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Finite element analysis of non-isothermal 

multiphase porous media in dynamics, with 

application to strain localisation simulation

Outline:

- Motivations: Geo-environmental and Energy engineering problems

- Mathematical model (thermodynamically consistent mechanistic theory – Hybrid Mixture 

Theory): governing equations,  constitutive models,  i.c. & b.c.

- Finite Element discretisation

- Numerical validation   and   simulation of strain localisation in dense sand
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This lecture aims to:

• Show development of a fully coupled finite 

element model for non-isothermal non-linear 

multiphase elasto-plastic porous continuum in 

dynamics (THM fem model).

• Validation (comparison with analytical solutions or 

more approximated numerical solutions)

• Strain localisation analysis (localised failure of*. 

geomaterials)

Microscopic view of 

three-phase geomaterial 

(soil, concrete, rocks)

(WATER VAPOR + DRY AIR)

WATER
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Motivation: catastrophic landslides

• Dam 263.5 m tall (462 - 725,50 m slm - tallest in world)

• Reservoir contained ~ 170 million m3 of water

• Reservoir filling + heavy rainfall + high water pressure load 

from the bedrock   � reactivation of a prehistoric slide

Vajont, Italy, October 9, 1963
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Motivation: catastrophic landslides

(Rossi and Semenza, 1980)

• Reactivation of a prehistoric slide:

270 million m3 of rock - 200-250 m thick mass of rock 

slide moved in 20-25 s   - velocity 20-30 m/s;

water wave ~ 210 m above top of dam   � 2043 persons died

Motivation

Clay-rich horizons

~200 m

pre-failure October 9, 

1963

Clay-rich layers 10-30 m – “shear band”

~200 m

pre-failure October 9, 

1963

Vajont, Italy, October 9, 1963
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post-failure October 9, 1963

Motivation: catastrophic landslides

• Onset of landslide: increase of temperature in the failure zone (friction-

generated thermal effects) � increase of water pressure and loss of clay

strength � vapour cushion of zero friction may have appeared, increasing

the slide velocity (Hendron and Patton 1985; Vardoulakis 2002; Cecinato 2011; ))

• “Ingredients” for modelling: non-isothermal multiphase porous media,

dynamics, frictional heating, large strains.

Motivation

Microscopic view of 

three-phase geomaterial 

(soil, concrete, rocks)

(WATER VAPOR + DRY AIR)

WATER
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Motivation: seismic behaviour of deep nuclear 

waste disposal

Typical scheme of a deep geological repository for nuclear waste 
(Gens, Olivella, CISM lecture notes 2001) 

Microscopic view 

(partially saturated soil)

(1) vitrified waste, (2) steel canister,

(3) buffer material, (4) host material

(deep: -400 m, -700 m)

Motivation
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Bituminous sands, colloquially known as oil sands or tar sands, are a type of unconventional petroleum deposit. The sands

contain naturally occurring mixtures of sand, clay, water, and a dense and extremely viscous form of petroleum technically referred

to as bitumen (or colloquially "tar" due to its similar appearance, odour, and colour) up to 90%. Oil sands are found in large

amounts in many countries throughout the world, but are found in extremely large quantities in Canada and Venezuela.[1]

The crude bitumen contained in the Canadian oil sands is described by Canadian authorities as "petroleum that exists in the semi-

solid or solid phase in natural deposits. Bitumen is a thick, sticky form of crude oil, so heavy and viscous (thick) that it will not flow

unless heated or diluted with lighter hydrocarbons. At room temperature, it is much like cold molasses".[2] Venezuelan authorities

often refer to similar types of crude oil as extra-heavy oil, because Venezuelan reservoirs are warmer and the oil is somewhat less

viscous, allowing it to flow more easily.

Oil sands reserves have only recently been considered to be part of the world's oil reserves, as higher oil prices and new

technology enable them to be profitably extracted and upgraded to usable products. They are often referred to as unconventional

oil or crude bitumen, in order to distinguish the bitumen extracted from oil sands from the free-flowing hydrocarbon mixtures known

as crude oil traditionally produced from oil wells.

Making liquid fuels from oil sands requires energy for steam injection and refining. This process generates two to four times the

amount of greenhouse gases per barrel of final product as the "production" of conventional oil.[3] If combustion of the final

products is included, the so-called "Well to Wheels" approach, oil sands extraction, upgrade and use emits 10 to 45% more

greenhouse gases than conventional crude.[4]

< the oil made to flow into wells by in situ techniques, which reduce the viscosity by injecting steam, solvents, and/or

hot air into the sands. These processes can use more water and require larger amounts of energy than conventional oil

extraction, although many conventional oil fields also require large amounts of water and energy to achieve good rates of

production.

Motivation: oil sands production

Motivation
http://www.cbc.ca/blueprintalberta/features/oilsands.html
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Motivation: Hydraulic fracturing (1947)
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Mathematical model

Microscopic view of a 

three-phase material

Mechanics of non-isothermal multiphase porous materials:

- Balance equations 

- Generalised effective stress principle 

- THM constitutive models (dependent on temperature and capillary pressure)

gas phase (dry air and/or water vapour)

solid phase

Intergranular forces due 

to capillary effects

Mathematical Model

liquid phase 

(liquid water)
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State of art - porous media models in dynamics

1980: O.C. Zienkiewicz , C.T. Chang, P. Bettes, Géotechnique

1983: A.H. Chan, PhD Thesis, Swansea University.    Isothermal models.

1990: O.C. Zienkiewicz, A.H.C. Chan, M. Pastor, D.K. Paul, T. Shiomi, PRSA

Isothermal 3-phase formulation  with air phase assumption

1995: E.A. Meroi, B.A. Schrefler, O.C. Zienkiewicz, NAG.   

Isothermal 3-phase formulation  with air phase assumption.

1998: R.W. Lewis, B.A. Schrefler  “The Finite Element Method in the Static and Dynamic Deformation and 

Consolidation of Porous Media”,  Wiley, 1998.    

Non-isothermal dynamic 3-phase formulation, non-isothermal 3-phase quasi-static implementation.

1998: B.A. Schrefler, R. Scotta, CMAME, 1998.    Isothermal 3-phase formulation and implementation.

1999: O.C. Zienkiewicz, A. Chan, M. Pastor, B.A. Schrefler, T. Shiomi “Computational Geomechanics

with special reference to earthquake engineering”, Wiley, 1999.    

Isothermal 3-phase dynamic formulation and implementation with air phase assumption.

2009: N. Ravichandran, K.K. Muraleetharan, IJNAMG, “ Dynamics of unsaturated soils using various finite 

element formulations”.    Isothermal 3-phase dynamic formulation.

2010: B. Markert “Dynamic wave propagation in infinite saturated porous media half spaces”, Habilitation

thesis, Universitaet Stuttgart.     Isothermal 2-phase dynamic formulation and implementation.

Mathematical Model
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State of art - porous media models in dynamics

2010: B. Albers “Modeling and numerical analysis of wave propagation in saturated and partially

saturated porous media”, Habilitation thesis, Technische Universitaet Berlin.

Isothermal 3-phase dynamics formulation.

2010: M. Nenning and M. Schanz, IJNAMG, “Infinite elements in a poroelastodynamics”.                            

Isothermal, wave propagation problems in unbounded saturated porous media.

2011: A.R Khoei, T. Mohammadnejad, Computers and Geotechnics, “Numerical modeling of multiphase fluid 

flow in deforming porous media: a comparison between two- and three-phase models for seismic analysis of 

earth and rockfill dams” .                                                               Isothermal model, 2- and 3-phase formulation.

2012: Y. Heider, Ph.D thesis, “Saturated Porous Media Dynamics with Application to Earthquake Engineering”, 

Universitaet Stuttgart.             Isothermal 3-phase formulation  with application to strain localisation simulation.

2013:  I.D. Moldovan, T.D. Cao and  J.A. Teixeira de Freitas, IJNME, “Elastic wave propagation in unsaturated 

porous media using hybrid-Trefftz stress elements”.     

Isothermal 3-phase formulation, modeling for shock wave propagation in porous media.

< < <

THM implementation in dynamics: not yet published

Mathematical Model
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Mathematical model

Assumptions (THM model):

• local thermodynamic equilibrium state

• constituents microscopically non-polar

• immiscible constituents (except dry air and water vapour)

• water vapour, dry air and their mixture: perfect gases

• phase change for liquid water and its vapour (evaporation/condensation –

adsorption/desorption)

• small strains (for the implement model)

gas phase (dry air and water vapour)

solid phase

Intergranular forces due 

to capillary effects

liquid phase 

(liquid water)

based on: Hybrid Mixture theory

Lewis and Schrefler ‘98, The finite element

method in the static and dynamic ...,

Hassanizadeh and Gray AWR 1979, 1980, 1990

Schrefler AMR 2002

Thermodynamically Constrained Averaging 

Theory (TCAT): Gray and Miller, 2005, ) ); 

Gray and Schrefler, 2007; Gray et al., 2012
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Hybrid mixture theory

Macroscopic balance equations

Microscopic balance equations

Spatial averaging operators (Hassanizadeh and Gray AWR

1979, 1980, 1990)y)
Microscopic view

macroscopic view of 

averaged continuum

Mathematical Model

• As a results a substitute continua which fill the 

entire domain simultaneously is obtained, instead of 

the real fluids and solid, which fill only a part of it. 

• These substitute continua has a reduced density, 

which is obtained through the volume fraction  ηπ(x,t) 

= dvπ (x,t) / dv(x,t).
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Linear momentum balance equations of the mixture:

Enthalpy balance equation of the mixture:

(Lewis and Schrefler ‘98)

Mathematical Model
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Macroscopic balance equations
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Liquid species mass balance equation (solid, liquid water & vapour): 
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Dry air mass balance equation: 

(Lewis and Schrefler ‘98)

Mathematical Model
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Macroscopic balance equations (implemented model)

Assumption: when relative acceleration of the fluids and convective terms

can be neglected

u-p form (A.H. Chan,1983, PhD Thesis, Swansea University)

(Zienkiewicz O.C., Chan A.H., Pastor M., Schrefler  B.A., Shiomi T., Wiley, 1999)

(Valid for low frequencies problems, e.g. in earthquake engineering)

solid displacements

State variables:

(measurable)

capillary pressure

gas pressure

temperature

Mathematical Model

;
ws ws w gs gs g   + ⋅∇ + ⋅∇   a v v a v v

• u-p-T   form

approximated in

dynamics 
(e.g Hassanizadeh et al. VZJ 

2002)
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O.C. Zienkiewicz, A. Chan, M. Pastor, B.A. Schrefler, T. Shiomi “Computational Geomechanics

with special reference to earthquake engineering”, Wiley, 1999. 

Validity of u-p form
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O.C. Zienkiewicz, A. Chan, M. Pastor, B.A. Schrefler, T. Shiomi “Computational Geomechanics

with special reference to earthquake engineering”, Wiley, 1999. 
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• Incompressible solid grain at microscopic level:

(                       ; for soils, α
Biot

=1)

• Negligible: dynamic seepage forcing terms: solid acceleration as is

neglected in mass balance equations (very small contribution compared with

other terms - A.H. Chan,1983, PhD Thesis , Swansea University – isothermal

conditions)

and in enthalpy balance equation

∞=
s

K

Additional assumptions:

s

T

K

K
−=α 1

Biot

Mathematical Model

Macroscopic balance equations (implemented model)
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Linear momentum balance equations of the mixture:

Enthalpy balance equation of the mixture:
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Mathematical Model

Macroscopic balance equations (implemented model)

(thermodynamically consistent: Schrefler 1984; Lewis & Schrefler 1987; 

Gray & Hassanizadeh 1991; Borja 2004)
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Liquid species mass balance equation: 

Dry air mass balance equation: 
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Mathematical Model

Macroscopic balance equations (implemented model)
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Coupled balance equations (model implemented)

State variables: capillary pressure
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Mathematical Model

State variables:             u             pg pc T
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Initial and boundary conditions

Initial conditions

Boundary conditions

Mathematical Model
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Non-isothermal constitutive models: fluids

gas phase = mixture of dry air and water vapour (perfect gases)

Clapeyron’s equation and Dalton’s law

Kelvin-Laplace’s equation

Clausius-Clapeyron’s 

equation

(Gawin and Schrefler EC96; Lewis and Schrefler 98)

Mathematical Model
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Fick law

Mathematical Model

Darcy, Fick: from linearization of 2nd principle of thermodynamics

Darcy law

Fourier law

Dynamic viscosity of gas

(Gawin, Schrefler EC96; Lewis, Schrefler 98)

Non-isothermal constitutive models: fluids
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Mathematical Model
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Bulk density of liquid water  (Furbish, 1997)

(Gawin, Majorana, Schrefler MCFM 1999; 

Gawin, Pesavento, Schrefler NAG 2002; 

Gawin, Pesavento FT 2011             

for concrete as multiphase porous material)
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Mathematical Model

(Monfared et al. EG 2012)



Finite element analysis of non-isothermal multiphase porous media in dynamics

ALERT SCHOOL 2015                                     Motivation    – Mathematical Model   – F.E. results

E

H>0

H<0

H=0

Drucker-Prager (non associated plastic flow, 

linear isotropic hardening)

(implicit) return mapping  algorithm

(Sanavia, Steinmann, Schrefler, CM 2002)  

Constitutive models: solid skeleton

Classical rate-independent elasto-plasticity

(isothermal/non-isothermal & variably saturated conditions)

with suction dependent cohesion:

c = c0 + p
c tan φ’b (Fredlund et al. 1978)

Mathematical Model

c = c0 + p
c tan φ’b -T tan φ’t (non-isothermal cond.)
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Non-linear thermal elasticity 

(thermo hypo-elasticity)
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Critical state concept,  multi-surface plasticity (ECP-Hujeux model)

and bounding surface theory

Non-isothermal constitutive models: solid skeleton

ACMEG-TS model (Advanced Constitutive Model for Environmental 

Geomechanics -Thermal and Suction effects) for clayey soils

(Laloui, François NAG08; Laloui, François JEM09, 3)

Mathematical Model
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linear combination of two irreversible contributions                                

(developed within the multi-mechanism plasticity theory, Koiter 1960)  

Thermo-plasticity
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Deviatoric thermo-plastic yield function

Isotropic thermo-plastic yield function
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Non-isothermal constitutive models: solid skeleton

Mathematical Model
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> 35/34

linear combination of two irreversible contributions (multi-mechanism 

plasticity theory, Koiter 1960)

Thermo-plasticity

Deviatoric thermo-plastic yield function

Isotropic thermo-plastic yield function
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Non-isothermal constitutive models: solid skeleton

 

Mathematical Model
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Non-linear system of algebraic equations

Mathematical model: non-linear 

coupled  PDEs

• Incremental approach

• Spatial discretisation: 

standard Galerkin method, 

isoparametric formulation

• Time discretisation: 

Generalized Newmark method 

(GN22)

Finite Element  discretisation

Mathematical Model
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linearised system of algebric equations 

which can be solved numerically

(Newton-Rapson procedure)

5)  (consistent) linearisation

(Textbooks: Zienkiewicz O.C. and R. Taylor, T.J. Hughes, ........ P. Wriggers)

Summary of the F.E. approximation

1)  A (φ) = 0 in Ω (domain)   

B (φ) = 0 on Γ (boundary)

2)  Weigthed residual method            weak (integral) form of 

3) Discretisation in space

4) Discretisation in time 

strong 

form

A (φ) = 0

B (φ) = 0

non-linear system of 

algebric equations

non-linear system of partial differential equations



Weak formulation: weigthed residual method

Standard approach

Test functions: δu
s
(virtual displacements);           δpg (virtual gas pressure)

δpc (virtual capillary pressure);      δT (virtual temperature)

LMBE:

( [ ] )

Β

v 0
s s

div dρ δ δ+ − ⋅ = ∀ ≠∫ g a u u 0σ

Green’s theorem

( )

[ ]

B B

B B

': v div v

v 0

g c

s w s

s s s

grad d p S p d

d da

∂

δ δ

ρ δ δ δ

− + −

+ − ⋅ + ⋅ = ∀ ≠

∫ ∫

∫ ∫

u u

g a u t u u 0

σ

*similarly for the other governing equations
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• Note that the choice of the shape functions must be of C
0

continuity. 

• Among various possible element combinations, the mixed elements are 

recommended to satisfy the LBB conditions or to pass the patch test (e.g. 

for 2D problems)  - (Zienkiewicz et al. 1999):

(1) 6-noded quadratic triangle for the displacements and 3-noded linear 

triangle for the water pressure.

(2) 9-noded (or 8) biquadratic quadrilateral for the displacements and 4-

noded bilinear quadrilateral for the water pressure.

Discretization in space:
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Mixed finite elements (in 2D)

Solid skeleton displacement

Fluid pressure/temperature

N p

N p

N T

u N u

g g
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 =
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=

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 =

Gas pressure

Capillary pressure

Temperature

Displacement 

:N
u

Bi-quadratic functions

, , :N N N
g c T Bi-linear functions
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Discretization in space:

System of partial differential equations 

- 1° and 2° order

- Fully coupled 

Parabolic 

equations

Hyperbolic 

equations

g c g c

gg gc gT gu gg gc gT g
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
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C C C C K K K f

C C C C u K K K f

C C C C K K K f

M u B K K f

&& & &

& && &
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&&
σ

Mathematical Model
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Discretization in time: 

Generalized Newmark Method (GN22)
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Mathematical Model

(Zienkiewicz, Taylor, 2002) 

Unconditionally 

stability condition
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Non-linear system of algebraic equations

Mathematical model: non-linear 

coupled  PDEs

Linearisation (directional derivatives)

Solution of the final set of linearized equations (monolithic approach)

Mathematical Model

Finite Element  discretisation

• Incremental approach

• Spatial discretisation: 

standard Galerkin method, 

isoparametric formulation

• Time discretisation: 

Generalized Newmark method 

(GN22)
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Numerical validation (Comes-Geo fem code – Unipd, I)

http://www.dicea.unipd.it/

1. Validation of the isothermal solid phase model 

1a- Wave propagation problem in a solid bar - (analytical solution)

1b- Wave propagation problem in a dry sand column (numerical comparison)

2. Validation of the isothermal water saturated model 

Dynamic consolidation - (analytical solution)

3. Validation of the non-isothermal water saturated model

Non-isothermal consolidation - (Aboustit et al. numerical test)

4. Validation of the isothermal variably saturated model

4a- Liakopoulos test: quasi-static drainage of liquid water from an initially

water saturated sand column - (numerical benchmark)

4b- Unsaturated sand column subjected to a step load (numerical comparison)

1 eq.

2 eqs.

3 eqs.

3 eqs.
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Numerical validation (Comes-Geo fem code – Unipd, I)

http://www.dicea.unipd.it/

1. Validation of the isothermal solid phase model 

1a- Wave propagation problem in a solid bar - (analytical solution)

1b- Wave propagation problem in a dry sand column (numerical comparison)

2. Validation of the isothermal water saturated model 

Dynamic consolidation - (analytical solution)

3. Validation of the non-isothermal water saturated model

Non-isothermal consolidation - (Aboustit et al. numerical test)

4. Validation of the isothermal variably saturated model

4a- Liakopoulos test: quasi-static drainage of liquid water from an initially

water saturated sand column - (numerical benchmark)

4b- Unsaturated sand column subjected to a step load (numerical comparison)
F.E. results
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Mathematical model: non-linear coupled  PDEs

Mathematical Model
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Numerical validation (Comes-Geo fem code – Unipd, I)

1)
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3)

4)

LMBE

wsMBE
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Numerical validation (Comes-Geo fem code – Unipd, I)

http://www.dicea.unipd.it/

1. Validation of the isothermal solid phase model 

1a- Wave propagation problem in a solid bar - (analytical solution)

1b- Wave propagation problem in a dry sand column (numerical comparison)

2. Validation of the isothermal water saturated model 

Dynamic consolidation - (analytical solution)

3. Validation of the non-isothermal water saturated model

Non-isothermal consolidation - (Aboustit et al. numerical test)

4. Validation of the isothermal variably saturated model

4a- Liakopoulos test: quasi-static drainage of liquid water from an initially

water saturated sand column - (numerical benchmark)

4b- Unsaturated sand column subjected to a step load (numerical comparison)
F.E. results
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Mathematical model: non-linear coupled  PDEs

Mathematical Model
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Numerical validation (Comes-Geo fem code – Unipd, I)
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Numerical validation (Comes-Geo fem code – Unipd, I)

http://www.dicea.unipd.it/

1. Validation of the isothermal solid phase model 

1a- Wave propagation problem in a solid bar - (analytical solution)

1b- Wave propagation problem in a dry sand column (numerical comparison)

2. Validation of the isothermal water saturated model 

Dynamic consolidation - (analytical solution)

3. Validation of the non-isothermal water saturated model

Non-isothermal consolidation - (Aboustit et al. numerical test)

4. Validation of the isothermal variably saturated model

4a- Liakopoulos test: quasi-static drainage of liquid water from an initially

water saturated sand column - (numerical benchmark)

4b- Unsaturated sand column subjected to a step load (numerical comparison)
F.E. results
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Mathematical model: non-linear coupled  PDEs

Mathematical Model
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Numerical validation (Comes-Geo fem code – Unipd, I)
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LMBE
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Numerical validation (Comes-Geo fem code – Unipd, I)

http://www.dicea.unipd.it/

1. Validation of the isothermal solid phase model 

1a- Wave propagation problem in a solid bar - (analytical solution)

1b- Wave propagation problem in a dry sand column (numerical comparison)

2. Validation of the isothermal water saturated model 

Dynamic consolidation - (analytical solution)

3. Validation of the non-isothermal water saturated model

Non-isothermal consolidation - (Aboustit et al. numerical test)

4. Validation of the isothermal variably saturated model

4a- Liakopoulos test: quasi-static drainage of liquid water from an initially

water saturated sand column - (numerical benchmark)

4b- Unsaturated sand column subjected to a step load (numerical comparison)
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Mathematical model: non-linear coupled  PDEs

Mathematical Model
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Numerical validation (Comes-Geo fem code – Unipd, I)

1)

2)

3)

4)

LMBE

wsMBE

gaMBE

EBE



Finite element analysis of non-isothermal multiphase porous media in dynamics

ALERT SCHOOL 2015                                     Motivation    – Mathematical Model   – F.E. results

1a- Wave propagation problem in a solid bar

Spatial discretization (4-nodes isoparametric elements; 4 Gauss points integration)

(L.J Sluys, 1992, PhD thesis )

0,1m

n=0

ν = 0

E = 210 GPa     

ρ = 7860 kg/m^3 (steel)

Linear elastic solid

F.E. results
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1a- Wave propagation problem in a solid bar

Displacement 

time history 

of the free side

of the bar
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F.E. results
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1a- Wave propagation problem in a solid bar

Numerical damping: comparison between

different time integration parameters F.E. results

Displacement time history of the free side of the bar
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Numerical accuracy: comparison between 

different time steps
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Numerical validation (Comes-Geo fem code – Unipd, I)

http://www.dicea.unipd.it/

1. Validation of the isothermal solid phase model 

1a- Wave propagation problem in a solid bar - (analytical solution)

1b- Wave propagation problem in a dry sand column (numerical comparison)

2. Validation of the isothermal water saturated model 

Dynamic consolidation - (analytical solution)

3. Validation of the non-isothermal water saturated model

Non-isothermal consolidation - (Aboustit et al. numerical test)

4. Validation of the isothermal variably saturated model

4a- Liakopoulos test: quasi-static drainage of liquid water from an initially

water saturated sand column - (numerical benchmark)

4b- Unsaturated sand column subjected to a step load (numerical comparison)
F.E. results
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2- Dynamic consolidation in water saturated

elastic column under harmonic load

F.E. results

(B. Markert, 2010, Habilitation thesis, Universitaet Stuttgart)
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P
g
= Patm fixed

P
c

= 0,0

T = 293.15 °K fixed

ux = 0.0 on the lateral nodes

uy = 0.0 on the bottom

P
g

= Patm fixed

P
c
= 0.0 at the top

T = 293.15 K fixed

ux = 0.0 on the lateral nodes

uy = 0.0 on the bottom

Initial condition

Boundary condition

Incompressible liquid water

Spatial discretization (8-node isoparametric elements; 9 Gauss points integration)

Material parameters Value SI unit

Young's Modulus E 1,45E+07 Pa

Poisson's Modulus ν 0,3 -

Porosiy n 0,33 -

Density of the solid ρ 2000 kg/m
3

Gravity acceleration g 0 m/s
2

Permeability k
w

10
-2
;10

-5
m/s
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a)  b)  

Displacement history, top surface

a) k
w

=10-2 m/s, b) k
w

=10-5 m/s

Analytical solution: de Boer, 1993, Arch. Appl. Mech.

F.E. results

2- Dynamic consolidation in water saturated

elastic column under harmonic load
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Numerical validation (Comes-Geo fem code – Unipd, I)

http://www.dicea.unipd.it/

1. Validation of the isothermal solid phase model 

1a- Wave propagation problem in a solid bar - (analytical solution)

1b- Wave propagation problem in a dry sand column (numerical comparison)

2. Validation of the isothermal water saturated model 

Dynamic consolidation - (analytical solution)

3. Validation of the non-isothermal water saturated model

Non-isothermal consolidation - (Aboustit et al. numerical test)

4. Validation of the isothermal variably saturated model

4a- Liakopoulos test: quasi-static drainage of liquid water from an initially

water saturated sand column - (numerical benchmark)

4b- Unsaturated sand column subjected to a step load (numerical comparison)
F.E. results
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3- Non-isothermal consolidation in a water 
saturated elastic column

P
g
= Patm fixed

P
c
= idrostatic

T = 293.15 K fixed

ux = 0.0 on the lateral nodes

uy = 0.0 on the bottom

P
g
= Patm fixed

P
c
= 0.0 at the top

T not fixed

ux = 0.0 on the lateral nodes

uy = 0.0 on the bottom

Initial condition

Boundary condition

Spatial discretization (8-node isoparametric elements; 9 Gauss points integration)

Material parameters Value SI unit

Porosity n 0,39 -

Intrinsic permeability k 2,0 E-19 m
2

Solid skeleton density ρs 2670 kg/m3

Irreducible saturation point Sirr 0,05 -

Solid thermal conductivity 0,42 W/(m K)

Solid matrix heat conductivity 1,9 E-16 W/(m K)

Solid specific heat 732 J/(kg K)

Cubic thermal expansion coefficient 1,3 E-5 K
-1

Biot’s constant α
B

1 -

Numerical solution: Sanavia et al. JTAM 2008 (quasi-static) - Aboustit et al. NAG 1985

���� = 10000 Pa 
∆� = 50 K 

F.E. results
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3- Non-isothermal consolidation in a water 
saturated elastic column

F.E. results

Temperature time history
(bottom surface)

Capillary pressure time history
(bottom surface)

Displacement time history
(top surface)

Numerical solution: Sanavia et al. JTAM 2008 (quasi-static) - Aboustit et al. NAG 1985
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Numerical validation (Comes-Geo fem code – Unipd, I)

http://www.dicea.unipd.it/

1. Validation of the isothermal solid phase model 

1a- Wave propagation problem in a solid bar - (analytical solution)

1b- Wave propagation problem in a dry sand column (numerical comparison)

2. Validation of the isothermal water saturated model 

Dynamic consolidation - (analytical solution)

3. Validation of the non-isothermal water saturated model

Non-isothermal consolidation - (Aboustit et al. numerical test)

4. Validation of the isothermal variably saturated model

4a- Liakopoulos test: quasi-static drainage of liquid water from an initially

water saturated sand column - (numerical benchmark)

4b- Unsaturated sand column subjected to a step load (numerical comparison)
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Spatial discretization (8-node isoparametric elements; 9 Gauss points integration)

P
g
= Patm on the top

P
c

= idrostatic

T = 293.15 K fixed

ux = 0.0 on the lateral nodes

uy = 0.0 on the bottom

P
g
= Patm on the top, on the bottom

P
c
= 0.0 on the bottom

T = 293.15 K fixed

ux = 0.0 on the lateral nodes

uy = 0.0 on the bottom

Initial condition

Boundary condition

Material parameters Value SI unit

Porosity n 0,2975 -

Intrinsic permeability k 4,5 E-13 m
2

Solid skeleton density ρs 2000 kg/m
3

Irreducible saturation point Sirr 0,2 -

Critical saturation point Scri 0,909 -

Young’s modulus E 1,3 E+06 Pa

Poisson’s coefficient ν 0,4 -

Biot’s constant αB 1 -

Numerical solution: 

Gawin and Schrefler EC 1995

(quasi-static) 

Gawin and Sanavia CMES 2009

F.E. results

Bulk modulus of water Kw 2,2 E+09 Pa

(Liakopoulos, PhD thesis, 1965, University of California-Berkeley)

4a- Drainage of water from a soil column: 

Liakopoulos test - isothermal variably saturated model
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4a- Drainage of water from a soil column: 

Liakopoulos test

F.E. results

Comparison between quasi-static and dynamic solution

Quasi-static 

solution

Dynamic 

solution
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4a- Drainage of water from a soil column: 

Liakopoulos test

F.E. results

Comparison between quasi-static and dynamic solution

Quasi-static 

solution

Dynamic 

solution
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biaxial compression test on Hostun sands

Biaxial compression test of initially water saturated 

globally undrained dense Hostun sands

Desrues & Mokni (Grenoble - Fr 1992, MCF 4 1998)
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Failure

Dilatant 

shear 

band

Failure 

plane

Desrues & Mokni (Grenoble – Fr, 1992, MCF 1998)

• Experimental conditions: de-aired water
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Biaxial compression test of initially water saturated 

globally undrained dense Hostun sands
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Young modulus E = 30

MPa

linear softening 

modulus

h = -1.0 

MPa

Poisson ratio ν = 0.4 Initial porosity n
0

= 0.20

Gravity 

acceleration

g = 9.81 

m/s2

Initial intrinsic 

permeability

k = 1.0E-

14 m²

Initial apparent 

cohesion

c
0

= 0.5

MPa

Water unit 

weight 

γ
w

= 10 

kN/m3

Angle of internal 

friction

φ = 30° Solid density ρs = 2000 

kg/m3

Dilatancy angle ψ = 20° Drucker-Prager model

Material parameters

Imposed vertical displacements 

(1.2 & 2.4 & 3.6 & 6 mm/s)

(Sanavia et al., 2006 - inspired by Mokni and Desrues, 1998)

8 nodes per 

element

Impervious 

& adiabatic 

boundary

F.E. results

Strain localization in globally undrained dense sand
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� Velocity load = 0.0024 m/s

F.E. results

Strain localization in globally undrained dense sand

Equivalent plastic strain [-], volumetric strain [-], capillary pressure [Pa], relative 

humidity [-] and saturation degree[-] contours at 19 s
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Crucial issue in shear band modelling: 

objectivity of FE results

F.E. results

Strain localization is a material instability phenomenon

d2w = dσ : dε < 0  (Hill 1958)        d2w
p = dσ : dεp < 0  (Drucker 1951)

1- Softening 

behaviour

2- Non-

associated 

plastic flow



Finite element analysis of non-isothermal multiphase porous media in dynamics

ALERT SCHOOL 2015                                    Motivation    – Mathematical Model   – F.E. results

Crucial issue: objectivity of FE results

Strain softening single phase materials – von Mises plasticity

F.E. results

L.J. Sluys, PhD thesis, 1992: “Wave propagation, localisation and dispersion in 

softening solids” – Delft University of Technology

1. F.E. dimension sets shear band width

2. maximum level of effective plastic strain inside shear band is 

inversely proportional to F.E. dimension 
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Strain-softening single phase continuum

• Dynamics: when strain softening occurs, domain splits into an 

elliptic part with imaginary wave speed (standing wave) and 

hyperbolic part where waves can propagate
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wave equation for 1D strain 

hardening/softening continuum

(Cauchy continuum)
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Strain-softening single phase continuum

• Dynamics: when strain softening occurs, domain splits into an elliptic 

part with imaginary wave speed (standing wave) and hyperbolic part

where waves can propagate.

• Because  of the inability of the standing wave to propagate, localization 

zone has zero thickness with no energy consumption; against 

experimental evidence.


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Strain-softening single phase continuum

• When F.E. models tries to simulate strain softening, the first plastic 

wave is unable to propagate and locks.

• When the mesh is refined, the shear band width decreases 

⇒ pathologic mesh dependence.

L.J. Sluys, PhD thesis, 1992: “Wave propagation, localisation and dispersion 

in softening solids” – Delft University of Technology
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Crucial issue: objectivity of FE results

• (Cauchy continuum) isothermal rate-independent single phase material 

model does not contain any internal length scale to set shear band width.

• To maintain hyperbolicity in dynamics (or ellipticity in quasi-static 

problems), we need to regularize the governing equations:

- inclusion of gradient or Laplacian term (higher-order gradient terms; e.g. 

non-local strain models, 2nd-order gradient of internal variables, etc.)

- inclusion of rate-dependent term (extra higher-order time derivative 

terms; e.g. visco-plasticity),

- inclusion of rotational degrees of freedom (micro-polar Cosserat model).

F.E. results
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• All these models introduce implicitly or explicitly an internal 

length scale for strain localization analysis.

• Multi-phase porous media models contain a Laplacian in the 

mass balance eq. of the fluids if Darcy’s law is introduced:

F.E. results

Crucial issue: objectivity of FE results

Mass balance equation (solid + liquid + vapour):
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• The dynamic equations for variably saturated geomaterials may

remain hyperbolic even after the onset of strain softening and an 

internal length scale can be defined:

F.E. results

Crucial issue: objectivity of FE results

Distribution of the 

wave number 

domains for fully 

and partially 

saturated 

geomaterials

• For the “quasi-static” case, this internal length cannot be defined 

and a regularization strategy has to be used.  
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Drucker-Prager elasto-plasticity – multiphase porous media in dynamics

(Cao, Sanavia, Schrefler, NME under revision)

F.E. results

Strain localization in globally undrained dense sand



Finite element analysis of non-isothermal multiphase porous media in dynamics

ALERT SCHOOL 2015                                    Motivation    – Mathematical Model   – F.E. results

Numerical results, vertical section in the middle of the sample, with 3 different meshes 

(85, 340, 1360 F.E.) - (Cao, Sanavia, Schrefler, NME under revision)
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Visco-plasticity as regularization strategy 

Perzyna model (1966)  - (in cooperation with Maria Lazari) 

FEM regularization for post localized bifurcation

Drucker-Prager yield surface with non associative flow rule & linear 

isotropic hardening (Sanavia et al., 2006):

n n 0

n n

2
sinφ

6cosφ3α = 2 , β =
3-sinφ 3-sinφ

2F p, ,ξ =3α p+ +β c +hξ
3

   
      

s s p: mean Cauchy pressure

s: deviator Cauchy stress tensor

ξ: equivalent viscoplastic strain

c
0
: initial cohesion

h: hardening/softening modulus

F.E. results
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FEM regularization for post localized bifurcation

F
0
: is a reference fixed value  making F/F0 dimensionless,

γ: is a “fluidity” parameter, depends on the viscosity (η) of the material and  

can be constant (γ=1/η) or a function of the stress or strain rate.

“<·>” are the McCauley brackets, such that:

Q=λ
σ
∂

∂

vp
ε&

0

Fλ= γ φ
F

 
 
  
 

where

( )
( ) ( )

( )

φ x     if   φ x 0
φ x =

0        if   φ x <0







≥

vpelε=ε +ε& & &vpelσ=D : ε-ε 
 
 
& &&

F.E. results

Visco-plasticity as regularization strategy 

Perzyna model (1966)  - (in cooperation with Maria Lazari) 



Finite element analysis of non-isothermal multiphase porous media in dynamics

ALERT SCHOOL 2015                                     Motivation    – Mathematical Model   – F.E. resultsF.E. results

Strain localization in globally undrained dense sand

Visco-plasticity as regularization strategy 

Drucker-Prager visco-plasticity, Perzyna model (1966)  

(in cooperation with Maria Lazari) 
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Drucker-Prager visco-plasticity – Perzyna formulation

F.E. results

Strain localization in globally undrained dense sand

Equivalent viscoplastic strain at the horizontal (y=0,1 m) and vertical middle section of the sample

Viscosity, η=30 sec

Loading 

velocity:1.2mm/s

Viscosity, η=20 sec
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Concluding remarks

• Presented a fully coupled THM model for non-isothermal elasto-plastic 

variably saturated porous materials in dynamics

• Novel contribution: u-p-T formulation (for low frequencies problems) 

• Model implemented in Come-geo code (University of Padova, Italy)

• Validation steps

• Dynamic strain localisation in globally undrained dense sand including 

frictional heating and a test case of rapid landslide have been presented

Perspectives

• Extension to non-local visco-plasticity  - Implementation of Nova-

diPrisco-Buscarnera model for sand - Parallel solution and 3D model

• Application to real cases (e.g. catastrophic landslides) 
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