocities of
particles of the component α in that elementary volume can be averaged over this
volume and assigned to point P, even if in reality this point is occupied by a differ-
ent component (figure 9). In this way it is possible to define continua that can move
through and interact with each other. Theories of this kind are called mixture theories
or porous media theories and are also used to describe for instance the mechanical
behavior of soil. We will give a global description of two models that were derived
for heart muscle. Both models are more or less based on mixture theories. Both theo-
ries have been developed in a research cooperation between Eindhoven University of
Technology and the University of Maastricht. They will be referred to as the model
from Huyghe and the model from Bovendeerd.
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7.2 Axisymmetric ventrical model

The tissue is composed of a solid phase and a liquid phase (which is the coronary
blood). By introducing an extra variable, which he called the arterio-venous param-
eter he was able to seperate different coronary microcirculatory components. In this
way he could make a distinction between blood in arteries, arterioles, capillaries and
venes. In this introductory chapter we ignore this parameter and treat all coronary
blood in the same way. For those interested in the model with the spectrum of liq-
uid phases that enables to model the coronary blood flow in more detail we refer to
[HOvCH89, HOvC89].

For the time being it is enough to know that it is possible for such a mixture to derive
balance equations for the solid, the liquid and for the mixture as a whole. This includes
balance of mass, momentum, moment of momentum and energy. These balance equa-
tions look very similar to those for one single solid or liquid. The difference is that
extra terms are added because the continua interact. For the components, as well as
for the interaction terms we need constitutive equations. Together with boundary and
initial conditions a solvable set of equations can be derived. With such a mathemat-
ical model it is possible to calculate all kinds of local mechanical properties in the
tissues, like stresses, strains, pressures and flows. In this course our interest is not the
formulation and solution of the balance equations, but our focus is on the constitutive
equations for the different components and their interactions.

The first problem we encounter is, that in a mixture we need an adjustment for the def-
inition of the Cauchy stress matrix σ. The stress in the liquid component is described
by an intramyocardial pressure p. The stress in the mixture is a full three-dimensional
stress matrix σ. The stress in the deformed mixture is best understood as follows. As-
sume that the solid phase is subjected to the deformation in the absence of fluid . The
stress σs in the solid induced by this deformation and measured per unit bulk surface
(= the surface of the total mixture, including the pores) is called effective stress. The
word “effective” indicates that this part of the stress is the only part depending directly
on deformation. Now we inject fluid at a pressure p into the deformed solid matrix.
The pressure p will spread in both the fluid and the solid. So, the total Cauchy stress
in the mixture is:

σ = σs− pI (73)

The negative sign before p arises from the fact that in solid mechanics stress is positive
for extension, however in fluid mechanics pressure is positive for compression. A
muscle can create an active stress when it contracts. This means that we have to
separate the behavior in active and passive behavior. So:
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σs = σp +σa (74)

with σp the passive stress and σa the active stress.

Passive constitutive behavior

The passive stress matrix σp is split into two components, one resulting from an elas-
tic volume change of the myocardial tissue σc , the other from a visco-elastic shape
change of the myocardial tissue σd . The elastic stress σc is derived from an isotropic
strain energy function. The viscoelastic component σd is described in a spectral form
of quasi-linear viscoelasticity as proposed by Fung [Fun93].

Because the ventricular wall consists of muscle fibres with different properties in fibre
direction than in cross-fibre direction the mechanical behavior is no longer isotropic.
We have to account for these fibre directions. In the heart muscle the situation is even
more complicated. Anatomical studies showed that the fibre direction changes from
the endocardium to the epicardium. The material has inhomogeneous properties (fig-
ure 10). We review some of the consequences of the anisotropy for the mechanical
behavior of the heart.

Figure 10: Orthonormal vectors ~B1~B2,~B3 specifying axes of orthotropy. ~B3 is parrallel
to the initial local fibre direction. Vector ~B1 is perpendicular to the wall.

Contractile constitutive behavior

Cardiac muscle is striated across the fibre direction. The sarcomere length is the dis-
tance between the striations, and may be used as an objective measure of muscle fibre
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length during contraction. In experiments it has been found that active stress, gen-
erated by cardiac muscle cells, depends on time, sarcomere length and velocity of
shortening of the sarcomeres. The active stress generated by the sarcomeres is di-
rected parallel to the fibre orientation. This can be described with phenomenological
Hill-type models or with a structural model according to Huxley. These models will
be treated in the physiological part of this course.

Figure 11: Active material behavior as assumed in the model: (a) length dependence
of active stress, (b) time dependence of active stress for sarcomere lengths of 1.7, 1.9,
2.1 and 2.3 µm, (c) stress-velocity relation

The behavior of the liquid

So far we have only discussed the mechanical behavior of the solid. In order to sim-
ulate the redistribution of coronary blood in the ventricular wall during deformation,
the liquid phase is allowed to flow relative to the solid. It will be clear that there is
an interaction between the solid and the liquid. The solid will resist the liquid from
flowing. This is described by Darcy’s law, i.e. the liquid flow relative to the solid is
proportional to the local intramyocardial pressure gradient:

~q = K∇p (75)

where ~q is the fluid flow vector, representing the difference between the solid ve-
locity and the fluid velocity, K is the permeability matrix and is a material property,
depending on pore size, but also on the fluid viscosity. Even with this fairly crude ap-
proximation of the liquid phase, important aspects of the influence of coronary blood
volume on ventricular mechanics can be demonstrated.

It is not difficult to understand that K also depends on the deformation of the solid. If
the solid is compressed the pores will become smaller and thus it will be more difficult
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for the liquid to move through the solid. This means that K must become smaller:

K =

(
J−1
ΦB +1

)2

K0 (76)

K0 is the permeability of the undeformed tissue. ΦB is the averaged porosity, i.e. the
fluid volume divided by the total volume of the mixture. J = det(F) is the determinant
of the deformation matrix, representing the volume change of the material.

The theory described above leads to a set of nonlinear partial differential equations.
It is not possible to find closed form solutions for these equations. However, it is
possible to solve them numerically. A suitable procedure for this is to use the finite el-
ement method. It is not within the scope of this course to discuss this solution process.
Huyghe (1992) [HAvCR92] made for his model the assumption that the geometry and
the displacements of the left ventricle are axisymmetric. This axisymmetric porous
medium finite element model allows for finite torsion about the axis of symmetry and
considers redistribution of intracoronary blood in the myocardial wall during defor-
mation. Also, transmural variation of fiber angle is taken into account (10).

The geometry of the left ventricle in an assumed stress-free reference state is derived
from eleven cross-sections of a canine diastolic heart obtained by means of X-ray to-
mography. An average endocardial and epicardial radius are computed for each cross-
section, resulting in the geometry shown in figure 12a . The geometry is subdivided
in thirty eight-node ring-shaped elements. Quadratic shape functions are used for the
cross-sectional geometry, the transmural course of fibre direction, and the radial, axial
and circumferential displacements. The shape functions for the isoparametric pressure
field are linear. Integration of the volume and surface integrals are obtained by means
of 3x3 and three-point Gauss integration, respectively. An implicit-explicit one-step
Crank-Nicholson time integration scheme is used.

The upper finite elements (10, 11, 12) in figure 12 represent the annulus fibrosis and
are non-contracting elements with a circumferential fibre orientation. For reasons of
simplicity a homogeneous distribution of the initial sarcomere length is chosen with
Ls = 1.9µm. At the upper end of the annulus fibrosis, only radial displacement is al-
lowed. The intramyocardial pressure at the nodes of the epicardium (outside wall) are
set equal to the pressure in the venous epicardial vessels. At the endocardial surface
the intramyocardial pressure is free, whereas no blood is allowed to cross this surface.
At the endocardial side of elements 1-9 a uniform intraventricular pressure PLV is ap-
plied as an external load (indicated by the arrows). The loads exerted by the papillary
muscles and by the pericardium are neglected.

Figure 13 shows a typical course of the electro cardiagram (ECG), the intraventricular
pressure PLV and the aortic flow during a cardiac cycle. It is customary to divide the
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Figure 12: Longitudinal cross-section of axisymmetrix finite element model: (a) finite
element mesh; (b) sequence of onset of contraction (simulated to radiate from point
M, time in ms).

cardiac cycle into two phases: systole and diastole. Roughly speaking they correspond
to contraction and relaxation of the ventricle. Systole can be subdivided into isovolu-
mic contraction, ventricular ejection and isovolumic relaxation. In diastole any active
contribution to wall stress is absent by definition. In this phase ventricular filling oc-
curs. Contraction of the heart muscle is caused by a depolarization wave. A typical
pattern of the motion of the depolarization wave from the apical subendocardial region
to the basal epicardial region is shown in figure 12. The ventricular wall is completely
activated after about 50 ms.

In the simulation of a cardiac cycle typically time steps of 5 ms are used. A simulation
starts with the diastolic filling phase, during which intraventricular (cavity) pressure
PLV is prescribed to increase from 0 kPa to 1 kPa in 150 ms. At this moment the
depolarization wave starts and active stress is generated immediately after depolariza-
tion. The diastolic phase ends with the closure of the mitral valve, which is assumed to
occur at t = 200ms. During the following isovolumic contraction phase, cavity pres-
sure is determined iteratively until the cavity volume equals its end-diastolic value. As
soon as the cavity pressure exceeds a prescribed aortic pressure level of 10 kPa, the
ejection phase starts. During the ejection phase, cavity pressure is determined itera-
tively until the aortic flow matches the rate of decrease of cavity volume. The ejection
phase ends as soon as the calculated flow reverses. The isovolumic relaxation phase is
simulated analogously to the isovolumic contraction phase. The simulation of a cycle

94 Finite deformation poromechanics with applications

ALERT Doctoral School 2015



Figure 13: Illustration of the events in the left side of the human heart during a cardiac
cycle
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ends at a prescribed time of 600 ms.

The hemodynamic coupling of the left ventricle to the aorta is described by a lin-
ear three-element aortic input impedance model consisting of an aortic characteristic
resistance, placed in series with an arterial compliance which is in parallel to a periph-
erical resistance.

First, some results are considered of a simulation where the left ventricle was loaded
with the end-diastolic pressure (1 kPa), and then three consecutive beats were initi-
ated. The last one of these three cycles was close to the stationary situation. At the
beginning of the passive loading a uniform intramyocardial pressure of 0.5 kPa was
chosen. The epicardial value of the intramyocardial pressure was kept constant at 0.5
kPa during the whole simulation.

Figure 15 shows a comparison of epicardial deformation parameters as assessed by
the above simulation with those obtained in animal experiments by [AVR82]. These
investigators measured three epicardial strain components: 1) the circumferential nat-
ural strain εc, which is the natural logarithm of the ratio of the current radial coordinate
to the initial radial coordinate; 2) the axial natural strain εz, which is the natural strain
in the direction initially perpendicular to the circumference and tangential to the epi-
cardial surface; and 3) the shear angle γ, which is the change of the angle between the
circumferential direction and a line on the epicardium initially perpendicular to the
circumference. The latter quantity is a measure of torsion of the ventricle. Figure 15
shows a good qualitative agreement between model results and experimental results.
Maximal torsion is reached approximately at the end of ejection. Figure 16 shows the
distribution of end-systolic values of the three principal strains across the ventricular
wall at the interface of the elements 6, 18, 27 and the elements 7, 13, 28. For the sake
of comparison with experimental data the principal strains are computed relative to
the end-diastolic state.

Heineman and Grayson [HG85] found in aximal experiments that peak systolic in-
tramyocardial pressure, expressed as a ratio relative to peak systolic left ventricular
pressure, was linearly distributed across the ventricular wall (figure 17) near the equa-
tor region. This is in accordance with findings from the porous medium model. When
redistribution of intracoronary blood is suppressed in the model, resulting in incom-
pressible tissue behaviour, a substantial deviation from this behaviour is computed in
the equatorial endocardial region. This suggests that redistribution of intracoronary
blood in the ventricular wall might play an important role in reducing subendocardial
tissue pressure. In addition to the above, due to the porosity effect, the porous medium
model is able to simulate the dependence of the ventricular compliance on the intra-
coronary blood volume as experimentally measured.
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Figure 14: Color coded plots of the intramyocardial pressure (top), sarcomere length
(middle) and rotation angle (bottom) of the axisymmetric simulation of the beating left
ventricle (Fig. 12). The successive states are from left to right, the end of isovolumic
contraction, of ejection, of isovolumic relaxation and of diastole.[HAvCR92]
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Figure 15: Comparison between results of numerical simulation and experimental
data. Model values of εc,εz and γ pertain to epicardial node common to elements 27
and 28 of figure 12 (qao = aortic flow). Experimental data measured by [AVR82].
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Figure 16: Transmural distribution of end-systolic principal strains as predicted by
numerical simulation and as measured by (Waldman et al., 1985).
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Figure 17: Transmural course of normalized peak intramyocardial pressure near equa-
torial region as predicted by numerical simulation and as measured by [HG85].
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Besides fluid/solid interaction, viscoelasticity contributes to the time dependent be-
haviour of the passive two-phase mixture. Demer and Yin [DY83] measured biaxial
stress-strain relationships of passive myocardial specimens and found large hysteris
loops, the size of which was poorly dependent on the rate of loading. The question
can be raised whether the observed hysteresis loops are due to viscoelasticity or to
poroelasticity. Using the finite element model in which the quasi-linear law has been
substituted by its elastic response, the loading/unloading experiments of Demer and
Yin have been simulated, while allowing free exchange of fluid between the coronary
bed of the specimen and the bathing solution. The resulting stress-strain relationships
exhibit hardly any hysteresis loops.

In order to illustrate the effect of viscoelasticity clearly, the passive left ventricular
model is repeatedly loaded and unloaded while setting the permeability equal to zero.
The model material is then incompressible and not biphasic. On the pressure-volume
plot (figure 18) the loading curve is different from the unloading curve. As the cy-
cle of loading and unloading is repeated, the pressure-volume curve tends towards a
closed hysteresis loop starting at a higher zero-pressure volume than the original zero-
pressure volume. Using faster loading rates shifts the curves towards the pressure axis.
After unloading the ventricle exhibits the phenomenon of residual stress (figure 19),
although the ventricle was initially stress-free. The subendocardial layers are under
compression and subepicardial layers are under tensile stress. The phenomenon of
residual stress is consistent with the experimental observation of opening angles seen
when the heart is slit open. When the loading cycle is repeated, each cycle yields
a distribution of passive myocardial stress which is more uniform than the previous
cycle.

8 Introduction to the second application

In this theory the various solid and fluid components of the tissue are modelled as
interacting continua. An important fluid component in biological tissue is blood. It
is responsible for the nutrition and drainage processes that are essential for the tissue.
Blood flows through a hierarchical system of blood vessels: the vascular tree (Fig.20).
This tree consists of one or a few large arterial vessels from which smaller vessels bi-
furcate (Fig.21) and diverge into numerous capillaries which assemble to converging
venous vessels. Because of this hierarchical architecture blood flow cannot be ade-
quately described by biphasic mixture theory: the state of the blood strongly depends
on the position in the hierarchy. For example, the velocity and pressure of the capil-
lary blood are much lower than of the arterial blood. The pressure difference between
arterial and venous vessels is essential as the driving force for the blood flow. Huyghe
et al. (1989) [HOvCH89, HOvC89] developed an extended form of Darcy’s equation
in which this dependency of the fluid flow on hierarchical position was included. In
addition the hydraulic permeability matrices are shown to be related quantitatively to
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Figure 18: Simulated pressure-volume relationship of the viscoelastic left ventricle at
different rates of pressure change. At three sites a departure is shown at a tenfold rate

Figure 19: Transmural residual circumferential stress distribution in the unloaded
viscoelastic ventricular model after the first loading cycle at the indicated equatorial
cross-section
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the microstructure of the vessel tree of the tissue. They verified this relationship for
Newtonian flow through a rigid vascular tree [HOvCH89, HOvC89, VHJ+97]. Be-
cause in biological tissue alterations in blood perfusion can occur due to deformations
of the tissue [HS90], the focus of this chapter is to illustrate the concepts developed
in [HOvCH89] into a finite deformation theory of saturated porous media. Aifantis
(1977) [Aif77] introduced the concept of multiporosity for deforming media that are
characterized by several distinct families of flow paths. A special case of this concept,
in which only two degrees of diffusivity were included, was applied to fissured rock
formations, in which most of the fluid volume is located in the low hydraulic perme-
ability pores of the rock, and most of the hydraulic permeability is associated with the
fissures [WA82]. Two different types of permeabilities are included in these models :
one is an intracompartmental hydraulic permeability involving flow within a compart-
ment, the other is intercompartmental hydraulic permeability involving flow between
compartments. In the present approach mixed terms between intra- and intercompart-
mental hydraulic permeability occur in addition to those occuring in Aifantis [Aif77].
These mixed terms account for anisotropy of the interface between compartments. In
other words, Aifantis [Aif77] implicitly assume the interfaces to be isotropically ori-
ented. The tissue is modelled as a mixture of one solid and one fluid where the fluid
represents the blood. The fluid is subdivided into a number of compartments, each
of which represents the blood on a different hierarchical position in the vascular tree.
Blood flow through the vasculature is described as communication between the fluid
compartments, which corresponds with the physiological definition of perfusion: the
volume of blood passing a given level in the vascular hierarchy per unit of time and
per volume of tissue. Vessel walls, modelled as an elastic solid-fluid interface, are in-
cluded as a local contribution of the pressure difference between solid and fluid to the
mixture’s elastic energy. Although this mixture description is specifically developed
for biological materials, its applicability to technical materials is not excluded. In the
derivation of the mixture model conservation laws of mass and momentum have been
formulated and corresponding constitutive behaviour has been derived from constitu-
tive theory [VHJH96b]. Elsewhere the same finite deformation multiporosity equa-
tions are derived through averaging of a Poiseuille-type pressure flow relationship at
the level of the individual blood vessel [HvC95a, HvC95b]. An integrated finite ele-
ment description of the total mixture model has been developed and implemented in
the DIANA software package [dBKNdW85]. The implementation was subjected to
several test procedures, one of which was comparison of the finite element solution
with the analytical solution for a confined compression test [VHD+97]. As an illustra-
tion of the possibilities of the model a simulation of contraction of a perfused skeletal
muscle is performed. Further examples of computations are found in the literature,
including 3D analyses [VHJH96a], comparison with animal experiments [VHS+97]
and a model study [VHvD+98].
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Figure 20: The mayor venous vessels of a human heart. The venous system was
injected with a monomer solution too viscous to penetrate the venules. The monomer
was allowed to polymerise in the larger veins and tissue was digested away. Note the
tree-like structure.

Figure 21: Cardiac capillary vessels. The vessels are mostly parallel to the muscle
fibre directions.
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9 Conservation Laws

In technical literature we find porous media theories dealing with solids saturated
with different fluid constituents [BD83]. Bowen (1980) [Bow80] has derived equa-
tions from mixture theory for ν incompressible immiscible fluids saturating one in-
compressible solid. The equations of conservation of mass are formulated for each
constituent and in case of intrinsic incompressibility of each constituent, their quasi-
static local form can be denoted as:

∂φα

∂t
+∇ · (φαvα) = θα , α = 1, ...,ν (77)

in which θα is the volume transfer from constituent α to the other constituents. As-
suming no volume loads and no inertia, the balance of momentum reads :

∇ ·σα +πα = 0 , α = 1, ...,ν (78)

where φα is the volume fraction, vα the velocity, σα the Cauchy stress tensor and πα

are the momentum interaction of constituent α with other constituents. The exponent
α refers to the constituent number and t is time. Balance of mass for the total mixture
requires:

∑
α

θα = 0. (79)

Likewise for the balance of momentum:

∑
α

πα = 0. (80)

Furthermore no moment of momentum interaction between the constituents is as-
sumed, so that σα is symmetric.

A hierarchical mixture can be thought of to consist of one solid constituent and a fluid
constituent that is divided into a continuous series of fluid compartments. Each fluid
compartment resides on a specific position in the hierarchy of pores of the solid. The
fluid in a compartment flows spatially through the solid (spatial flow) and communi-
cates with compartments on neighbouring hierarchical positions (hierarchical flow).
The position in the hierarchy is quantified by a dimensionless parameter x0, which is
assumed to run from 0 to 1, and the communication between the fluid compartments is
described by the fluid volume interaction term θ f appearing in Eq.(77). A fluid com-
partment defined by the hierarchical range [x0,x0 +dx0] has a volume fraction φ̃ f dx0
in which φ̃ f represents the fluid volume fraction per unit hierarchical parameter x0.
Generally in this paper a tilde will be used to indicate that a quantity depends on x0
and, if the quantity is volume specific, is defined per unit x0. The exponents s and f
refer to solid and fluid, respectively. The mass balance for one fluid compartment is:

∂φ̃ f

∂t
dx0 +∇ ·

(
φ̃ f ṽ f )dx0 = φ̃ f

(x0)
ṽ f

0(x0)
− φ̃ f

(x0+dx0)
ṽ f

0(x0+dx0)
(81)
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in which the right hand side represents the volume interaction with the neighbouring
compartments. ṽ f

0 is a measure of the rate at which fluid flows from one compartment
to the next, and is defined as the material time derivative of x0 with respect to the fluid:

ṽ f
0 =

D f x0

Dt
. (82)

It can be shown that φ̃ f ṽ f
0 corresponds to the traditional, physiological definition of

regional blood perfusion [Guy86, HOvCH89]. Dividing Eq. (81) by dx0 yields for
infinitesimal dx0 the local fluid mass balance:

∂φ̃ f

∂t
+∇ ·

(
φ̃ f ṽ f )= θ̃ f =−

∂
(

φ̃ f ṽ f
0

)

∂x0
. (83)

Assuming no mass interaction between solid and fluid, the mass balance for the total
mixture (79) is rewritten:

θs =
∫ 1

0
θ̃ f dx0 = 0. (84)

Because the actual hierarchical fluid volume fraction φ̃ f is defined per unit x0, satura-
tion of the mixture is expressed as:

φs +
∫ 1

0
φ̃ f dx0 = φs +φ f = 1, (85)

which can be used in combination with Eqs.(83) and (84) to rewrite solid, fluid and
total mass conservation as:

−∂φ f

∂t
+∇ ·

((
1−φ f )vs)= 0 (86)

∂φ̃ f

∂t
+ 4∇ ·

(
φ̃ f

4ṽ f )= 0 (87)

∇ ·
((

1−φ f )vs)+
∫ 1

0

(
4∇ ·

(
φ̃ f

4ṽ f ))dx0 = 0, (88)

where 4∇ is a four-dimensional operator and 4ṽ f a four-dimensional vector:

4∇ =

[ ∂
∂x0
∇

]
, 4ṽ f =

[
ṽ f

0
ṽ f

]
. (89)

Because the fluid related quantities depend on x0, the momentum balance of the total
mixture is written as:
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∇ ·σs +
∫ 1

0
∇ · σ̃ f dx0 = 0 (90)

where the balance condition for momentum interaction, Eq.(80), has been used:

πs +
∫ 1

0
π̃ f dx0 = 0. (91)

10 Constitutive Laws

In the derivation of requirements for the constitutive behaviour the first and second
laws of thermodynamics are used. The first law, conservation of total energy, reads
under quasi-static conditions - for constituent α of a unit volume of mixture :

U̇α = Ẇ α + Q̇α + Ėα (92)

where U̇α is the total internal energy, Ẇ α is the external work, Q̇α is the heat supply
of phase α and Eα is the energy gain of α due to interaction. The dots above the
variables denote their material time derivatives. Assuming intrinsic incompressibility
and quasi-stationarity for each constituent, Eq.(92) can be written for the solid and
fluid constituents in a volume V of mixture with surrounding surface A:

∂
∂t

(∫

V
φsU sdV

)
+

∫

A
φsU svs ·ndA =

∫

A
vs ·σs ·ndA

+
∫

V
φsrsdV +

∫

A
hs ·ndA+

∫

V
εsdV +

∫

V
π · vsdV, (93)

∂
∂t

(∫

V
φ̃ fŨ f dV

)
+

∫

A
φ̃ fŨ f ṽ f ·ndA+

∫

V

∂
∂x0

(
φ̃ fŨ f ṽ f

0

)
dV

=
∫

A
ṽ f · σ̃ f ·ndA+

∫

V

∂
∂x0

(
ṽ f

0 σ̃ f
0

)
dV +

∫

V
φ̃ f r̃ f dV +

∫

A
h̃ f ·ndA

+
∫

V

∂
∂x0

(
h̃ f

0

)
dV +

∫

V
ε̃ f dV +

∫

V
π̃ f · ṽ f dV, (94)

where rα is the internal heat supply, hα the external heat supply and εα the direct en-
ergy supply of constituent α due to interaction. σ̃ f

0 is the fluid stress at the interface
between neighbouring hierarchical levels and h f

0 the heat supply between neighbour-
ing hierarchical levels. Note that Eq.(94) is expressed per unit of x0 and that internal
energy variation of the fluid due to volume interaction is included in the third term.
Applying Gauss’ theorem gives for the local conservation of total energy of the solid
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and the fluid:

∂
∂t

(φ3U s) =−∇ · (φsU svs)+∇ · (vs ·σs)+φsrs

+∇ ·hs + εs +(πs · vs) , (95)

∂
∂t

(
φ̃ fŨ f )=−∇ ·

(
φ̃ fŨ f ṽ f )− ∂

∂x0

(
φ̃ fŨ f ṽ f

0

)
+∇ ·

(
ṽ f · σ̃ f )

+
∂

∂x0

(
ṽ f

0 σ̃ f
0

)
+ φ̃ f r̃ f +∇ · h̃ f +

∂
∂x0

(
h̃ f

0

)
+ ε̃ f + π̃s · ṽ f , (96)

which is rewritten using the material time derivative of U , and the local mass and
momentum balances Eqs.(86) and (87):

φs DsU s

Dt
= σs : (∇vs)+φsrs +∇ ·hs + εs, (97)

φ̃ f D fŨ f

Dt

= σ̃ f :
(

∇ṽ f
)
+

∂
∂x0

(
σ̃ f

0 ṽ f
0

)
+ φ̃ f r̃ f + 4∇ · 4h̃ f + ε̃ f . (98)

In Eq.(98) we made use of the four-dimensional gradient operator 4∇ and fluid veloc-
ity 4ṽ f (Eq.(89)) and the analogously defined external heat supply 4h̃ f :

4h̃ f =

[
h̃ f

0

h̃ f

]
. (99)

The local balance condition of the energy interaction of the mixture requires that no
energy is created by the interaction:

εs +πs · vs +
∫ 1

0

(
ε̃ f + π̃ f · ṽ f )= 0. (100)

The second law of thermodynamics, the entropy inequality, is introduced:

dS≥ dQ
T

(101)

which relates the change of entropy of the mixture, dS, to the supplied heat dQ at a
temperature T . For a volume V of mixture with surrounding surface A and constant
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temperature T in each constituent this is written as:

∂
∂t

(∫

V
φsSsdV

)
+

∫

A
φsSsvs ·ndA+

∫ 1

0

[
∂
∂t

(∫

V
φ̃ f S̃ f dV

)

+
∫

A
φ̃ f S̃ f ṽ f ·ndA+

∫

V

∂
∂x0

(
φ̃ f S̃ f ṽ f

0

)
dV
]

dx0

≥
∫

V

φsrs

T
dV +

∫

A

hs ·n
T

dA

+
∫ 1

0

[∫

V

φ̃ f r̃ f

T
+

∫

A

h̃ f ·n
T

dA+
∫

V

∂
∂x0

(
h̃ f

0
T

)
dV

]
dx0. (102)

By applying Gauss’ theorem and making use of the material time derivative of S, the
local form of Eq.(102) can be written as:

φs DsSs

Dt
+

∫ 1

0

(
φ̃ f D f S̃ f

Dt

)
dx0 ≥

1
T

(
φsrs +∇ ·hs +

∫ 1

0

(
φ̃ f r̃ f + 4∇4h̃ f

)
dx0

)
.

(103)

Substituting the local energy equations for solid and fluid, Eqs.(97) and (98), into the
local entropy inequality, Eq.(103), yields:

φs DsSs

Dt
+

∫ 1

0

(
φ̃ f D f S̃ f

Dt

)
dx0 ≥

1
T

(
φs DsUS

Dt
−σs : (∇vs)+πs · vs

+
∫ 1

0

[
φ̃ f D fŨ f

Dt
− σ̃ f :

(
∇ṽ f )− ∂

∂x0

(
σ̃ f

0 ṽ f
0

)
+ π̃ f · ṽ f

]
dx0

)
(104)

in which the total energy interaction εs+
∫ 1

0 ε̃ f dx0 was eliminated by means of Eq.(100).
Introducing Helmholtz’ free energy F =U−T S for each constituent, and substituting
momentum balance Eq.(90) yields:

1
T

(
−φs DsFs

Dt
+σs : (∇vs)+ vs · (∇ ·σs)+

∫ 1

0

[
−φ̃ f D f F̃s

Dt

+ σ f :
(
∇ṽ f )+ ṽ f ·

(
∇ · σ̃ f )+ ∂

∂x0

(
σ̃ f

0 ṽ f
0

)]
dx0

)
≥ 0. (105)

Expressing Eq.(105) per unit of undeformed volume of mixture and transforming the
material time derivative of F f yields:

− Jφs DsFs

Dt
+ J∇ · (σs · vs)+

∫ 1

0

[
−Jφ̃ f DsF̃ f

Dt

J4∇ ·
(

4σ̃ f · 4ṽ f )− Jφ̃ f (
4ṽ f − 4vs) · 4∇̃F̃ f ]dx0 ≥ 0. (106)
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For compactness of notation, the four-dimensional fluid stress tensor 4σ̃ f and solid
velocity vector 4vs have been used, which is written in matrix notation:

4σ̃ f =

[
σ̃ f

0 0
0 σ̃ f

]
; 4vs =

[
0
vs

]
. (107)

Again rewriting the material time derivatives of F gives:

− DsJφsFS

Dt
+Fs DsFφs

Dt
+F∇ · (σs · vs)+

∫ 1

0

[
−DsGφ̃ f F̃ f

Dt

+F̃ f DsJφ̃ f

Dt
− Jφ̃ f (

4ṽ f − 4vs) · 4∇F̃ f + J4∇ ·
(

4σ̃ f · 4ṽ f )
]

dx0 ≥ 0. (108)

Because of incompressibility of the solid, Ds(Jφs)
Dt . Substituting the Lagrangian form

of the equation of conservation of fluid mass (Eq.(87)):

Ds
(
Jφ̃ f
)

Dt
+ J4∇ ·

(
φ̃ f (

4v f − 4vs))= 0 (109)

in Eq.(108) yields:

∫ 1

0

[
−DsW̃

Dt
+ J∇ · (σs · vs)− F̃ f J4∇

(
φ̃
(

4ṽ f − 4vs))

−F φ̃ f (
4ṽ f − 4vs) · 4∇F̃ f + J4∇ ·

(
4σ̃ f · 4ṽ f )]dx0 ≥ 0, (110)

where the strain energy function W̃ = JφsFs + Jφ̃ f F̃ f has been introduced. By using
the total stress defined as σ = σs +

∫ 1
0 σ̃ f dx0, Eq.(110) can be written as:

Jσ : (∇vs)+
∫ 1

0

[
−DsW̃

Dt
− J4∇ ·

((
4ṽ f − 4vs) F̃ f )

+J∇ ·
((

4ṽ f − 4vs) · 4σ̃ f )]dx0 ≥ 0. (111)

Expressing the free energy of the fluid per unit mixture volume as ψ̃ f = φ̃ f F̃ f , in-
troducing the well known effective stress σe f f = σ+ pI [Ter43] and adding the total
mass balance Eq.(88) with a Lagrange multiplier p, Eq.(111) can be written as:

Jσe f f : (∇vs)+
∫ 1

0

[
−DsW̃

Dt

+ J
(

4σ̃− ψ̃ f
4I− pφ̃ f

4I
)

: 4∇
(

4ṽ f − 4vs)

+ J
(

4ṽ f − 4vs) ·
(

4∇ · 4σ̃ f − 4∇ψ̃ f + p4∇φ̃ f )]dx0 ≥ 0. (112)

where 4I represents the four-dimensional unity tensor. We choose as independent
variables the Green-Lagrange strain tensor E, the Lagrangian form of the fluid volume
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fraction Jφ̃ f and the relative velocity 4ṽ f s = 4F̃−1 ·
(

4ṽ f − 4vs
)
. For convenience of

notation we introduced the four-dimensional tensor 4F :

4F =

[
1 0
0 F

]
, (113)

in which F is the deformation tensor. Applying the principle of equipresence and
the chain rule for time differentiation of W̃ and defining W =

∫ 1
0 W̃dx0, yields the

inequality:

[
Jσe f f −F · ∂W

∂E
·Fc
]

: ∇vs +
∫ 1

0

[
− ∂W̃

∂4ṽ f s
Ds

4ṽ f s

Dt

+ J
(

4σ̃ f +
(
µ̃ f φ̃ f − ψ̃ f )

4I
)

: 4∇
(

4ṽ f − 4vs)

+J
(

4ṽ f − 4vs) ·
(
−4∇ψ̃ f + µ̃ f

4∇φ̃ f + 4∇ · 4σ̃ f )]≥ 0 (114)

which should be true for any value of the state variables. The definition of the chemical
potential of the fluid

µ̃ f =
∂W̃

∂
(
Jφ̃ f
) + p. (115)

has been used in Ineq.(114)). The fourth term of the left-hand side of Ineq.(114)) rep-
resents the dissipation due to fluid flow. The first term is linear in the solid velocity
gradient, the second linear in the accelerations and the third linear in the relative ve-
locity gradients. Therefore, by a standard argument, we find the constitutive relations:

σe f f =
1
J

F · ∂W
∂E
·Fc (116)

∂W̃
∂4ṽ f s = 40 (117)

4σ̃ f =
(
ψ̃− µ̃ f φ̃ f )

4I (118)

leaving as inequality:

J
∫ 1

0

[
(4ṽ− 4vs) ·

(
−4∇ψ̃ f + µ̃4∇φ̃ f + 4∇ · 4σ̃ f )]dx0 ≥ 0. (119)

If we assume that dissipation associated with fluid flow is a quadratic function of the
fluid velocities we find:

−4∇0ψ̃ f + µ̃ f
4∇0φ f + 4∇0 · 4σ̃ f = 4B̃ f · 4ṽ f s. (120)

Substituting the constitutive expression Eq(118) of the fluid stress 4σ̃ f into Eq.(120),
yields the extended Darcy equation:

−φ̃ f
4∇0µ̃ f = 4B̃ f · 4ṽ f s (121)
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which can be written in a more common form [1]:

φ̃ f
4ṽ f s =−4K̃ · 4∇0µ̃ f (122)

in which the four-dimensional hydraulic permeability tensor 4K̃ reads:

4K̃ =
(
φ̃ f )2

4B̃ f−1
[

k̃00 k̃0
k̃0 K̃

]
(123)

and which is consistent with earlier forms derived by formal averaging [HvC95b].

11 Numerical implementation

The hierarchical mixture model has been implemented in the finite element software
package DIANA. The displacement of the solid us, the hydrostatic pressure p and the
fluid pressure µ̃ f have been chosen as the degrees of freedom. Three equations are
used: 1 the momentum balance (3), in which the constitutive equation for the effective
stress (41) is substituted, 2 the solid mass balance (11), and 3 the fluid mass balance
(12), in which the extended Darcy equation (47) is substituted. The weighted resid-
ual method has been applied to the resulting system of non-linear coupled differential
equations. After spatial discretization of the degrees of freedom the weighting func-
tions are chosen according to Galerkin’s method. Special attention was paid to the
discretization of the fluid pressure µ̃ f , which depends on both spatial position x and
x0. Its spatial discretization was achieved analogously to the hydrostatic pressure’s
discretization, while an extra linear discretization in x0 direction was used.

The resulting total element matrix equation is:




0 0 0
u
s BJL

j
p
s BJM

j
µ f

s BJN
n

0 p
f BKM

k
µ f

f BKN
kn







δu̇L
j

δṗM

δµ̇ f N

n




+




u
mKIL

i j
p
mKIM

i 0
0 0 0

0 0 µ f

f KKN
kn







δuL
j

δpM

δµ f N

n




=




mRI
exi

0M

f RK
exk


−




mRI
ini

sRJ
in

f RK
ink


 (124)

with:

• δuL
j : iterative correction of displacement component in direction j of node L,

• δpM: iterative correction of hydrostatic pressure in node M,

112 Finite deformation poromechanics with applications

ALERT Doctoral School 2015



• δµ̃ f N

n : iterative correction of fluid pressure at hierarchical level n in node N.

and a dot above a variable denotes its material time derivative. In this matrix equation
symmetry is found in the submatrices p

s B, µ f

f B, m
u K, µ f

f K and moreover p
f BKM

k =
µ f

s BMK
k

and u
s BJL

j =
p
mKLJ

j . Thus a fully symmetric matrix equation is obtained after time
integration of the damping contribution. This time integration is achieved by a third
order Houbolt scheme [Bat82]:

ṡ(t) = h0s(t)+
3

∑
i=1

his(t− τi) ; s = us, p, µ̃ f . (125)

Linear and quadratic two-dimensional, antisymmetric and three-dimensional isopara-
metric elements of the serendipity family can be used [TNO93a]. The non-linear equa-
tions can be solved by several regular and modified Newton-Raphson iteration tech-
niques and a direct Gauss decomposition [TNO93b]. The implementation has been
tested for several problems. Rigid body rotations and translations and analytical solu-
tions of a one-dimensional confined compression experiment and a four-dimensional
Laplace equation have been successfully computed [VHD+97].
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Thermodynamically Constrained Averaging
Theory (TCAT) to Model the Coupled
Behavior of Multiphase Porous Systems

W.G. Gray, C.T. Miller

University of North Carolina at Chapel Hill

Modeling of flow in porous media and of the deformation of the solid phase is com-
plicated by the morphology and topology of the pore structure. Because the length
scale of the porous structure is small, it is necessary to model porous medium systems
at a scale that encompasses at least tens of pore diameters. Equations suitable for
modeling at this larger scale must be found that are consistent with smaller scale de-
scriptions of the phase and interface movements yet provide meaningful larger scale
values of system variables. The needed equations can be obtained by use of mathemat-
ical theorems that average processes occurring in phases, at the interfaces between
phases, at common curves where three phases meet, and at common points where
four or more phase meet. As a result of the averaging, dynamic equations of mass,
momentum, energy, and entropy transport at the larger scale are obtained. In addi-
tion, the thermodynamic identities that describe small-scale (microscale) processes
are also averaged to the larger scale (macroscale). Finally, kinematic equations that
describe the evolution of the shape and distribution of phases and interfaces within
the system are derived making use of averaging theorems. As a last step, the result-
ing equations must be closed so that they can be solved to describe a real system.
The method employed here is the Thermodynamically Constrained Averaging Theory
(TCAT). It is unique relative to other averaging approaches in its averaging of the
thermodynamic relations and its recognition of kinematic processes as being distinct
from dynamic processes. Because the method averages all quantities from the mi-
croscale to the macroscale in a consistent and well-defined manner, the connection
between microscale and macroscale quantities is explicitly known. Thus, experimen-
tal and computational work performed at the microscale can be used to support TCAT
models, in contrast to models obtained from other averaging procedures. Here we
motivate and develop the general TCAT approach and obtain governing equations for
some particular systems.
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1 What is TCAT?

Thermodynamically Constrained Averaging Theory, commonly referred to as TCAT,
is a mathematical framework that has been developed to change the scale of continuum
equations from a smaller scale to a larger one [GM14]. The TCAT method essentially
filters small scale spatial variability to obtain a larger scale measure of variability.
In general, TCAT can be used to increase the scale of equations in the context of
multiphase porous media systems, a single-fluid-phase system (in the absence of a
solid), multi-fluid systems, or solids. Additionally, the change in scale can proceed up
to one that describes only average parameters and variables for the system as a whole
rather than one that accounts for filtered variability [GM11a]. Variation may also be
taken into account in one or two dimensions while averaging over a third dimension,
e.g., [GG10].

In the context of porous medium systems, TCAT is most commonly used to change the
equation scale from the microscale to the macroscale. The term microscale is used in-
terchangeably with the phrase pore scale. At this scale, different phases are visualized
as being juxtaposed. They are separated by interfaces. Interfaces meet at common
curves, and common curves meet at common points. At the microscale the behavior
of fluids within the pore space is described by what are often called point continuum
equations. For porous media, microscale descriptions must also include the interac-
tions of phases and the deformation and movement of individual solid grains within
the system. The deformation of the interfaces between phases must be described in
detail at the microscale because these surfaces are the locations where boundary con-
ditions are applied. Depending on the degree of precision required for a model, the
kinematics and dynamics of common curves and common points can also be modeled
in detail at the microscale.

TCAT makes use of mathematical theorems to upscale microscale equations by av-
eraging these equations. In brief, the method transforms averages of derivatives of
microscale quantities to derivatives of averages of these microscale quantities. Since
the TCAT approach is applied to microscale mathematical identities, the result of the
averaging procedure is larger scale mathematical identities. The macroscale is a scale
where spatial variability of average quantities is accounted for, but the variation is
smoothed out. The macroscale typically varies between tens and thousands of pore
diameters. Ideally, the macroscale is separated from the microscale such that it is
much larger than the microscale and provides stable averages at some scale much less
than the system scale. The reason this situation is ideal is that the actual value of the
macroscale need not be specified in order to obtain reproducible measures of system
properties. Note that this separation of scales is not an inherent requirement of the
TCAT approach, but it is an important property if one is to make use of deterministic
models that do not require significant stochastic elements that account for the vari-
ability associated with length-scale-dependent measurements. For systems that are
variable at scales above the macroscale, macroscale parameters can vary and these pa-
rameters may even be stochastic. Thus, the length-scale constraint at the macroscale
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is a workable restriction.

As a byproduct of the mathematical transformation of microscale equations that de-
scribe a system at the macroscale, one is also altering the way that a system is de-
scribed physically. Because quantities are averaged, variability within a pore is no
longer accounted for. Rather point-to-point changes of variables averaged over the
characteristic macroscale length are described. Implications of this fact include the
inability to detail the locations of various phases and interfaces. Instead, the amounts
of each of these quantities associated with a point are described. For example, at a
macroscale point, the system composition is described by the fractional volume of
each phase associated with the averaging region centered at the point.

The TCAT method assures that the transformation of a system description to a larger
scale is systematic and rigorous. It is applied to all equations that describe the ele-
ments of a system. For example, when applied to equations that describe turbulence,
it provides spatially averaged measures of velocity, analogously to the time-averaged
velocities that are typically developed.

2 Why Is TCAT Useful?

Although it may be reasonable that one could change the scale of governing equations,
one might ask why it is necessary, or even desirable to make this change. Furthermore,
if an upscaled equation set is warranted, it is important to understand the attributes of
TCAT that make it the method of choice. We will address these two issues here.

Porous medium problems have been at the forefront of environmental studies for many
years. Subsurface water resources and contamination of that water due to organics and
other chemicals has been an important physical problem and a significant health con-
cern for many years [FC79, Bea79, Ger84, SHCC06]. The need to understand oil and
gas reservoir dynamics for effective implementation of advanced drilling technolo-
gies and novel extraction methods has motivated a broad range of research activity
[AS79, CJ86, AL11, JVC+14]. Future needs for sustainable supplies of water for hu-
man and animal consumption, agriculture, manufacturing, and recreation promise that
better tools to describe subsurface processes will be essential [Pin12, ETJ13]. Geome-
chanical issues must be well understood to effectively study problems such as earth-
quakes [JJ14], land subsidence [GB11], and carbon sequestration [RCMR13]. Porous
medium analyses are also applied to studies of a range of engineered systems such as
filtration systems [EFM00], reactors and fuel cells [PWL13], and natural systems not
involving the subsurface domain [RSML05, HvLB+02, SSG+12].

These different porous medium problems are united by the common thread that mod-
eling of the flow within the solid matrix or of the elements making up the matrix
imposes an unmanageable and excessive computational burden if one is interested in
behavior of the system as a whole rather than of small-scale distributions. The small-
scale processes are important for gaining understanding of porous medium systems,
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but solving problems of societal interest, such as determining how much subsidence
will take place as a result of groundwater extraction, does not require detailed infor-
mation about solid rearrangement. In fact, modeling of systems at a larger scale is not
only cheaper from the perspectives of data collection and simulation but also capable
of providing the answers to questions of interest. It is not an overstatement to say that
the ability to transform the equations that describe a system from the small scale to a
larger scale also transforms many problems from being unsolvable to solvable. Thus
the ability of TCAT to facilitate the transformation of equations from the small scale,
where they are more readily posed, to a larger scale is of significant value.

With knowledge of the importance of upscaling, we now turn to the attributes of TCAT
that recommend it for this task. The first feature of TCAT that is important is that
all variables that arise are averages of microscale quantities or combinations of mi-
croscale quantities. Because of this unique relationship, measurements made at the
microscale can be used, after averaging, to inform the parameterization of macroscale
equations. Additionally, it is necessary to explicitly identify all assumptions that are
made in formulating the larger scale equations. Thus, if a developed equation set
proves to be inadequate for modeling a system of interest, the assumptions can be re-
examined to determine the source of discrepancies. The TCAT approach also provides
macroscale dynamic equations for interfaces, common curves, and common points
that capture the physics of the exchange of mass, momentum, and energy of these
entities with each other and with phases.

The kinematics of the phases and interfaces as they redistribute within the system are
important. At the microscale, these movements are accounted for by moving bound-
ary kinematic expressions. When the equations being solved are macroscopic, the
interfaces that bound the phases are now accounted for on average in a region. Thus,
the kinematics must also be accounted for on average. The systematic development of
appropriate kinematic equations is unique to the full TCAT approach and provides in-
formation and equations that are needed to have a well-defined description of a porous
medium system. This stands in stark contrast to approaches that fail to recognize the
difference between kinematics and dynamics and thus use erroneous equations and
misuse data in cobbling together a system description, e.g., as in [KHJNK14].

A final feature of TCAT worth highlighting is the fact that it makes use of averages of
microscale thermodynamic quantities. By doing so, it avoids definitions of macroscale
quantities that may appear to have mathematical validity but have no physical justifi-
cation and may, in fact, not be justified on close mathematical analysis. Indeed, the
definition of intensive variables at a larger scale can be accomplished by an infinite
set of alternative averaging formalisms. Direct definition of these variables at the
macroscale makes it impossible to support the definition with data taken at a smaller
scale and inserts a disconnect between scales into the analysis. By providing the
definitions for averaged microscale thermodynamic quantities such as temperature,
pressure, and chemical potential, TCAT preserves the ability to relate these variables
to measurements taken across scales. Equations that result from TCAT are dynami-
cally and thermodynamically consistent across scales and properly account for system
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Figure 1: Conceptual representation of the TCAT approach (after [GM14]).

kinematics. These features argue in favor of the TCAT method, at a cost of some
significant mathematical analysis.

The equations typically employed to describe flow in porous media are rooted in
Darcy’s classic experiments for single-fluid-phase flow in a heterogeneous porous me-
dia [Dar56]. Extensions based primarily on ad hoc extensions to this law have been
traditionally employed to obtain equations for multiphase flow in deformable porous
media. The opportunities to overlook or misrepresent features related to the interaction
between dynamic phases using this approach are numerous and have been exploited!
To arrive at a system of equations that is built on fundamental principles and that can
be examined thoughtfully in the context of experiments appropriate to the system of
interest is a prime objective of TCAT analysis. In the subsequent sections of these
notes, we will highlight some of the elements of TCAT and provide tools that will
enable the interested reader to formulate models and critique intelligently existing or
proposed models.

3 Overview of TCAT

A depiction of the elements of TCAT and their contributions to the TCAT procedure
appears in Figure 1. The general flow of the derivation and modeling process can
be inferred from the directional arrows on the figure. The end result is a hierarchy of
closed, parameterized models, with the values of parameters supported by the subscale
modeling and applications.
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3.1 Microscale Equations

The starting elements of the TCAT analysis are the standard microscale conservation
equations of mass, momentum, angular momentum, and total energy along with the
microscale entropy inequality. These equations are posed in a general form without
making use of closure relations for quantities such as stress tensor or diffusive flux.
Additionally, microscale thermodynamic equations as well as microscale equilibrium
conditions are stipulated. It is permissible to begin with any microscale thermody-
namic framework, but we will employ classical irreversible thermodynamics (CIT)
as formulated in [Bai94, Cal85]. CIT is the simplest formalism among many others,
e.g., as found in [GM05, JCV01, JCVL10, LJCV08, Mau99], but has been found to
be appropriate for many applications involving dynamic systems.

A key feature of TCAT is that microscale equations are employed not only for phases
but also for interfaces, common curves, and common points. For example, the in-
terface conservation equations describe exchanges between adjacent phases and the
interface as well as transport processes within the interface. The tangential velocity
of material within the interface may be different from the tangential velocity of the
interface itself in much the same way that the velocity of flow in a pipe may be differ-
ent from the velocity of the walls of the pipe. The microscale equations for common
curves allow for exchanges with the interfaces as well as for transport along the curve.
Microscale thermodynamic equations are employed for interfaces and common curves
as well. Of course, equations can also be posed for the common points, but these will
not be discussed explicitly here because the equations arise only when considering
systems of four or more phases, which is beyond the scope of the present exposition.

3.2 Averaging Theorems and Larger-scale Equations

Once the microscale equations have been stated, they are transformed to a larger scale
making use of averaging theorems. These theorems have been derived for phases,
interfaces, common curves, and common points [GM14]. Essentially the larger scale
equations account for processes within the neighborhood of a point. A point on an in-
terface between two fluid phases will have a particular orientation when viewed at the
microscale. However, at the averaged scale, all interfaces within a region are consid-
ered as a unit. The orientation at a microscale point cannot be accessed after averaging,
but some average measure of orientation within the system will arise. Additionally,
because an averaged conservation equation for an interface property describes dynam-
ics of the interface within an integration volume, the equation that results describes
spatial transport of interface properties within a three-dimensional system. Thus, in
essence, equations that are two-dimensional at the microscale because of their ability
to describe processes in a two-dimensional surface become three-dimensional at the
macroscale because the macroscale equations describe the dynamic transport of in-
terface properties in a three-dimensional domain. Similar considerations apply to the
common curve equations, which are transformed by averaging theorems from one-
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dimensional entities to three-dimensions.

Based on the preceding considerations, it is reasonable to expect that the macroscale
general forms of the equations for phases, interfaces, and common curves will be
identical. This is indeed the case for dynamic equations with one notable and impor-
tant difference. Because of averaging over portions of the domains of the equations,
conditions that had to be stated as boundary conditions become conditions within the
system. For example, phase equations apply to adjacent “black box” averaging re-
gions and thus exchanges of phase properties with interfaces within that region must
be accounted for by the macroscale phase conservation equations. Such terms do
arise naturally in the averaging procedure. Similarly, terms arise in the equations for
interfaces that account for interactions with phases as well as with common curves.
These interaction terms are important as it is the way that the various entities interact
with each other that determines system behavior. For example viscous stress between
a fluid and solid exerts a drag on the fluid flow that is accounted for and modeled
macroscopically. Capillary pressure at interfaces between fluid phases is an important
property that significantly impacts the flow behavior in a multi-fluid system. Correctly
modeling the exchanges between entities, as well as obtaining closure conditions for
macroscale dissipative fluxes with the system entities, provide a large part of the chal-
lenge in macroscale modeling of porous media systems.

Larger scale thermodynamic equations are different for different entities, stemming
from the fact that they have different forms at the microscale. We note that the av-
eraged Euler forms of thermodynamic expressions are identical in form between the
microscale and macroscale. However, because the averaging procedure involves inte-
gration of intensive variables, the selection of definitions of these averages is guided
by the desire to preserve this identity. However, because thermodynamics provides
relations among defined quantities rather than transport equations for these properties,
the averages of total time derivatives of thermodynamic identities are entity depen-
dent. This dependence is related to the fact that when an entity, such as an interface
or common curve, has an orientation, the orientation impacts the directions in which
quantities can change. For example, if the interface in some system are all parallel
planes, a difference in temperature between the surfaces can only be eliminated by
transport through a phase between the surfaces. Flow within the interface also does
not contribute to heat exchange between separated interfaces. If the phase bounded
by the surfaces were a perfect insulator, a temperature difference between surfaces
would be preserved. However, if the interface in the system is composed of randomly
oriented and interconnected elements, the temperature of the interface would relax to-
ward a constant value regardless of the heat transfer properties of the phase bounded
by the interface. Thus the rate of change of a thermodynamic property depends on the
geometric configuration. This is reflected in the equations for the rate of change of
a thermodynamic property as it relates to the rate of change of other thermodynamic
properties with the equations for phases being the simplest with increasing complexity
arising for interfaces and again for common curves.

In summary, the application of averaging theorems to conservation and thermody-
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namic equations results in upscaled forms of both equation types. Closure conditions
are needed for the dissipative fluxes in these equations. In addition, closure relations
are needed for the exchange terms between the various entities. A mathematically
intensive, but systematic, method for obtaining the closure relations will be discussed
subsequently.

3.3 Evolution Equations for Geometric Densities

In the process of upscaling equations, macroscale representations of variables that
have a microscale analogue are encountered. Included among these are quantities
such as density, velocity, stress tensor, internal energy, etc. However, in addition to
these quantities, variables arise that do not exist at the microscale. These are referred
to collectively as geometric densities and include the volume fractions (volume of a
phase per volume), specific interfacial area (amount of area between a pair of phases
per volume), and specific common curve (length of a common curve where three
phases meet per volume). These quantities appear in the conservation equations such
that they can be combined with other variables so as to be implicit in the equations.
However, in the thermodynamic equations, these additional variables appear such that
they must be treated explicitly. This occurrence creates a deficit in the number of
equations needed to completely describe the system in addition to the deficit cause by
the need to close the dissipative fluxes. Essentially, equations are needed that describe
the evolution of the geometric densities.

The needed equations cannot be developed precisely in terms of macroscale variables.
It has been pointed out that general relations for deformation of an area at the mi-
croscale cannot be obtained [MN85]. At the macroscale, we can obtain equations for
the kinematics of geometric densities from the averaging theorems. It is important
to understand that the geometric densities and their shapes do not change based on
some conservation equation for that variable. Rather, they are described by kinematic
equations that describe the effects of movement of parts of the region of interest on its
shape. For example, if some nonuniform normal velocity is applied to a plane surface,
that surface will deform and take on a new shape. The shape is determined based on
the velocity field applied. Thus, the deformation is a kinematic process. That is the
deformation depends on the motion of points on the surface but is not concerned with
dynamic processes that cause the motion. Kinematic conditions are mathematically
determined without consideration of physical constraints. The stretching of a small, fi-
nite, planar surface to an extremely large shape can be described mathematically using
kinematics. Constructing such a surface may present a physical problem as properties
such as elasticity and tearing must be overcome. In a similar way, the deformation
of an interface between fluids in a porous medium system can be described kinemat-
ically, but physical transport processes associated with the surface are described by
dynamic conservation equations.

The kinematics of the geometric densities are described by applying the averaging
theorem to a microscopic constant. The result is an equation in terms of averages of
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microscopic variables. Some of the expressions obtained must be approximated so
that the kinematic expression serves as an additional condition without adding addi-
tional variables. Although the expressions obtained are approximate, the use of aver-
aging theorems is a reasonable way to proceed. It has been recognized in the boiling
literature that kinematic expressions for phase geometries are needed [IKK05, KI05,
IKSH09]. In that context, the kinematics are somewhat simpler as the presence of the
solid phase in a porous medium causes a wider variety of interface sizes and geome-
tries to exist. Nevertheless, without the use of kinematic closure relations, one cannot
properly formulate the dynamics of capillary pressure in a porous medium system.

3.4 Equilibrium Conditions

It is important to know the equilibrium state of a system. When we know conditions
of equilibrium, we can often make linearized approximations for fluxes in terms of
forces when the system is “near” the equilibrium state. It is then possible to apply the
equations developed and determine if the linearized approximation holds or if a more
complex formulation is required. In practice, it is found that linearized approximations
often are valid and quite useful. Among the well known linear approximations are
Fourier’s law, which states that heat flux is proportional to temperature gradient, and
Fick’s law, which states that mass flux is proportional to the gradient of mass fractions.

Some equilibrium conditions are obvious. For example, at equilibrium there is no
flow such that the velocities of all entities in a system are zero. We also know that
the temperature in an equilibrium system is uniform. The statement that the veloc-
ity is zero at equilibrium is a requirement posed to define equilibrium. The fact that
the temperature is uniform is a consequence of making the definition of equilibrium.
From a thermodynamic perspective, the equilibrium state is achieved when a sys-
tem reaches its state of minimum energy. With this knowledge, we can perform a
variational analysis to determine what conditions must apply to intensive thermody-
namic variables if a system will be at equilibrium. The variational analysis for min-
imization of energy for a microscale CIT formulation can be found in the literature
[Bor75, BN77, BRN85, GM14].

The larger scale equilibrium conditions are obtained by simply averaging the mi-
croscale conditions. At first blush, it might seem that because the larger scale equi-
librium conditions are based on averages, they are not as robust as their microscale
counterparts. Subscale variability in a quantity that is required to be constant at equi-
librium at the scale of interest can lead to a statement of equilibrium when one is not
present. This issue does not arise when the averaging is such that it is independent
of variations in the length scale of the averaging region. This is typically taken to
be the case when applying a deterministic method, such as TCAT, without building a
stochastic framework on top. Thus, the average conditions of equilibrium are taken to
be indicative of the state of the system.
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3.5 Entropy Inequalities and Closure Relations

The rightmost section of figure 1 provides the steps that need to be taken to obtain
useable closed conservation and evolution equations for a system type of interest. The
entropy inequality contains the variables entropy, dissipative entropy flux, entropy
production by body sources, entropy exchanges between entities, and entropy gener-
ation. None of these quantities appear in any of the conservation equations. The task
at hand to eliminate these extra terms from the entropy inequality in light of system
behavior so that the entropy equation will be useful, particularly, in describing the
dissipative fluxes.

To accomplish this, first the exchange terms are removed by summing the entropy
equations for each entity over all entities to obtain a system entropy inequality at the
scale of analysis. With this process, all the entropy exchange terms cancel out and
need not be considered further. Next the conservation equations are each added to the
entropy equation after multiplying them by a Lagrange multiplier. By this approach,
the conservation equations act as constraints on the entropy inequality. Values for the
Lagrange multipliers are selected such that the entropy generation reduces, as far as
possible, to a sum of dissipative fluxes multiplied by forces. This equation is called
the constrained entropy inequality (CEI).

The general CEI is, in fact, too complex to be used effectively. It contains a num-
ber of quantities that relate to averages of microscale values that must be converted
to macroscale forms. It is at this point that approximations are introduced with the
intention of eliminating small, unimportant terms. The assumptions made to convert
the CEI to the simplified entropy inequality (SEI) are the first ones employed in the
analysis, other than assumptions regarding the separation of length scale and the ther-
modynamic form specified. Thus, these assumptions can play a key role if one wishes
to examine reasons that a particular final equation set does not adequately model a
system. It is prudent to emphasize that simplification of the CEI to an SEI is based on
explicit assumptions. Thus one who uses resultant equations can use reexamination of
these assumptions as a starting point for finding more accurate models.

The final right side box in figure 1 is the closure relations. These are equalities that
model dissipative fluxes in terms of forces. The forces are primarily impetuses to
flow or transport that exist because the system is away from equilibrium. The closure
relations are typically, and somewhat generally, expressed as fluxes proportional to
each of the forces. However, these forms must be studied to ascertain when it is
necessary to include the spectrum of forces and if linear dependence is sufficiently
general.

3.6 Model Quality and Support

The two remaining boxes at the bottom of figure 1 concern implementation of the
derived model. As such, they are concerned with the output from the significant math-
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ematical effort and aim to confirm the utility of that effort. In some sense, these boxes
may seem distinct from the other boxes in that they involve model application rather
than model development. However, we feel that it is important to list these items as
part of the holistic TCAT approach. Without these two boxes, TCAT is reduced to
mathematical gymnastics. The prime objective of the rigors of the TCAT approach
is to ensure that connections can be retained between variables across scales, that as-
sumptions in models are explicit, and that the results relate well to actual physical
systems. This objective can only be realized if the developed models can be subjected
to tests and comparisons.

The models developed are referred to as a “hierarchy” because different collections of
equations result depending on the characteristics of the system studied. Models can
be single-fluid-phase, multi-fluid-phase, species-based, or entity-based. Within each
of these types various assumptions can be applied depending on whether the system
is isothermal, the presence or absence of turbulence, whether or not concentration
gradients are large, the degree of deformation of the solid phase, and so forth. Rather
than formulating the ultimate set of general equations, it is prudent to tailor equations
to these different possibilities and thereby create a hierarchy of models.

Some small systems can be simulated at the microscale with the results obtained used
to support the parameterizations employed in a TCAT model. These systems include
idealized collections of pore throats and pore volumes as specified in pore network
models [Blu01, BJPV02, Fat56, HGM03, BVC15] or using lattice Boltzmann mod-
els for either well-defined sphere packs or natural porous media [DMMG13, GZ02,
PLM06, LHLT14, MPM14]. Additionally, laboratory and field-scale studies can con-
tribute to the parameterization of models and analyses of model fidelity to the sys-
tem of interest, although the experiments can be quite challenging [MG95, WS13,
BEAZ15, BSSW14].

4 Mathematical Elements of TCAT

Having provided an overview of the TCAT procedure, we now provide the mathemati-
cal elements of the method. It is not possible to go into great detail in these brief notes,
so the emphasis will be on usable equations. Those interested in greater understand-
ing and some complete examples are referred to [GM14]. In the current development,
we will forego the complexities that are inherent in working with species-based con-
servation equations for all entities. We will only consider the case where the entities
are modeled without considering compositional issues. Because notation may be an
obstacle to understanding, we will devote considerable effort making that element of
the problem clear.

In the discussion here, we will consider a wetting fluid phase, w, a non-wetting phase,
n, and a solid phase, s. The interface between phases is denoted by the pair of sub-
script associated with the phases in either order. Thus, the interfaces are wn, ws,
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and ns. For a three-phase system, a common curve may also exist where the three
phases meet and is denoted wns. Phases, interfaces, and common curves are referred
to collectively as entities. The full index set of entities is designated as I such that

I = {w, n, s, wn,ws, ns, wns} . (1)

We will also consider the set of entities to which a particular entity is connected. For
example, the w phase is connected to the wn interface and the wns common curve.
The index set of connected entities α is denoted as Icα so that Icw is

Icw = {wn,wns} . (2)

It is important to be able to distinguish between connected index sets that are of higher
dimensionality than the entity of interest and those of lower dimensionality. This is
denoted for entity α as I+

cα for entities of higher dimensionality and I−cα for entities
of lower dimensionality. For the w phase, both connected entities are of lower di-
mensionality so that I+

cw is the null set and I−cw = Icw. For the wn interface we can
identify the connected sets as

Icwn = {w,wns} , (3)

I+
cwn = {w} , (4)

and

I−cwn = {wns} . (5)

4.1 Microscale Conservation Equations

Microscale equations are formulated for entities designated as phases, interfaces, and
common curves. These are, respectively, three-, two-, and one-dimensional systems.
A point within a phase does not interact with any other entities. A point on a surface,
however, does interact with a phase, while a point on a common curve interacts with
interfaces and, in some cases, phases. Thus the microscale conservation equations
have similar forms but differ in there dimensionality and their interaction with other
entities. We can take these difference into account and write a general conservation
form in m-dimensional space as

Fα =
∂(m)Fα
∂t

+∇(m)· (vαFα)− SΩα −
∑

κ∈I+cα

X
κ→α

− div(m)
(
SΓα·I(m)

α

)
−GΩα = 0 for α ∈ I,dim α = 3−m .

(6)

The leftmost quantity is used to designate the property being conserved. We use
primes, ′, to indicate that an operator is restricted to a particular dimensionality. In this
equation, the quantity (m) appended to operators indicates the number of primes that
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appear, which restrict the spatial dimensionality that the operator acts in. For exam-
ple, when m = 0, there are no primes and the operators are the usual forms for three-
dimensional space. When m = 1, the operators are restricted to two-dimensional
space (R2), and when m = 2 two primes are used to denote that the operators are
restricted to one dimensional space. The subscripts on quantities, as opposed to su-
perscripts, designate that the quantity is a microscale quantity, as opposed to an aver-
aged quantity. The variable Fα is the density of the specific property being conserved
in entity α, and vα is the microscale velocity. The variable SΩα is the body source
term; X

κ→α
is the transfer term from entity κ to entity α; SΓα·I(m)

α is the non-advective

source where I(m)
α is a unit tensor in the domain R3−m; and GΩα is a generation term.

With this template for a conservation equation, mass conservation in the wn interface
between the w and n phases, for example, is written

Mwn =
∂′ρwn
∂t

+∇′· (ρwnvwn)− M
w→wn

− M
n→wn

= 0 . (7)

In this equation,M is used to indicate mass exchange. The body source, non-advective
source, and generation terms are all zero for mass conservation.

Momentum conservation for the same interface is

Pwn =
∂′(ρwnvwn)

∂t
+∇′· (ρwnvwnvwn)− ρwngwn − vw M

w→wn
− T
w→wn

− vn M
n→wn

− T
n→wn

−∇′· (I′wn·twn
)

= 0 , (8)

where gwn is the body force per unit of mass (independent of entity if the only body
force is gravity), T accounts for momentum exchange due to non-dissipative (pres-
sure) and dissipative (friction) interactions between the interface and the phases, and
twn is the stress tensor in the interface. The unit tensor I′wn restricts the stress tensor
so that it acts in the interface. The div operator has been replaced by the ∇ operator
and the symmetry of the stress tensor has been noted such that the transpose of the
stress tensor need not be indicated.

The conservation of total energy for the wn interface is expressed as

Ewn =
∂′

∂t

[
Ewn + ρwn

(vwn·vwn
2

)]

+∇′·
{[
Ewn + ρwn

(vwn·vwn
2

)]
vwn

}
− ρwngwn·vwn − hwn

−
[(

Ew
ρw

+
vw·vw

2

)
M

w→wn
+ vw· T

w→wn
+ Q
w→wn

]

−
[(

En
ρn

+
vn·vn

2

)
M

n→wn
+ vn· T

n→wn
+ Q
n→wn

]

−∇′· [I′wn· (twn·vwn + qwn)
]

= 0 , (9)

where Ewn is the internal energy per unit area, hwn is the body source of energy, if
any, Q accounts for heat exchange between the interface and the adjacent phases, and
qwn is the dissipative heat conduction within the interface.
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A final balance equation for the interface that we can write is the entropy equation
written as

Swn =
∂′ηwn
∂t

+∇′· (ηwnvwn)− bwn −
(
ηw
ρw

M
w→wn

+ Φ
w→wn

)

−
(
ηn
ρn

M
n→wn

+ Φ
n→wn

)
−∇′· (I′wn·ϕwn

)
= Λwn . (10)

In this equation ηwn is the entropy per area, bwn is the entropy body source term, Φ is
the entropy exchanged between the interface and the adjacent phases due to processes
other than phase change, ϕwn is the dissipative entropy flux vector, and Λwn is the
entropy generation term. Note that the entropy balance is the only equation that is
of conservation form that has a non-zero generation term. The generation term is
non-negative, and this property is useful in deriving closure relations.

Although we have not explicitly listed conservation and entropy balance equations
for phases and common curves, these should be relatively easily obtained from the
general form. The main differences involve choosing subscripts that designate the
entity of interest, noting that from a microscale perspective an entity only exchanges
properties with entities of higher dimensionality, and the differential operators are
adjusted to account for the dimensionality of the space of the entity.

One other equation employed is merely the restatement of an algebraic identity. We
will be considering the case where the body force per unit mass, gα, is obtained as the
gradient of a potential function, ψα, such that

gα +∇ψα = 0 . (11)

To use this equation in conjunction with surfaces and common curves, we note that we
will only differentiate with respect to the surface or lineal coordinates, respectively.
Thus we can write, in general

I(m)
α ·gα = −∇(m)ψα = 0 for α ∈ I,dim α = 3−m . (12)

Multiplication of the mass conservation equation by ψα, rearrangement of the terms,
and use of Eqn (11) yields

Gα =
∂(m)Ψα

∂t
+∇(m)·(vαΨα) + ραgα·vα −

∑

κ∈I+cα

M
κ→α

ψα

− ρα
∂(m)ψα
∂t

− ραgα·
(
I− I(m)

α

)
·vα = 0 for α ∈ I,dim α = 3−m ,

(13)

where
Ψα = ραψα . (14)

Eqn (13) is useful in conjunction with the conservation equations in obtaining closed
models. For example, with m = 1 and α = wn, it can be added to Eqn (9) to obtain
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Ewn + Gwn =
∂′

∂t

[
Ewn + ρwn

(vwn·vwn
2

)
+ Ψwn

]

+∇′·
{[
Ewn + ρwn

(vwn·vwn
2

)
+ Ψwn

]
vwn

}
− hwn

−
[(

Ew
ρw

+
vw·vw

2
+ ψwn

)
M

w→wn
+ vw· T

w→wn
+ Q
w→wn

]

−
[(

En
ρn

+
vn·vn

2
+ ψwn

)
M

n→wn
+ vn· T

n→wn
+ Q
n→wn

]

− ρwn
∂′ψwn
∂t

− ρwngwn·
(
I− I′wn

) ·vwn
−∇′· [I′wn· (twn·vwn + qwn)

]
= 0 . (15)

4.2 Averaging Relationships

Because it is infeasible to model porous medium systems of any practical size using
microscale equations, theorems have been derived that allow for the transition of the
equations to a larger scale. In many cases, it is still important to obtain information
on how variables depend on spatial location. Thus, it is important to be able to model
natural systems, such as aquifers and petroleum reservoirs, as well as laboratory col-
umn experiments at scales between the microscale and the system scale. This scale is
called the macroscale. Averaging to the macroscale serves as a filter such that some
detailed information is sacrificed in favor of being able to obtain information about
larger systems.

Conservation and balance equation for a system have been formulated for a sys-
tem at the microscale in the last subsection. It is appropriate to retain these equa-
tions as a bases for the larger scale model rather than abandon them in favor of di-
rect formulation at the larger scale. The latter approach runs the risk of ignoring
a process of importance and of developing equations that lose consistency between
scales. The transformation of microscale equations to the larger scale is accomplished
through averaging theorems. These theorems change the scale of system variables,
replace averages of derivatives of microscale quantities with derivatives of larger-
scale quantities, and provide explicit accounting for the interaction processes between
entities. The averaging theorems to convert from the microscale to the macroscale
[AJ67, GH89, GL77, GLKB93, GM13, HW85, Mar67, MG05, Sla67, Whi67] are
most readily applied when the length scales of the microscale and macroscale are
widely separated. To facilitate implementation of the averaging theorems, it is conve-
nient to introduce notation that defines averages.
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4.2.1 Averaging Notation

Roughly speaking, an average involves some sort of summation divided by some nor-
malization function. In averaging microscale properties, we end up with integral ex-
pressions for both the numerator and denominator of the averaging operation. Keeping
these integrals explicitly in the larger scale conservation equations is clumsy at best
and is most certainly inconvenient. To circumvent this problem, we define an averag-
ing operator that accounts for all the elements of integration in abbreviated notation.
The averaging operator is defined as a bracketed quantity with subscripts according to

〈Pα〉Ωβ ,Ωγ ,W =

∫
Ωβ

WPα dr

∫
Ωγ

W dr
for dim Ωβ = 1, 2, or 3; dim Ωγ = 1, 2, or 3 .

(16)
In this equation Pα is a microscale property of entity α being averaged,W is a weight-
ing function, Ωβ is a domain of integration of the function and Ωγ is the region of inte-
gration used in normalizing the averaging process. If W is not specified, it is assumed
to be 1 so that

〈Pα〉Ωβ ,Ωγ =

∫
Ωβ

Pα dr

∫
Ωγ

dr
for dim Ωβ = 1, 2, or 3; dim Ωγ = 1, 2, or 3 . (17)

The dimensions of the averaging domains are the dimensions corresponding to the
entities being averaged over in this case.

A microscale function may only be integrated over a domain in which it exists. Thus
when a property of one domain is integrated over a different domain, the integration
domain must be a boundary. For example, the value of a property of a phase can
be integrated over the boundary of the phase or over a common curve that lies on the
phase boundary. Thus, we might designate the average of a property fw of thew phase
averaged over the wn interface as 〈fw〉Ωwn,Ωwn . In reality, such notation designates
integration over the boundary domain of thew phase and not actually thewn interface.

Although the definition of the averaging operator in Eqn (16) is generally useful and
provides an explicit indication of the averaging procedure being undertaken, it is still
somewhat notationally awkward. Therefore, three principal averaging notations are
introduced to account for the averages that arise. The notation used is abbreviated, and
less explicit, but it serves to clarify possible confusion. These averages are referred to
as the intrinsic average, the mass average, and uniquely defined averages.

The general intrinsic average is the simple case when a quantity is averaged and nor-
malized over the same domain with W = 1. A general intrinsic average is denoted
by adding an unadorned superscript, referring to the region of integration, to the mi-
croscale quantity being averaged such that

fβα = 〈fα〉Ωβ ,Ωβ for α, β ∈ I; . (18)
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An important special case arises when a quantity is averaged over the full domain
where it exists such that β = α. This can easily be accommodated using the notation
of Eqn (18), however for convenience, the lower subscript is not listed such that we
obtain the special intrinsic average

fα = 〈fα〉Ωα,Ωα for α ∈ I . (19)

We emphasize that the presence of a superscript, either in combination with or without
a complementary subscript, indicates an upscaled quantity. The compressed notation
for the general and special intrinsic phase averages conveys a precise meaning for a
macroscale variable in terms of a microscale precursor, thereby providing a desirable
connection between quantities at different length scales.

The mass average, or mass density weighted average, is obtained as a special case
of Eqn (16) when the mass density of the entity associated with the quantity being
averaged is the weighting function, W . The general mass average is indicated as

fβα = 〈fα〉Ωβ ,Ωβ ,ρα for α, β ∈ I , (20)

where the superscript with an overline denotes a mass average. We can also define
the intrinsic mass average when β is additionally equal to α. As with the intrinsic
average, the subscript is deleted in the general mass average such that

fα = 〈fα〉Ωα,Ωα,ρα for α ∈ I . (21)

The preceding definitions serve the purpose of indicating the averaging used in defin-
ing macroscale quantities while simplifying the notation. However, there is an almost
unlimited range of averages that arise

The third type of average notation is used to apply to all other averages. We refer
to these as uniquely defined averages because each average indicated by this notation
is some atypical average or particular combination of intrinsic or mass averages with
other averages. General uniquely defined averages are indicated by a superscript with
a double overbar applied to a subscripted quantity, such as fβα , where the superscript
typically refers to the domain of averaging and the subscript refers to the domain
where the quantities exist. A simpler notation used for a unique average omits the
subscript when the averaging pertains to quantities that are averaged over the full
domain in which they exist. In these instances, the unique average for a property of
entity α is denoted as fα.

The uniquely defined averages can only be related to their precursors by providing the
definition in terms of the explicit averaging operator. The double overbar serves as a
flag that indicates a unique definition for the upscaled variable is being used. If one
wishes to relate that average to the microscale situation, the definition that is provided
in a general development must be consulted. The kind of averaging that has occurred
is different for different properties that make use of the unique averaging shorthand.
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As examples of quantities that are encountered in averaging, we provide the following

ρα = 〈ρα〉Ωα,Ωα for α ∈ I , (22)

vβα = 〈vα〉Ωβ ,Ωβ ,ρα for α ∈ I, β ∈ I−cα ,

(23)

vα = 〈vα〉Ωα,Ωα,ρα for α ∈ I , (24)

εα = 〈1〉Ωα,Ω for α ∈ I , (25)

Eα = 〈Eα〉Ωα,Ω = εαEα for α ∈ I (26)

and

tα =
〈
I(m)
α ·tα − ρα(vα − vα)(vα − vα)

〉
Ωα,Ωα

for α ∈ I , (27)

Note that Eqn (25) provides the definitions for geometric densities with εα being the
volume fraction when α is a phase, the specific area when α is an interface, and a
specific length when α refers to a common curve.

4.3 Averaging Theorems

The differential operators in the microscale equations are all of the same dimension-
ality as the space in which the property of interest lies. On transformation to the
macroscale, all the equations are three-dimensional because the average properties of
interest vary from spatial point to spatial point, regardless of how their average values
were calculated or which types of entities they characterize. The averaging theorems
that are applied to each microscale equation must therefore be able to transform the
microscale derivative to a corresponding macroscale derivative and leave extra terms
as needed.

The derivation of the averaging theorems can be difficult, but is made somewhat easier
by making use of generalized functions. There are three types of averaging theorems
needed: one for the divergence operator, one for the gradient operator, and one for
the partial time derivative. The gradient theorem follows directly from the divergence
theorem, but both forms are provided here.

The averaging theorem for the divergence operator acting on a vector (or tensor) fα is
given as

〈
∇(m)·fα

〉
Ωα,Ω

=∇·
〈
I(m)
α ·fα

〉
Ωα,Ω

−
〈(
∇(m)·I(m)

α

)
·fα
〉

Ωα,Ω

+
∑

κ∈I−cα

〈nα·fα〉Ωκ,Ω for α ∈ I,dim α = 3−m . (28)

The averaging of a microscale divergence is indicated on the left side of the equation,
and the terms on the right are what are used in the macroscale formulation. Roughly,
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the first term on the right is the divergence of an average, the second accounts for the
curvature of a one- or two-dimensional entity, and the third accounts for the boundary
processes where the α entity interacts with other entities. This equation is not ex-
pressed in terms of simplified averaging notation because the equation itself does not
require that any particular type of quantity be averaged, other than a tensor of at least
first order. As an example, for the w phase in a system composed of three phases, w,
n, and s, the divergence is a three-dimensional operator such thatm = 0 and Eqn (28)
reduces to

〈∇·fw〉Ωw,Ω =∇·〈fw〉Ωw,Ω + 〈nw·fw〉Ωwn,Ω
+ 〈nw·fw〉Ωws,Ω + 〈nw·fw〉Ωwns,Ω = 0 . (29)

The last term in this equation accounts for interaction between the w phase and the
common curve. This interaction is usually negligible and exists only because of a
concentrated interaction between the phase and the common curve, such as stress
exchange between a common curve and a phase. For our purposes, in fact, this kind
of interaction is neglected for flow process and for exchanges other than the stress.

The gradient averaging theorem is obtained when the differential operator acts on a
scalar (or tensor of any order) is

〈
∇(m)fα

〉
Ωα,Ω

=∇·
〈
I(m)
α fα

〉
Ωα,Ω

−
〈(
∇(m)·I(m)

α

)
fα

〉
Ωα,Ω

+
∑

κ∈I−cα

〈nαfα〉Ωκ,Ω for α ∈ I,dim α = 3−m . (30)

The averaging operator is applied to the gradient on the left, and the result is the
three terms on the right that have analogous meanings to the terms obtained from
the divergence operator. Thus, for example, for the wn interface, m = 1 since the
dimensionality of the surface is 2. The interaction with an entity of lower order signals
interaction with the wns common curve. so that the specific form of the gradient
averaging theorem is

〈∇′fwn〉Ωwn,Ω =∇·〈I′wnfwn
〉

Ωwn,Ω
−
〈(
∇′·I′wn

)
fwn

〉
Ωwn,Ω

+ 〈nwnfwn〉Ωwns,Ω . (31)

In this equation, nwn is a unit vector on the wns common curve that is tangent to the
wn surface where it meets the common curve and is also orthogonal to the common
curve.

Besides the spatial averaging theorems, a temporal averaging theorem is needed to
convert the time derivative of a microscale quantity to the time derivative of a macroscale
quantity. The general form of the time averaging theorem can be stated for any entity
as

〈
∂(m)fα
∂t

〉

Ωα,Ω

=
∂

∂t
〈fα〉Ωα,Ω +∇·

〈(
I− I(m)

α

)
·vαfα

〉
Ωα,Ω
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+
〈
∇(m)·I(m)

α ·vαfα
〉

Ωα,Ω
−
∑

κ∈I−cα

〈nα·vκfα〉Ωκ,Ω

for α ∈ I,dim α = 3−m . (32)

For this equation, there are four terms on the right-hand side. The first term is the time
derivative of the macroscale quantity, the second term accounts for advective transport
of the property within the domain, the third term accounts for changes in the property
due to deformation of the region (for interfaces and common curves), and the final
term accounts for interactions with domains of lower dimensionality. As an example
of a particular form of this theorem, we will write it for a wns common curve in a
three-phase system. Thus m = 2, and the time averaging theorem becomes

〈
∂′′fwns
∂t

〉

Ωwns,Ω

=
∂

∂t
〈fwns〉Ωwns,Ω +∇·〈(I− I′′wns

) ·vwnsfwns
〉

Ωwns,Ω

+
〈
∇′′·I′′wns·vwnsfwns

〉
Ωwns,Ω

. (33)

For a common curve in a system where no common points exist (i.e. a three-phase
system) there are no entities of dimensionality less than that of the common curve, so
the interaction term is omitted.

One particular combination of the averaging theorems that is helpful to have at hand
is the sum of Eqns (32) and (28) for the case where fα = vαfα. Addition of the two
theorems after making this substitution yields
〈
∂(m)fα
∂t

〉

Ωα,Ω

+
〈
∇(m)·vαfα

〉
Ωα,Ω

=
∂

∂t
〈fα〉Ωα,Ω +∇·〈vαfα〉Ωα,Ω

−
∑

κ∈I−cα

〈nα·(vκ − vα)fα〉Ωκ,Ω for α ∈ I,dim α = 3−m .

(34)

Observe that the two terms on the left side of the equation typically appear together
in the conservation and balance equations. It is interesting that on the right side of the
equation, the terms accounting for geometry of the entities are eliminated as the tensor
describing the tangential directions to the one- and two-dimensional entities, I(m)

α ,
cancel out. Thus, although the differential operators on the left side of the equation
are dependent on the dimensionality of the entities, no differences exist on the right
side except for the exchange term of the α entity with lower-order entities.

5 Macroscale Conservation Equations

The macroscale conservation equations are derived as averages of the microscale
equations obtained based on the application of the averaging theorems. Here, we
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will average the general form of the conservation equation given by Eqn (6) over the
domain on which the equation applies to obtain

〈Fα〉Ωα,Ω =

〈
∂(m)Fα
∂t

〉

Ωα,Ω

+
〈
∇(m)· (vαFα)

〉
Ωα,Ω

− 〈SΩα〉Ωα,Ω

−
〈 ∑

κ∈I+cα

X
κ→α

〉

Ωα,Ω

−
〈

div(m)
(
SΓα·I(m)

α

)〉
Ωα,Ω

− 〈GΩα〉Ωα,Ω = 0 for α ∈ I,dim α = 3−m . (35)

Now we can apply the combined averaging theorem of Eqn (34) to the first two terms
after the equal sign and the divergence theorem of Eqn (28) to the second term in the
second line so that we exchange the order of differentiation and averaging leaving

〈Fα〉Ωα,Ω =
∂

∂t
〈Fα〉Ωα,Ω +∇·〈vαFα〉Ωα,Ω −

∑

κ∈I−cα

〈nα·(vκ − vα)Fα〉Ωκ,Ω

− 〈SΩα〉Ωα,Ω −
〈 ∑

κ∈I+cα

X
κ→α

〉

Ωα,Ω

−∇·
〈
I(m)
α ·SΓα

〉
Ωα,Ω

−
∑

κ∈I−cα

〈nα·SΓα〉Ωκ,Ω − 〈GΩα〉Ωα,Ω = 0 for α ∈ I,dim α = 3−m .

(36)

In this equation, the two terms involving summations account for interaction of the
entity α with entities of lower dimensionality. We observe that
〈 ∑

κ∈I−cα

X
κ→α

〉

Ωα,Ω

=
∑

κ∈I−cα

〈nα·(vκ − vα)Fα〉Ωα,Ω +
∑

κ∈I−cα

〈nα·SΓα〉Ωα,Ω

(37)
Therefore, we can combine the exchange terms by making the summation over Icα,
the full set of connected entities for entity α so that Eqn (36) becomes

〈Fα〉Ωα,Ω =
∂

∂t
〈Fα〉Ωα,Ω +∇·〈vαFα〉Ωα,Ω − 〈SΩα〉Ωα,Ω

−
〈 ∑

κ∈Icα
X
κ→α

〉

Ωα,Ω

−∇·
〈
I(m)
α ·SΓα

〉
Ωα,Ω

− 〈GΩα〉Ωα,Ω = 0

for α ∈ I,dim α = 3−m . (38)

We will also make use of the notation that
〈 ∑

κ∈Icα
X
κ→α

〉

Ωα,Ω

=
∑

κ∈Icα

κ→α
X , (39)
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where the use of the over-arrow for the exchange indicates that it is a macroscale
representation. Because of the averaging procedure, we can calculate this exchange
term from available microscale information. However, in actual applications, this
exchange term is formulated constitutively as a function of macroscale variables. With
substitution of Eqn (39) into Eqn (38), the macroscale equation becomes

〈Fα〉Ωα,Ω =
∂

∂t
〈Fα〉Ωα,Ω +∇·〈vαFα〉Ωα,Ω − 〈SΩα〉Ωα,Ω

−
∑

κ∈Icα

κ→α
X −∇·

〈
I(m)
α ·SΓα

〉
Ωα,Ω

− 〈GΩα〉Ωα,Ω = 0

for α ∈ I,dim α = 3−m . (40)

It is useful to write this equation in terms of a material derivative. We can obtain this
form by adding and subtracting ∇·(vα〈Fα〉Ωα,Ω) in the left side of the equation and
rearranging the result as

〈Fα〉Ωα,Ω =
Dα

Dt
〈Fα〉Ωα,Ω + 〈Fα〉Ωα,Ω I:d

α +∇·〈(vα − vα)Fα
〉

Ωα,Ω
− 〈SΩα〉Ωα,Ω

−
∑

κ∈Icα

κ→α
X −∇·

〈
I(m)
α ·SΓα

〉
Ωα,Ω

− 〈GΩα〉Ωα,Ω = 0

for α ∈ I,dim α = 3−m , (41)

where

Dα

Dt
=

∂

∂t
+ vα·∇ (42)

and

dα =
1

2

[
∇vα + (∇vα)T

]
. (43)

Now we turn to some specific instances of this equation as applied to the particular
conservation and balance equations.

5.1 Macroscale Mass Conservation

For mass conservation, Eqn (41) applies with F = M, Fα = ρα,
κ→α
X =

κ→α
M ,

SΩα = 0, SΓα = 0, and GΩα = 0. Thus we obtain

〈Mα〉Ωα,Ω =
Dα

Dt
〈ρα〉Ωα,Ω + 〈ρα〉Ωα,Ω I:d

α +∇·〈(vα − vα)ρα
〉

Ωα,Ω

−
∑

κ∈Icα

κ→α
M = 0 for α ∈ I,dim α = 3−m . (44)
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The leftmost term is an integral over the α entity normalized with respect to the entire
domain. Thus, it is a unique average. The average of density can be related to the
intrinsic average, and the average involving velocity can be related to a mass average.
We therefore make the definitions

〈Mα〉Ωα,Ω =Mα
∗ , (45)

〈ρα〉Ωα,Ω =εαρα , (46)

and

〈ραvα〉Ωα,Ω =εαραvα . (47)

Thus the notation employed for the macroscale mass conservation equation is

Mα
∗ =

Dα(εαρα)

Dt
+ εαραI:dα −

∑

κ∈Icα

κ→α
M = 0 for α ∈ I . (48)

5.2 Macroscale Momentum Conservation

Conservation of momentum is a vector equation. For this equation, Eqn (41) applies

with F = P , Fα = ραvα,
κ→α
X = vα,κ

κ→α
M +

κ→α
T , SΩα = ραgα, SΓα = tα,

and GΩα = 0. In this identification, we have made use of the notation vα,κ, which
indicates the average of a property of an entity over a lower-dimensional entity on its
boundary such that

vα,κ =

{
vκα if κ ∈ I−cα
vακ if κ ∈ I+

cα

. (49)

The exchange term is therefore divided into a part associated with phase change and a
part related to interaction forces between entities. If we make use of these definitions,
the momentum equation is

〈Pα〉Ωα,Ω =
Dα

Dt
〈ραvα〉Ωα,Ω + 〈ραvα〉Ωα,Ω I:d

α +∇·〈(vα − vα)ραvα
〉

Ωα,Ω

− 〈ραgα〉Ωα,Ω −
∑

κ∈Icα
vα,κ

κ→α
M −

∑

κ∈Icα

κ→α
T −∇·

〈
I(m)
α ·tα

〉
Ωα,Ω

= 0

for α ∈ I,dim α = 3−m . (50)

The unique definition for tα has been given in Eqn (27). Re-expression of the averages
in Eqn (50) in terms of the averaging notation then yields

Pα =
Dα(εαραvα)

Dt
+ εαραvαI:dα − εαραgα

−
∑

κ∈Icα
vα,κ

κ→α
M −

∑

κ∈Icα

κ→α
T −∇·(εαtα) = 0 for α ∈ I . (51)
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5.3 Macroscale Total Energy Equation

The energy equation is the most complex of the conservation equations and therefore
requires some finesse in developing the macroscale form. A driving consideration
is that we want to retain the same definition for the macroscale stress and for other
macroscale variables that have arisen in the mass and momentum equations. We thus
proceed as follows. For energy conservation Eqn (41) applies with

F =E + G (52)

Fα =Eα + ρα
vα·vα

2
+ Ψα (53)

κ→α
X =

(
E
α,κ

+
vα,κ·vα,κ

2
+ ψα,κ +Kα,κ

E

)
κ→α
M + vα,κ·

κ→α
T +

κ→α
Q

(54)

SΩα =ρα
∂(m)ψα
∂t

+ ραgα·
(
I− I(m)

α

)
·vα + hα (55)

SΓα =tα·vα + qα (56)
and

GΩα =0 . (57)

Application of the averaging theorems to the general conservation equation with these
variables defined gives

〈Eα + Gα〉Ωα,Ω =
Dα

Dt

〈
Eα + ρα

vα·vα
2

+ Ψα

〉
Ωα,Ω

+
〈
Eα + ρα

vα·vα
2

+ Ψα

〉
Ωα,Ω

I:dα

+∇·
〈

(vα − vα)
(
Eα + ρα

vα·vα
2

+ Ψα

)〉
Ωα,Ω

−
〈
ρα
∂(m)ψα
∂t

〉

Ωα,Ω

−
〈
ραgα·

(
I− I(m)

α

)
·vα
〉

Ωα,Ω
− 〈hα〉Ωα,Ω

−
∑

κ∈Icα

(
E
α,κ

+
vα,κ·vα,κ

2
+ ψα,κ +Kα,κ

E

)
κ→α
M

−
∑

κ∈Icα
vα,κ·

κ→α
T −

∑

κ∈Icα

κ→α
Q −∇·

〈
I(m)
α ·tα·vα

〉
Ωα,Ω

−∇·
〈
I(m)
α ·qα

〉
Ωα,Ω

= 0 for α ∈ I,dim α = 3−m . (58)

The operators can be eliminated from this equation, for the most part, by judicious
definition of variables to obtain

Eα∗ + Gα∗ =
Dα

Dt

[
Eα + εαρα

(
vα·vα

2
+Kα

E

)
+ Ψα

]
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+

[
Eα + εαρα

(
vα·vα

2
+Kα

E

)
+ Ψα

]
I:dα

−
〈
ρα
∂(m)ψα
∂t

〉

Ωα,Ω

−
〈
ραgα·

(
I− I(m)

α

)
·vα
〉

Ωα,Ω
− εαhα

−
∑

κ∈Icα

(
E
α,κ

+
vα,κ·vα,κ

2
+ ψα,κ +Kα,κ

E

)
κ→α
M

−
∑

κ∈Icα
vα,κ·

κ→α
T −

∑

κ∈Icα

κ→α
Q −∇·

(
tα·vα

)
−∇·qα = 0

for α ∈ I,dim α = 3−m . (59)

The definitions of the unique variables are

Eα = 〈Eα〉Ωα,Ω , (60)

E
α,κ

=

{
E
κ

α if κ ∈ I−cα
E
α

κ if κ ∈ I+
cα

, (61)

KEακ =





1

2

(
vα − vκα

) · (vα − vκα
)

if κ ∈ I−cα
1

2

(
vκ − vακ

) · (vκ − vακ
)

if κ ∈ I+
cα

, (62)

Kα
E =

1

2

〈(
vα − vα

) · (vα − vα
)〉

Ωα,Ωα,ραωiα
, (63)

Kα,κ
E =

{
Kκ
Eα = 〈KEακ〉Ωκ,Ωκ,ρκ if κ ∈ I−cα

Kα
Eκ = 〈KEακ〉Ωα,Ωα,ρα if κ ∈ I+

cα

, (64)

and

qα =

〈
I(m)
α ·qα + I(m)

α ·tα·
(
vα − vα

)
− ρα

[
Eα − E

α

+

(
vα − vα

) · (vα − vα
)

2
−Kα

E

](
viα − viα

)〉

Ωα,Ωα

. (65)

Additionally, we note that Eα = Eα/ρα.

5.4 Macroscale Entropy Balance

In addition to the conservation equations, an entropy balance equation may be formu-
lated for each entity. Application of the averaging operator to the entropy equation
yields

〈Sα〉Ωα,Ω =
Dα

Dt
〈ηα〉Ωα,Ω + 〈ηα〉Ωα,Ω I:d

α +∇·〈(vα − vα)ηα
〉

Ωα,Ω
− 〈bα〉Ωα,Ω
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−
〈 ∑

κ∈I+cα

ηκ
ρκ

M
κ→α

〉

Ωα,Ω

−
〈 ∑

κ∈I+cα

Φ
κ→α

〉

Ωα,Ω

−
〈
∇(m)·

(
I(m)
α ·ϕα

)〉
Ωα,Ω

= 〈Λα〉Ωα,Ω for α ∈ I;m = 3− dim α .

(66)

Application of the averaging theorems to this equation yields the macroscale entropy
balance given by

Sα∗ =
Dαηα

Dt
+ ηαI:dα − εαbα −

∑

κ∈Icα

κ→α
M ηα,κ

−
∑

κ∈Icα

κ→α
Φ −∇·

(
εαϕα

)
= Λα for α ∈ I . (67)

The new variables that appear with unique definitions are

ηα = εαηα (68)

ϕα =
〈
φα − ηα(vα − vα)

〉
Ωα,Ωα

(69)

ηα,κ =

{
ηκα if κ ∈ I−cα
ηακ if κ ∈ I+

cα

, (70)

and

Λα = 〈Λα〉Ωα,Ω . (71)

We observe that the quantities that appear in this balance equation do not appear in
the conservation equations. To make use of this equation in conjunction with those
conservation equations, two steps are taken. First, summation over all the entities will
cause the inter-entity exchange terms to cancel. This leaves

∑

α∈I
Sα∗ =

∑

α∈I

[
Dαηα

Dt
+ ηαI:dα − εαbα −∇·

(
εαϕα

)]
=
∑

α∈I
Λα . (72)

Additionally, the second law of thermodynamics requires that entropy generation due
to irreversible processes at a location will be non-negative. Therefore,

∑

α∈I
Λα ≥ 0 . (73)

The second step that is necessary to make the entropy inequality useful in conjunction
with the conservation equations is to propose a thermodynamic formalism that relates
internal energy to entropy. Here, we will start with classical irreversible thermody-
namics postulated to hold at the microscale for each phase, interface, and common
curve, and then integrate to the macroscale.
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6 Thermodynamic Postulation

The simplest thermodynamic formulation that can be employed is classical irreversible
thermodynamics (CIT) [Bai94, Cal85]. Because of its simplicity and the fact that
it describes most systems of interest well, we will use it. We will implement CIT
by averaging microscale relations to the macroscale. This serves to retain connec-
tions between thermodynamic quantities between scales. The CIT approach provides
equations with similar structure when applied to fluids, interfaces, and the common
curve. We will assume that the solid is elastic and provide the thermodynamic rela-
tions consistent with that approach. Note that the thermodynamic formalism is postu-
lated. Thus, any reasonable postulated system can be employed and averaged to the
macroscale.

Classical thermodynamics is concerned with the thermodynamic properties of equi-
librium systems. The CIT approach as implemented here makes use of a local equi-
librium assumption such that the thermodynamic relations that hold at equilibrium for
a system are also considered to apply at points in the system. Essentially, this requires
that the changes in the system occur slowly enough that thermodynamic variables can
be identified and assumes that local point conditions are the same as at equilibrium.
This assumption is concerned with rates of change in time as well as with spatial gra-
dients. This is not considered to be a particularly crippling assumption as it has been
found to apply in most instances of heating and cooling. Exceptions occur, for exam-
ple, with a strong explosion where thermodynamic identities might be violated in the
short term. We will employ the local equilibrium assumption at the microscale, but
it is not required at the larger scale. The averaging of the thermodynamic equations
provides information that relates larger to smaller scale variables. Of course, when the
local equilibrium assumption applies at the macroscale, the analysis can be simplified.

The thermodynamics of fluid phases, interfaces, and common curves are all defined
by the Euler form of the energy equation. This equation is expressed with extensive
variables converted to densities relative to the dimensionality of the entity. The ther-
modynamic expression is

Eα = θαηα + µαρα − Pα for α ∈ I\s , (74)

where θα is the microscale temperature of the α entity, µα is the chemical potential,
and Pα = pα is pressure when α denotes a fluid phase, Pα = −γα for an interface
where γα is the interfacial tension, and Pα = γα for a common curve where γα is
the curvilinear tension of the curve. The notation I\s indicates that we are using this
equation for all entities in the system except the solid. The derivative of this equation
with respect to time is

∂(m)Eα
∂t

− θα
∂(m)ηα
∂t

− µα
∂(m)ρα
∂t

= 0 for α ∈ I\s,m = 3− dim α (75)

and the gradient of Eqn (74) is

∇(m)Eα − θα∇(m)ηα − µα∇(m)ρα = 0 for α ∈ I\s,m = 3− dim α . (76)
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Although it is not a thermodynamic condition, the equation for the rate of change
of the gravitational potential is handled similarly to the thermodynamic condition.
Because Ψα = ραψα, the temporal and spatial derivatives of this expression are,
respectively

∂(m)Ψα

∂t
− ψα

∂(m)ρα
∂t

− ρα
∂(m)ψα
∂t

= 0 for α ∈ I\s,m = 3− dim α (77)

and

∇(m)Ψα − ψα∇(m)ρα − ρα∇(m)ψα = 0 for α ∈ I\s,m = 3− dim α . (78)

Averaging theorem Eqn (32) can be applied to Eqns (75) and (77), and Eqn (30) can be
applied to Eqns (76) and (78), respectively, to obtain averaged forms. The summation
of these results, after dotting the gradient expressions with vα, yields the macroscale
form of the thermodynamic relation in combination with the gravitational potential
given by

T α∗ + T αG∗ =
Dα(Eα + Ψα)

Dt
− θαDαηα

Dt
− (µα + ψα)

Dα(εαρα)

Dt

+
∑

κ∈I−cα

〈
nα·

(
vκ − vs

)
Pα
〉

Ωκ,Ω

+

〈
ηα

D(m)s(θα − θα)

Dt

〉

Ωα,Ω

+

〈
ρα

D(m)s(µα − µα − ψα)

Dt

〉

Ωα,Ω

−
[
ηα∇θα −∇·

〈
I(m)
α Pα

〉
Ωα,Ω

+ εαρα∇(µα + ψα)

]
· (vα − vs

)

−∇·
〈(

I− I(m)
α

)
· (vα − vα

)
Pα

〉
Ωα,Ω

−
〈(

I− I(m)
α

)
Pα

〉
Ωα,Ω

:dα

−
〈
∇(m)·I(m)

α ·
(
vα − vs

)
Pα

〉
Ωα,Ω

+
〈
ηα
(
vα − vs

) ·
(
I− I(m)

α

)〉
Ωα,Ω
·∇θα

+
〈
ρα
(
vα − vs

) ·
(
I− I(m)

α

)〉
Ωα,Ω
·∇(µα + ψα) = 0

for α ∈ I\s,m = 3− dim α , (79)

where

Ψα = εαΨα , (80)

θα = 〈θα〉Ωα,Ωα,ηα , (81)

and

D(m)s

Dt
=
∂(m)

∂t
+ vs·∇(m) . (82)
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The fact that although the local equilibrium assumption is applied at the microscale but
is not required to hold at the macroscale is evident in the appearance of terms involv-
ing averages of the difference between microscale and macroscale thermodynamic
variables. When macroscale local equilibrium applies, these terms are dropped.

An important area for additional research is the representation of solid phases at the
macroscale. In some cases, it is sufficient to treat the solid as a highly viscous fluid. In
those cases, the thermodynamic formulation for the solid is as above. Here, we adopt
the relatively simple model of the solid as an elastic material, which can be formulated
as

Es = θsηs + σs:
Cs
js

+ µsρs , (83)

where σs is a stress tensor, Cs is Green’s deformation tensor, and js is the Jacobian.
The time and space derivatives of this equation may be written, respectively, as

∂Es
∂t

= θs
∂ηs
∂t

+ σs:
∂

∂t

(
Cs
js

)
+ µs

∂ρs
∂t

(84)

and

∇Es = θs∇ηs + σs:∇
(
Cs
js

)
+ µs∇ρs . (85)

These expressions may each be converted to a macroscale expression by making use of
the averaging theorems. With the resultant gradient expression dotted with vs added
to the time derivative expression and that equation added to the result of averaging the
expressions for the derivatives of the potentials in Eqns (77) and (78), the expression
for the relation among the rates of change of macroscale thermodynamic properties of
the solid is

T s∗ + T sG∗ =
Ds(Es + Ψs)

Dt
− θsDsηs

Dt
− (µs + ψs)

Ds(εsρs)

Dt

−
∑

κ∈Ics

〈
ns· (vκ − vs)σs:

Cs
js

〉

Ωκ,Ω

−
∑

κ∈Ics

〈
ns·ts·

(
vs − vs

)〉
Ωκ,Ω

+

〈
ηs

Ds(θs − θs)
Dt

〉

Ωs,Ω

+

〈
ρs

Ds(µs − µs − ψs)
Dt

〉

Ωs,Ω

−∇·
〈(

ts − σs:
Cs
js

I

)
· (vs − vs

)〉

Ωs,Ω

− εsts:ds + εsσs:
Cs

js
I:ds

+

〈(
∇·ts −∇σs:

Cs
js

)
· (vs − vs

)〉

Ωs,Ω

= 0 . (86)

This expression makes use of the microscale local equilibrium approximation and
also accounts for the fact that a concentrated force can act on the solid surface and at
common curves.
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7 Evolution Equations

One additional set of macroscale equations are the kinematic equation that describe
the deformation of the space occupied by a phase, the extents of interfaces and the
common curve [GM10, GTS02, GM14]. These kinematic equations have received
much less attention than the conservation and thermodynamic relations. Neverthe-
less, they provide some essential auxiliary equation for macroscale analysis of porous
media systems.

Kinematics of irregular geometries are difficult to describe in detail, but macroscale
descriptions based on averaging theorems, in particular Eqns (30) and (32) with fα =
1, provide exact relations that can be approximated for utilization. With fα = 1, Eqn
(30) becomes

0 = ∇εα −∇·
〈
I− I(m)

α

〉
Ωα,Ω

−
〈
∇(m)·I(m)

α

〉
Ωα,Ω

+
∑

κ∈I−cα

〈nα〉Ωκ,Ω

for α ∈ I,m = 3− dim α , (87)

while Eqn (32) reduces to

0 =
∂εα

∂t
+∇·

〈(
I− I(m)

α

)
·vα
〉

Ωα,Ω
+
〈
∇(m)·I(m)

α ·vα
〉

Ωα,Ω

−
∑

κ∈I−cα

〈nα·vκ〉Ωκ,Ω for α ∈ I,m = 3− dim α . (88)

Broadly speaking, the first term on the right-hand side of these equations provides
the change in the specific quantity with space or time. In Eqn (87), the second two
terms describe the contributions to the spatial change in εα due to orientation effects
for surfaces and common curves (for a phase these two terms are zero). The final
term accounts for spatial changes encountered due to changes in the amounts of an
entity of lower order with space. The only components of the velocity that appear
in the second two terms in Eqn (88) are those that are normal to the entity (again,
these terms are zero for a phase). The terms describe how the extent of an interface
or common curve changes due to the deformation of that interface. The final term in
this equation accounts for change in the extent of the interface due to movement of the
boundary.

The prime difficulty in working with these kinematic equations is to relate the change
in the extent of one entity to the change in the extent of its boundary. For example,
the boundary of a phase is easy to model if the phase is spherical and remains spher-
ical as it changes size. The rate of change of surface area is directly related to the
rate of change of volume. For complicated phase geometries, phase boundaries, and
curve lengths, a simple relation cannot be obtained. Nevertheless, Eqns (87) and (88)
provide exact relations. The averages that appear in these equations can be approxi-
mated to obtain appropriate macroscale kinematic descriptions. These results are then
investigated and applied with all variables written at the macroscale.
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Evolution equations are written while moving at the solid velocity. Because the solid
deforms slowly, this allows for following an interface within the system relative to the
solid. To obtain the needed equation, we take the dot product of Eqn (87) with vs and
add this to Eqn (88). After minor rearrangement, this gives

Dsεα

Dt
+∇·

〈(
I− I(m)

α

)
· (vα − vs

)〉
Ωα,Ω

+
〈
I− I(m)

α

〉
Ωα,Ω

:ds

+
〈
∇(m)·I(m)

α ·
(
vα − vs

)〉
Ωα,Ω

−
∑

κ∈I−cα

〈
nα ·

(
vκ − vs

)〉
Ωκ,Ω

= 0

for α ∈ I,m = 3− dim α . (89)

This description of the evolution of various entities becomes useful when all the quan-
tities in the averaging operators are expressed in terms of macroscale variables, in
particular the macroscale variables that already have entered the problem formula-
tion in the development of the conservation and thermodynamic equations. Although
the equations for the various geometric densities are difficult to express in terms of
the large scale variables, they nevertheless provide important conditions that must not
be violated by calculations of model behavior. Nevertheless, these equations are im-
portant constraints on the behavior of the system. For the two-fluid-phase system of
concern here, we make some approximations that can be revisited if significant errors
in subsequent macroscale simulations or insights gained from microscale simulations
suggest a need to do so.

The derivation of approximate forms of Eqn (89) for various entities will not be pre-
sented here as the identification of potentially useful approximations is rather lengthy.
The details may be found in [GM10], or using a more general approach in [GM14].
Here, we provide the approximate equation for the evolution of the wn interface when
solid deformation is much slower than fluid redistribution. Elements of the physical
processes that can cause εwn to evolve are the normal velocity of the interface, interfa-
cial curvature changes, and the movement of the common curve on the solid surface.
The governing approximate equation obtained is

Dsεwn

Dt
+∇·

[
εwn

(
wwn − Gwn·vs)

]
− Jwnw

Dsεw

Dt

− k̂wn
(
εwneq − εwn

)
− cosϕws,wn(εws + εns)

Dsχwss
Dt

= 0 , (90)

where

wwn =
〈
(I− I′wn)·vwn

〉
Ωwn,Ωwn

, (91)

Gwn =
〈
I− I′wn

〉
Ωwn,Ωwn

, (92)

Jwnw = 〈∇′·nw〉Ωwn,Ωwn , (93)

and

χwss = 〈1〉Ωws,Γs . (94)
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The terms in Eqn (90) are, in order, the rate of change of wn interface density, the
net outward flux of εwn, increase in εwn caused by a change in the volume fraction
of fluid phase w, relaxation of εwn to an equilibrium configuration, and the change in
εwn due to movement of the common curve that is the boundary of the interface. The
quantity Gwn is an orientation tensor that accounts for the fact that the wn interface
may have a preferred orientation direction, Jwnw is the curvature of the interface, and
χwss is the fraction of the solid surface in contact with the w phase.

The evolution of the ws and ns interfaces as well as the evolution of the wns common
curve would seem to be less important than the kinematics of the fluid-fluid interface.
Approximations for evolution equations for these entities can be made [GM14], but
errors in the approximations are less important than for the fluid-fluid interface.

In conclusion, the kinematic equations are a typically overlooked element of the de-
scription of porous medium systems. However, as in the description of boiling pro-
cesses [IKSH09], useful approximations to the evolution equations are necessary when
the interface dynamics are significant. Because multifluid systems are impacted by
capillary effects at the fluid-fluid interface and may involve mass transfer across that
interface, knowledge of the kinematics of those interfaces are particularly important.

8 Augmented Entropy Inequality

One of the reasons for generating an entropy inequality is that it provides a constraint
on allowable processes. In the present case, we need to develop closure relations for
exchange terms and for dissipative fluxes such that they do not violate the second
law of thermodynamics as expressed in the entropy inequality. The objective of this
section is to augment the entropy inequality with conservation and thermodynamic
equations in order to isolate the mechanisms that contribute to entropy generation.
The augmented entropy inequality, with conservation and thermodynamic equations
for all entities added on, is

∑

α∈I
Sα∗ +

∑

α∈I
λαE
(
Eα∗ + Gα∗

)
+
∑

α∈I
λαP ·Pα∗ +

∑

α∈I
λαMMα

∗

+
∑

α∈I
λαT
(
T α∗ + T αG∗

)
=
∑

α∈I
Λα ≥ 0 . (95)

In this equation, the coefficients, λ and λ that multiply conservation and thermody-
namic equations are Lagrange multipliers. The values of these multipliers do not alter
the inequality because they each multiply equations that are equal to zero. The se-
lection of the multipliers thus can alter the grouping of terms that sum to equal the
generation term, but the value of the sum is independent of the value of the multipli-
ers.
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The multipliers are selected such that the material derivatives are eliminated from the
equations in favor of retention of the flux and source terms. This is accomplished by
examination of the material derivatives that appear in Eqn (95) and ensuring that the
multipliers serve to cancel them out. The result of this process gives values of the
multipliers such that the entropy inequality is

∑

α∈I
Sα∗ −

∑

α∈I

1

θα

(
Eα∗ + Gα∗

)
+
∑

α∈I

vα

θα
·Pα∗

+
∑

α∈I

(
µα + ψα − vα·vα

2
+Kα

E

)
Mα
∗

+
∑

α∈I

1

θα

(
T α∗ + T αG∗

)
=
∑

α∈I
Λα ≥ 0 . (96)

Although this equation is rather innocuous, if one expands out the summations it be-
comes quite a long equation. Even when terms are cancelled to the degree possible,
and identical equation forms are retained in summations, the resulting equation, re-
ferred to as the Constrained Entropy Inequality (CEI) is several pages long [GM14].
For conciseness, we will not reproduce that equation here.

Because of its length and complexity, including some averages that require evalua-
tion, the CEI is not in a useful form for analysis of a system of interest. It is, however,
a useful equation to serve as an intermediate starting point for analysis of systems
without repeating all the algebraic work needed for its derivation. Proceeding from
the CEI, which contains no mathematical approximations, we can introduce simplifi-
cations based on the processes to be modeled. Introduction of these approximations
leads to a simplified entropy inequality (SEI) that applies to a class of systems. To
reduce to a specific system of interest, further approximations must be made, for ex-
ample by restricting the system to be isothermal.

As an example, we can obtain a simplified SEI for an isothermal system with no mass
exchange between entities and with the interfaces and common curves specified as
massless. Other restrictions apply, but the SEI that results is [GM14]

+
∑

α∈If

1

θ

(
εαtα + εαpαI

)
:dα +

1

θ

(
εsts − εsts

)
:ds 1

+
∑

α∈II

1

θ

[
εαtα − εαγα (I− Gα)

]
:dα 2

+
1

θ

[
εwnstwns + εwnsγwns (I− Gwns)

]
:dwns 3

+
∑

α∈If

1

θ

{
∇
(
εαpα

)
− εαρα∇

(
µα +Kα

E + ψα
)
− εαραgα 4

+
∑

κ∈I−cα

α→κ
T

}
· (vα − vs

)
5
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−
∑

α∈II

1

θ

{
∇·
[
(I− Gα) εαγα

]
+
∑

κ∈I+cα

κ→α
T −

α→wns
T

}
· (vα − vs

)
6

+
1

θ

{
∇·
[
(I− Gwns) εwnsγwns

]
−

∑

κ∈I+cwns

κ→wns
T 7

+ 〈ns·t∗s·nsns〉Ωwns,Ω
}
· (vwns − vs

)
8

+
1

θ

[
Dsεw

Dt
− χwss

Dsε

Dt
−
γwnk̂wn1

(
εwn − εwneq

)

(pwnw − pwnn )

]
(pwnw − pwnn − γwnJwnw ) 9

+
1

θ

Dsε

Dt

[
χwss pwsw + χnss p

ns
n + χwss (ns·ts·ns)ws + χnss (ns·ts·ns)ns 10

+ χwss γwsJwss + χnss γ
nsJnss 11

−
(

εwns

εws + εns

)(
γwnswn sinϕws,wn − γwnsκwnsN − (ns · t∗s·ns)wns

)]
12

− 1

θ

(
εws + εns

) Dsχssws
Dt

[
γwnswn cosϕws,wn + γwnsws − γwnsns + γwnsκwnsG

]
13

=
∑

α∈I
Λα ≥ 0 . 14

(97)

An important feature of this equation is that all terms are products of two quantities,
denoted as conjugate fluxes and forces, both of which must be zero at equilibrium.
We know that they are zero from the conditions that velocity must be zero and from
thermodynamic equilibrium constraints that are derived using variational methods but
which are not included here. In this equation, we have written each product with the
flux being the first factor and the force being the second factor. By exploiting this
property, we can, in general, assume that each flux is a product of all the forces. In the
simplest case, which is still applicable in a wide range of systems, we assume that each
flux is linearly dependent on all the forces. However this general dependence can then
be simplified based on knowledge of system behavior and interactions. Rather than
listing these flux-force linearizations, we will proceed directly to the closed model.

9 Closed Conservation Equations

In this section we will present the closed conservation equations that result for slow
flow in an isothermal porous medium. The interfaces are considered to be massless,
and no phase change occurs between the phases.
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9.1 Mass Conservation Equations

When the interfaces and common curves are massless and there is no mass exchange
between phases, the only mass conservation equations are those for the phases. These
are given by

Dα(εαρα)

Dt
+ εαραI:dα = 0 for α ∈ {w, n, s} . (98)

9.2 Fluid Momentum Equations

The momentum conservation equations for thew and n phases make use of the closure
relations as linearizations of lines 1 and 4–5 of Eqn (97),

tα = −pα for α ∈ {w, n} , (99)
and

∇
(
εαpα

)
− εαρα∇

(
µα + ψα

)
− εαραgα +

∑

κ∈I−cα

α→κ
T

=
∑

κ∈If
R̂
α

κ ·
(
vκ − vs

)
for α ∈ {w, n} . (100)

Substitution of these two equations into the general momentum equation, Eqn (51),
under conditions of no mass exchange yields

Dα(εαραvα)

Dt
+ εαραvαI:dα + εαρα∇

(
µα + ψα

)

+ R̂
α

w·
(
vw − vs

)
+ R̂

α

n·
(
vn − vs

)
= 0 for α ∈ {w, n} . (101)

For the case of slow flow, the first two terms in this equation are negligible. The
remaining terms provide a Darcy-like expression for flow being proportional to a po-
tential gradient with the added feature of coupling between the two fluid phases,

εαρα∇
(
µα + ψα

)
+ R̂

α

w·
(
vw − vs

)
+ R̂

α

n·
(
vn − vs

)
= 0 for α ∈ {w, n} .

(102)

In many instances, it is convenient to write the driving force for the flow in terms of
pressure rather than potential. To achieve this form, we note that the combination of
the gradients of macroscale chemical and body force potential can be calculated as

εαρα∇
(
µα + ψα

)
= εα

(
∇pα − ραgα

)
+ 〈∇ (pα − pα)〉Ωα,Ω

−
〈
ρα∇

(
µα + ψα − µα − ψα

)〉
Ωα,Ω

for α ∈ {w, n} . (103)

When the gradient of volume fraction in the vertical is small (not the case for infiltra-
tion problems with a sharp front), and the gradient of the difference term accounting
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for deviations between point and average values of potentials are also small, the last
two terms on the right side of Eqn (103) can be eliminated. Then substitution into Eqn
(102) yields

εα
(
∇pα − ραgα

)
+ R̂

α

w·
(
vw − vs

)
+ R̂

α

n·
(
vn − vs

)
= 0 for α ∈ {w, n} .

(104)

To obtain the usual form of the flow equation, we also would have to drop the cross
coupling term. Note that this equation is a simplification of the general form in many
aspects. These must all be specifically indicated to obtain the usual form. The fact
that the usual equation form for multiphase flow requires that cross-coupling not be
considered, that pressure as a driving force is an approximation of potential, and that
inertial terms have been eliminated is not known if one simply presumes that Darcy’s
law for single phase flow with a more complex form of the hydraulic conductivity is
applicable.

A final equation needed for this model is obtained from line 9 of Eqn (97). If we
linearize this expression and assume that cross-coupling of forces can be neglected,
we obtain

Dsεw

Dt
−χwss

Dsε

Dt
−
γwnk̂wn1

(
εwn − εwneq

)

(pwnw − pwnn )
= ĉwn (pwnw − pwnn − γwnJwnw ) . (105)

When the solid phase motion is negligible, this equation simplifies to

ε
∂sw

∂t
−
γwnk̂wn1

(
εwn − εwneq

)

(pwnw − pwnn )
= ĉwn (pwnw − pwnn + pc) , (106)

where we have also introduced the notation pc = −γwnJwnw into the last term.

Utilization of Eqn (106) provides an interesting challenge. De facto, the current typ-
ical approach is to assume the left side of the equation is negligible. We say, “de
facto” because current approaches that are basically heuristic are unaware of the more
general equation. Thus, the typical approach is to set

pwnw − pwnn + pc = 0 . (107)

Then pc is presumed to be a function only of sw, and experimental work is performed
to evaluate this function at equilibrium.

A second approach, which arises directly in some formulations and is not understood
as a simplification of Eqn (106), intrinsically neglects the second term and proposes
that

ε
∂sw

∂t
= ĉwn (pwnw − pwnn + pc) . (108)

This formulation attributes the disequilibrium between the pressure difference and
the capillary pressure to changing saturation in the system. However, recent work
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[GM11b] has suggested that the relaxation of the interfacial area to an equilibrium
value is important and must be considered when formulating multiphase flow models.
This finding argues in favor of Eqn (106) in that it has the ability to model both changes
in saturation and interfacial area. Work is under way to confirm this and to determine
the impact of this finding on multiphase flow modeling.

10 Conclusions

These notes are intended to provide a very sparse outline of the TCAT approach. The
elements of TCAT have been identified and some of the mathematical tools that are
important for the method are identified. Information is omitted particularly with re-
gard to solid phase thermodynamics, the derivation of equilibrium conditions based
on variational methods, the full algebraic analysis of the augmented entropy inequal-
ity to obtain a simplified entropy inequality, and the exploitation of the SEI to obtain
a closed system of equations. Closed flow equations for the fluid phases and a sup-
plementary condition on capillary pressure are developed as examples. Details of the
analysis may be found in [GM14]. The last item of a full TCAT analysis, confirmation
of the theoretical results through experimental and computational work, is underway.
The symbiotic use of theory with experiments and calculations will lead to more ro-
bust models than are available today.

Acknowledgments

This work was supported by Army Research Office grant W911NF-14-1-0287, Na-
tional Science Foundation grant 0941235, and by Department of Energy grant DE-
SC0002163.

References

[AJ67] T. B. Anderson and R. Jackson. A fluid mechanical description of
fluidized beds. Industrial and Engineering Chemistry Fundamentals,
6:527–539, 1967.

[AL11] B. Aadnoy and R. Looyeh. Petroleum Rock Mechanics: Drilling Oper-
ations and Well Design. Gulf Professional Publishing, 2011.

[AS79] K. Aziz and A. Settari. Petroleum Reservoir Simulation. Applied Sci-
ence Publ., Ltd., London, 1979.

[Bai94] M. Bailyn. A Survey of Thermodynamics. American Institute of Physics
Press, New York, 1994.

Gray & Miller 153

ALERT Doctoral School 2015



[Bea79] J. Bear. Hydraulics of Groundwater. McGraw-Hill, New York, 1979.

[BEAZ15] M. L. Brusseau, A. El Ouni, J. B. Araujo, and H. Zhong. Novel methods
for measuring air–water interfacial area in unsaturated porous media.
Chemosphere, 127:208–213, May 2015.

[BJPV02] M. J. Blunt, M. D. Jackson, M. Piri, and P. H. Valvatne. Detailed
physics, predictive capabilities and macroscopic consequences for pore-
network models of multiphase flow. Advances in Water Resources, 25(8-
12):1069–1089, 2002.

[Blu01] M. Blunt. Flow in porous media—Pore-network models and multiphase
flow. Current Opinion in Colloid and Interface Science, 6(3):197–207,
2001.

[BN77] L. Boruvka and A. W. Neumann. Generalization of the classical theory
of capillarity. Journal of Chemical Physics, 66(12):5464–5476, 1977.

[Bor75] L. Boruvka. An extension to classical theory of capillarity. Master’s
thesis, University of Toronto, Toronto, 1975.

[BRN85] L. Boruvka, Y. Rotenberg, and A. W. Neumann. Free energy formulation
of the theory of capillarity. Langmuir, 1(1):40–44, 1985.

[BSSW14] K. Brown, S. Schl uter, A. Sheppard, and D. Wildenschild. On the
challenges of measuring interfacial characteristics of three-phase fluid
flow with x-ray microtomography. Microscopy, 253(3):171–182, March
2014.

[BVC15] T. Bultreys, L. Van Hoorebeke, and V. Cnudde. Multi-scale, micro-
computed tomography-based pore network models to simulate drainage
in heterogeneous rocks. Advances in Water Resources, 78:36–49, April
2015.

[Cal85] H. B. Callen. Thermodynamics and an Introduction to Thermostatistics.
Wiley, New York, 1985.
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[SSG+12] G. Sciumé, S. E. Shelton, W. G. Gray, C. T. Miller, F. Hussain, M. Fer-
rari, P. Decuzzi, and B. A. Schrefler. Tumor growth modeling from the
perspective of multiphase porous media mechanics. Molecular and Cel-
lular Biomechanics, 202(1):1–20, 2012.

[Whi67] S. Whitaker. Diffusion and dispersion in porous media. American Insti-
tute of Chemical Engineers Journal, 13(3):420–427, 1967.

[WS13] D. Wildenschild and A. P. Sheppard. X-ray imaging and analysis tech-
niques for quantifying pore-scale structure and processes in subsurface
porous medium systems. Advances in Water Resources, 51:217–246,
2013.

158 Thermodynamically Constrained Averaging Theory (TCAT)

ALERT Doctoral School 2015



Generalized Plasticity modelling of
geomaterials: the role of dilatancy

D. Manzanal, M. Pastor, J.Fernández-Merodo, P. Mira,
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The Chapter is devoted to the constitutive modelling of geo-materials based on Gen-
eralized Plasticity Theory presented by Olek Zienkiewicz and Manuel Pastor. The aim
is to provide the reader with an overview of the role of dilatancy in the modelling of
the most relevant phenomena in soils behaviour such as liquefaction, bonding and
de-bonding due to chemical processes or changes in the saturation conditions and
influence of particle breakage.

1 Introduction

Constitutive models are a fundamental part of simulations codes, together with math-
ematical and numerical model. Much effort has been done during the past decades
to improve our understanding of how geomaterials in general and soils in particu-
lar behave. Experimental techniques, such as tomography or the 3D testing devices
[Des84] have provided valuable information which has helped constitutive researchers
to improve their models. There are excellent texts and state of art papers devoted to de-
scribe constitutive models and their use in geotechnical engineering. We can mention
here the classic texts of Cambou and Di Prisco [CdP00], Zienkiewicz et al [ZCP+99]
among others, and the references provided therein. In this chapter, we will focus on
the Generalized Plasticity models which can reproduce behaviour of geomaterials un-
der both monotonic and cyclic loading.
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2 Generalized Plasticity

Generalized Plasticity Theory introduced by [ZM84] and elaborated by Zienkiewicz
and Pastor [ZLP85], [PZL85], [PZC90], as it provides a framework within which
accurate models can be developed to describe softening and liquefaction under mono-
tonic and cyclic loading. The basic model has been extended to:

(1) Anisotropic materials by Pastor [Pas91]

(2) Bonded geomaterials and collapsible soils by Fernández-Merodo et al. [FMPM+04]

(3)Granular soils incorporating a state parameter by Manzanal et al. [MFMP11]

(4)Non saturated soils by Tamagnini and Pastor [TP04] and Manzanal [MPM11]

Generalized Plasticity Theory introduces the dependence of the constitutive tensor
relating increments of stress and strain on the direction of the increment of stress via
a unit tensor n which discriminates the states of “loading” and “unloading”

dε = CL : dσ for n : dσe > 0 (1)
dε = CU : dσ for n : dσe < 0

where dσe is the increment of stress which would be produced if the behaviour were
elastic, dσe = De : dε, and De is the elastic constitutive tensor.

After imposing the condition of continuity between loading and unloading states, we
arrive to

CL = Ce +
1

HL
ngL ⊗ n (2)

CU = Ce +
1

HU
ngU ⊗ n

In above equations, subindices L and U refer to “loading” and “unloading”. The
scalars are referred to as loading and unloading plastic moduli, and unit tensors give
the direction of plastic flow during loading and unloading.

The limit case n : dσe = 0, is called “neutral loading”, and with the assumption done
in 2, it can be seen that response is continuous as:

dεL = CL : dσ = Ce : dσ (3)
dεU = CU : dσ = Ce : dσ

The strain increment can be decomposed into two parts, elastic and plastic as:

dε = dεe + dεp (4)

with
dεe = Ce : dσ (5)
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and
dεp =

1

HL/U
ngL/U ⊗ n (6)

The main advantage of Generalized Plasticity Theory is that all ingredients can be
postulated without introducing any yield or plastic potential surface. Moreover, it
can be seen that both Classical Plasticity and Bounding Surface Plasticity models are
special cases of the GPT.

We will describe next a simple model proposed by Pastor, Zienkiewicz , Leung and
Chan [PZL85], [PZC90] which is able to reproduce the basic features of sand be-
haviour under cyclic loading.

3 A basic GP Model for granular soils

The main features of sand behaviour under monotonic and cyclic loading are the fol-
lowing: :

(i) Volumetric deformations depend mainly on the stress ratio η = q/p′ . There is
a characteristic value η = Mg at which the behaviour changes from contractive to
dilative. Ultimate state conditions at constant volume takes place also at this line,
referred to as “Characteristic State Line” by Habib and Luong, and it can be interpreted
as a Critical State Line for granular soils. The basic idea behind is that the soil, before
failure, crosses a state at which there is no volume change, and comes back to it at
residual conditions.

(ii) Very loose and loose sands exhibit compaction under shearing, which results on an
increase of pore pressures when the loading process is not fully drained. In the limit,
liquefaction can happen.

(iii) Dense sands exhibit dilation once the Characteristic State Line has been crossed.
Dilation causes softening, and the strength decreases after a peak has been reached.
Here, localization of strain in shear bands shadows the experimental results as the
specimen is not homogeneous.

(iv) Under cyclic loading we observe the same compaction and dilation patterns. Plas-
tic deformation occurs and the soil compacts progressively or the pore pressure in-
creases. Liquefaction under cyclic loading is just the result of the increase of the pore
pressure and the mechanism which is observed in monotonic loading.

(v) Medium dense sands under undrained cyclic loading develop an special type of
behaviour which is referred to as ’cyclic mobility’. The difference with liquefaction
consists on dilation which causes the pore pressure to decrease, hardening in turn the
soil.

Taking into account all experimental facts described above, it is possible to develop a
model within the Generalized Plasticity Theory as follows:
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First of all, the direction of plastic flow in the (p′, q) plane is postulated as:

nTg = (ngv, ngs) (7)

with
ngv =

dg√
1 + d2

g

(8)

ngs =
1√

1 + d2
g

(9)

where the dilatancy dg , which is defined as the ratio between the increments of plastic
volumetric and shear strain is given by:

dg = (1 + α) (Mg − η) (10)

The loading-unloading discriminating relation n is obtained in a similar way:

nT = (nv, ns) (11)

with
nv =

df√
1 + d2

f

(12)

ns =
1√

1 + d2
f

(13)

where
df = (1 + α) (Mf − η) (14)

In above equations, Mf , Mg and α are model parameters.

The third ingredient is the plastic modulusHL, which as to be defined both for loading
and unloading. During loading, we will assume:

HL = H0p
′Hf {Hv +Hs}HDM (15)

where H0 is a constitutive parameter, and

Hf =

(
1− η

ηf

)4

(16)

In above equations, ηf acts as a limit for the possible states,

ηf =

(
1 +

1

α

)
Mf (17)
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The volumetric and deviatoric components of the plastic modulus Hv are assumed to
be of the form:

Hv =

(
1− η

Mg

)
(18)

Hs = β0β1 exp (−β0ξ) (19)

Finally, HDM keeps track of the maximum stress level reached by the material.

HDM =

(
ζmax

ζ

)γ
(20)

where

ζ = p′.

{
1−

(
1 + α

α

)
η

M

}1/α

(21)

and γ is a new material constant.

Let us now consider each term. The volumetric term is zero at the CSL, and therefore,
failure would take place there if Hs were zero. It can be observed in triaxial tests that
both in drained and undrained processes, the stress paths are able to cross this line.
The role of Hs is to prevent failure at this stage, but to allow it at residual conditions.
This is achieved by making Hs to depend on the accumulated deviatoric strain ξdev
defined from

dξdev = (dep : dep)
1/2 (22)

where dep is the increment of the plastic deviatoric strain tensor.

This basic model for sands was able to reproduce most salient aspects of sand be-
haviour under both drained and undrained conditions, the main limitation being the
necessity of using different model parameters for different relative densities.

4 Modelling of collapsible soils

An improvement of the Generalized Plasticity model has been recently porposed by
the authors to reproduce the mechanical behaviour of bonded soils, weak rocks and
other materials of a similar kind.

Following the framework introduced by Gens & Nova [GN93] and Lagioia and Nova
[LN95], two basic concepts lie the representation of this mechanical behaviour: the
fundamental role played by yield phenomena and the need for considering the ob-
served behaviour of the bonded material in relation with the behaviour of the equiva-
lent unstructured one.

As the amount of bonding increases, the yield surface must grow up. Two parameters
define the new enlarged yield locus: pc0 that controls the yielding of the bonded soil
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in isotropic compression and pt which is related to the cohesion and tensile strength
of the material. Both pc0 and pt increase with the magnitude of bonding.

We can assume that the degradation of the material (decrease in bonding) is related to
some kind of damage measure, that will in turn depend on plastic strains. Lagioia and
Nova proposed simple laws to describe the debonding effect on a calcarenite material.
The evolution of pt is governed by:

pt = pt0 exp
(
−ρtεd

)
(23)

where pt0 and pt are two constitutive parameters and is the accumulated plastic volu-
metric strain. It appears reasonable to assume that changes of the yield locus will be
controlled by two different phenomena: conventional plastic hardening (or softening)
for an unbonded material and bond degradation. In that case, the plastic modulus of
the sand model proposed by Pastor et al. [PZC90], can be improved introducing Hb

as:
HL = (H0p

∗ −Hb)H
∗
f (H∗v +Hs)H

∗
DM (24)

where we have introduced:

p∗ = p′ + pt (25)

H∗f =

(
1− η∗

ηf

)4

H∗v =

(
1− η∗

Mg

)

Hb = b1ε
d exp

(
−b2εd

)
H∗DM =

(
ζ∗max

ζ∗

)γDM

η∗ = q/ (p′+ pt) ζ∗ = (p′+ pt)

{
1−

(
αf

1 + αf

)
η∗

M

}−1/α

It can be seen that value of Hb decreases when the volumetric plastic strain increases
(i.e. when debonding occurs) and in the limit case, when destructuration is complete,
Hb becomes zero. In this case, the new plastic modulus defined above coincides with
the original plastic modulus. The assumption of softening depending on plastic volu-
metric strain is consistent with classical soil hardening and softening, which depends
mainly on plastic volumetric strain.

It is possible to reproduce with this improvement the laboratory tests of Lagioia and
Nova on the Gravina calcarenite. Figure 1 (Fernández Merodo et al [FMPM+04] )
compares experimental data and model predictions for an isotropic compression test.

This type of behaviour -destructuration with an important compaction- is a mecha-
nism which in our opinion plays a paramount role on the generation of pore pressures
and catastrophic failure of soils. This is the case of the landslide of Las Colinas (El
Salvador), triggered by the first 2001 earthquake. The soil presented cementation and
was unsaturated. When sheared, this material can collapse, and if the loading is fast
enough, pore pressures can cause the material to liquefy. In order to show qualitatively
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Figure 1: Isotropic compression test: experimental data from Lagioa and Nova and
model predictions.

Table 1: Parameters of the constitutive model for Las Colinas landslide.

Mg Mf α β0 β1 γ ps0
1.47 0.3 0.45 1-0 0.2 9.0 120 kPa
pm0 pt0 βp ρm ρt ξ

240 kPa 24kPa 0.06 8333 1000 -0.1
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the phenomenon, we have performed a simulation on an ideal material, a fine grained
soil with cementation. The parameters we have chosen are given in Table I.

Figures 2 show the results of a consolidated undrained triaxial test. We have depicted
in Figure 2(left) the stress path and in Figure 2(right) the deviatoric stress vs axial
strain for both the bonded and the unbonded materials.

Figure 2: Undrained behaviour of a bonded loose granular soil: stress path (left) and
Deviatoric stress versus axial strain (right).

5 A state parameter based Generalized Plasticity model

It is a well known fact that sands have different volumetric and stress – strain re-
sponses according to density and mean effective stress level. Contractive behaviour
and strain hardening is observed in loose sands while dense sands show dilative be-
haviour and strain softening during shearing under drained loading. Moreover, for a
given density, sands may show strong dilative behaviour at low confining pressures
and fully contractive response at high confining pressures. This means that neither
density nor confining pressure alone can fully characterize sand behaviour, but a com-
bination of both. The idea of a unified parameter including this double dependency of
sand behaviour was studied since the early works of Roscoe and Poorooshasb [RP63],
Wroth and Basset [WB65], and Seed and Lee [SK67]. The first constitutive model
incorporating a state parameter is the Harmonic Response model of Uriel [Uri75]. In
recent years several attempts have been made to deal with the influence of density and
confining pressure in soil modelling. It is worth mentioning the work of Jefferies &
Shuttle [JA05], Yang and Ling [YL05], Taiebat and Dafalias [TD08], among others.
The state parameter, as nowadays is known, has various definitions depending of the
different combinations of the current state and critical state [BJ85, Ish93, WDLM02].
The most widely accepted state parameter today is that proposed by Been and Jefferies
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[BJ85]. It is defined as the difference of the current voids ratio and the voids ratio at
critical state under the same confining pressure. As the state parameter definition is
based on the critical state line, we have chosen that proposed by Li [Li97]

ψ = e− ec = e− eΓ + λ

(
p′c
p′a

)ζc
(26)

where eΓ is void ratio at a confining pressure of 1 kPa, λ is the slope of critical state
line in a plane, ec and p′c are the void ratio and the confining pressure at critical state,
respectively and p′a is the atmospheric pressure. The parameters eΓ and λ can be
determined by fitting the experimental data at critical state in a e − (p′/p′a)

ζc plane
and ζc varies between 0.60 to 0.80 as Li [Li97] stated.

One limitation of the basic model for sands described in the preceding sections is that
specimens of a given sand with different densities require different set of parameters
to reproduce the observed behaviour. The method we will follow to extend the ba-
sic generalized plasticity model for sand is based on how the basic ingredients of the
model depend on confining pressure and void ratio through the state parameters de-
fined above. The state parameter will enter the definitions of the three main ingredient
of a Generalized Plasticity model: the directions ng and n and the plastic modulus
HL.

Concerning the plastic flow direction ng , we have introduced a new dilatancy law
following Li and Dafalias [LD00]

d =
d0

Mg
· (ηPTS − η) −→ ηPTS = Mg · exp (mψ) (27)

where d0 and m are model constants. ψ is the state parameter; η is the stress ratio
and Mg is the Critical State Line in the plot q – p′. Finally, ηPTS is the stress ratio
at the phase transformation point which depends on the state parameter ψ. Equation
(14) shows the existence of a family of stress - dilatancy curves for different densities
and confining pressures. The model constants d0 and m can be obtained from the
experimental data in drained or undrained triaxial tests as explained by Li & Dafalias
[LD00].

The second ingredient which was found in the basic model to depend on void ratio
and confining pressure was the loading- unloading discriminating direction n. Here
we have kept the same basic structure (see eq. (5)) and we will assume df to be of the
form:

df =
d0

Mf
· (Mf · (mψ)− η) (28)

The proposed expression includes a material parameter Mf which in the basic PZ
model is constant. Zienkiewicz, Chan, Pastor, Schrefler and Shiomi [ZCP+99] pro-
posed that the ratio between Mf and Mg was similar to the sand relative density.
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Here we propose the following relation which allows determination of Mf once Mg

is known:

Mf

Mg
= h1 − h2 ·

(
e

ec

)β
(29)

where h1 and h2 are model constants and β is equal to 1.80. The ratio e
ec

varies
between emin

emax
and emax

emin
as stated by Verdugo and Ishihara [VI96]. When e

eCS
reaches

its lower limit, Mf/Mg ratio is close to one. Parameters h1 and h2 can be calibrated
based on the q − p′ curve form undrained triaxial test on loose states for different
values of Mf/Mg and the ratio e

ec
equal to emin/emax.

Finally, the third ingredient which was found to depend on the void ratio and the
confining pressure was the loading plastic modulus. Here we have kept the same basic
structure of the plastic modulus proposed by Pastor, Zienkiewicz and Chan [PZC90],
which is expressed as:

HL = H0 ·
√
p′ · p′a ·HDM ·Hf · (Hv +Hs) (30)

In above equation Hf , Hs and HDM are defined by equation (7) and Mf is given by
equation (16).

H0 has been assumed to depend on the state parameter. Here we have chosen the law:

H0 = H ′0 · exp
[
−β′0 (e/ec)

β
]

(31)

where H ′0 and β′0 are additional model parameters. It can be seen that we have intro-
duced a dependency of H0 on void ratio in order to improve the model accuracy in
tests run at constant stress ratio, including as a special case the isotropic compression
test for which it is zero. The model constants H ′0 and β′0 can be determined adjust-
ing the volumetric response of the model with the experimental counterpart of the
isotropic triaxial test.

Finally, taking into account that the peak stress ratio ηp depends on the initial condi-
tions of the soil, we have modified Hv by making it dependent on ψ. The proposed
expression is:

Hv = Hv0 · [ηp − η] −→ ηp = Mg · exp (−βv · ψ) (32)

where Hv0 and βv are model parameters. It can be easily verified that ηp < Mg for
loose states while ηp > Mg for dense states. Parameter βv can be determined at a
peak stress in the drained test as shown by Li and Dafalias (2000). Assuming that for
saturated soils the model constants β0 andβ1 are zero, we can obtain Hv0 by fitting
the model predictions with the experimental results of drained triaxial tests
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As in other constitutive models for soils, the proposed model assumes a non-linear
reversible response through the expression of the shear modulus proposed by Richart,
Hall and Woods [RHW70], and the elastic bulk modulus are assumed to be:

G = Geso ·
(2.97− e)2

(1 + e)
· √p′ · p′a

K = Kevo ·
(2.97− e)2

(1 + e)
· √p′ · p′a

(33)

where Geso and Kevo are model constants. e is the void ratio, p′· is the confining
pressure and p′a is the atmospheric pressure in kPa.

In order to assess the model predictive capability, we have reproduced well known
experimental results obtained on two different sands, Toyoura and Kurnell. In all
these cases, we have obtained a single set of constitutive parameters which have been
used for all densities, confining pressures and types of tests –drained and undrained.
Details about parameter calibration can be found in Manzanal [Man08].

5.1 Toyoura sand

Verdugo & Ishihara [VI96] have reported a series of drained and undrained controlled
deformation triaxial tests on Toyoura Sand, which is a uniform fine quartz – feldspar
sand with a mean diameter D50 = 0.17mm and a uniformity coefficient Cu = 1.70.
The specific gravity is 2.65 and minimum and maximum void ratio is 0.977 and 0.597,
respectively. All samples have been consolidated isotropically and then sheared un-
der a range of confining pressures between 100 kPa and 3000 kPa and void ratios
between 0.735 and 0.996. Figure 4 shows a table displaying the initial conditions of
11 undrained triaxial test (TCU) and 6 drained triaxial test (TCD) used to assess the
performance of the proposed model.

The critical state line and the initial state of the tests are shown in 3. All these com-
binations of densities and confining pressures will be simulated with a single set of
constitutive parameters (see Table 2). Figure 4 compares the model predictions and
experimental data of undrained triaxial tests in terms of effective stress paths (q − p′)
and stress - strain behaviour for dense (e = 0.735 − Dr = 63.7%), medium dense
(e = 0.833 − Dr = 37.9%) and loose (e = 0.907 − Dr = 18.5%) samples. In
Figure 4a, it can be seen that the model captures well the phase transformation in the
effective stress path for samples with an initial density Dr = 63.7% under different
confining pressures, ranging from low pressures (po = 50kPa) with a markedly dila-
tive behaviour to high pressures (po = 3000kPa) with a marked phase transformation
point which divides contractive to dilative behaviour. The stress - strain behaviour is
also predicted with accuracy by the modified model as is shown in Figure 4b. Similar
comparisons for medium dense and loose samples are shown in Figures 4c–f. With-
out losing the good predictive capability of the basic PZ model, the present extension
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Test po´ 

 

e 

TCU0118 100 0,907 

TCU0137 100 0,833 

TCU0163 100 0,735 

TCU1018 1000 0,907 

TCU1037 1000 0,833 

TCU1063 1000 0,735 

TCU2018 2000 0,907 

TCU2037 2000 0,833 

TCU2063 2000 0,735 

TCU3037 3000 0,833 

TCU3063 3000 0,735 

TCD01L 100 0,996 

TCD01M 100 0,917 

TCD01D 100 0,831 

TCD05L 500 0,960 

TCD05M 500 0,866 

TCD05D 500 0.810 
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Figure 3: Initial state and Critical State Line for toyoura sand.
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Figure 4: Comparison between model predictions and experimental data undrained
triaxial compression test of Toyoura sand.
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reproduce static liquefaction in loose samples (Figure 4e-f), the contractive - dilative
behaviour in medium dense sands and the dilative behaviour in dense states with a
set of 13 model constant as shown Table 1. Figure 5 compares the model predictions

p´=100kPa
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Figure 5: Comparison between model predictions and experimental data drained tri-
axial compression test of Toyoura sand.

and experimental data of drained triaxial tests on dense (e = 0.831), medium dense
(e = 0.917) and loose (e = 0.996) samples of Toyoura sand with an initial confining
pressure of 100 kPa. Figure 5a shows the influence of the density on the behaviour
of the sand in terms of deviator stress – void ratio. The model simulates the change
from contractive to dilative behaviour in dense specimens (e = 0.831) and the con-
tractive behaviour in loose specimens (e = 0.996). For the three samples, the model
reaches an identical critical void ratio at large strain as observed in experimental data.
The model accurately predicts the initial peak stress and the strain softening during
the deformation history for the dense sample (e = 0.831) and also the strain hard-
ening for the loose sample (e = 0.996) (Figure 4b). Figures 4c-d show also a good
agreement between predicted and measured behaviour of three different samples of
different densities sheared at the initial confining pressure of 500kPa.

Table 2: Constitutive model parameters for Toyoura sand.

Geso Keso Mg eΓ λ ζc d0 m h1/h2

125 167 1.25 0.934 0.019 0.70 0.88 3.50 1.31/0.85
H ′0 β′0 β Hv0 βv β1 β0 γ α
125 1.90 1.80 175 1.50 0 0 0 0.45
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5.2 Kurnell sand

Russell & Khalili [RK06] have reported a series of triaxial compression test on satu-
rated samples of Kurnell sand. These tests were carried out at high confining pressures
and we will use them to assess the performance of the proposed model. It should be
noted that modelling the saturated behaviour of Kurnell sand in saturated conditions
is a first step towards modelling its behaviour in unsaturated conditions, which will be
described in the second part of this paper. Kurnell sand is a uniform, fine quartzitic
sand with a mean diameter D50 = 0, 31mm and a uniformity coefficient Cu = 1.83.
Figure 6 shows initial and final states of Kurnell sand samples tested in drained path
together with the critical state line in e− (p′/p′a)

ζc plane. Drained triaxial compres-

TEST Nº po [kPa] eo Dr [%]
50D 50 0,677 76

115D 114,5 0,685 73
157D 156,5 0,67 78
242D 242 0,735 58
301D 301 0,73 59

200D-CP 200 0,719 63
300D-CP 300 0,652 84

410D 410 0,72 63
760D 760 0,661 81

1010D 1010 0,671 78
1417D 1417 0,654 83
2395D 2395 0,641 87

Kurnell Sand
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Figure 6: Initial state and critical state line (CSL) for drained triaxial tests on Kurnell
sand.

sion tests with a range of confining pressure from 50kPa to 2395kPa and densities of
58% and 83% were used to assess the model capability. We have presented the tests in
two groups, corresponding to initial confining pressures smaller than and greater than
300 kPa. Figure 7 shows the comparisons of experimental data and model simulations
for drained triaxial compression tests in terms of deviator stress versus deviator strain
(q − εs) and volumetric strain versus deviator strain (εv − εs) for samples tested at
confining pressures below and higher than 300kPa. Not only the stress – strain re-
lationship but also the volumetric response is accurately predicted by the proposed
model. The isotropic compression test and model simulations for four different void
ratio is presented in Figure 8. The overall behaviour of Kurnell sand is well repro-
duced by the model.
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6 Extension to unsaturated materials

In this section we present an extension of the basic Generalized Plasticity constitutive
model [PZC90] to reproduce the main features of the behaviour of unsaturated soils
from state parameter point of view. The proposed model has been inspired by previous
work of Tamagnini and Pastor [TP04] and Tamagnini [Tam04]. Tamagnini and Pastor
model was able to reproduce some salient aspects of unsaturated soils, such as the
volumetric collapse when the soil is saturated, but presented some limitations which
have been addressed by Manzanal et al. [MPM11] and which will be described next.

The model is formulated using two set of stress – strain work conjugated variables
[Hou97] coupling the hydraulic and the mechanical behaviour of unsaturated soils
within a Generalized Plasticity framework. Stress variables are the effective stress
tensor and the matrix suction s, and Strain variables are the soil skeleton strain and
the degree of saturation. The effective stress is given by

σ′ij = σij − pa · δij + Sre · (pa − pw) · δij (34)

where σij is the total stress tensor, pa is the pore air pressure, pw is the pore water
pressure, pa − pw is the matrix suction s, δij is the Kronecker delta and Sre is the
relative degree of saturation which is given by

Sre =
Sr − Sr0
1− Sr0

(35)

where Sr0 is the residual degree of saturation. We found an important dispersion on
the experimental data even when we used the effective stress definition introduced by
Schrefler [Sch84] with a modified scalar factor of Bishop effective stress defined by
χ = Sr. The improvement obtained by using Sre in the effective stress definition can
be seen in Figure 9 which shows the predictive and experimental shear strength with
both approaches, χ = Sre and χ = Sr, for the experimental data described in Toll
[Tol90] and Sivakumar [Siv93].

The first ingredient of this model is the definition of the state parameter defined on the
previous Section, which is based on the critical state line. In the case of unsaturated
soils the CSL depends on suction, it is of paramount importance to define the depen-
dence of CSL on suction. Recently, Gallipoli, Gens, Sharma, and Vaunat [GGSV03]
proposed a normalization of CSL for non saturated soils by using the bonding variable
ξ as:

ξ = f(s) · (1− Sr) (36)

where the function f(s) is the ratio between the stabilizing pressure at a given suction
s and at zero suction introduced by Haines [Hai25] and Fisher [Fis26] and it is given
by
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Figure 9: Comparison between predicted and experimental deviatoric stress for a)
kinyul gravel (Experimental data from [Tol90] and b) speswhite kaolin (Experimental
data from [Siv93].

f (s) =
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

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2s


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R
+

√(
3Ts
R

)2

+
8Ts
R
s





 (37)

where Ts is the surface tension and R the radius of the spherical particles. There are
two limit cases, when suction tends to zero and to infinity. In the former, f(s) = 1
and in the latter, when suction tends to infinity f(s) = 3/2.

Here, we will use the following alternative relation linking the values of p′ at saturation
and at a given suction for a fixed void ratio:

p′unsatCS

p′satCS

= 1 + g (ξ) (38)

where

g (ξ) = a · [exp (b · ξ)− 1] (39)

and ξ is bonding parameter defined by [GGSV03]. The function g(ξ) depends on
the degree of saturation and on suction and takes a zero value at saturation. The
parameters a and b are calibrated from experimental data as shown by Gallipoli et al
[GGSV03]. In fig. 7 we have depicted the CSL for saturated and unsaturated state on
the plane and the normalization effect of the function g(ξ) (see eq.(27)).

By combining equation (26) and (27) with a suitable definition of a CSL for saturated
states, we will obtain a generalization of the critical state line to unsaturated states.
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We provide in fig. 11 an example using the experimental data described in Sivakumar
[Siv93] which illustrate the effectiveness of the proposed approach.
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Figure 11: a) Critical state for speswhite kaolin at different suctions b) Normalization
of CSLs (Experimental data from [Siv93].

The increment of strain is assumed to be:

dε = Ce : dσ′ +
1

HL/U
· ngL/U⊗ : dσ′ +

1

Hb
· ngL/U · ds (40)

where the two first terms are the elastic and plastic strain which have already been
described and the last term is the plastic strain develop during wetting – drying cycles.

The plastic modulus Hb is given by

Hb = w (ξ) ·H0 ·
√
p′ · patm ·HDM ·Hf (41)

where

HDM =

(
ζmax · Js

ζ

)γ
(42)
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is a modified discrete memory function incorporating the effect of the suction and
degree of saturation,

Js = exp (c.g (ξ)) (43)

where c is a model parameter and g(ξ) is defined by equation (27). To illustrate the
role of Js, we will consider the case of a saturated soil which has been consolidated at
pc0 and then it has been dried, its suction increasing from zero. We have depicted in
Figure 12 the variation of ζmax · Js with the bonding parameter. It can be interpreted
within the framework of classical plasticity as the increase in size of the yield surface
with suction. The value of ζmax at saturated conditions can be obtained by r0 · pSATcs

where r0 is a material parameter and pSATcs is the mean effective stress at critical state.
Indeed this new parameter in equation 42 is equivalent to the OCR used in classical
plasticity models.

Figure 12: Effect of the bonding parameter on the hardening law.

w(ξ) incorporates the effect of the bonding parameter above defined.

w (ξ) =

{
−
{

1− exp [g (ξ)]
2
}2

1

}
(44)

and H0, Hf , Hv and Hs are the same functions defined for saturated soils.

The model is completed with a suitable hydraulic equation which takes into account
both the hydraulic hysteresis during a drying – wetting cycle and its dependency on
past history. We have chosen a modified version of the water retention curve proposed
by Fredlund & Xing [FX94]:

Sr = Sr0 + (1− Sr0) ·
{

ln

[
exp (1) +

(
eΩ · s
aw · p0

)n]}−m
(45)
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where Ω, aw, n and m are model parameters, e is the void ratio and s the matrix
suction. The main wetting and drying curves are obtained by assuming different values
for aw,n and m.

Therefore, the non-linear irreversible behaviour of a unsaturated soil can be fully char-
acterized within the Generalized Plasticity framework by adding a plastic modulus in
wetting and drying paths Hb and a bonding parameter ξ to the formulation presented
in part I [32]. Coupling with a state dependent WRC allows not only reproduce the
irreversible response in wetting – drying paths but also the mechanical effect on the
hydraulic behaviour (Figure 13).
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Figure 13: Wetting and drying test.

With the proposed model, it is also possible to reproduce an interesting case, the effect
of suction on the undrained behaviour of an unsaturated fine grained soil. We have
depicted in Figure 14 constant volume triaxial tests for different suctions. It can be
observed the hardening effect due to increasing the suction on a loose sample which
in saturated conditions (s = 0) arrives to liquefaction. If a soil at a large initial
suction (point A) is sheared at constant deviatoric stress decreasing the suction, the
stress path will become unstable and fail in a catastrophic manner. This phenomenon
has been recently modelled by [BN11]. It is important to remark that this is just a
qualitative example, a complete analysis based on the method proposed by Darve et al
[DL00, DL01] being necessary to fully understand the process.

Using this state parameter based model, it is possible to reproduce the set of tests on
Kurnell sand reported by Russell [Rus04] with a single set of parameters for saturated
and non saturated conditions (See Table 3).

Concerning fine soils, we have chosen the experiments performed by Sivakumar [Siv93].
The first example is a series of constant volume triaxial tests on Speswhite Kaolin, de-
noted as 2A, 3A, 4A and 5A, with net confining pressures of 200, 100, 150 and 300
kPa, and at initial suction of 200 kPa. Figure 16 provides (i) net confining pressure
vs deviatoric stress, (ii) axial strain vs deviatoric stress, and (iii) axial strain vs pore
pressure change. As in the case of sands, all the simulations were performed with a
single set of parameters [MPM11].
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Figure 15: Comparison between model predictions and experimental data of
undrained triaxial compression tests at constant specific water volume on Kurnell sand
(Experimental data from [Rus04].
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Table 3: Constitutive model parameters for Kurnell sand.

Geso Keso Mg eΓ λ ζc d0 m h1/h2

135 292 1.475 0.932 0.0328 0.60 0.80 3.32 1 /0.55
H ′0 β′0 β Hv0 βv β1 β0 γ α
125 1.90 1.80 175 1.50 0 0 0 0.45

a b c Sr0 Ω aw/ad nw/nd mw/md βw
0.20 2.00 0 0.009 2.10 0.03/0.05 6.00/10 0.80/1.00 2
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Figure 16: Comparison between model predictions and experimental data of
undrained (constant volume) triaxial compression tests at constant suction on
Speswhite kaolin (Experimental data from [Siv93]).
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In order to show the influence of the wetting- drying cycle on the mechanical soil
behaviour, we have chosen an experiment performed by Sharma [Sha98]. The test
consists in a constant suction isotropic compression loading/unloading cycle (a-b-c),
followed by wetting – drying cycle (c-d-e) and a second constant suction isotropic
reloading and unloading cycle (e-f-g). Figure 17 provides the model predictions and
experimental data on compacted bentonite - kaolin sample in (i) net confining pressure
vs void ratio, (ii) degree of saturation vs net stress (iii) degree of saturation vs suction,
and (iv) stress path followed during the test. The parameters are reported in Manzanal
et al (2011).

Bentonite-kaolin

a

f

c
b

g

e

0,6

0,7

0,8

0,9

1,0

1,1

1,2

1,3

1,4

10 100 1000
Net stress [kPa] 

vo
id

 ra
tio

, e

s = 200kPa Experimental data

s = 200kPa Model prediction

Bentonite-kaolin

c b

a

g f

e

0,0

0,2

0,4

0,6

0,8

1,0

1,2

10 100 1000
Net stress [kPa]

D
eg

re
e 

of
 s

at
ur

at
io

n,
 S

r

s = 200kPa Experimental data

s = 200kPa Model prediction

Bentonite-kaolin

d

e

c

0,0

0,2

0,4

0,6

0,8

1,0

1,2

10 100 1000
Suction, s [kPa]

D
eg

re
e 

of
 s

at
ur

at
io

n,
 S

r

s = 200 - 10 - 200 kPa
Model prediction

Bentonite-kaolin

f

d

ba, c, e, g

0

50

100

150

200

250

1 10 100 1000
Net stress [kPa]

S
uc

tio
n 

[k
P

a]

p net = 10 - 100 - 10 - 250kPa

s = 200kPa - 10kPa - 200kPa

Figure 17: Comparison between model predictions and experimental data of isotropic
loading/unloading tests at s = 200kPa with a wetting-drying cycle at pnet = 10kPa on
a bentonite - kaolin sample (Experimental data from [Sha98].

7 Dilatancy for flowing materials

In classical soil mechanics, residual conditions are defined as states where the soil is
sheared at constant effective stresses, and it is assumed that residual conditions take
place on a line on the 3D space (e, p′, q) where e is the void ratio, p′ = (1/3)tr(σ′)
the mean effective confining stress and q =

√
3J ′2] where J ′2 = (1/2)tr

(
s2
)

and s
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the deviatoric stress. This line is referred to as the Critical state Line (CSL) [Par60]:

e = Γ− λ ln p′ (46)
q = M (θ) p′

where :

Γ is the void ratio at p’=1

λ is a material parameter characterizing the slope of the CSL on (e, ln p’)

M (θ) is related to friction angle at residual conditions by:

M (θ) =
6 sinφ

3− sinφ sin 3θ
(47)

In above equation, the Lode’s angle θ is given by

θ = −1

3
arcsin

(
3
√

3

2

J3

J
3/2
2

)
with J3 =

1

3
tr
(
s3
)

(48)

At residual conditions, where
q

p′ = M (θ) (49)

the soil shears at constant volume, and dilatancy, defined as the ratio between vol-
umetric and shear rates of plastic strain dg =

dεpv
dεps

is zero Constitutive equations
provide suitable expressions for dilatancy. One simple example is obtained by assum-
ing that dilatancy varies linearly with the distance to the CSL as:

dg =
dεpv
dεps

= (1 + α) (M (θ)− η) (50)

with η = q/
p′ being the stress ratio.

Obviously, soil dilatancy is not constant when the soil is sheared, as loose soils tend to
compact while dense soils dilate. This fact has been considered to play an important
role in triggering of landslides and early stages of propagation [PNP08], [Ive05][89],
[59]).

Simple plasticity models such as those using a Mohr Coulomb yield surface will pre-
dict dilation during plastic shearing of the soil unless a non-associated flow rule is
used. Indeed, at residual conditions dilatancy should be zero.

Unfortunately, the implementation of dilatancy rules in depth integrated models present
the difficulty of introducing a dilatancy angle which should not be constant, as it de-
pends both on the stress state and the material history.

In the case of landslides, dilatancy laws have to be modified when soil crushing occurs
or when the soil flows at shear strain rates much higher than those used in classical
soil mechanics tests.
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Concerning the latter, laboratory tests performed in rheometers have shown that:

(i) If a granular material is sheared at constant confining pressure, it will dilate when
shear strain rate increases (Hanes and Inman [HD85]).

(ii) If shearing is done at constant volume, the pressure will increase with the shear
strain rate (Bagnold [Bag54] ). Figure 18 depicts the rheometer experiments per-
formed by Bagnold in 1954 [Bag54].

Pressure 0-A Constant voids ratio:

Behaviour of fluidized soil

Pressure
A

0 A Constant voids ratio:
Pressure increases with

strain rate

0 B
0-B Constant pressure:

R t f h t i
2

Voids ratio increases with 
strain rate

Rate of shear strain

Behaviour of fluidized soil

Shear stress
: linear concentration

Rate of shear strain
2

Figure 18: Rheometer experiments performed by Bagnold in 1954.

More elaborated experiments performed by the GDR MiDi [MiD04] have provided
considerable insight in the behaviour of granular fluids.

Experimental results on several types of rheometers (Forterre and Pouliquen [FP08],
Pailha and Pouliquen [PNP08] ) show that volume fraction decreases linearly with the
inertia number I as:

Φeq = Φmax + (Φmin − Φmax) I (51)

which suggests the existence of an unique volume fraction (porosity or void ratio) for
a given inertia number I. A similar law has been proposed by George and Iverson
[GI11]
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The authors (Pastor et al [PBP09] ) have proposed the law:

eCSL, dyn = eCSL + β1 (I2d) (52)

where β1 is a material parameter, eCSL the void ratio at CSL (at the same p’) and
eCSL, dyn the void ratio at the dynamic CSL corresponding to I2d.

In above equation, I2d is the second invariant of the rate of deformation tensor.

Concerning dilatancy, Roux and Radjai [RR88] and Pailha and Pouliquen [PNP08]
propose laws of the type:

1

Φ

dΦ

dt
= k3 (Φ− Φeq) γ̇ (53)

where γ̇ is the 1D rate of shear strain.

Above equation describes the evolution towards the dynamic CSL. Alternatively, Pas-
tor et al [PBP09] proposed

dg = −β2
eCSL, dyn − e

eCSL
(54)

where β2 is a material parameter. Fig 19 illustrates the idea, interpreting both constant
pressure and constant volume rheometer tests.

Figure 19: Interpretation of constant p and constant volume rheometer tests.

From above ideas, an alternative could be:

eCSL, dyn = eCSL + β1I (55)

ε̇v = −β2 (eCSL, dyn − e) γ̇ (56)
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8 Dilatancy and modelling of crushing materials

Concerning breaking of soil particles, Iverson et al. [IMI10] have proposed that it
can generate pore pressures during landslide propagation. They studied the behaviour
of a loamy sand presenting aggregates in a shear ring apparatus, concluding that the
breaking of aggregates caused a tendency to compact and, hence, increase of pore
pressures. Constitutive and numerical analysis of crushing has been studied by Hicher
and Daouadji [DH09], Hu et al [HYDH11], Muir Wood and Maeda [MWM07], and
Russell et al. [Rus11]. Several approaches have been developed to quantify parti-
cle breakage of a crushable material subjected to different stress path (compression
and shearing)[Har85, Mar67, LF67, MBR96]. Hardin [Har85] proposed identify two
parameter (i) the Granular Size Distribution (GSD) before loading and (ii) the parti-
cle size diameter which represent the fine content (silts and clays) of a representative
sample. The total Breakage Bt is obtained from the relative position of Granular Size
Distribution (GSD) after loading:

Bt = Bp −Bpl (57)

where Bp is the total potential amount of particle breakage [Har85] and Bpl the po-
tential amount of particle breakage after some crushing occur. Since the GSD of a
crushable material evolves during loading, Bp and Bpl depend on GSD before dby
and after day loading and are defined as:

Bp,pl =

1∫

0

log

(
da,b (y)

dmin

)
dy (58)

y represents the passing fraction for given diameter varying from 0 to 1, and dmin =
74 µm is the upper limit of silt particles. Figure 1 shows the interpretation of Bp
which represents the total area between the initial GSD and the constant cut-off.

The relative breakage is defined asBr = Bt/Bp and neglects the breakage of particles
smaller than 74um.

Marsal [Mar67] proposed a Breakage Factor as the individual particle size difference
between initial and final GSD. The lower and upper limits are 0% and 100% which
represent no crushing and total crushed materials. Breakage index suggested by Lee
and Farhoomand [LF67], is defined as the ratio between diameter passing 15% finer
of GSD before and after loading. The fractal distribution of particles has been noted
experimentally by [MBR96] and [LC02]. The fractal distribution of particles of final
GSD defined by a fractal of a dimension of 2.5 or 2.6 can be adopted as ultimate limit
of GSD. Einav [Ein07] proposed a modified Hardin Relative Breakage based on the
fractal distribution of particles of final GSD defined by a fractal of a dimension:
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Br =

dM∫
dm

[Fu (d)− Fd (d)] d(log d)

dM∫
dm

[Fu (d)− Fo (d)] d(log d)

(59)

where Fo, Fd and Fu are the initial, current and ultimate grain size cumulative func-
tions. Similar approach was proposed by Kikumoto et al. [KWMR10].

As noted in the previous sections, sands have different volumetric and stress – strain
responses according to density and mean effective stress level. Contractive behaviour
and strain hardening is observed in loose sands while dense sands show dilative be-
haviour and strain softening during shearing. This change from contractive to dilative
behavior can be quantified in terms of the state parameter

ψ = e− eΓ − (emin − emax)
Br

Br + bcr
+ λ

(
p′
p′a

)ζc
(60)

where bcr is a material parameter related to mineral of grain, emin and emax the
minimum and maximun void ratio and Br is the relative breakage parameter given by
[DH09]:

Br =
WP

WP + χcr
(61)

where WP is accumulated plastic work:

WP =

∫
σij
∣∣dεpij

∣∣ (62)

The model is completed by modifing the plastic modulus as:

HL = (1−Br ·H0 ·
√
p · pa ·HDM · f (η) (63)

The influence of particle breakage during a undrained triaxial test and the evolution of
grain size distribution during shearing are shown in Figure 20 and 21. Small variations
in the grain size distribution, show increases in the pressure pores.

9 A note on bounding surface models

Classic elasto-plastic constitutive models are unable to predict the cyclic behavior of
materials properly. This is mainly because of the fact that the stress state during un-
loading and reloading is located inside the yield surface and a pure elastic behavior is
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Figure 20: Undrained triaxial simulation with and without breakage.

Figure 21: Grain size distribution during shearing.
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predicted in this region. Hence, such models cannot capture the accumulation of plas-
tic volumetric strains or pore water pressure during a stress controlled cyclic shearing.
To overcome such deficiencies the concept of bounding surface plasticity was devel-
oped by [Daf75, Kri75, DE75]. Compared to the multi surface plasticity models,
bounding surface plasticity models do not need to define, renew and keep in the mem-
ory several yield surfaces. Therefore, generally, the latter models are less complicated
and more efficient. Bounding surface is similar to conventional yield surface in many
respects, with plastic strains are allowed to occur inside the bounding surface. In fact,
if the stress state is located on the bounding surface, the bounding surface model acts
similar to a classical elasto-plastic model. Two different approaches in the context of
bounding surface plasticity are proposed by [Daf75, DH80]. In the former approach, a
loading surface (or yield surface or bubble) is defined in addition to bounding surface.
Such models are called two surface models. Loading surface defines an elastic region
in the stress space. The stress state can be located inside or on the loading surface and
the loading surface should be enclosed by the bounding surface. However, the loading
surface can translate inside the bounding surface. In the latter approach, the elastic
zone is neglected and a mapping rule is used to correspond the current stress state to
an image point on the bounding surface. A plastic potential surface is also associated
with this surface. Hence, plastic hardening modulus can be obtained at image point.
The plastic hardening modulus at current stress state is a function of this value and
the distance between the current stress state and the image point. Unloading can be
considered to be pure elastic (MIT-E3 model,[Whi91]) or a separate plastic modulus
can be defined for unloading (CASM-c model, [YKW07]). In p-q space (deviatoric
stress-mean effective stress) a straight line or an ellipse is usually taken as bounding
surface for sands and clays, respectively. More advanced models use a distorted sur-
face as the bounding surface. The size of bounding surface is usually controlled by
NCL (or limiting compression curve) [CWD94, PW99]. Furthermore, the concept of
state parameter for cohesionless materials has been implemented successfully in the
such framework [MD97]. Evaluation of the behaviour of sands with fines has revealed
that the state parameter [BJ85] cannot describe completely some aspects of their be-
haviour [BLW+09]. In such cases, one can define a new reference state curve to define
a new state parameter. The new state parameter can effectively incorporate in the for-
mulation of the bounding surface and plastic potential and improve the predictions
of the model. Bounding surface plasticity and Generalized Plasticity provide flexible
framework to predict soil behaviour under monotonic and cyclic loading.

10 Conclusions

This Chapter presents an overview of the hierarchical and versatile formulation of
Generalized Plasticity Theory (GPT) developed by Zienkiewicz and Pastor in the mid-
dle of the eighties and the most recent developments:

(i) a state-dependency on soils behaviour has been introduced on GP approach to
reproduce the stress – strain response of granular materials under different densities,

188 Generalized Plasticity modelling of geomaterials: the role of dilatancy

ALERT Doctoral School 2015



confining pressures and stress paths.

(ii) in the extension of Generalized Plasticity to unsaturated behaviour, the model
adopts the Bishop effective stress and suction as stress variables and the strain of solid
skeleton and degree of saturation as deformation variables. The model considers both
the void ratio and hydraulic hysteresis effect on hydraulic behaviour.

(iii) a generalization of the critical state for different suctions as function of a bonding
parameter is proposed. This allows the extension of the state parameter concept to
model the behaviour of partially saturated soil. The model is capable of reproducing
stress-strain behaviour of unsaturated soils for different densities, confining pressures
and suctions, by using the same materials constants.

(iv) it was introduced the concept of dynamical critical state line (DCSL), depending
on shear strain velocity, which generalizes the critical state line (CSL) used in Geome-
chanics to describe residual conditions at failure. The model consisted on a volumetric
part, based on a dilatancy term depending on the distance to the DCSL, and a devi-
atoric part incorporating coupling with pore pressures. This concepts can allow the
use of viscoplastic models for both the prefailure (solid) and post failure (fluidized)
behaviour.

(v) the evolution of particle size distribution due to particle breakage was introduced
as function of plastic work.

The results show a general good agreement between the models predictions and lab-
oratory experiments. Further details on extended formulation and calibration can be
obtained in [FMPM+04, Man08, PMFM+10, MFMP11, MPM11].
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[MFMP11] Diego Manzanal, José Antonio Fernández Merodo, and Manuel Pastor.
Generalized plasticity state parameter-based model for saturated and
unsaturated soils. part 1: Saturated state. International Journal for Nu-
merical and Analytical Methods in Geomechanics, 35(12):1347–1362,
2011.

[MiD04] G. D. R. MiDi. On dense granular flows. 14:341, 2004.

[MPM11] Diego Manzanal, Manuel Pastor, and José Antonio Fernández Merodo.
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An introduction to numerical modelling of
coupled problems in geomechanics

M. Pastor, P. Mira, J.A. Fernández-Merodo, M. Martı́n
Stickle, D. Manzanal and A. Yagüe

Grupo M2i Modelos Matematicos en Ingenieria and ETS de Ingenieros
de Caminos, Canales y Puertos de Madrid

This Chapter is devoted to present an introduction to numerical modelling of coupled
problems in geotechnical engineering. It aims to provide the reader with an overview
both of the techniques and the difficulties encountered when modelling this type of
problems. We have restricted the analysis to the simplest case where we have only
a fluid filling the pores, as the main difficulties can be more easily explained and
understood. The paper is limited to finite element techniques, even tough the authors
have worked with meshless methods such as the SPH and the MPM. Again, the reason
is that the problems found in finite elements are also found in SPH and MPM.

1 Introduction

Soils and rocks are geomaterials with voids which can be filled with water, air, and
other fluids. They are, therefore, multiphase materials, exhibiting a mechanical be-
haviour governed by the coupling between all the phases.

Pore pressures of fluids filling the voids play a paramount role in the behaviour of a
soil structure, and indeed, their variations can induce failure. If we consider the soil
as a mixture, we will have equations describing: (i) balance of mass for all phases,
i.e., solid skeleton, water and air, in the case of non saturated soils (ii) balance of
linear momentum for pore fluids and for the mixture, and (iii) constitutive equations.
A crucial point is the choice between eulerian and lagrangian formulations. In soil
mechanics, the approach followed most often is mixed, lagrangian for the skeleton
and eulerian for the relative movement of the pore fluids relative to the soil skeleton.
In many occasions, convective terms can be neglected.

The first mathematical model describing the coupling between solid and fluid phases
was proposed by Biot [Bio41], [Bio55] for linear elastic materials. This work was fol-
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lowed by further development at Swansea University, where Zienkiewicz and cowork-
ers [Zie80], [Zie84], [Zie90a], [Zie90b], [ZS99] extended the theory to non-linear ma-
terials and large deformation problems. It is also worth mentioning the work of Lewis
and Schrefler [Lew98], Coussy [Cou95] and de Boer [Boe00].

An alternative description is that of mixture theories, developed by Green & Adkin
[Gre60], Green [Gre69] and Bowen [Bow76]. This approach was also studied by Li,
Zienkiewicz and Xie [Li90] and Schrefler [Sch95]. The interested reader is referred
to the texts by de Boer [Boe00] and Zienkiewicz et al. [ZS99].

This Chapter is devoted to present different alternative models which can be used to
describe the coupling between solid skeleton and pore fluids in geomaterials, both in
solid and fluidized states. We have chosen an approach closer to mixture theories than
to the more classical approach used in computational geotechnics, as it provides a
more general description which can be used not only for the initiation of failure but
also for propagation of catastrophic landslides.

2 Mathematical models for coupled behaviour of geo-
materials

Mathematical models for coupled materials, including the definition of effective pres-
sure have already been presented in this book. Therefore, we will present only a
succinct description of the mathematical models which will be discretized.

We will start summarizing the general equations which describe the hydro-mechanical
coupling of a saturated porous materials.

2.1 The vs−vw−pw Biot Zienkiewicz model for saturated geoma-
terials

We will introduce:

• The porosity n
n =

e

1 + e
(1)

where e is the void ratio. Alternatively, a solid fraction Φ can be defined as
Φ = 1− n

• Densities of the pore water and solid particles will be denoted as ρw and ρs,
from here phase densities are obtained as:

ρ(s) = (1− n) ρs (2)
ρ(w) = nρw

198 An introduction to numerical modelling of coupled problems in geomechanics

ALERT Doctoral School 2015



• Material derivatives following the solid and the fluid, which move with veloci-
ties vs and vw:

d(s)

dt
=

∂

∂t
+ vs

T . grad (3)

d(w)

dt
=

∂

∂t
+ vw

T . grad

Both derivatives are related by

d(w)

dt
=
d(s)

dt
+ (vw − vs)T . grad (4)

• In classical geomechanics, a relative velocity w (Darcy) is introduced as:

vw = vs +
w

n
(5)

The balance of mass equations are:

d(s)

dt
((1− n) ρs) + (1− n) ρs div vs = 0 (6)

and
d(w)

dt
(nρw) + nρw div vw = 0 (7)

They can be combined as:

(1− n)

ρs

d(s)ρs
dt

+
n

ρw

d(w)ρw
dt

div vs + div w = 0 (8)

Balance of linear momentum is:

nρw
d(w)vw
dt

= −n grad pw + nρwb+ nRw (fluid) (9)

(1− n) ρs
d(s)vs
dt

= div σ′ − (1− n) grad pw + (1− n) ρsb+ (1− n)Rs (solid)
(10)

where σ′ is the effective stress, b is the body forces vector, andRw andRs characterize
the mechanical interaction between phases.

It is important to note that the interaction forces between the solid skeleton and the
pore fluid will be described by models such as the Darcy or Anderson et al. [And67].
The set of PDE’s given by eqns. 6, 7 and 9, 10 are complemented by suitable constitu-
tive relations describing the effective stress σ′, and kinematics relations for both solid
and fluid phases.
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The general (2 phases) model described by eqns. 6, 7 and 9, 10 can be simplified in
many cases of interest assuming that

d(w)

dt
=
d(s)

dt
+ (vw − vs)T . grad ≈ d(s)

dt
(11)

In what follows, we will drop the superindexes (s) and (w) assuming that derivatives
are taken relative to the solid phase.

In this case, equations 6 and 7 can be combined, resulting in:

(1− n)

ρs

dρs
dt

+
n

ρw

dρw
dt

+ div vs + div w = 0 (12)

From here, introducing the volumetric stiffness of solid particles and the fluid, Ks and
Kw, we arrive to:

1

Q

dpw
dt

+ div vs + div w = 0 (13)

where
1

Q
=

(1− n)

Ks
+

n

Kw
(14)

The resulting model is cast in terms of vs, vw, pw and σ′. Using a constitutive relation
plus the kinematic relations between velocities, strains and stresses, the unknowns of
the system reduce to vs, vw and pw.

This vs − vw − pw model is of interest in cases such as debris flows.

2.2 The vs − pw Biot-Zienkiewicz model

In some cases (Zienkiewicz et al 1990a [Zie90a]), the relative velocity of the pore fluid
can be eliminated. The resulting model, known as the u − pw is the much celebrated
model which is found in most geotechnical finite element codes used today.

The equations are:

(i) Balance of linear momentum equations for the solid and pore fluid that, once com-
bined are:

ρ
dv

dt
= div σ′ − div pw + ρ b (15)

(ii) Balance of mass and momentum of the pore fluid, which, once combined to elim-
inate w result on:

1

Q

dpw
dt

+ div v + div ( kw grad pw) = 0 (16)

In above equation, we have assumed an interaction law between solid and fluid phases
given by Darcy’s law, kw being the permeability.
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2.3 Boundary and initial conditions

The equations presented so far have to be complemented by suitable boundary and
initial conditions for the problem variables. In the u − pw the conditions are the
following:

(i) u prescribed on Γu;

(ii) tractions prescribed on Γt, σ.n = t, Γu ∪ Γt = Γ, Γu ∩ Γt = {∅};
(iii) pw prescribed on Γpw;

(iv) flux -kw∇pwn prescribed along Γq ,Γpw ∪ Γq = Γ, Γpw ∩ Γq = {∅}.
In the case of a non-saturated slope under rain, the boundary conditions to be applied
can be simplified to a prescribed pressure (atmospheric) on the surface, but care should
be taken as the inflow cannot be larger than the amount of percolating water. In this
way, the saturation will increase within the material and the effective stresses will
decrease.

The initial conditions will be:

(i) solid displacements and velocities at t = 0,

(ii) pore pressures at t = 0.

2.4 The incompressible undrained limit

The u− pw version of Biot equations can be further simplified depending on whether
accelerations are small, leading to what is known as “consolidation”, or “slow consol-
idation phenomena”, which in the case of saturated materials are:

STσ + ρb = 0 (17)

where ST is the divergence operator and

∇T {kw (−∇pw + ρwb)}+
1

Q
ṗw + tr (ε̇) = 0 (18)

If we now consider a material of very small permeability and very large volumetric
stiffness, above equations can be written as:

ST (σ′ + m pw) + ρb = 0

∇T u̇ = 0

where m = (1, 1, 1, 0, 0, 0) in 3 dimensions, which corresponds in vector notation
to the trace operator. These equations are similar to the equations found in solid me-
chanics for incompressible materials. Here, important difficulties regarding both the
interpolation spaces which can be used for displacements and pressures and simulation
of failure processes are found, and will be discussed later.
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2.5 A note on mixed σ′ − v − pw
One interesting possibility is to formulate the model using, as nodal variables, effec-
tive stresses, velocities and pore pressures. This approach has been shown to provide
an excellent accuracy which allows the use of lower order elements, such as linear
triangles and tetrahedra.

For the sake of simplicity, we will consider the case of a drained material, for which
pw = 0.In 1D, the equations are:

(i) Balance of momentum (convective terms not included)

ρ
∂v

∂t
=

∂σ′

∂x
(19)

(ii) Constitutive equation (elastic material)

∂σ

∂t
= E

∂v

∂x
(20)

Above equations can be written in a compact manner as

∂

∂t

(
σ′

v

)
+

(
0 E
1/ρ 0

)
∂

∂x

(
σ′

v

)
(21)

The equation can be solved using stable FE schemes which will be described later on.

3 Discretization: FEM techniques

3.1 Biot-Zienkiewicz u-pw finite element formulation

The mathematical model consists on equations 15,16.

This system of partial differential equations can be discretized using standard Galerkin
techniques, as described in [Zie90a]. After approximating the fields u and pw as:
u = Nuū, pw = Npp̄w, it results in two ordinary differential equations:

M
d2ū

dt2
+

∫

Ω

BT .σ′dΩ−Qpw − fu = 0 (22)

where B = S.Nu , and

QT .
dū

dt
+ H.pw + C.

dpw
dt
− fp = 0 (23)

The matrices given above are defined as:
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M =
∫

Ω
ρNT

uNudΩ

C =
∫

Ω
1
QNT

p NpdΩ

Q =
∫

Ω
SwαBTmNpdΩ

H =
∫
∇NT

p kw∇NpdΩ

(24)

where Sw is the degree of saturation and α the ratio between the volumetric stiffnesses
of the soil skeleton and that of solid particles, and

fu =
∫

Ω
NT
ubdΩ +

∫
Γt

NT
u tdΓ

fp =
∫

Γq
NT
p kw

∂p

∂n
dΓ +

∫
Ω
∇NT

p kwρwbdΩ−
(∫

Ω
∇NpkwNudΩ

) ..
ū−

∫
Ω

NT
p s0dΩ

(25)

The term including accelerations in fp is usually disregarded.

The time derivatives of u and pware approximated in a typical step of computation
using the Generalized Newmark GN22 scheme for displacements and a GN11 for the
water pressure [MO55], [OZ91].

If we introduce the following notation [MO55]:

∆ün = ün+1 − ün

∆ṗnw = ṗn+1
w − ṗnw

u̇n+1 = u̇p,n+1 + β1∆t∆ün

un+1 = up,n + 1
2β2∆t2∆ün

pn+1
w = pp,n+1

w + θ∆t∆ṗnw

(26)

where

u̇p,n+1 = u̇n + ∆tün

up,n+1 = un + ∆tu̇n + 1
2∆t2ün

pp,n+1
w = pnw + ∆tṗnw

(27)

we obtain the discretized system of equations valid in each time step:

M∆
..
ū
n

+

∫
BT σ

′n+1 − θ∆tQ∆
.

p
n

w − Fn+1
u = Φu = 0 (28)
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β1∆tQT∆
..
ū
n

+ (∆tθH + C)∆
.

p
n

w − Fn+1
p = Φp = 0 (29)

where the unknown values are ∆
..
ū
n

and ∆
.

p
n

w

If this system is non-linear, it can be solved by using a Newton Raphson method with
a suitable jacobian matrix:.




∂Φu

∂∆
..
ū

∂Φu

∂∆
.

p
∂Φp

∂∆
..
ū

∂Φp

∂∆
.

p




(i)

[
δ(∆

..
ū)

δ(∆
.

p)

](i+1)

= −
[

Φu

Φp

](i)

(30)

Using equations 28 and 29 we can write the above step as:

[
M + 1

2∆t2β2KT −θ∆tQ
β1∆tQT ∆tθH + S

](i)
[
δ(∆

..
ū)

δ(∆
.

p)

](i+1)

= −
[

Φu

Φp

](i)

(31)

where KT is the tangent stiffness matrix. KT =
∫

BTDepBdΩ

3.2 Application: Liquefaction failure of a dyke under earthquake
action

The case we will consider next is that of an earthquake induced flowslide in very loose
saturated sand. The problem consists on a dike 10 m in height with slopes 2:1, founded
on a sand layer which extends 10 m in depth and lies on a rigid rockbed. The material
of both the dike and the foundation is a very loose saturated sand.

Initial conditions correspond to geostatic equilibrium under gravity forces. Pore pres-
sure at the surface has been assumed to be equal to -20 kPa. The finite element mesh
can be seen in Fig.1 and consists on 500 quadrilaterals with 8 nodes for displacements
and 4 for pore pressures. A reduced integration rule has been used in the solid part to
avoid locking. The number of nodes is 1611, with 3535 degrees of freedom.

Figure 1: Finite element mesh
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Loading is applied by prescribing horizontal accelerations at the base. We have used
the horizontal accelerations of the NS component of El Centro earthquake. A simpli-
fied absorbing boundary condition has been applied at lateral boundaries. Concerning
pore pressures, it has been assumed that no flux occurs at artificial boundaries, and the
constant value of -20 kPa has been kept at the surface.

The behaviour of the loose material, DR = 27o, is represented, using the Pastor-
Zienkiewicz model for sand.

The results can be seen in Fig.2, 3, 4, 5, where the contours of pore pressure, plastic
strain, p′/p′0 and displacements are given at different times. Plastic strain accumulates
in two zones, with much higher values at the right hand slope. The ratio between
the mean effective confining pressure and its initial value p′/p′0 has been used as an
indicator of the extent of the liquefied zones. From these results, it can be concluded
that failure of the dike is caused by liquefaction of the outer liquefied zone.

Figure 2: Pore pressure contour (Pa) Figure 3: Plastic deformation contour

Figure 4: p′/p′0 contour Figure 5: Deformation contour
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3.2.1 A note on air liquefaction failure

If the soil is partially saturated, its behaviour depends on the coupling between the
solid skeleton and the pore air and water. In the limit case of a dry soil, the air has to
flow out from the pores for the material to consolidate, but typical air consolidation
times are much smaller than those of the water. Therefore, in practical cases, the role
of air pressures is neglected, as the characteristic time of loading is much larger than
consolidation time. However, it is possible to imagine situations with much smaller
loading times, where coupling between pore air and soil skeleton plays a paramount
role. This is the case of fluidized granular beds, just to mention a particular example
of industrial interest.

Bishop in 1973 [Bis73] describes the case of Jupille flowslide, which happened in
Belgium in February 1961. A tip of uncompacted fly ash located in the upper part of
a narrow valley collapsed, and the subsequent flowslide travelled for about 600 m at
very high speeds (130 km/h) until it stopped. Triggering mechanism was suggested
to be ”collapse due to undermining of a steep, partly saturated and slightly cohesive
face”. Bishop referred to Calembert and Dantinne [Dan], who in 1964 pointed out
the role of the entrapped air. The mechanism of pore air consolidation can explain
the ”sort of fog” which formed above the flowing material, as warmer air met the
colder winter air in the exterior. The ”honeycomb” like structure of soil in the tip was
responsible of its sudden collapse when movement started.

3.3 Limitations of the u− pw model

The displacement-pressure model described above presents a series of limitations,
which in some cases results on a deterioration of the quality of the predictions.

We will describe next the most relevant.

3.3.1 Numerical diffusion and dispersion

As many displacement based finite elements, the proposed model presents numerical
damping and dispersion. The former consists on an artificial damping of the amplitude
of travelling waves, and the latter on numerical velocities of propagation which depend
on the relative wave length Λ, i.e., the ratio between the wave length λ and the mesh
size ∆x,Λ = λ/∆x.

To illustrate the problem, we show in fig.6 the results of the propagation of a elastic
wave on a shear layer (drained material).

The shape of the velocity wave at x = L/4 presents trailing oscillations, caused by
waves of short wavelengths which travel with smaller velocity.
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Figure 6: Wave propagation along a shear layer

3.3.2 Volumetric locking and mesh alignment effects

Volumetric locking is presented in materials approaching incompressibility condi-
tions. In the case of coupled problems, it implies that permeability is close to zero.
The problem consists on an artificial stiffness which makes the numerical model of the
structure to deform much less than it theoretically should. In the case of plastic mate-
rials, flow rule imposes an additional condition on the volumetric plastic strain, which
results on much higher failure loads. Volumetric locking is present in all displacement
based finite elements, but specially in lower order elements. The solution to this prob-
lem consists of choosing higher order interpolation polynomials for the displacement
field. The problem of mesh alignment consists on a spurious dependence of the failure
mechanism on both the type of elements and the way they are arranged in the mesh.
To illustrate it, we will consider a vertical cut on a perfect plastic Von Mises material.
A load is applied trough a rough footing, as depicted in fig.7.

Figure 7: Footing on vertical slope

The material properties for both the soil and the footing are shown in table 1:

We will consider the two linear triangles finite element meshes depicted in Fig. 8
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Table 1: Material properties for the soil and footing

Material type E(Pa) υ σy (Pa)
Soil Von Mises 1.0E5 0.35 200.0
Footing Linear elastic 1.0E8 0.35

Figure 8: Mesh alignment effects on the failure mechanism of a vertical cut

The results are plotted in the same figure, where we have plotted the isolines of equiv-
alent plastic strain. We can see how different alignments result on completely dif-
ferent mechanisms. The problem of alignment is related to the accuracy of the finite
elements, and elements which behave well in bending do not exhibit important align-
ment effects, as happens in the enhanced strain quadrilaterals (Simo-Rifai elements)
[SJ90].

3.3.3 Choice of the interpolation spaces for displacements and pore pressures

Soil dynamics problems often involve a large number of time steps and meshes with
a large number of nodes which results on large times of computation. Time can be
saved by using explicit schemes when possible, and elements with a low order of
interpolation, such as triangles in 2D an tetrahedra in 3D.

If such elements are used, the displacement (or the velocity) field will be approximated
using linear functions, and so the pore pressures will be approximated using the same
shape functions.

Another very much interesting element is the Simo Rifai quadrilateral with bilinear
pore pressures [P.M03].
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Such equal order of interpolation elements present severe oscillations in the pore pres-
sure field when the material has very small permeability and both the solid particles
and the pore fluid have small compressibility. The situation is of similar nature to that
found when using mixed formulations in Solid and Fluid Dynamics. The reason is
that these mixed elements with equal interpolation do not satisfy the Babuska-Brezzi
[Bab73], [Bre74] condition which is necessary to ensure stability or the much simpler
patch test proposed by Zienkiewicz et al. [OS86] for mixed formulations. It is impor-
tant to note that the latter is a necessary but not a sufficient condition for stability. The
interested reader can find in the text of Bathe [Bat96] a detailed description. Allowed
elements are for instance, quadrilaterals Q8P4 with quadratic approximation of the
displacements and bilinear for the pore pressure, or the T6P3 triangles, both in 2D.

In order to use the simple linear triangles or tetrahedras for computational efficiency
circumventing the limitations imposed by the Babuska-Brezzi conditions, special sta-
bilization techniques have to be used. The problem has attracted the attention of nu-
merous researchers from Fluid, Solid and Soil Mechanics in the past years. In the
context of Fluid Dynamics, it is worth mentioning the work of Brezzi and Pitkaranta
[BP84], Hughes, Franca and Balestra [THB86], Hafez and Soliman [HS91], Zienkiewicz
and Wu [ZW91], just to mention a few.

These methods have been extended to Soil Dynamics problems by Zienkiewicz et al.
[OS93] and to Soil Mechanics problems by Pastor et al. [PFM97], [PM99].

One of the most simple yet effective ways of stabilization is the fractional step algo-
rithm, which was introduced by Chorin [Cho68] as a device to allow the use of stan-
dard time integration techniques in fluid dynamics problems. Among the several alter-
native formulations some forms were found later to provide the required stabilization
for elements with equal order of interpolation of velocities and pressures. The discov-
ery was first made by Schneider, Rathby and Yovanovich [GM95] and Kawahara and
Ohmiya [M.K85] and later justified by R.Codina, M.Vázquez and O.C.Zienkiewicz
[RO95].

The method has been extended to Solid Dynamics by Zienkiewicz et al. [OM98] and
Quecedo et al. [QM00], and to Soil Dynamics problems by Pastor et al [PM99], Li et
al [XL03] and Mabssout et al. [M.M06]. It is also worth noticing the work of Mira
et al. [P.M03] for enhanced strain elements based on Simo-Rifai element technology,
providing a very interesting alternative in geomechanical simulations.

4 Numerical Model: mixed stress-velocity-pressure fi-
nite element formulations

So far we have discussed formulations based on the second order equation, but it is
also possible to extend the solid dynamics model based on the system of first order
equations to the case of saturated geomaterials (Mabssout et al 2006). This formula-
tion presents the following advantages:
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(i) Low order elements such as triangles and tetrahedral can be used even in bend-
ing dominated situations. Cost of computation is much smaller in these low order
elements.

(ii) Oscillations during the propagation of shocks in fast dynamics problems are much
smaller than in the case of classical second order algorithms

(iii) Provide a very good accuracy in dynamic localization problems.

Elements with the same order of interpolation of displacements and pressures present
severe instabilities in the incompressible undrained limit. The problem is similar to
those found in incompressible solid and fluid dynamics, and requires the use of the
special stabilization techniques described in the preceding Section.

We will describe here the case of viscoplastic materials which has been considered by
Mabssout et al. [M.M06].

The method is based on two techniques:

(i) a Taylor Galerkin scheme which ensures good accuracy in bending dominated situ-
ations, good damping and numerical dispersion properties, and very small dependence
on mesh alignment

(ii) A fractional step technique allowing equal order of interpolation of pressures and
velocities.

The elements used were linear triangles, having stresses, velocities and pore pressures
as nodal variables.

4.1 Taylor Galerkin for solid dynamics

Concerning the Taylor Galerkin algorithm, it can be consider as an extension of
the Lax Wendroff finite differences scheme, where a Taylor series expansion in time
is followed by a space discretization. In the case of the Taylor Galerkin scheme,
spacial discretization is done using finite elements in space (simple linear triangles
and tetrahedras).

Taylor Galerkin method was independently proposed by [RLZ84] and [Don84].

Here we will present a simple 2 step explicit Taylor Galerkin algorithm formulated in
terms of velocities and stresses as primary variables. This two step algorithm has been
widely used for advection dominated problems in Fluid Dynamics [Per86] [ZT00].
We will present next the algorithm for completeness.

We will start by writing the momentum and constitutive equations as:
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∂

∂t




σ11

σ22

σ33

v1

v2



− ∂

∂x




D11v1

D12v1

D33v2
σ11

ρ
σ12

ρ



− ∂

∂y




D12v2

D22v2

D33v1
σ12

ρ
σ22

ρ




=




0
0
0
0
0




(32)

where Dij are the components of the elastic matrix De.

Above equation can be written in conservation form as

∂φ̄

∂t
+
∂Fx
∂x

+
∂Fy
∂y

= S̄ (33)

where we have introduced the vectors of unknowns φ̄, fluxes Fx and Fy, and source
S̄.

The Taylor-Galerkin algorithm for solving the conservation equation (33)

∂φ̄

∂t
+ divF = S̄ (34)

where F is the advective flux tensor and S̄ is the vector of sources, starts from a second
order expansion in time

φ̄n+1 = φ̄n + ∆t
∂φ̄

∂t

∣∣∣∣
n

+
1

2
∆t2

∂2φ̄

∂t2

∣∣∣∣
n

(35)

where the first order time derivative of the unknowns can be calculated using equation
(33) as

∂φ̄

∂t

∣∣∣∣
n

=
(
S̄ − divF

)n
(36)

To obtain the second order time derivative, the Two-Step Taylor-Galerkin procedure
considers an intermediate step between tn and tn+1. The aim of this first time step is
to calculate the solution at a time tn+1/2. This step is followed by a second one that
brings the solution to tn+1.

In this way, the first step results in

φ̄n+1/2 = φ̄n +
∆t

2

(
S̄−divF

)n
(37)

which allows the calculation of Fn+1/2 and S̄n+1/2.

Considering now a Taylor series expansion of the flux and source terms,

Fn+1/2 = Fn +

(
∂F

∂t

)n
∆t

2

S̄n+1/2 = S̄n +

(
∂S̄

∂t

)n
∆t

2
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where the values of Fn+1/2 and S̄n+1/2 are calculated using φ̄n+1/2, the flux and
sources time derivatives are

(
∂F

∂t

)n
=

2

∆t

(
Fn+1/2 − Fn

)

(
∂S̄

∂t

)n
=

2

∆t

(
S̄n+1/2 − S̄n

)

Incorporating these expressions into the second order time derivative

∂2φ̄

∂t2

∣∣∣∣
n

=
∂

∂t

(
S̄−divF

)n

results in
∂2φ̄

∂t2

∣∣∣∣
n

=
2

∆t

(
S̄n+1/2 − S̄n − div

(
Fn+1/2 − Fn

))
(38)

Substituting now the expressions obtained for the first (36) and second (38) order time
derivatives in the Taylor series expansion (35) results in

φ̄n+1 = φ̄n + ∆t
(
S̄n+1/2 − divFn+1/2

)

This equation is discretized in space using the conventional Galerkin weigthing to
finally result in the system of equations to be solved to obtain the unknown increments
in the variables at the time step. The resulting system of equations is:

M
¯

∆φ =∆t

∫

Ω

N
¯

Sn+1/2dΩ−
∫

ΓN

N
¯

(
Fn+1/2 · n̄

)
dγ +

∫

Ω

Fn+1/2 gradN
¯
dΩ

(39)

The system of equations to be solved during each time step is of the type

M
¯
x = f

and can be economically solved using a Jacobi iteration scheme [Per86]

x(k+1) = x(k) +M−1
L (f −M

¯
x(k))

where the superscript k is an iteration counter, if an approximate inverse matrix,M−1
L ,

is known in advance. As in the case of equation (39) an approximate inverse of the
system matrix, M

¯
, is the lumped mass matrix, the equation system (39) can be solved

using this algorithm. Typically, less than six iterations are enough to obtain an accurate
solution.
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4.2 An introduction to Fractional step

Regarding the fractional step, we will come back to the stress-velocity-pore pressure
equations

ρ
dv

dt
= div σ′ − grad pw + ρb (40)

1

Q∗
dpw
dt

= div (k grad pw)− div v

σ = σ′ − pwI
dσ′ = Depdε

We will rewrite the first equation as:

ρ
v∗ − vn

∆t
= div σ′ + ρb|n (41)

ρ
vn+1 − v∗

∆t
= − grad pw|n+θ2 = − grad (pw + θ2∆pw) (42)

where we have introduced an intermediate velocity v∗ and the increment of pore pres-
sure

pn+1
w = pnw + ∆pw (43)

We will choose usually θ2 = 1/2 in Eqn 42 as

1

Q∗
∆pw
∆t

= div (k grad pw)|n − div vn+1 (44)

Now, the velocity vn+1 can be obtained from 42 as:

vn+1 = v∗ − ∆t

ρ
grad (pw + θ2∆pw) (45)

After substituting in 44, we obtain:
(

1

Q∗
− ∆t2θ2

ρ
∇2

)
∆pw
∆t

= grad (k div pw)|n − div v∗ + ∆t∇2pnw (46)

Summarizing, the fractional step method consist on performing the time step compu-
tations as follows:

(i) First of all, obtain the intermediate velocity field v∗ using 41:

v∗ = vn +
∆t

ρ
(div σ′ + ρb)

n (47)
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(ii) Solve implicitly 46 to obtain ∆pw and

pn+1
w = pnw + ∆pw (48)

(iii) Finally, obtain the velocity field at time n+1 using 45

Equations 45, 47 and 48 can be discretized using a standard Galerkin finite element
technique. It is important to notice that the time step is limited for the dry solid
skeleton response, as the pore pressure laplacian equation has been solved implicitly.

4.3 The stabilized σ′ − v − pw model

In the case of elasto-viscoplastic materials the σ′ − v − pw model, the equations are:

ρ
∂v

∂t
= div σ′ − grad pw + ρb

∂σ

∂t
= De grads v −Deε̇vp (49)

1

Q∗
dpw
dt

= div (k grad pw)− div v

where grads v is the rate of deformation tensor with components

dij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)

The fractional step algorithm consists of:

(i) A first step where equations 49(a) and (b) are solved up to an intermediate state *:

σ′∗ − σ′n
∆t

=
∆σ′∗

∆t
= De grads v −Deε̇vp|n (50)

v∗ − vn
∆t

=
∆v∗

∆t
= div σ′ + ρb|n

(ii) A second step where the pore pressure is evaluated at time n+1 (see eqn.46)
(

1

Q∗
− ∆t2θ2

ρ
∇2

)
∆pw
∆t

= div (k grad pw)|n − div v∗ + ∆t∇2pnw (51)

(iii) a third step where velocities and stresses at time n+1 are evaluated

σ′n+1 − σ′∗
∆t

=
∆σ′∗∗

∆t
=
∂pw
∂t

∣∣∣∣
n+1

(52)

ρ
vn+1 − v∗

∆t
= ρ

∆v∗∗

∆t
= − grad pw|n+1
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Nodal variables are velocities, stresses and pore pressures.

Above equations are solved as follows:

(a) Eqns. 50 are solved using the Taylor Galerkin method, combined with a Runge
Kutta algorithm for the source terms which has been used by Quecedo et al [Que04]
and Mabssout et al [M.M06]. We obtain σ′∗ and v∗

(b) The pore pressure laplacian 51 is solved, obtaining pn+1
w

(c) Finally, stresses and velocities are obtained at time n+1 using eqn 52.

5 Stabilized stress-velocity-pressure algorithm: Exam-
ples and applications

5.1 Shock propagation in a one dimensional soil layer

The purpose of this example is to show the advantages of the first order formulation in
fast dynamics problems exhibiting shocks. The main advantage (Mabssout and Pastor
2002 [M.M02]) in dynamics is the better performance of the first order algorithm
with much lower numerical diffusion and dispersion than the second order approach.
This result on sharper shocks with much smaller oscillations. In this example we will
consider the propagation of a shock wave on a 1D elastic bar of 1 m length. The left
boundary is a fixed end, while the velocity is prescribed at the right boundary. The
velocity is given by:

v(L, t) = 0 t < 0 and v(L, t) = 1 t ≥ 0

The analytical solution consists on a wave travelling to the left which reflects on the
fixed boundary, doubling the amplitude of the stress and inverting its sign. In Figure
9 we provide a comparison between the results provided by the Taylor Galerkin and
the Newmark schemes. It can be seen how the oscillations accompanying the shock,
which indicate numerical dispersion (small wave lengths travel with smaller speed),
are larger in the Newmark scheme

5.2 Dynamic localization on a clay specimen

We will analyze here the case of a bidimensional saturated soil subjected to a constant
surface loading applied to its upper face, which is applied dynamically. The soil be-
havior is assumed to be described by a viscoplastic Perzyna law with Modified Cam
Clay yield surface. The problem has been sketched in Figure 10a, and it consists of
a square of side 1 m. For symmetry reasons only one half will be considered in the
analysis
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Figure 9: Shock propagation on a elastic bar: Newmark (left) versus Taylor-Galerkin
algorithms (Mabssout and Pastor 2002 [M.M02])

The analysis has been performed using the fractional step, Taylor Galerkin algorithm
proposed by Mabssout et al (2006). The mesh used in the calculation is shown in
Figure 10b and the applied boundary conditions are the following:

(i) On the bottom, both the velocity and the pore water flux are assumed to be zero.

(ii) On the left vertical boundary, the horizontal component of the velocity is zero, the
vertical component of the normal surface force is zero, and the pore water flux is zero.

(iii) on the rigth boundary, the normal component of the surface force is set to zero,
the flux of water being zero.

(iv) on the upper boundary, the horizontal component of the velocity is zero, and the
vertical component is taken as 1 m/s.

The soil has been assumed to be viscoplastic, with the modified Cam Clay yield sur-
face and hardening/softening rule. The Young’s modulus has been taken as E = 8.107
Pa, ν = 0.3, ρ = 1700 kg/m3 . The parameters of Perzyna’s model are γ = 20 s−1

and N = 1. The modified Cam Clay model parameters are: M = 1.0, λ = 0.1 and
κ = 0.01.

The initial effective stress of the specimen and the initial velocity and pressure are set
equal to zero in the whole domain. The calculation is carried out in the undrained
incompressible limit, i.e. Q∗ →∞ and κw → 0.

Figure 11 shows (a) the effective plastic strain contours, (b) the velocity vectors and
(c) the deformed mesh. The mesh is unstructured in order to avoid possible aligment
effects due to the mesh orientation. It can be observed in Figure 11 a good definition
of the shear band, and the wave is reflected at the bottom, hereafter, the stress doubles,
the stress path crosses the yield surface, and the strain localizes in the form of a shear
band which is incepted at the bottom-right corner of the specimen. Again the wave
reflects on the left boundary and a reflection shear band propagates from there up to
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the right-top corner

Figure 10: Strain localization in 2D (a) Problem layout (b) Finite element mesh

Figure 11: Localization in a saturated specimen: (a) Equivalent plastic strain contours
(b) velocity vectors, (c) deformed mesh (After Mabssout et al. 2006)

6 Conclusions

We will conclude this Chapter by recalling the main topics we have discussed here.

(i) For a given coupled problem, there exist a series of different alternative mathemat-
ical models with different ranges of application. The u − pw formulation provides
accurate results in many geotechnical applications of interest.

(ii) Regarding u−pw mixed models, the formulation used for the solid phase presents
the same advantages and limitations that in structural problems, therefore, 8 noded
quadrilaterals and, specially, enhanced strain elements of the Simo Rifai type are
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strongly recommended. They have to be stable, either by selecting a suitable space
for pore pressure interpolation, or by using stabilization techniques.

(iii) When more accuracy is needed in special situations, stress-velocity-pore pressure
formulations provide it. They allow the use of lower order elements.
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Simulation of 2D and 3D hydraulic fracturing in fully saturated porous media is 

presented. The discrete fractures are driven by the fluid pressure. A cohesive frac-

ture model is adopted. In the 3D case the fracture follows the face of the element 

around the fracture tip which is closest to the normal direction of the maximum 

principal stress at the tip, while in the 2D setting the fracture follows directly the 

direction normal to the maximum principal stress. No predetermined fracture path is 

needed. This requires continuous updating of the mesh around the crack tip to take 

into account the evolving geometry. The updating of the mesh is obtained by means 

of an efficient mesh generator based on Delaunay tessellation. The governing equa-

tions are written in the framework of porous media mechanics and are solved nu-

merically in a fully coupled manner. Numerical examples deal with well injection in 

a geological setting and hydraulic fracture in a concrete dam. Pressure and dis-

placement jumps are evidenced and an explanation is given. 

1 Introduction 

Fluid-driven fracture propagating in porous media is a common problem in geome-

chanics. It is used to enhance the recovery of hydrocarbons from underground reser-

voirs or to make geothermal reservoirs with high temperatures or temperature gradi-

ents but low permeability economically exploitable. Another application of im-

portance is related to the overtopping stability analysis of dams.  

Contributions to the mathematical modelling of fluid-driven fractures have been 

made continuously since the sixties, beginning with stationary analytical solutions in 

the frame of linear fracture mechanics by [Per61], [Ric76], [Cle78], [Hua85a,b] and 

[Det91]. Numerical models appeared from the nineties on. [Boo90] presented a 

numerical model in the context of linear fracture mechanics which allows for fluid 

leakage in the medium surrounding the fracture and assumes a moving crack de-

pending on the applied loads and material properties. [Car00] showed a fully 3D 
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hydraulic fracture model which neglects the fluid continuity equation in the medium 

surrounding the fracture. [Sch06], [Sec08] and [Sec12] used Standard Galerkin Fi-

nite Elements with space and time adaptivity in a 2D and 3D setting taking into 

account also the flow in the domain. Extended Finite Elements (XFEM) have been 

applied to hydraulic fracturing by [Rét08], [Moh13a,b], [Mes15]. Partition of unity 

finite elements are used for 2D mode I crack propagation in saturated ionized porous 

media by [Kra13] and zero thickness interface elements by [Car12]. [Irz14] used 

isogeometric elements. Phase field models were applied by [Whe14] and [Mik15]. 

All the published numerical results, except those of [Sch06], [Sec08] and [Sec12] 

and [Kra13] are smooth while the physical behavior shows stepwise advancement 

and pressure drop in case of hydraulic fracturing and pressure rise in case of me-

chanical loading ([Tzs95], [Piz13], [Sec14] and [Sol14]). The origin of the stepwise 

advancement observed in [Kra13] is believed to be numerical. 

In [Sch06] we have shown for the first time numerically in a 2D setting that in case 

of hydraulic fracturing the fracture advances stepwise. The same has been recon-

firmed for the 3-D case in [Sec12]. The reason for this is that the flow effect due to 

pumping is transmitted to the solid through the pressure coupling term in the effec-

tive stress; the solid is loaded and upon rupture produces an increase of the volumet-

ric strain which in turn produces a drop in pressure. During periods of pressure in-

crease the crack does not advance because the solid is partially unloaded; the crack 

propagates suddenly when the limit stress in the solid is reached. The stepwise ad-

vancement does not appear in other time dependent coupled solutions involving 

cohesive fracture, as e.g. the thermoelastic one of [Sim03]. It is recalled that in this 

last case the fracture lips are stress free while in case of hydraulic fracturing they are 

not stress free because of the fluid pressure. The model used to obtain the physically 

observed behavior in hydraulic fracturing will now be described in more detail, 

following [Sch06] and [Sec08]. 

2 The numerical model 

In the framework of discrete crack models, the mechanical behaviour of the solid 

phase at a distance from the process zone is assumed to obey a Green-elastic or 

hyperelastic material behaviour [Sch06]. 

For the fracture itself we use the cohesive fracture model shown in figure 1: between 

the real fracture apex which appears at macroscopic level and the apex of a fictitious 

fracture there is the process zone where cohesive forces act. For mode I crack open-

ing, following [Bar59], [Dug60] and [Hil76], the cohesive law with monotonically 

increasing opening is  

 

� = �� �1 −
��

����
�                                                  (1) 

  

σ0 being the maximum cohesive traction (closed crack), δσ the current relative dis-

placement normal to the crack, δ
σcr the maximum opening with exchange of cohe-

sive tractions and G =σ0×δσcr/2 the fracture energy. If after some opening 
1 crσ σ

δ δ<   
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the crack begins to close, tractions obey a linear unloading as 

 

� � �� �1 � ���

����
� ��

���
                                                (2) 

 

When the crack reopens, equation (2) is reversed until the opening 
1σ

δ  is recovered, 

then tractions obey again equation (1).  

 

Figure 1: Definition of cohesive crack geometry, reprinted from [Sec12], Copyright 

(2012), with permission from Springer; and hydraulic fracture domain, reprinted 

from [Sch06], Copyright (2006), with permission from Elsevier. 

 

When tangential relative displacements of the sides of a fracture in the process zone 

cannot be disregarded, mixed mode crack opening takes place. This is usually the 

case of a crack moving along an interface separating two solid components. In fact, 

whereas the crack path in a homogeneous medium is governed by the principal 

stress direction, the interface has an orientation that is usually different from the 

principal stress direction. The mixed cohesive mechanical model involves the simul-

taneous activation of normal and tangential displacement discontinuity and corre-

sponding tractions. For the pure mode II, the relationship between tangential trac-

tions and displacements is  

 

       � � �� ��

����

��

|��|
                                                   (3) 

τ0 being the maximum tangential stress (closed crack), �� the relative displacement 
parallel to the crack and δσcr the limiting value opening for stress transmission. The 
unloading/loading from/to some opening ��� 	 ���� follows the same behavior as 
for mode I.  
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For the mixed mode crack propagation, the interaction between the two cohesive 

mechanisms is treated as in [Cam96]. By defining an equivalent or effective opening 

displacement δ  and the scalar effective traction t as 

 

� = ������ + ���            � = ������ + ��                              (4) 

 

the resulting cohesive law is 

 

           ( )2t

τ σ
β

δ
= +t δ δ                                                (5) 

 

β  being a suitable material parameter that defines the ratio between the shear and 

the normal critical components. For more details see [Sch06]. 

 

2.1 The governing equations 

Taking into account the cohesive forces and the symbols of figure 1, the linear mo-

mentum balance of the mixture, discretized in space, is written as  

 

               
'

(1) '
( )

u

d d

Ω Γ

+ Ω− − − Γ =∫ ∫
T " T

Mv B σ Qp f N c 0                      (6) 

 

where Γ′ is the boundary of the fracture and process zone and c the cohesive traction 

acting in the process zone as defined above. 

The fully saturated medium surrounding the fracture has constant absolute permea-

bility while for the permeability within the crack the Poiseuille or cubic law is as-

sumed. This permeability is not dependent on the rock type or stress history, but is 

defined by crack aperture only. Deviation from the ideal parallel surfaces conditions 

causes only an apparent reduction in flow and can be incorporated into the cubic 

law, which reads as [Wit80] 

 

           	�� = 	




��

	�
                                                    (7) 

 

w being the fracture aperture and f a coefficient in the range 1.04-1.65 depending on 

the solid material. In the following, this parameter will be assumed as constant and 

equal to 1.0. Incorporating the Poiseuille law into the weak form of the water mass 

balance equation within the crack and discretizing in space by means of the finite 

element method results in 

 

'

'
( )

w
p

d

Γ

+ + Γ =∫
T

Hp Sp N q 0                           (7a) 
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with 

 

( )
2

12

p p

w

w
d

µ
Ω

= ∇ ∇ Ω∫
T

H N N                          (7b) 

( )
*

1p pd
Q

Ω

= Ω∫
T

S N N                       (7c) 

 

The last term of equation (7a) represents the leakage flux into the surrounding po-

rous medium across the fracture borders and is of paramount importance in hydrau-

lic fracturing techniques. This term can be represented by means of Darcy’s law 

using the medium permeability and pressure gradient generated by the application of 

water pressure on the fracture lips. No particular simplifying hypotheses are hence 

necessary for this term. This equation can be directly assembled at the same stage as 

the following equation (8), because both have the same structure: only the parame-

ters have to be changed in the appropriate elements depending whether they belong 

to the fracture or to the surrounding medium.  

The discretized mass balance equation for the porous medium surrounding the frac-

ture is 

 

'

(2) '( )
w

p
d

Γ

+ + − − Γ =∫
T

Qu Hp Sp f N q 0                         (8) 

 

where  represents the water leakage flux along the fracture toward the surround-

ing medium of equation (7). This term is defined along the entire fracture, i.e. the 

open part and the process zone. It is worth mentioning that the topology of the do-

main Ω changes with the evolution of the fracture. In particular, the fracture path, 

the position of the process zone and the cohesive forces are unknown and must be 

regarded as products of the mechanical analysis.  

 

Discretization in time is then performed with time Discontinuous Galerkin approxi-

mation following [LiW96] and [Sec08]. Denoting with ),(
1

+

+

−
=

nnn
ttI  a typical in-

cremental time step of size 
nn
ttt −=∆

+1
, the weighted residual forms are 
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with the constraint conditions 

 

− =

− =

u v 0

p s 0

&

&

                                                       (11) 

 

Subscripts -/+ indicate quantities immediately before and after the generic time 

station. Field variables and their first time derivatives at time ],[
1nn

ttt
+

∈  are inter-

polated by linear time shape functions and the following discretized equations are 

obtained 
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The nodal displacement, velocity, and pressure, , ,
n n n

− − −

u v p  for the current step coin-

cide with the unknowns at the end of the previous one, hence are known in the time 

marching scheme and coincide with the initial condition for the first time step. The 

system of algebraic equations is solved with a monolithic approach using an opti-

mized non- symmetric-sparse-matrix algorithm. The number of unknowns is dou-

bled with respect to the traditional trapezoidal method.  

The submatrices of the above equations are the usual ones of soil consolidation 

[Lew98], except for  

 

( ) ( ) ( ) ( )1

t

u u u

crack

d d dρ

Ω Γ

= Ω + Γ + Γ∫ ∫ ∫
g

T T T

f N b N t N c                 (14) 

where c is the cohesive traction and is different from zero only if the element has a 

side on the lips of the fracture Γ�within the process zone. Given that the liquid phase 

is continuous over the whole domain, leakage flux along the opened fracture lips is 

accounted for through the H matrix together with the flux along the crack. Finite 

elements are in fact present along the crack, as shown in figure 1, which account 
only for the pressure field and have no mechanical stiffness. In the present formula-

tion, non-linear terms arise through cohesive forces in the process zone and permea-

bility along the fracture.  

Because of the continuous variation of the domain as a consequence of the propaga-

tion of the cracks, see below, also the boundary Γ� and the related mechanical condi-

tions change. Along the formed crack edges and in the process zone, boundary con-

ditions are the direct result of the field equations while the mechanical parameters 

have to be updated. The adopted remeshing technique accounts for all these changes 

[Sec03]. 

2.2 Fracture nucleation and advancement algorithm 

A fracture arises when the Rankine criterion is not satisfied at a point. At the interior 

this point is substituted by four points, two in the direction of the normal to the max-

imum principal stress at a spacing of the fracture tip advancement ∆s and two nor-

mal to this direction at a much smaller spacing. Along a boundary or in case of 

branching the points reduce to three. 
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Figure 2: Multiple advancing fracture step at the same time station. Reprinted from 

[Sec12], Copyright (2012), with permission from Springer. 

 
As far as the fracture advancement is concerned the procedure for 2D and 3D situa-

tions differs: in 2D the fracture follows directly the direction normal to the maxi-

mum principal stress while in 3D the fracture follows the face of the element around 

the fracture tip which is closest to the normal direction of the maximum principal 

stress; the fracture tip becomes a curve in space (front). If during the advancement a 

new node is created at the front the resulting elements for the filler are tetrahedral. If 

an internal node along the process zone advances, a new wedge element results in 

the filler [Sec12]. 

At each time station t
n
, all the necessary spatial refinements are made, i.e. j succes-

sive tip (front) advancements are possible within the same time step (figure 2). Their 

number in general depends on the chosen time step increment ∆t, the adopted crack 

length increment ∆s, and the variation of the applied loads. From numerical experi-

ments it appears however that j is rather limited. The advancement algorithm re-

quires continuous remeshing with a consequent transfer of nodal vectors from the 

old to the continuously updated mesh by a suitable operator 

( )1
( ) ( )
m m m m+
Ω =ℵ ΩV V  [Sec07]. The solution is then repeated with the quantities 

of mesh m but re-calculated on the new mesh m+1 before advancing the crack tip to 

preserve as far as possible energy and momentum. Note that the advancement algo-
rithm allows for displacement jumps within a time step, i.e. the advancement algo-

rithm is decoupled from the time stepping algorithm. This is of paramount im-

portance as shown below. 
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2.3 Refinement 

Three types of refinement are needed to obtain satisfactory results: the refinement in 

space in general, the satisfaction of an element threshold number over the process 

zone and a refinement in time. For refinement and de-refinement in space the Zien-

kiewicz-Zhu error estimator is used [Zhu88]. Fluid lag, i.e. negative fluid pressures 

at the crack tip may arise if the speed at which the crack tip advances is sufficiently 

high so that for a given permeability water cannot flow in fast enough to fill the 

created space. It can be obtained numerically only if an element threshold number is 

satisfied over the process zone. It is given by the number of elements over process 

zone and can be estimated in advance from the problem at hand and the expected 

process zone length. Hence a sort of object oriented refinement is needed locally 

which is extensively dealt with in [Sch06]. Adaptivity in time can be obtained by 

means of the adopted Discontinous Galerkin Method in the time domain (DGT). The 

error of the time-integration procedure can be defined through the jump of the solu-

tion  

 

���� = �� − ��
� 

                                                      ���� = �� − ���                                                 (15)  
���� = �� − ��

� 

 
at each time station, i.e. the difference between the final point of time step n-1 and 

the first point of time step n. By adopting the total energy norms as error measure, 

we define the following terms 

 

‖��‖� = (���������� + �����	���� )�/� 


��,	
� = (���������� )�/�                                     (16) 


�	
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Error measures defined in equation (16) account at the same time for the cross ef-

fects among the different fields and the ones between space and time discretizations. 

The relative error is defined as in [LiW96]  

max

e

e
n

n
=η                                                 (17) 

where 
max

e  is the maximum total energy norm   
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where 0.1<θ is a safety factor. If the error is smaller than a defined value toll,minη  

the step is increased using a rule similar to equation (18).  

 

As it stands, the refinements in space and time are carried out sequentially, starting 

with the space refinement, followed by the element threshold number and then the 

refinement in time. An eye is kept on the satisfaction of the discrete maximum prin-

ciple of [Ran83] which states that it is not possible to refine in time below a certain 

limit depending on the material properties without also refining in space. A proper 

functional would be needed to link all the three refinements necessary. 

3 Examples 

The first application deals with a hydraulically driven fracture due to a fluid pumped 

at constant flow rate in 2D conditions (plane strain). Figure 3 shows the geometry of 

the problem together with the finite element discretization. A notch with a sharp tip 

is present along the symmetry axis of the analyzed area.  

 

 

Figure 3: Problem geometry for water injection benchmark and overall discretiza-

tion. Reprinted from [Sec07], by permission of John Wiley & Sons Limited. 
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The mouth pressure evolution in time is shown in figure 4 for the case of permeable 

and impermeable domain surrounding the fracture. Oscillations can clearly be seen 

as well as pressure jumps. The pressure jumps correspond to the mechanism out-

lined in the introduction while the oscillations in between the jumps are of numerical 

origin and would require a smaller time step (now 0.02 sec). 

 

 Figure 4: Mouth pressure versus time. 
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Figure 5: Crack length versus time.  

 

The crack length versus time is shown in figure 5. Clearly a stepwise advancement 

can be observed for both numerical solution while the asymptotic one of [Spe85] 

under the hypothesis of incompressible fluid, impermeable fracture and adoption of 

LEFM is smooth. 

 

By superimposing the solutions for the evolution of pressure and crack length the 

mechanism outlined in the introduction becomes clear: the pressure jumps corre-

spond to the crack jumps. Between two pressure jumps the pressure builds slowly up 

due to pumping until the strength threshold is reached and the crack advances with a 

jump followed by a quiescent period for the crack. 
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Figure 6: Comparison between normalized pressure evolution and fracture length.  

 

The second case deals with the benchmark exercise A2 proposed by [ICO99]. The 

benchmark consists in the evaluation of failure conditions as a consequence of over-

topping wave acting on a concrete gravity dam of figure 7. We show in figure 8 the 

2D solution when the water height is 78 m and the fracture has reached a length of 

3.5 m. In the right insert in figure 7 it can be seen that two different values of dy-

namic viscosity of the fluid result in different fracture paths. 
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Figure 7: Problem geometry for ICOLD benchmark and calculated crack positions. 

Reprinted from [Sch06], Copyright (2006), with permission from Elsevier. 

 

 

Figure 8: Fracture position with cohesive forces for a water height of 78 m. Reprint-

ed from [Sch06], Copyright (2006), with permission from Elsevier.  
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Figure 9: Pressure distribution within the crack at water height of 78 m. Fluid lag at 

the crack tip can be noticed. Reprinted from [Sch06], Copyright (2006), with per-

mission from Elsevier. 

 

The pressure distribution in the crack is shown in figure 9 for a water height behind 

the dam of 78 m. Negative water pressure (fluid lag) can be noticed at the crack tip. 

Without a sufficient number of elements over the process zone, the fluid lag is 

missed. Finally, the steps of the crack mouth opening displacement are shown in 

figure 10.  
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Figure 10: Crack mouth opening displacement versus time for different crack tip 

advancements ∆s in mm. Reprinted from [Sch14], Copyright (2014). 

4  Conclusions 

Fracture propagation in fluid saturated porous media requires particular attention 

because of the interaction of three velocities (and their respective length scales): the 

crack tip advancement velocity and the velocities of the fluid in the crack itself and 

the seepage velocity around the crack tip. This interaction produces a peculiar be-

havior resulting in stepwise advancement and pressure jumps. The mechanism in 

case of hydraulically driven fracture has been evidenced here and produces pressure 

drop when the fracture advances. In case of mechanical loading, not shown here, the 

mechanism is different, i.e. there is pressure rise instead of pressure drop: the fluid 

being incompressible or nearly incompressible takes first all the perturbation (load 

step or fracture advancement) and discharges the solid. The pressure then dissipates 

in time and reloads the solid which breaks once the fracture toughness is reached 

again. This is an interpretation of what appears in the experiment of [Piz13]. An 

algorithm capable of simulating the pressure jumps must allow for displacement 

jumps and must avoid interference between crack tip advancement scheme and time 

discretization. Beyond our own the only other procedure known up to now adapted 

to simulate the observed jumps, is an XFEM procedure with such small elements 

that the enrichment part is substantially downplayed with respect to the standard FE 
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part, [Riz14]. Both procedures have in common that the crack can propagate over 

more elements within one time step, i.e. that jumps are possible and the above men-

tioned interference between the velocities is avoided. Other published algorithms 

show more time steps elapsed before an element is crossed by the crack and the 

observed phenomena have been missed. A review of these algorithms can be found 

in [Sim14]. 
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This work presents a mathematical and a numerical model for the analysis of the 

thermo-hydro-mechanical (THM) behavior of multiphase deformable porous mate-

rials in dynamics. The fully coupled governing equations are developed within the 

Hybrid Mixture Theory. To analyze the THM behavior of soil structures in the low 

frequency domain, e.g. under earthquake excitation, the u-p-T formulation is advo-

cated by neglecting the relative acceleration of the fluids and their convective terms. 

The standard Bubnov-Galerkin method is applied to the governing equations for the 

spatial discretization, whereas the generalized Newmark scheme is used for the time 

discretization. The final non-linear and coupled system of algebraic equations is 

solved by the Newton method within the monolithic approach. The formulation and 

the implemented solution procedure are validated through the comparison with 

other finite element solutions or analytical solutions. 

1 Introduction 

The analysis of the dynamic response of multiphase porous media has many applica-

tions in civil engineering. Onset of landslides due to earthquakes or rainfall and the 

seismic behavior of dams are examples where inertial forces cannot be neglected. 

Moreover, there are situations where it is important to consider also the effect of 

temperature variation. It is the case of catastrophic landslides, where the mechanical 

energy dissipated in heat inside the slip zone may lead to vaporization of the pore 

water creating a cushion of zero friction, which may accelerate the movement of the 

landslides [Var02]. Another interesting case is the seismic analysis of deep nuclear 

waste disposal. 
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Many authors have developed models for the analysis of the dynamic behavior of 

multiphase porous media in isothermal conditions. A state of art can be found in 

Zienkiewicz et al. [Zie99] and Schanz [Sch09]. Recently, Nenning and Schanz 

[Nen10] presented an infinite element for wave propagation problems; Heider et al. 

[Hei11] analyzed a numerical solution of dynamic wave propagation problems in 

infinite half spaces with incompressible constituents and Albers [Alb10] analyzed 

wave propagation problems in saturated and partially saturated porous media. 

 

This work presents a formulation of a fully coupled model for deformable multi-

phase geomaterials in dynamics including thermal effects. 

The model is derived introducing the u-p-T (displacements, pressures, temperature) 

formulation in the multiphase model developed in Lewis and Schrefler [Lew98], in 

which the relative acceleration of the fluids and their convective terms have been 

neglected following [Cha88], [Zie99]. This reduced model is valid for low frequen-

cy problems, as in earthquake engineering, [Cha88], [Zie99]. The standard Galerkin 

method is applied to the governing equations for the spatial discretization, while the 

generalized Newmark scheme is used for the time discretization. The final non-

linear set of equations is solved by the Newton method with a monolithic approach.  

The model has been implemented in the finite element code COMES-GEO, 

[Gaw96], [Lew98], [San06], [San08], [San09], [Gaw09], [Gaw10], [San12] and has 

been validated through the comparison with analytical or finite element quasi-static 

or dynamic solutions. 

2 Macroscopic balance equations 

The full mathematical model necessary to simulate the thermo-hydro-mechanical 

behavior of partially saturated porous media in dynamics was developed within the 

Hybrid Mixture Theory (HMT) by Lewis and Schrefler [Lew98], using averaging 

theories according to Hassanizadeh and Gray [Has79a], [Has79b], [Has80], [Gra91]. 

This model can be derived from the more advanced averaging theory TCAT - Ther-

modynamically Constrained Averaging Theory (see the chapter of this book from 

Gray and Miller or [Gra14] and its references listing the journal papers on this top-

ic). 

 

The variably saturated porous medium is treated as a multiphase system composed 

of solid skeleton (s) with open pores filled with liquid water (w) and gas (g). The 

latter, is assumed to behave as an ideal mixture of dry air (non-condensable gas, ga) 

and water vapor (condensable gas, gw). At the macroscopic level the porous material 

is modeled by a substitute continuum of volume  with boundary B that simultane-

ously fills the entire domain, instead of the real fluids and the solid which fill only a 

part of it. In this substitute continuum each constituent  has a reduced density 

which is obtained through the volume fraction 
(x,t) = dv


(x,t) / dv(x,t), where dv is 

the volume of the average volume element (representative elementary volume, 

REV) of the porous medium and dv

 is the volume occupied by the constituent  in 

dv. x is the vector of the spatial coordinates and t the current time.  
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The solid is deformable and non-polar and the fluids, solid and thermal effects are 

coupled. All fluids are in contact with the solid phase. In the model, heat conduction 

and heat convection, vapor diffusion, (liquid) water flow due to pressure gradients or 

capillary effects and water phase change (evaporation and condensation) inside the 

pores are taken into account. 

In the partially saturated zones the liquid water is separated from its vapor by a con-

cave meniscus (capillary water). Due to the curvature of this meniscus, the sorption 

equilibrium equation [Gray91] gives the relationship p
c
=p

g
-p

w
 between the capillary 

pressure p
c
(x,t) (also known as matrix suction), gas pressure p

g
(x,t) and liquid water 

pressure p
w
(x,t). This expression is approximated in dynamics; it is used here be-

cause of lack of experimental results. In the following, pore pressure is defined as 

compressive positive for the fluids, while stress is defined as tension positive for the 

solid phase.  

The state of the medium is described by gas pressure p
g
, capillary pressure p

c
, tem-

perature T and displacements of the solid matrix u [San06]. The balance equations 

are developed in geometrically linear framework and are written here at the macro-

scopic level. 

For sake of completeness the equations of the model are only summarized in this 

chapter; the interested reader is refereed to [San15] for more details regarding the 

development of the mathematical model and its finite element implementation. Di-

rect notation is adopted. Boldface letters denote vector or tensors and lightface italic 

letters are used for scalar quantities. 

 

After neglecting the relative velocity and acceleration of the fluids in the governing 

equations of Lewis and Schrefler [Lew98], a set of balance equations for the whole 

multiphase medium is obtained as follows. 

 

The linear momentum balance equations of the mixture in term of the generalized 

effective Cauchy’s stress ′(x,t) [Lew98], [Nut08] takes the form 

 

  g c s

wdiv p S p        1 g a  (1) 

 

where  1 s w g

w g
n nS nS        is the mass density of the overall medium, 

Sw(x,t) is the degree of saturation of the liquid water n(x,t) is the porosity and Sg(x,t) 

is the degree of saturation of the gas, with Sw+ Sg=1. ( , )s t x  is the density of the 

solid grain, ( , )w t x  is the density of liquid water and ( , )g t x  is the density of the 

gas phase. g is the gravity acceleration vector, 1 is the second order identity tensor 

and ( , )s ta x  the acceleration of the solid phase. The form of Eq. (1) assumes incom-

pressible grains, which is common in soil mechanics. In order to consider compress-

ible grains, the Biot coefficient should be set in front of the solid pressure (this be-

comes important when dealing with rock and concrete). The total stress of equation 

(1), using saturation as weighting functions for the partial pressures, was introduced 

in [Sch84] using volume averaging for the bulk materials and is thermodynamically 

consistent, e.g. [Gra91]. 
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The mass balance equations for the dry air and the liquid water and its vapor are, 

respectively: 

 

 

 

div grad div grad

div 0

rg gw
ga g g g gaa w

gg 2 g

g

ga s ga ga ga

g g w s g

M Mk p
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k
g D
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 (2) 

 

and 

 

  

   

 

div grad div grad

div grad div

0

rw rg
w w w gw gw gw

w g

gw
g gw w gw sa w

g w g2 g

g

w gw w

w g

gw gw

sw s g w

c

g

w

w

k k
p p

nS
p p

K

M M p
S S

M p

1 n S T n n S nS

   
 

  

      



   
       

   

  
        

  

       

  

   





k k
g g

D v  (3) 

 

where k (x,t) = k(x,t)1 is the intrinsic permeability tensor of the porous matrix in 

water saturated condition [m
2
], which is assumed to be isotropic, k

r
(x,t) is the fluid 

relative permeability parameter and (x, t) is the dynamic viscosity of the fluid [Pa 

s], with  = w, g. Kw is the bulk modulus of the liquid water. sw = [1-n]s[Sg
gw

 + 

w
Sw], with s(x, t) the cubic thermal expansion coefficient of the solid. gw

gD (x) is 

the effective diffusivity tensor of water vapor in the gas phase contained within the 

pore space, and Ma, Mw and Mg(x,t) are the molar mass of dry air, liquid water and 

the gas mixture

1

11












a

g

ga

w

g

gw

g
MM

M






 , respectively. These equations contain 

the mass balance equation of the solid phase, which has been introduced to eliminate 

the time derivative of the porosity. 

 

The enthalpy balance equation for the multiphase medium is: 
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g v
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where  
effpC (x,t) is the effective thermal capacity of the porous medium, w

pC (x,t) 

and g
pC (x,t) are the specific heat of water and gas, respectively, and eff(x,t) is the 

effective thermal conductivity of the porous medium. The RHS term of Equation (4) 

considers the contribution of the evaporation and condensation. In equations (2)-(4) 

the advective fluxes have been described using Darcy’s law for liquid water and gas, 

while the diffusion of vapor in the gas phase has been modeled with Fick’s law. A 

recent development of a model which considers the air dissolved in the liquid water 

and its desorption at lower water pressures in quasi-statics loading conditions is 

presented in [Gaw09]. 

3  Constitutive relationships 

For the gaseous mixture of dry air and water vapour, the ideal gas law is introduced. 

The equation of state of perfect gas (Clapeyron’s equation) and Dalton's law are 

applied to dry air (ga), water vapor (gw) and moist air (g). 

 

 /ga ga

ap TR M ,  /gw gw

wp TR M ,  
gwgag ppp  ,  

g ga gw     (5) 

 

In the partially saturated zones, the equilibrium water vapor pressure p
gw

(x,t) can be 

obtained from the Kelvin-Laplace equation, where the water vapor saturation pres-

sure, p
gws

(x,t), depending only upon the temperature, can be calculated from the 

Clausius-Clapeyron equation or from an empirical correlation. The saturation degree 

Sw(x,t) and the relative permeability k
r

(x,t) are experimentally determined functions 

dependent on capillary pressure and temperature (e.g. [Fra08] for Sw). The bulk 

density of liquid water that is dependent on the temperature is modeled using the 

relationship proposed by Furbish [Fur97]. The liquid water viscosity, dry air and 

water vapor viscosity, and the latent heat of evaporation are also temperature de-

pendent relationships. 

 

The solid skeleton is assumed elastic or elasto-plastic, homogeneous and isotropic in 

the numerical simulations described in Section 5. Its mechanical behavior is de-

scribed within the classical rate-independent elasto-plasticity theory for geometrical-

ly linear problems. For the third numerical example, the yield function restricting the 

effective stress state ′(x,t) is developed in the form of Drucker-Prager model for 

simplicity, with linear isotropic softening and non-associated plastic flow to take 

into account the post-peak and dilatant behavior of dense sands, respectively. The 

return mapping and the consistent tangent operator for the Jacobian matrix, equa-

tions (9), is developed in [San06], where the singular behavior of the Drucker-Prager 

yield surface in the zone of the apex is solved by using the multi-surface plasticity 

theory (following the formulation developed in [San02] for isotropic linear harden-

ing/softening and volumetric-deviatoric non-associative plasticity in case of large 

strain elasto-plasticity).  
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The Drucker-Prager yield function with linear isotropic hardening/softening has 

been used in the form 

 

    2
03

, , 3 F FF p p c h      s s  (6) 

 

in which  1
3

:p  σ 1  is the mean effective Cauchy pressure, s  is the L2 norm of 

the deviator effective Cauchy stress tensor ′, c0 is the initial apparent cohesion, F 

and F are two material parameters related to the friction angle   of the soil,  

 

 
2
3

sin 6cos
2

3 sin 3 sin
F F

 
 

 
 

 
 (7) 

 

h the hardening/softening modulus and  the equivalent plastic strain.  

To take into account the effect of capillary pressure and temperature on the evolu-

tion of the yield surface, the interested reader can refer, for example, to the chapter 

by Manzanal et. al of this book and [Fra08] for capillary dependent constitutive 

relationships in isothermal or non-isothermal conditions, respectively. 

4  Spatial and time discretization 

The finite element model is derived by applying the Galerkin procedure for the spa-

tial integration and the generalized Newmark method for the time integration of the 

weak form of the balance equations (1)-(4) [Lew98], [Zie99], [Zie00].  

In particular, after spatial discretization within the isoparametric formulation, the 

following non-symmetric, non-linear and coupled system of equations is obtained: 

 

 

g c g c

gg gc gT gu gg gc gT g

g c g c

cg cc cT cu cg cc cT c

g c g c

Tg Tc TT Tu Tg Tc TT T

T g c

uu ug uc u
u 'dW - + =

C p C p C T C u K p K p K T f

C p C p C T C u K p K p K T f

C p C p C T C u K p K p K T f

M B K p K p f

       

       

       


 

 (8) 

 

where the displacements of the solid skeleton u(x,t), the capillary pressure p
c
(x,t), 

the gas pressure p
g
(x,t) and the temperature T(x,t) are expressed in the whole domain 

by global shape function matrices Nu(x), Nc(x), Ng(x), NT(x) and the nodal value 

vectors        , , ,c gt t t tu p p T .  

Following the Generalized Newmark Method, equations (8) are rewritten at time 

t(n+1). The elements of the matrices Cij, Kij and the vectors fi are given in [San15]. 

In this study, the generalized Newmark time integration scheme [Zie00] is applied to 

the non-linear equation system (8) and a non-linear system of algebraic equations is 
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obtained, in which the unknowns are 
g cp , p , T ,     

 
x u . The non-linear 

system is solved by Newton-Raphson method, thus obtaining the equation system 

that can be solved numerically (written below in a compact form) as: 

 

  
1

1

1 1
i

n

i i

n n





 


  

 X

G
X G X

X
 (9) 

 

with the symbol   1
1




i
n  to indicate the current iteration (i+1) in the current time step 

(n+1) and where GX is the Jacobian matrix. 

Owing to the strong coupling between the mechanical, thermal and the pore fluids 

fields, a monolithic solution of (9) is preferred. 

5  Finite element simulations 

This section addresses the numerical validation of the model previously derived and 

presents an application studying a biaxial strain localization test. 

Different tests have been simulated and presented in [San15], aiming to validate: a) 

the wave propagation in a solid material (equation (1) restricted to single phase solid 

material), b) the isothermal water saturated model (equations (1) and (3) with Sw=1), 

c) the isothermal variably saturated model (equations (1), (2) and (3)) and d) the 

non-isothermal water saturated model (equations (1), (3) and (4) with Sw=1). Ana-

lytical solutions are available in [Slu92] and [Boe93] for the first two tests respec-

tively, while the numerical results from tests c) and d) have been compared with the 

numerical solution of the corresponding quasi-static models because of the lack of 

analytical solutions. Some representative results of tests c) and d) are illustrated 

here. 

5.1 Drainage of liquid water from initially water saturated soil 

column 

This numerical test is based on an experiment performed by Liakopoulos [Lia65] on 

a column 1 meter high (Figure 1) of Del Monte sand and instrumented to measure 

the moisture tension at several points along the column during its desaturation due to 

gravitational effects. Before the start of the experiment, water was continuously 

added from the top and was allowed to drain freely at the bottom through a filter, 

until uniform flow conditions were established. Then the water supply was ceased 

and the tensiometer readings were recorded. The finite element simulation is per-

formed with the two-phase flow model in isothermal conditions. For the numerical 

calculation, a two-dimensional problem in plane strain conditions is solved; the 

spatial domain of the column is divided into 20 eight-node isoparametric finite ele-

ments of equal size. Furthermore, nine Gauss integration points were used. The 
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material parameters are listed in [Gaw96] or [San15], as well as the description of 

the boundary conditions and the equations for the saturation-capillary pressure and 

the relative permeability of water-capillary pressure relationships. 

This problem has been solved considering single or two-phase flow mainly in quasi-

static condition (e.g. [Gaw96]); a finite element solution in dynamics was presented 

in [Sch98]. The initial hydro-mechanical equilibrium state is obtained via a prelimi-

nary quasi-static solution. 
The comparison between the dynamic and the quasi-static solution is plotted in Fig-

ures 2 to 4, where the profiles for liquid water pressure, liquid water saturation and 

vertical displacement along the column are plotted. Since the inertial loads are neg-

ligible in the experiment, the finite element solution in dynamics gives almost the 

same results of the quasi-static model [Gaw96], [Gaw09]. 

 

 

Figure 1: Geometry and finite element discretization of the sand column. 

 

a) b)   

Figure 2: Profiles of capillary pressure versus height: a) dynamic solution; b) com-

parison between the quasi-static and the dynamic solution. 
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0,1 m
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a)  b)  

Figure 3: Profiles of liquid water saturation degree versus height: a) dynamic solu-

tion; b) comparison between the quasi-static and the dynamic solution. 

 

a)  b)  

Figure 4: Profiles of vertical displacement versus height: a) dynamic solution; b) 

comparison between the quasi-static and the dynamic solution. 

5.2 Numerical validation of the non-isothermal water saturated 

model 

This problem deals with a water saturated thermo-elastic consolidation [Abo85], 

simulating a column, 7 m high and 2 m wide, of a linear elastic material subjected to 

an external surface load of 10 kPa and to a surface temperature jump of 50 K above 

the initial temperature of 293.15 K (Figure 5). The material parameters used in the 

computation are summarized in [San08]. The liquid water and the solid grain are 

assumed incompressible for the quasi-static analysis, whereas the compressibility of 

the liquid water is taken into account in the dynamic analysis. The initial and bound-

ary conditions are described in [San08] and [San15]. Plane strain condition is as-

sumed. The spatial domain is discretized with eight-node isoparametric elements; 

nine Gauss points are used. 

The solution of the finite element model presented in this work is compared with the 

quasi-static solution [San08] and is plotted in Figures 6 and 7. The results show that 

the dynamic solution is faster than the quasi-static one at the beginning of the analy-

sis, and that the dynamic solution reaches the quasi-static one at the steady-state. 
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Figure 5: Description of the non-isothermal water saturated test. 

 

a) b)  

Figure 6: Temperature time history for node 319 up to the steady state solution (a) 

and in the first period (b) highlighted in a). 

 

a)  b)  

Figure 7: a) Capillary pressure time history for node 319 and b) vertical displace-

ment time history for node 399. 

 

𝑓 𝑡  = 10 kPa 

∆𝑡 = 50 K 
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5.3 Globally undrained biaxial compression test 

A plane strain compression test of initially water saturated dense sand in globally 

undrained conditions is simulated here with the model developed in the previous 

sections. This case was solved in [San06] in quasi-static conditions and is inspired 

by the experimental work of Mokni and Desrues [Mok98], in which cavitation of the 

liquid water was experimentally observed at localization.  

A sample of 34 cm height and 10 cm width is compressed with imposed vertical 

displacement applied to the top surface at a velocity of 3.6 mm/s (Figure 8). Vertical 

and horizontal displacements are constrained at the bottom surface; the boundary of 

the sample is impervious and adiabatic. 

The mechanical behavior of the solid skeleton is simulated using the elasto-plastic 

Drucker-Prager constitutive model (with isotropic linear softening and non-

associated plastic flow) summarized in Section 3. At time t= 0 seconds, the initial 

conditions for the domain are the hydrostatic water pressure, the gas pressure at 

atmospheric value and a temperature of 293.15 K. Gravity acceleration is taken into 

account; the initial stress state in equilibrium with the initial conditions and thermo-

hydro boundary conditions is computed with the corresponding quasi-static model 

[San06]. The geomechanical characteristics of the dense sand are given in [San06]. 

Figures 9 and 10 show the contour plots at 13 seconds of the following thermo-

hydro-mechanical variables: equivalent plastic strain, volumetric strain, capillary 

pressure, liquid water saturation and relative humidity. Positive volumetric strains 

are observed inside the dilatant shear bands (Figure 9b), inducing a liquid water 

pressure drop up to the development of capillary pressures (Figure 10a) desaturating 

the plastic zones (Figure 10b) because of the phase change of the liquid water into 

vapor due to cavitation (Figure 10c). 

 

 

Figure 8: Finite element discretization and boundary conditions of the biaxial com-

pression test. 
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a) b)  

Figure 9: Numerical solution at 13 s: a) equivalent plastic strain, b) volumetric 

strain. 

 

a) b) c)  

Figure 10: Numerical solution at 13 s: a) capillary pressure, b) liquid water satura-

tion, c) relative humidity. 

 

To study the independence of shear band width from the finite element size in dy-

namics, e.g. [Sch96], [Sch99], [Zha99] and [Sch06], test runs with meshes of 85, 

340 and 1360 elements have been carried out. In this case, the analysis of the finite 

element results [Cao15] shows that the shear band width is reasonably mesh inde-

pendent, while the peak value of the equivalent plastic strain and, as a consequence, 

of the volumetric strain, the capillary pressure, the water vapor pressure and the 

relative humidity are sensitive to mesh refinement and a regularization scheme 

would be needed as expected (e.g. [Zha99], [Sch99] and [Sch06]), because the inter-
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nal length scale given by the liquid water motion [Zha99] is not sufficient to regular-

ize the numerical solution. 

6  Conclusions 

A model for the analysis of the thermo-hydro-mechanical behavior of porous media 

in dynamics was developed. Starting from the generalized mathematical model de-

veloped in [Lew98] for deforming porous media in non-isothermal conditions, the u-

p-T formulation was derived following [Zie99]. The validity of such an approxima-

tion is limited to low frequencies problems [Zie99], as in earthquake engineering. In 

this formulation, the relative accelerations of the fluids and the convective terms 

related to these accelerations are neglected. 

The numerical model was derived within the finite element method: the standard 

Bubnov-Galerkin procedure [Zie00] was adopted for the discretization in space, 

while the implicit and unconditionally stable generalized Newmark procedure was 

applied for the discretization in time [Zie00]. 

The model was implemented in the finite element code Comes-Geo [Lew98], 

[Gaw96], [San06], [San08], [San09], [Gaw09], [Gaw10]. The formulation and the 

implemented solution procedure were validated through the comparison with litera-

ture benchmarks, finite element solutions or analytical solutions. In this work, com-

parison between the finite element solution in dynamics and the corresponding qua-

si-static solution is presented by studying the non-isothermal consolidation in a 

water saturated column and the drainage of liquid water in an initially water saturat-

ed soil column. 

This work extends the model developed in [Sch98] to non-isothermal conditions and 

removes the passive air phase assumption of the multiphase porous media model in 

dynamics developed in [Zie99] and [Gaw98]. 
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2FRS-FNRS, Fonds National de la Recherche Scientifique, Belgium ;
3Centre for Geotechnical and Materials Modelling, Faculty of
Engineering and Built Environment, The University of Newcastle,
Australia

This paper considers the Municipal Solid Waste (MSW) as a multi-physics porous
medium, where Bio-Chemo-Thermo-Hydro-Mechanical phenomena have a dominant
effect on the long term behavior. Considering MSW in a bioreactor landfill provides a
perfect application for coupled and multiphysics phenomena. A two-stage anaerobic
biochemical model based on McDougall’s formulation is considered accounting for
the progressive degradation of the organic matter. In presence of water, this latter
decomposition is an exothermic reaction leading to an increase of the temperature,
a generation of by-products as gases and chemical species, and finally compaction
of the waste. The proposed model couples McDougall’s formulation with an unsatu-
rated flow model, a thermal model including a source term for heat generation from
the biodegradation of organic matter and finally a mechanical model. As proposed
by [Hue97], the constitutive law is a modified Camclay model allowing biochemi-
cal hardening/softening. The fully coupled model is implemented into the LAGAMINE

multi-physics finite element code. Numerical simulations are performed to study the
couplings between all the phenomena and to propose a prediction for the long-term
settlement of a bioreactor landfill. The first part of this paper introduces the main
features of the BCHTM model. The second part deals with its application to the fully
coupled modelling of a 1D column of waste. Each physical phenomenon is introduced
sequentially in order to understand its effect on the evolution of the waste column.
Analytical solutions are provided for each simplified physical problem in order to val-
idate the numerical results and to isolate the influence of the main parameters.
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1 Introduction

The need for more efficient landfill management has led to the development of new
generation ”bioreactor landfills” [RMT02]. They are characterized by water injection
or recirculation of generated leachate to accelerate the biodegradation of the organic
fraction [KCM11]. It leads to rapid stabilization of waste, better control over bio-
gas production, gain of landfill space and overall shorter and cheaper monitoring and
maintenance [RAY96, Bea00, YWSM01]. One of the keys to properly operate biore-
actor landfills is the ability to accurately predict the settlements. It is a great chal-
lenge because of the inherent complexity of the landfill system. The whole process
is governed by the biodegradation of organic waste coupled with thermal, hydraulic
and mechanical phenomena [McD07, CZL14]. The first models trying to predict the
settlement were empirical time dependent models with or without taking into account
waste degradation such as [GL61, Sow75, ER90, Oli03]. They were useful due to their
simplicity but lacked the ability to accurately predict long term settlements. More
recently, the focus has been brought on the necessity of integrated analysis which
would include biodegradation model into ”classical” mechanical and hydraulic mod-
els used in geomechanics [HMTH07, McD07, RRW11, CXZ12, WB13, CZL14]. This
would allow to capture every fundamental phenomenon and merge them into multi-
physics models able to better estimate long term behavior. It is, then, an absolute ne-
cessity to understand the main biochemical reactions occuring during biodegradation
[PK00, AJ00, Rod05, BBH+10] and to translate them into usable mathematical mod-
els. There are mostly two types of biodegradation models : multi-phase degradation
using Monod kinetic [EFFL96, HHO+01, WRR03] and two stage anaerobic digestion
model [McD07, RRW11, GED08, CGLZ15]. The latter became increasingly popular
because of its ability to represent the whole process in a simplified manner whereas
the former requires lots of parameters whose values are not always easily determined.
Most integrated models do not take into account the thermal effects on biological re-
actions despite important temperature variation during the decomposition of organic
content. Although some [KCM11, GED08, EFFL96] consider the thermal aspect of
the process, their thermo-hydro-biological models are unable to calculate landfill set-
tlements. Also, few models [McD07] use sophisticated constitutive models within
elasto-plastic framework to describe the chemo-mechanical behavior of solid waste.

The objective of this work is to present an example of multiphysical couplings in ge-
omechanics. It aims at describing in a logical sequence how to manage each physical
problem separately and how to couple it with the other phenomena. The biochemo-
thermo-hydro-mechanical (BCTHM) modelling of a column of waste is a perfect case
study for that purpose.
The two-stage anaerobic biodegradation model adopted by [McD07] is implemented
into a fully coupled thermo-hydro-mechanical framework for unsaturated porous me-
dia, which has been developed in the LAGAMINE code over the last three decades
[Cha07, Col03]. Details of the implementation as well as the main parameters can
be found in [HLC15]. The biodegradation model is linked to both the governing mass
balance equations (for VFA and methanogen biomass) and the energy balance equa-
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tion through source term. The mechanical model adopted is a simplified version of
the chemo-hydro-mechanical (CHM) model presented by [LBL+05].
The physical phenomena are considered sequentially, from the simple flow model
to the fully coupled BC-THM model. Numerical results are presented and compared
with a closed-form solution of each independent problem. This aims at both validating
the results and emphasizing the importance of the main parameters. This procedure
provides a better understanding of the physical phenomena and their couplings.

2 BC-THM behavior of Municipal Waste

Municipal wastes are porous media, where highly coupled mutliphysical phenomena
take place. In addition to the hydromechanical behavior classically observed in ge-
omaterials, bio-chemical processes responsible for the organic matters degradation
make the coupled behavior of the waste much more complex. In the following, the
model formulation is described for the different physical phenomena.

2.1 Bio-chemical model

The microbiological activity within the landfills is responsible for the mineralization
of the organic content and the production of biogas. This process modifies the hy-
dromechanical properties of the waste and has to be considered in a detailed analysis
of the MSW long term behavior. The biodegradation can be split into two main stages
[Rod05], which are briefly described in the following sections.

Aerobic stage The aerobic phase is the first step of the biodegradation and begins
just after the wastes are landfilled. It lasts at most a few weeks since the deposit of
subsequent layers of waste will deprive the previous ones of any oxygen and will cut
the aerobic stage short. During this process, the organic content (Org) is degraded into
macromolecules by bacteria. It is a very exothermal reaction leading to an important
temperature raise sometime reaching over 60 °C.

Anaerobic stage The anaerobic stage begins as soon as the aerobic one ends. It
can last up to 40 or 50 years. This stage consists of the four reactions defined below
[Rod05]

• Hydrolysis: the macromolecules are decomposed by hydrolytic bacteria into
smaller molecules (lipid into fatty acid ; polysaccharide into monosaccharide ;
protein into amino acid).

• Acidogenesis: the products of the hydrolysis are transformed into ethanol, or-
ganic acid and Volatile Fatty Acid (V FA).
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• Acetogenesis: the products of the hydrolysis are consumed and transformed
into acetyl acid and hydrogen.

• Methanogenesis: during this last step, the acetyl acid is consumed to produce
carbon dioxide and the hydrogen is consumed to produce first methanogen
biomass in a liquid phase that will transform into methanogen biogas and carbon
dioxide in a second step.

The two-stage biochemical model described by [McD07] is adopted here to describe
the hydrolysis/acidogenesis and methanogesis reactions. McDougall’s formulation
neglects the aerobic stage but since the aerobic waste decomposition represents a mi-
nor part of the landfill lifetime it is, therefore, less significant than anaerobic decom-
position [ZB04]. This formulation is used to determine the growth/decay term for the
internal variables characterizing the biodegradation,

• Org [kg.m−3] the organic content,

• c [g.m−3] the V FA concentration in water,

• m [g.m−3] the methanogen biomass in water.

McDougall’s model provides the formulation of the biochemical model and the gov-
erning mass balance equations for these three chemical species, presented in the fol-
lowing sections. These equations describe the reaction rate and are expressed in
(g.m−3

aqueous.s
−1). This unit highlights the dependency of the reaction on the moisture

content.

2.1.1 Hydrolysis and acidogenesis

Hydrolysis and acidogenesis is the first stage of the biodegradation, which represents
the depletion of the organic content and its transformation into VFA. These latter
intermediate products serve as a precursor for methanogen biomass. However, high
VFA concentration has inhibitory effects on those reactions [GED08], which is also
taken into account in the model through an inhibitor factor.

The modified enzymatic hydrolysis equation is proposed by [McD07] and mathemat-
ically describes the reaction rate

rg = bθeφP, (1)

where four governing factors are taken into account

• θe = (θ − θres)/(θsat − θres) [-] is the effective water content (in volume,
θ = n.Sr,w), θres [-] is the residual water content and θsat [-] is the water
content at saturation.

• b [g.m−3
aqueous.s

−1] is the maximum V FA growth rate under the most favorable
environmental conditions, which normally occurs at the early stage of hydroly-
sis reaction.
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• φ = 1 − (1 − Org/Org0)ξ [-] is the relative digestibility decreasing with the
organic matter depletion, where Org0 [kg.m−3] is the initial organic content
and ξ [-] is a parameter.

• P = exp(−kV FA.c) [-] is the inhibition factor accounting for the inhibitory
effect of high V FA concentration, in which kV FA [g.m−3)−1] is an inhibition
constant.

2.1.2 Acetogenesis and methanogenesis

The second stage of the biochemical reactions occurring in the MSW transforms the
V FA generated from the hydrolysis/acidogenesis reactions to methanogen biomass.
Note that the biogas is not taken into account in current model for the sake of sim-
plicity. The methanogen biomass production rate rj is calculated through a Monod
kinetic equation [BC10] and the V FA consumption rate rh is directly linked to the
methanogen biomass accumulation through a substrate yield coefficient Y ,

rj =
k0.c/θ

kMC + c/θ
.
m

θ
, (2)

rh = rj/Y, (3)

where k0 [s−1] is the maximum specific growth rate, kMC [g.m−3
aqueous] is the half

saturation constant.

2.1.3 Methanogen decay

The methanogen biomass decay over time rk is given by the first order decay equation
as follow:

rk = k2.
m

θ
, (4)

where k2 [s−1] is the methanogen death coefficient.

2.1.4 Governing balance equations

The degradation rate of organic matter and accumulation rate of V FA and methanogen
biomass can be incorporated as sink or source terms into classical advection-dispersion
equations. They lead to advection-dispersion-reactive transport models, respectively
written per m3 of waste, for V FA (c) , methanogen biomass (m) and organic matter
(Org),

div (u.c)− div
(
Dh.5 c

)
+ [rg − rh].θ =

∂c

∂t
, (5)
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div (u.m)− div
(
Dh.5m

)
+ [rj − rk].θ =

∂m

∂t
, (6)

−Z.rg.θ =
∂Org

∂t
, (7)

where u = q
l
/(Sr,w.ne) is the actual average velocity of the liquid flow, Sr,w [-] is the

water saturation degree, ne [-] is the effective porosity, q
l

is the water Darcy’s velocity
and Z [-] a substrate yield coefficient.

On the left side of equations (5) and (6), the first terms represent advective flux, linked
to the actual average velocity of liquid flow u. The second terms describe diffusive
flux, which combines mechanical dispersion and molecular diffusion and the thirds
are the source terms describing the generation or degradation of V FA or methanogen
biomass. The terms on the right side are the storage term of V FA and methanogen
biomass, respectively. Mass balance equation for organic matter (7) does not include
any transport terms because the organic matter is considered as a part of solid skeleton
and no erosion of organic matter occurs during the leachate recirculation or water
injection.

It is worth noticing that the above reactive transport models were derived with no
consideration of immobile water phase. These models are more suitable for the MSW
with low organic matter content while not for the MSW with high organics matter
content.

2.2 Hydraulic model

In municipal waste disposal, the materials are under unsaturated conditions and the
temperature increases generated by the waste decomposition induce production of wa-
ter vapour. Each fluid phase of the medium (liquid and gaseous) constitutes a mixture
of two components, which are dry air and water vapour for the gas phase and liquid
water and dissolved air for the liquid phase.

The variables chosen for the description of the flow problem are liquid water pressure,
gas pressure and temperature. As a first approach and for sake of simplicity, the gas
pressure variations are not considered in the following. That is the reason why the gas
mass balance equation will not be expressed.

2.2.1 Water mass balance equation

The compositional approach [PC89, OCGA94, LS87] is used here to write balance
equations, i.e. we assume that the conservation mass of each chemical species (water
and air). The phase exchange term is cancelled in balance equations,

264 Numerical modelling of a Municipal Waste Disposal

ALERT Doctoral School 2015



∂

∂t
(ρw · n · Sr,w) + div

(
f
w

)

︸ ︷︷ ︸
Liquid water

+
∂

∂t
(ρv · n · Sr,g) + div

(
f
v

)

︸ ︷︷ ︸
Water vapour

−Qw = 0 (8)

where n is the porosity of the medium, ρw is the liquid water density, ρv is the water
vapour density, f

w
et f

v
are the mass flows respectively for water and water vapour,

Sr,g = 1− Sr,w is the gas saturation degree and Qw is water source term.

The mass flows have two contributions, taking into account the advection of each
phase (Darcean flow) and the diffusion of the different components within the phase
(Fickean flow). Given the small amount of dissolved gas, liquid water diffusion within
the liquid phase will be neglected.

The mass flows used in equation (8) are expressed as

f
w

= ρw · ql, (9)

f
v

= ρv · qg + iv, (10)

where q
l

et q
g

are the advection flow of the liquid and gas phases, iv is the diffusive
flow of water vapour within the gaseous phase. The expression of each terms are
described in the following.

2.2.2 Advection of the liquid phase

In unsaturated conditions, Darcy’s law remains valid provided that the permeability
is modified as a function of the saturation degree. The water permeability is usually
expressed as the product of the intrinsic permeability Ksat

int (measured in saturated
conditions) by a relative permeability coefficient kr,w depending on the water satura-
tion degree:

K
w

(Sr,w) = Ksat

int
· kr,w(Sr,w). (11)

The generalized Darcy’s law becomes

q
l

=
−Ksat

int
· kr,w(Sr,w)

µw

[
grad(pw) + g · ρw · grad(z)

]
, (12)

where Ksat
int

is the intrinsic permeability tensor (independent from the nature of the
fluid), kr,w, the water relative permeability and µw, the water dynamic viscosity.

It is worth noting that in equation (12), the fluid properties would have been those of
the liquid phase (mixture of liquid water and dissolved air), and not those of liquid
water. However, given the small amount of dissolved gas, its influence on the liquid
viscosity and the liquid density is neglected.
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2.2.3 Diffusion within the gaseous phase

The gas phase is a mixture of water vapour and dry air. Even if gas phase flows are
neglected, a binary diffusion of each component within the phase is possible. Thus,
the diffusive flows of water vapour and dry air in the gas phase are given by the Fick’s
law following

iv = −n · (1− Sr,w) · τ ·Dv/a · ρa (13)

where Dv/a is the diffusion coefficient of water vapour in dry air.

2.3 Thermal Model

Due to the exothermal nature of the early stage of biodegradation reactions (so-called
aerobic reactions) and the general heat transfer associated with boundary conditions, a
significant temperature increase normally takes place in bioreactor landfills [BBLR07].
In order to simulate the temperature evolution within the landfill, a source term related
to the heat generation due to the biodegradation reaction is introduced into a classic
governing energy balance equation, leading to the following heat transport equation

∂ST
∂t

+ div (V T )−QT = 0, (14)

where ST is the heat storage, VT is the heat flux and QT is the heat production term.

In equation (14), the heat storage term is given by the sum of each components con-
tribution,as follows

ST = n.Sr,w.ρwcp,w.(T − T0) + n.Sr,g.ρacp,a(T − T0)

+ (1− n)ρscp,s(T − T0) + n.Sr,g.ρvcp,v(T − T0)

+ n.Sr,g.ρv.L

(15)

in which cp,i [J.kg−1.K−1] is specific heat of the component i, ρs [kg.m−3] is the
solid waste density, ρa [kg.m−3] is the dry air density, L [J.kg−1] is the latent heat
of water vaporization, T0 is the initial temperature and T is the temperature.

The heat flux consists of a conduction term proportional to the thermal conductivity
of the MSW and a convective term related to the heat transported by water flows

VT = −Γ∇T + cp,w%wql(T − T0) + cp,v

(
ρv · qg + iv

)
(T − T0)

+
(
ρv · qg + iv

)
L

(16)

where Γ [W.kg−1.K−1] is the thermal conductivity of the waste. The thermal con-
ductivity of the MSW is estimated by summing the thermal conductivities of different
phase components of the MSW, including the water, air and the solid phase.
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The heat production term (QT ) is derived by empirical consideration of the energy
release from exothermal biochemical reactions occurring in the MSW, which is similar
to the formulation proposed by [EFFL96],

QT =
∂Org(t)

∂t
Hm, (17)

whereHm [J/kg] is the quantity of heat produced by the degradation of one kilogram
of organic matter.

2.4 Mechanical model

McDougall’s work suggests that the total settlement can be calculated based on three
contributions: elastic and plastic load induced strain, creep and biodegradation strain.
It is proposed to implement these contributions (except creep) within a simplified
version of the chemo-hydro-mechanical (CHM) model presented by [LBL+05] which
is based on previous works of [Hue92, Hue97, HLG02].

The CHM model has been originally developed to simulate the behavior of unsaturated
clay in presence of chemicals in the pore fluid. A concentration parameter (Ω [-]) is
included in the model to express the modification of properties with chemicals as well
as computing the (elastic or plastic) strains induced by concentration changes. In this
study, the concentration parameter is related to organic matter content such that

Ω = 1− Org

Org0
. (18)

The lowest the organic matter content, the lowest the strength of the waste.

The constitutive model is thus written in terms of effective stress tensor and the con-
centration parameter. Bishop’s effective stress has been chosen to describe the stress-
strain relation

σ′ij = σij − pgδij + Sr,w(pg − pw)δij , (19)

where σ′ij is the effective stress tensor, σij is the total stress tensor, pg is the gas pres-
sure (constant and equal to the atmospheric pressure) and δij is Kronecker’s tensor.

2.4.1 Constitutive equations

The equations relate the strain to the stress and the organic content - through the con-
centration factor, Ω. The strain rate is the sum of an elastic reversible part and a plastic
irreversible part. The elastic part is also decomposed into mechanical and chemical
components.

ε̇ij = ε̇eij + ε̇pij = ε̇
(e,m)
ij + ε̇

(e,Ω)
ij + ε̇

(p,m)
ij (20)

The three main strain components are presented as follows

Collin et al 267

ALERT Doctoral School 2015



1. The elastic strain-stress law is a classical Hooke’s law;

2. The chemical elastic strain is defined according to the formulation in [Hue97]

ε̇
(e,c)
ij = −1/3βΩ̇δij , (21)

where β [-] is a parameter depending on the waste and the concentration;

3. The plastic strain rate is defined within a classical elastoplastic framework.

Three plastic yielding mechanisms are implemented into the chemo-hydro-mechanical
(CHM) model by [LBL+05]: pore collapse, frictional-cohesive failure and tensile
failure. They are represented respectively by the following equations

f1 ≡ q2 +M2(p+ ps)(p− p0) = 0, p ≥ (p0 − ps)/2 (22)

f2 ≡ q −M(p− ps) = 0, σt < p ≤ (p0 − ps)/2 (23)
f3 ≡ p+ σt = 0, (24)

where p0 [Pa] is the pre-consolidation pressure, ps [Pa] is a parameter related to the
cohesion, M [-] is a parameter defining the slope of the frictional cohesive failure in the
deviatoric plane, σt [Pa] is the limit tensile strength, p = σkk/3 and q =

√
3/2sijsij

are the stress invariants and sij is the deviatoric part of the stress tensor.

2.4.2 Chemical hardening/softening

The large deformation due to the biodegradation of organic matter fraction of MSW
is considered in our proposed constitutive model by introducing chemical softening,
controlled by the concentration parameter (Ω). This parameter varies from zero to one
with degradation of the organic matter from initial content to zero.

This concentration parameter (Ω) influences both the pre-consolidation pressure and
the cohesion parameter in order to describe the biodegradation effect on pore collapse
mechanism and frictional-cohesive failure mechanism, respectively.

1. Effect on pore collapse mechanism: the preconsolidation pressure is a decreas-
ing function of the concentration parameter,

p0(Ω) = p∗0S(Ω), (25)

where p∗0 is the pre-consolidation pressure for initial organic content (Ω = 0)
and S(Ω) = exp(−aΩ) is the chemical softening function, where a [-] stands
for a constant governing the decrease of the pre-consolidation pressure with the
increase in concentration parameter.

2. Effect on frictional cohesive failure mechanism: the parameter ps [Pa], control-
ling the cohesion, is assumed to vary as a linear function of the concentration
parameter (Ω)

ps = p∗s + kΩΩ (26)
where p∗s [Pa] is the value of the parameter for initial organic content (Ω=0) and
kΩ is a model constant.
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3 Application of the BC-THM model to a municipal
waste disposal

The multiphysical processes occurring during the lifetime of a municipal waste dis-
posal are simplified into a one-dimensional problem. Initial and boundary conditions
of a 30 meter high column are depicted in Figure 1. A one meter thick drain is located
at the base of the column.
In the sequel, the different physical processes are introduced progressively, highlight-
ing their impact and respective couplings. At each step, a simplified analytical solution
is proposed in order to emphasize the main parameters describing the physical phe-
nomena. This solution is compared with the fully coupled numerical computations
obtained from the implementation of the model previously described in LAGAMINE

[CLRC02, HLC15].

Figure 1: Initial and boundary conditions

3.1 Flow model

During the exploitation period of the disposal, a water influx qin is imposed at the top
boundary (negative in case of injection). This flow is either a rainfall infiltration rate
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or a water injection rate in case of active management of the disposal as a bioreactor.
For the sake of simplicity, the retention curve is defined as

Sr,w = exp

(−pc
4A

)
≤ 1, (27)

where pc = pg − pw is the capillary pressure. In turn the relative permeability is
defined as

kr,w = (Sr,w)
4
. (28)

3.1.1 Hydraulic analytical approach

It is proposed to provide a closed-form solution of the water mass balance equation
(8) for steady-state conditions. Considering an incompressible fluid and a uniform
temperature of 20 °C (the water vapour contribution can be neglected), this equation
is rewritten in one dimension as

∂

∂z
(ql,z ρw) = 0. (29)

The obtained solution imposes that ql,z ρw = qin, which is constant all along the waste
column since the considered solution is stationary.

Figure 2: Profile of relative water pressure (a) and saturation (b) as a function of
incoming water flow |qin| (Analytical solution).

Injecting equations (12) and (28) into equation (29) leads to

∂prw
∂z

+
qin µw
ρwKsat

int

exp

(
−p

r
w

A

)
= −ρwg, (30)
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where prw = −pc is the relative water pressure. Substituting the expression j =
exp (−prw/A) into equation (30) reads

∂j

∂z
= β j2 + γj (31)

where β = (qin µw)/(ρwK
sat
int A) and γ = ρwg/Awhich has the form of the Verhulst

equation. It is solved by the subtitution u = 1/j and finally provides the profile of
relative water pressure

prw(z) = A ln

[
C1 exp (−γ z)− β

γ

]
, (32)

where C1 is an integration constant determined from the boundary condition, pr0 in
z = 0, yielding to

C1 =
β

γ
+ exp

(
pr0
A

)
. (33)

The profile of relative water pressure and saturation degree along the soil column are
provided in Figure 2. It illustrates the influence of water injection at the top of the
column.

3.1.2 Hydraulic numerical approach

The numerical model described in section 2.2 considers the transient response of
the waste, as well as the contribution of the water vapour. Figure 3 shows that the
steady-state is actually reached after 30 days and corresponds to the analytical solu-
tion. Therefore it can be concluded that the water vapour phase is negligible at 20°C.

3.2 Bio-Chemo-Hydraulic model

The evolution of the V FA (c), the methanogen biomass (m) and the organic matter
(Org) are linked to the flow problem since the water content directly controls the bio-
chemical reactions. This introduces a first coupling and the column waste disposal is
considered as a bio-reactor described in section 2.1.

3.2.1 BC-H Analytical approach

The analytical approach focuses only on the degradation of the organic matter since it
is coupled with the thermal and mechanical problems. The equation of the decompo-
sition of the organic content reads

∂org

∂t
= −θ Z b θe exp (−kvfa c)

[
1−

(
org0 − org

org0

)ξ]
, (34)
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Figure 3: Profile of water pressure (a), pw, and saturation degree (b) at different time
steps (Numerical results).

where variable c is constant and θ is equal to its stationary value. The equation (34) is
recast as a function of the concentration variable Ω

∂Ω

∂t
= C

(
1− Ωξ

)
, (35)

where C = θ Z b θe exp (−kvfa c) /org0 is a time constant. This equation is solved
using Mathematica leading to the approximated series solution

t =
Ω

C

∞∑

n=1

(1)n

(
1

ξ

)

n(
1 +

1

ξ

)

n

Ωnξ

n!
, (36)

where t is the time variable and

(x)n = x (x+ 1) (x+ 2) . . . (x+ n− 1). (37)

Figure 4(b) illustrates the influence of the C constant on the evolution of Ω. This
parameter is mainly a function of the water content and maximal degradation rate b.
It explains why the degradation can spend over several dozen of years.

3.2.2 BC-H Numerical approach

Numerical results take into account the full bio-chemical couplings equations (5)-(7)
and a transport term linked to the water flow. Figure 4(a) depicts the evolution of
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Figure 4: (a) Time evolution of the V FA at different depth (Numerical results) and
(b) concentration variable Ω for different C values (Analytical results).

the VFA concentration with time. The VFA is a product of the first stage reaction
and is simultaneously consumed by the second stage reaction generating methanogen
biomass. At first, the VFA concentration increases quite a lot because of the injected
water inducing important organic matter degradation and thus VFA production. Then,
the VFA consumption dominates its production due to the high value of VFA con-
centration reached, leading to an important inhibitory effect on the depletion of or-
ganic matter and in turn of the VFA production. Consequently, it quickly decreases
to an equilibrium state, where rates on VFA production and consumption are equal,
as shown by [McD07]. This is confirmed by the profile of the V FA concentration at
different times depicted in Figure 5(a).
Figure 5(b) exhibits an almost uniform organic matter degradation. It is slightly slower
near the drain layer, where the water saturation degree is lower. The analytical solu-
tion well captures the numerical results, as shown in Figure 4(b). Indeed the flow
and VFA concentration are stationary during the main lifetime of the waste disposal.
Therefore approximating a constant VFA concentration and water content is a good
approximation.

3.3 Bio-Chemo-Thermo-Hydraulic model

The first coupling is due to the exothermic nature of the bio-chemical reactions. There-
fore the temperature within the waste disposal varies with the bio-degradation pro-
cesses. The second coupling arises from the dependency on the bio-chemical reac-
tions to the water saturation degree. Finally the heat produced is transferred either by
thermal conduction or flow convection. One coupling effect has been neglected in our
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Figure 5: Profile of the V FA concentration and the organic matter content (Numerical
results).

formulation: the BC reaction rates do not depend on the temperature.

3.3.1 BC-TH Analytical approach

The general heat balance equation (14) is simplified, discarding the convection terms
and the water vapour contribution. The one-dimensional equations is then written as

∂T(z, t)

∂t
− α ∂

2T(z, t)

∂z2
= Q(z, t), (38)

where T(z, t) is the temperature, α [m/s2] is the thermal diffusivity and Q(z, t) is a
source term.

Following equation (17), the heat production is related to the degradation rate of the
organic matter. Assuming a time decreasing exponential function of the organic mat-
ter, (Ω = exp(−ζt)), the source term is expressed as follows

Q(z, t) =
Hm ζ

ρ c︸ ︷︷ ︸
δ

exp(−ζt). (39)

Let us assumed a column of soil at the initial temperature T0 of 20 degrees, the final
solution reads

T(z, t) = T0 +

∞∑

n=1

sin
(nπ
L
z
) t∫

0

Bn(s) exp (−αλn (t− s)) ds, (40)
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where λn = (nπ/L)2 and

Bn(s) =
2

L

L∫

0

δ exp (−ζs) sin
(nπ
L
z
)

dz (41)

=





4δ

nπ
exp (−ζ s) n odd

0 n even

. (42)

Introducing equation (42) into (40) leads to

T(z, t) = T0 +
∞∑

n=1,2

4δ

nπ

1

−ζ + αλn
sin
(nπ
L
z
)

[exp (−ζt)− exp (−αλnt)] (43)

Observed profiles of temperature result from the competition of two distinct effects:
heat generation and heat diffusion. It is clear in Figure 6 that the heating is fast with re-
spect to the heat diffusivity. Therefore the temperature evolves almost constantly over
most part of the waste column. Afterwards, heat is progressively dissipated through
the upper and lower boundaries.

3.3.2 BC-TH Numerical approach

Numerical model for heat transfer enables us to study the influence of different effects:
heat generation, heat diffusion and heat convection. In order to evidence their influ-
ence, three numerical simulations are performed. The water vapour is shown to have
no influence on the results and is not considered. In the following, Case1 corresponds
to the modelling without convection (equivalent to the analytical solution). Case2 and
Case3 refer to the solution of the problem taking into account heat convection for two
distinct water flows, respectively qin and qin/100.

Figure 6 depicts that the analytical solution well captures numerical results for mean
and long term predictions. The observed short-term discrepancies are related to the
assumption we took on the evolution of the organic matter as a decreasing exponential
function.
Case2 and Case3 exhibit the influence of the convection. In the first case the tem-
perature does not increase significantly because the heat loss due to convection is high
at the bottom of the column. In the second case, the temperature profile becomes
progressively non symmetric (and non-parabolic) due to convection.

3.4 Bio-Chemo-Thermo-Hydraulic-Mechanical model

The biodegradation reactions degrade the properties of the waste: the apparent pre-
consolidation pressure is a decreasing function of the concentration variable Ω. The
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Figure 6: Profile of temperature for different time steps (Analytical and numerical
results).

biochemical reactions firstly lead to a chemical softening of the waste and secondly
to a mechanical hardening, as far as the stress state remains constant. Therefore the
increase of the concentration variable induces a plastic compaction of the waste col-
umn.

3.4.1 BC-THM Analytical approach

First, we only consider the plastic volumetric deformation due to the bio-chemical
couplings, in the frame of the constitutive model described in section 2.4. Under the
assumption of a constant effective stress state, the consistency condition reads

∂f

∂Ω
.dΩ +

∂f

∂p∗0
dp∗0 = 0. (44)

In addition, the hardening function in a CamClay model is classically defined as

dp∗0 =
1 + e0

λ− κ p∗0 dεpv. (45)

Combining these two latter equations with equation (22), the relation between the
plastic volumetric strain and the variation of the concentration variable is written as

dεpv =
λ− κ
1 + e0

(−a) dΩ (46)
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where a is the constant governing the decrease of the pre-consolidation pressure with
the decomposition.

3.4.2 BC-THM Numerical approach

Figure 7 presents first the evolution of the concentration variable at different locations.
It is observed that the degradation is actually proportional to the water saturation de-
gree. Indeed, the shift of the results in this figure is due to the difference of saturation
with depth near the drain (low depth). The plastic volumetric strains follow the evo-
lution of the degradation. Figure 7 shows that the analytical solution provides an
upper-bound estimation of the numerical response.

Figure 7: Profile of concentration content (a) and plastic volumetric strain (b) for
different time steps (Analytical and numerical results).

4 Conclusions

This paper presents the formulation of a biochemo-thermo-hydro-mechanical model
for the study and analysis of long term behavior of bioreactor landfill. The partic-
ularity of the BC-THM model formulation is the multi-physics coupling accounting
for the inherent complexity of the bioreactor landfill system. The two stage anaerobic
biodegradation model proposed by McDougall [McD07] is adopted as biochemical
sub-model to reproduce the biodegradation of organic matter. It is incorporated into
the thermo-hydro-mechanical framework of the LAGAMINE code. Furthermore, the
effect of the biodegradation on mechanical behavior is taken into account using a sim-
plified version of the chemo-mechanical model developed by [Hue97]. The hydraulic
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model is based on Darcy’s law for water flow in unsaturated soils. Finally the thermal
model is a classical energy balance equation with a source term taking into account
the heat generated by the degradation of organic matter.

Then, an application of the BC-THM model on a one-dimensional problem is pre-
sented and the different physical processes are introduced progressively, in order to
highlight the impact of each process and their respective couplings. For each step, an
analytical solution is proposed in order to explain the physical phenomenon.
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aérobies au cours de la phase d’exploitation d’un casier d’un centre
d’enfouissement technique. PhD thesis, Thèse de doctorat, Institut des
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[Oli03] F Olivier. Tassement des déchets en CSD de classe II: du site au modèle.
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