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Editorial

The ALERT Doctoral School 2016 entitled Modelling of instabilities and bifurcation
in Geomechanics is organized by Jean Sulem and Ioannis Stefanou (both from Ecole
des Ponts ParisTech), Euripides Papamichos (Aristotle University of Thessaloniki)
and Manolis Veveakis (University of New South Wales). I sincerely thank the Or-
ganizers and all the authors of the contributions to this book for their effort: thank
you!

Instability and bifurcation are of course among the core topics in the research and
educational activities of our community; nevertheless, they are still considered rather
impervious and difficult chapters for students in Geomechanics. The ALERT Doctoral
School 2016, and the present book, are exactly aimed at filling this gap. Starting from
the experimental evidence both at laboratory and real scale, and going through the in-
troduction of the basis of the theoretical and numerical modelling of such phenomena,
the Authors built a rigorous and comprehensive didactical tool.

I am convinced that the book will be useful not only to students attending the Doctoral
School, but even to anybody interested in such classic (but fundamental) themes of the
modern Geomechanics.

As usual, the pdf file of the book can be downloaded for free from the website of
ALERT Geomaterials – http://alertgeomaterials.eu.

On behalf of the ALERT Board of Directors I wish all participants a successful ALERT
Doctoral School 2016!

Andrea Galli
Director of ALERT Geomaterials
Politecnico di Milano

ALERT Doctoral School 2016





Contents

Foreword
J. Sulem, I. Stefanou, E. Papamichos, M. Veveakis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Instability Phenomena in Geomechanics- A Review from a Multi-Physics Point of
View
T. Hueckel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Fundamentals of bifurcation theory and stability analysis
I. Stefanou, S. Alevizos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Material instability and strain localization analysis
J. Sulem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Experimental investigation of the emergence of strain localization in geomaterials
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_____________________________________________________________________________________ 

 

Modelling of instabilities and bifurcation in 

Geomechanics: Foreword  
 
____________________________________________________________________ 

Nuclear waste disposal, petroleum engineering, CO2 sequestration, geothermal 

energy, tunneling, slope stability, geotechnics, borehole stability, drying cracking, 

earthquake nucleation are important applications of geomechanics with short and 

long term environmental and societal impacts. Geomechanical systems involve vari-

ous multiphysical and non-linear processes at several length and time scales. These 

complex mechanisms are described by non-linear differential equations that express 

the evolution of the various state variables of a system (e.g. displacements, tempera-

ture, pore pressure etc.). In order to study the evolution of the system and the possi-

ble occurrence of instabilities, it is necessary to explore the mathematical properties 

of the governing equations. Therefore questions of existence, uniqueness, and stabil-

ity of solutions arise naturally. Bifurcation theory and stability analysis are robust 

and rigorous tools for investigating qualitatively and quantitatively various instabil-

ities such as strain localization, thermal runaway, unstable pressure increase, with-

out determining explicitly the solutions of the governing non-linear equations of a 

geomechanical system. 

The purpose of this volume is to present the basic ideas of bifurcation theory and its 

application to classical problems of geomechanics. The volume is organized in nine 

chapters. 

The first chapter “Overview of instability phenomena in Geomechanics” provides in 

situ and laboratory evidence of instabilities in geomechanical applications, mostly 

induced by multiphysical phenomena at various scales, such as heat generated dur-

ing precursor creep, geochemical reactions, thermal pressurization and induced 

suction and air entry during drying and subsequent cracking of soils. 

The second chapter “Fundamentals of bifurcation and stability analysis” aims at 

providing the basic ideas of bifurcation theory and stability analysis. It focuses on 

giving the necessary vocabulary for the classification of common bifurcations that 

are often met in applications and, finally, it presents the application of the theory for 

studying strain localization in solids. Some aspects related to shear band thickness, 

mesh dependency and higher order continua are also briefly discussed. 

The following chapter “Material instability and strain localization analysis” covers 

the principles of strain localization analysis as applied to geomaterials. The condi-

tions for the formation of different types of deformation bands are given and an 

extension of the analysis to fluid saturated porous media is presented. 
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The fourth chapter “Experimental investigation of strain localization” focuses on 

strain field measurements of strain localization. Full field methods, imaging tools 

and experimental loading apparatus have evolved considerably over past 15 years. 

This chapter presents recent developments on the characterization of the strain 

localization process and introduces the methods frequently used. 

The chapter “Numerical modelling of strain localization” gives the basic concepts 

of numerical modeling of the post-localization regime of strain softening geomateri-

als. For this purpose two higher order continua with microstructure are presented. 

This type of continua is used to regularize the ill-posed mathematical problem of 

strain-softening materials and enable the modelling of progressive localization of 

deformation in zones of intense shearing that eventually leads to failure. 

The fifth chapter “Numerical modeling of bifurcation: Applications to borehole 

stability, multilayer buckling, and rock bursting” presents typical boundary value 

problems of bifurcation theory in applications related to petroleum industry, mining, 

and structural geology. The formulation of the bifurcation problem is described and 

the governing equations are numerically integrated using higher order continua 

with microstructure such as the Cosserat continuum. 

The next two chapters “Multiphysics couplings and instabilities I & II” provide a 

review of recent research regarding the effects of temperature, pore-pressure, chem-

ical reactions and microstructure on strain localization in geomaterials. Examples 

have been taken in relation with seismic slip in outcrops and core drillings on active 

faults and with compaction banding.  

The last chapter “Numerical modelling of Multiphysics couplings and strain locali-

zation” focuses on the numerical modeling of localized phenomena induced by mul-

tiphysical couplings. To deal with interactions occurring between the different phas-

es of porous media, a regularization technique based on the second gradient model 

is used. 

We would like to thank all the contributors to this volume and we hope that the 

chapters provide a valuable introduction to bifurcation theory and stability in geo-

mechanics covering the state of the art of theoretical, experimental and numerical 

developments in the field. 

Finally, we would like to acknowledge the pioneering work of late Professor Ioannis 

Vardoulakis (1949-2009) who published major contributions on the topic and intro-

duced innovative research in Geomechanics covering large fields of theoretical and 

computational modelling as well as advanced experimental achievements.  

J. Sulem 

I. Stefanou  

E. Papamichos  

M. Veveakis 
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__________________________________________________________________ 

Instability Phenomena in Geomechanics- A 
Review from a Multi-Physics Point of View 

Tomasz Hueckel  
 
Duke University, Durham, NC, USA 
__________________________________________________________________ 

In situ and laboratory evidence of instabilities, strain localization, bifurcation in 
landslides, borehole instability in nuclear waste disposal, drying cracking are dis-
cussed considering the multi-physical nature of the complex phenomena involved. 
The multi-physics include: the effect of heat generated during pre-cursor creep in 
development of landslides, as well as the effect of geo-chemical reactions, the effect 
of heat on inducing possible failure through pressurization of pore water, the effect 
of evaporation induced suction and air entry during drying and subsequent cracking 
of soils. The phenomena illustrated with specific natural or engineered events are 
interpreted as scenarios of processes either simultaneous or sequential, that are 
either coupled, or rely on accumulation of dissipative variables. As pointed out by 
Terzaghi, the causes of the instabilities are often long-term phenomena rather than 
single events, such as major rainfalls, which are contributing factors. The need for a 
proper description of these long-term phenomena and their coupling to variable 
mechanical properties of soil and rock is emphasized. 

 

1 Introduction 

The engineering practice in all branches of geomechanics is now at an interesting 
stage of development, when the customary tools of evaluation of margin of safety, 
which are “admissible stress” and “factors of safety” are felt to lead to an oversim-
plification, of what we are capable to say about a sample, or soil/rock mass, or struc-
ture. This is mainly because of the developed computational capabilities of contem-
porary engineering, as well as experimentally supported modeling capabilities, in-
cluding coupled fields, through which soil and rock behavior is mathematically 
described. In the above statement I have adapted the words of Giulio Maier, with 
which he opens the Foreword to a fascinating book by Davide Bigoni on bifurcation 
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and material instabilities, [Big12]. While the book refers to bifurcations in a larger 
class of materials than just geomaterials, the above pronouncement catches exactly 
the situation: we can predict much more in detail than a few years ago, the stress 
field evolution, together with strain and/or damage progress along a process of load-
ing following multiple scenarios of coupling with temperature or concentration or 
reaction progress field. That potentially includes patterns related to failure/instability 
and their precursors. However, how this information could/should be utilized to 
quantify “the distance from failure” or “factor of safety”, remains often an open 
question. 
 
The purpose of this paper is to provide an overview of a series of phenomena in 
geomechanics, which qualify as instabilities/failure of various kinds. The use of this 
less than strictly defined term is intentional, as we want to encompass a widest pos-
sible class of phenomena for which the criteria are not necessarily within a single 
type of definition, but in loose terms correspond to Lyapunov’s definition: an unlim-
ited response to a limited solicitation. Solicitation is meant as a trigger of any sort: 
mechanical, hydraulic, thermal or chemical. We shall start with classical phenomena 
associated with purely mechanical loading induced instabilities and their criteria and 
implications, to expand into an array of non-classical multi-physics instability phe-
nomena. Current observations and understanding of geomechanical processes indi-
cate a critical role of non-mechanical variables, whereas the conceptual base is lag-
ging behind. Material instabilities (local) and field instabilities (global) based on the 
actual instability events leading to failure are both discussed. 

2   General remarks 

As we started with a promise of being wide open and inclusive we have to issue 
several warnings in order to try to wave off an inevitable confusion that the subject 
brings, despite an appearance of a strictly rigorous approach.  

To start with, in geo-engineering/geophysics context, instability, or better, loss of 
stability, may mean instability of a material per se (at a point), or instability of a 
soil/rock mass, or mathematically speaking of a boundary value problem. In other 
terms, we speak of a local or global stability. A local loss of stability at at least a 
single point of the continuum is considered a necessary (but by far not sufficient) 
condition for global instability. Similarly, a local instability in a volume around a 
tunnel opening may be critical for a highway authority, but of no relevance to the 
stability of the mountain in which it is built. On the other end of the spectrum, local 
fault instability may induce global slope instability, or trigger an earthquake. It does 
depend on the geometrical constraints that the considered boundary value problem 
implies.  
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The local stability is usually tested in materials laboratory on a uniform specimen, or 
in a mathematical model, for a single material point. Global stability can rarely be 
tested in a large scale, but there were attempts made to monitor known landslide 
sites, or earthquake source sites, or in large liquefaction experiments. 

Physically, instability may mean many things depending on the type of material and 
on the geometrical scale of consideration. In the plainest case, a macroscopically 
homogeneous material element in laboratory at a sufficiently low stress deforms in a 
homogeneous manner when a uniform traction is applied at its boundary. However, 
for unspecified physical reasons, at a certain stress level it responds with an uncon-
strained strain in response to say, a small stress perturbation. Often, the homogene-
ous strain is associated with a diffuse dilatancy (increased volume). This is a classi-
cal representation of instability. The key point is the homogeneity of the response 
maintained during the instable phase.  
Alternatively, always with a homogeneous response, we perceive as critical a loss of 
uniqueness of response, which means that such a response in a repetition of the 
theoretically the same experiment would yield a different response. An additional 
option is to treat as unstable a response in which the increase in internal energy over 
a virtual displacement is less than work of the external forces. Each of the above 
critical conditions, in principle leads to a different criterion, both locally and global-
ly. 
In addition, when in a homogeneous sample the straining becomes more advanced, 
this strain homogeneity may be spontaneously lost. It is inevitable that, due to the 
actual irregularities in the distribution of minerals with a different stiffness, interface 
properties, pre-existence of structural defects, etc., concentrations of high stress 
and/or strain occur. Such concentrations may result in various forms of local dam-
age, like mineral decohesion, micro-fissures, nucleation of pores, inter-mineral, or 
inter-grain slips, depending much on the structure, mineralogy and the history of the 
material. The interaction of such local singularities gives rise to a variety of mecha-
nisms of failure. Despite differences, their common feature is a possibility of a de-
velopment of micro-defects into large- scale mechanisms of failure, such as slip-
surface, or fault, compaction band, leading to landslide, sinkhole, faulting, subsid-
ence etc… Such mechanisms are often characterized as macroscopic strain localiza-
tion, when certain features of continuity abruptly cease to persist, like intergranular 
or inter-mineral phase contact. Commonly, more than one mechanism occur simul-
taneously, as in figure. 1 obtained for a sample of sand, in which two separate slip 
surfaces and a substantial volume of diffuse dilatancy are observed after a triaxial 
compression test. 
 
A mathematical representation of the above physics is equally complex. Often, Lya-
punov type of instability (defined as an unconstrained response to a limited perturba-
tion) is implied resulting from of a solution of a system of differential equations 
describing the non-linear material behavior. The instability consists of bifurcation of 
the solution of the system of such equations, which clearly implies non-uniqueness 
of the solution. 

Hueckel 5

ALERT Doctoral School 2016



 

     Figure 1: Multiple shear bands and a volume increase due to diffuse dilatancy 

The criteria for exclusion of instability may be local (or for uniformely deformed 
systems) or global for a piece of continuum. There are several different criteria, 
expressing very similar, but not identical conditions. 

The first type of criteria refers to certain characteristics of material energy or work 
required to deform in a unique manner (meaning one uniform solution) under the 
conditions of equilibrium, for a specific stress-strain relationship, and geometrical 
strain-displacement relationship. The second type allows for strain localization, with 
a particular geometrical form of deformed configuration that satisfies conditions of 
equilibrium allowing certain forms of discontinuity, that is admits certain type of 
discontinuities (shear, or compaction bands). Global criteria consist in the same 
requirements but integrated over the entire volume of the considered body. The very 
definition of bifurcation point varies from author to author, although in any specific 
situation there is usually no doubt about what should be called a bifurcation point. 
The above types of instabilities and their implications have been studied in the con-
text of geomaterials for nearly 50 years, and an example of their implications and 
their relationships is reproduced here from an old paper in figure 2 [Big91a]. The 
most interesting (to this writer) recent developments concern geomaterials in their 
multi-physics context. 

3.    Solid phase material criteria 

To start with we will limit ourselves to considering exclusively incipient elasto-
plastic straining at small strains. At the moment we will not deal with materials that 
exhibit strong viscous effects.  
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Figure 2: Relationships between criteria for uniqueness, second order work, strong 
ellipticity, Mandel's stability and localization. 
 
 
In what follows we will outline the basic formulae of elasto-plasticity (equation 1) at 
small strains, to introduce basic concepts that will be referred to [Ros68].   The giv-
en set of equations implies the existence a yield limit, in the effec-
tive stress invariant space, which if f = 0, means yielding, otherwise f < 0 it means 
an elastic unloading state. The case of f > 0 is deemed as statically inadmissible.  
The core of the multi-physical aspects of soil/sediment/rock behavior is embedded 
in the last of the equations, which describes the evolution of the principal mechani-
cal property of the material, which is the size of the yield locus 

 with changes in a series of the environmental (non-

mechanical) variables (see e.g. [Hue92], [Hue02]). 

!! f = f (p',q,r ,pc ')

!!pc '= pc '! ε
pl ,µ ΔT ,ξ ,c...( )( )
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                                                                    (1) 

 
That implies that variables such as temperature, chemical mass removal (accretion), 
ion concentration of pore fluid affect in an essential way the geomaterial strength 
and apparent preconsolidation pressure, and elasto-plastic stiffness. 

As customary in inelasticity theories the deformation can only be uniquely deter-
mined for the incremental deformation, rather than total strain, as in elasticity. 
Therefore the plastic strain rate is defined as 

  
 !!dε ij

pl = dλPij ;!under!condition!that!dλdf ≤0,!while!dλ ≥0!and!df ≤0       (2) 
 

where Pij is the gradient of the plastic potential, or a resultant direction tensor of all 
inelastic strain components of various origins, including the irreversible change in 
elasticity due to plastic straining or damage [Hue75, 76], [Mai79], [Big91, 12]. Most 
of physical evidence suggests that Pij ≠ Qij, where !!Qij =

∂ f
∂σ 'ij

 is the yield locus 

gradient, but for a number of reasons it is often seen as convenient to ignore the 
difference. 

Non-associativity, i.e Pij ≠ Qij, for instance via an elasto-plastic coupling, or any 
other forms of irreversible (not necessarily mechanical) straining leading to a non-
symmetrical stress-strain incremental relationship are notorious for inducing a pre-
mature loss of stability and/or strain localization.  

Among several criteria for (local) material stability the most commonly accepted is 
an energetic one: stating the positiveness of the increment of internal energy, or in 
other terms, of second order work, in the sense of Hill [Hil58], or Drucker [Dru64]. 
Following Dru [64], the continuum considered will be said to be stable in a given 
equilibrium configuration, if and only if an external agency imposing a kinematical-
ly admissible (compatible) infinitesimal geometric disturbance, by preserving equi-
librium, performs nonnegative (second-order) work whatever the disturbance may 
be, i.e.  

!!

f = f (p',q,r ,pc ')≤0
p'= 1

3σ kk ';!!q= 3 J2 '';!J2 ''= 1
2 sijsij ;

f = 2p'
p'c

−1⎛

⎝⎜
⎞

⎠⎟

2

+ 2q
gMpc '

⎛

⎝⎜
⎞

⎠⎟

2

−1

M = const .
g=2k / 1+k + 27

2 1−k( ) r
q( )3⎡

⎣⎢
⎤
⎦⎥
;!!k= 3

3+M

r = J3 '3 ;!J3 '= J3 ''= 1
3 siksijskj ;

pc '= pc '! ε pl ,µ ΔT ,ξ ,c...( )( )
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!!δσ 'ijδε ij ≥0      (2) 
 

Considering the set of constitutive equations (1) and expressing the incremental 
effective stress as a function of an incremental strain [Mai79] and properties of the 
material behavior: elasticity tensor, 

!
Eijkl , plastic hardening modulus, H (positive 

during plastic strain-hardening and negative during strain-softening) and its critical 
value, Hc, which may depend on stress and plastic strain 

!!
H = − ∂ f

∂ε ij
p Pij ;!Hc = −PijEijklQ kl , where Qij and Pij are respectively yield locus gradient 

and a second order tensor defining the mode of incremental irreversible strain, one 
arrives at the following stress-strain incremental relationship characterized by elas-
to-plastic stiffness tensor Dijkl, as follows 
 
 

 

!!

δσ 'ij = Dijklδεkl ;!with!Dijkl = Eijkl −
1

H −Hc
UijMkl

and !Uij = EijklQkl !and!Mij = EijklPkl

      (3) 

 
Employing the above introduced material properties in a local condition of stability 
(2) we conclude that the criterion is articulated through the hardening modulus H 
which if larger than the first value or lower than the second one [Mai79][Big91a]  
 

!!

H >H1 =
1
2 Hc + PijEijklP klQmnEmnrsQ rs( )

H <H2 =
1
2 Hc − PijEijklP klQmnEmnrsQ rs( )     (4) 

 
ensures stability. 
 
For the associative flow rules (Pij = Qij) the hardening modulus at loss of stability 
H=H1=0, while for materials with so called-subritical softening, the hardening mod-
ulus at the point of re-gaining stability H=H2= Hc, Hence, the stability range coin-
cides with that of hardening, and the post-critical range, while the softening range is 
all unstable. Fig.2. The most important departure from this rule is for all sorts of 
non-associative flow rules, for which it can be seen that H1 > 0 [Big91a,b]. Notably, 
an earlier, particular version of such conditions for a non-associated flow rule for a 
Mohr-Coulomb material was published by Mróz [Mro63]. 
 
 A separate issue is the uniqueness of material response. It appears that in certain 
situations, certain type of incremental solicitation is not admissible, in the sense that 
the response is not unique, which means that two possible, or infinite possible re-
sponses can be expected. The classical result is that in the softening range, i.e. H< 0, 
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!
dσ ij  such that !!dσ ijQij ≥0  is statically not admissible, as it violates the flow rules of 

equation (2b). In addition!
dσ ij such that !!dσ ijQij <0 is admissible, but generates two 

possible types of response: an elastic unloading and an elasto-plastic softening. In 
other terms, the range of H< 0 is not stress controllable. Analogous ranges of static 

admissibility may be established for !
dε ij , with a range of the hardening modulus at 

H < Hc  is not strain controllable. Consequently, the range 0<H<Hc is strain control-
lable. The issues of controllability are relevant in experimental studies of material 
behavior.  
 
Nova and Buscarnera [Bus08] have generalized the question of controllability to 
experiments with a mixed stress-strain control of loading programs. These are of 
relevance for instance in undrained tests in which (under the assumption of incom-
pressibility of solids and water) volumetric strain rate is imposed as zero. 
 
An alternative form of instability is the one with strain localization. Originally iden-
tified in the seminal paper by Rudnicki and Rice [Rud75], the condition is less re-
strictive than (4), nevertheless it does admit strain localization of a particular form of 
strain tensor in inequality (2), which is a product of a unit vector ni normal to the 
planar band and a vector gj defining the jump in the velocity derivative. This condi-
tion is equivalent to positive definiteness of all possible acoustic tensors ni Dijkl nl. A 
special case of the strain localization into a planar band takes place when the differ-
ential equations describing the behavior of the material in equilibrium ceases to be 
elliptic. Two modes of strain rate discontinuity are possible depending on directions 
of vectors ni and gi which are normal modes of split and compaction [Cas09], when 
the two vectors are coaxial, and a shear band mode, when they are not. 
 
The criterium for localization at a particular direction specified by versor ni orthogo-
nal to the discontinuity shear band is given in the form of a hardening modulus 
 

!!
Hsb(nj )=2G 2njPijQjknk − njPijnj( ) nmQmnnn( )−PijQij − v

1−v njPijnj( )−Prr( ) nsQstnt( )−Qnn( )⎡
⎣⎢

⎤
⎦⎥

 (5) 

 
with G and v being elastic shear modulus and Poisson coefficient. To determine a 
critical modulus at a given point, constrained maximization of equation (2) needs to 
be performed over all possible directions of ni. 
 
A global condition of stability is guaranteed in the medium for the entire boundary 
value problem if  
 

               (6) 

 
which is again stated as non-negativeness of the second order work of tractions 
integrated over the whole boundary (plus that of body forces, over volume). 

!! 2W !
"TiS∫ "uidS + "XiV∫ "uidV = "σ 'ij(V∫ "εkl ) "ε ij( "ur )dV ≥, !for!any! "ur
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Through a standard consideration the condition is brought to the requirement of 
positiveness of the second order work integrated over the entire volume of the body, 
under the assumptions that both the constitutive laws and geometric conditions are 
fulfilled. That condition clearly is much much less restrictive than the local condi-
tion (4), which requires the same, but at every point of the body. Thus (6) admits 
large areas of a negative second order work, as long that there are areas that can 
overweight the negative areas.  
 
One other way to guarantee the stability of the solution of the boundary value prob-
lem in geomechanics is to ensure that the solution is unique, or in other terms, there 
are no alternative solutions for the obtained one to snap through to. The solution 
uniqueness is guaranteed only under sufficient conditions of local or overall nature, the 
overall condition being much less stringent than the above sufficient conditions for sta-
bility [Hue79].  
 
 In geoengineering practice analyses, the assessment of stability is often made on the 
basis on the finite element result, through either detection of failure as a loss of 
global equilibrium seen as a lack of convergence of the solution identified by the 
lack of convergence within a certain iteration number [Gri 99] [Zie05]. Alternative-
ly, loss of stability for instance of a slope is identified as an onset of a kinematically 
admissible “sliding” mechanism through monitoring as the solution evolves of the 
selected nodes to detect a sudden increase of displacements  [Hic10][San15].  
 
 

4 Material sample stability: experimental  
 
To provide an experimental illustration of a local instability, under the assumption 
of the absence of localization (diffuse plastic strain) is almost impossible. Fig. 3a 
shows a series of triaxial test results with increasing confining stress values, after 
Paterson [Pat, 58] for Wombeyan marble. All of them except for those with the 
highest confining stress, exhibit eventually an unstable behavior, but for pressure 
values lower than 35 MPa the material exhibits localized instability, either as a ver-
tical spalling(1), single (2), or conjugate (3) shear bands, whereas for larger confin-
ing stress the behavior is qualified as ductile, (4,5) for 70 and 100MPa, (3,4), Fig.3b. 
(a)               (b) 

    
                (1)     (2)       (3)            (4)       (5)    
Figure 3: Triaxial compression of Wombeyan marble. (a) axial stress – strain curves; 
(b) localization and diffused damage modes, after Patterson [PAT58]. 
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Notably, for higher level of confining stress in these tests (70 and 100 MPa) the 
deformation pattern, with a substantial inelastic component, can be viewed as uni-
form, or non-localized. The stress – strain curves do not suggest an unstable, or non-
unique behavior. Nevertheless, the pattern formation of micro-cracks brings some 
concerns about homogeneity of the strain and stress distribution across the sample, 
which in reality homogeneous is not. However, rigorous, or at least somewhat codi-
fied measure and understanding what is “sufficiently homogeneous” are conspicu-
ously missing. 
In contrast, for all tests below 35 MPa of confining stress, one or more of stability 
criteria are failed, but the deformation is invariably a localized at certain point. 
Acoustic emission recording techniques allow to monitor sound emitting micro-
fracturing, which initiates long before the loss of stress-strain curve linearity, even 
before noticeable dilatancy onset, and far before approaching the peak stress in tri-
axial conditions for marble, figure 4 [Hal73]. Indeed, what could qualify as an onset 
of non-uniqueness and instability coincide rather with the coalescence of micro-
cracks into a shear band or macro-crack. Notably, the crack pattern evolution is a 
gradual process and does not suggest any threshold behavior or values. However, 
that is not always the case as seen in a figure where comparison for uniaxial failure 
is reported for salt-rock, granite and marble [Zha15]. 
 

 
Figure 4: Axial and lateral stress measured on a set of argillaceous quartzite with the 
corresponding evolution of the distribution of microcracking [Hal73] 
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For sand the situation is quite similar. Unstable and non-unique behavior is seen in 
triaxial tests at low confining stress, and invariably associated with a localized de-
formation into a shear band, figure 5, (VAR78]. 

 
Figure: 5 Biaxial compression of sand with visible localized shear band [Var78] 

  
(a)               (b) 

     
Figure 6: Low (a) and high (b) confining stress compression of a quartz sand: iso-
tropic effective stress vs porosity and acoustic emission decreasing after yielding at 
high confinement; (c) deviatoric stress-strain curves showing stable behavior at 24ºC 
at high confining pressure [Kar05] 

 
Figure 7: Comparison of uniaxial compression of rock salt, granite and marble, with 
different intensity of acoustic emission at different stages of loading [Zha15] 
 
 
A homogeneous behavior at higher confining stress is rarely seen in triaxial strain, 
and usually is associated with material stability and uniqueness of response to 
drained tests. There is no established-data base to support the claim that there may 
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be an unstable sand behavior with a uniform strain across the sample, at least in 
drained triaxial tests [DRE16]. Karner et al., [KAR08] report sound emission at-
tributed to intense intergranular friction at low mean stress, but at higher stress (and 
sometimes elevated temperature) if little is said about the location of the sound 
source, it does not mention strain-localization, while post-test observations indicate 
grain breaking and comminution. The associated stress-strain curve does imply 
stable behavior at high confinement (figure 6.).  
 

 
 
Figure 8: Evolution of distribution of acoustic emission during uniaxial compression 
of a salt rock, granite and marble 
 
A separate issue arises in undrained tests on sands, during which the volumetric 
strain is imposed to be constant. In such tests the material exhibit an unstable behav-
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ior, however, there is no indication of localization, or in other words the deformation 
appears to be homogeneous, or diffuse. The term diffuse failure has been adopted 
for this type of behavior [Dau10]. Figure 9 shows the corresponding stress-strain 
curve and the effective stress path for such test on Hostun sand. Rightfully, [Dau10] 
indicate a restriction of the undrained, or constant volume conditions, clearly impos-
ing peculiar deformation pattern. 

 
Figure 9: Unstable behavior during undrained test of Hostun sand [Dao10]. 
 
Also interesting is the instability developing in sand during constant deviatoric stress 
drained tests. In these tests failure occurs in coincidence with the changing sign of 
the volumetric strain (or at a maximum of attained dilatancy) see figure 10. Howev-
er, in such tests the condition of static admissibility of the local stress rate at the 
softening regime may be violated. As will be seen later in the paper, experiment 
with thermal pressurization of clay at constant stress deviator undrained heating test 
leads to a similar response [Hue91]. However, in that test both localized and diffuse 
strains were developing at failure. 

 
Figure 10: Stress–strain curves in q= cons. drained test with a instability [Dao10] 
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There are several observations to be made concerning laboratory experiments on 
small triaxial samples. The underlining assumption for such experiments is that all 
the fields: stress, strain, plastic strain (and possibly micro-cracking) are uniform 
across the sample until a possible appearance of localization. This unfortunately is 
not necessarily true, as for instance visible in Figure 4 [Hal73]. Similarly, the evolu-
tion of local porosity monitored via CAT in sand suggests an early loss of uniformi-
ty prior to shear-banding [Des96]. Stress is obviously not measurable directly in 
such experiments. It is usually considered as an average resulting from the measured 
force assumed as uniformly distributed across the area. A number of reasons of the 
non-uniformity are quoted, such as axial symmetry of specimens and a development 
of roughly planar shear bands, stress concentration at a piston boundaries, with dif-
ferent intensity in sand, clay or rock. Remedies to the experimental techniques have 
been sought, by introducing Truly- Triaxial – Testers [Woo73], biaxial strain tester 
(e.g. [Var 1978]) etc. De Josselin de Yong and Drescher [DeJ76] conducted a series 
of tests in which they subjected a 2-D photo-sensitive granular medium to shear 
under constant vertical load between two rigid smooth arms rotating around a pin 
with a controlled rate, causing a displacement of the medium between the arms with 
a globally unstable or stable force response, depending on the direction of the medi-
um displacement, and dilative or contractile volumetric strain. These, and many 
other subsequent similar experiments have shown, that contact stresses lead to for-
mation of chains of compressed columns forces within the medium separated by 
lightly, or completely un – loaded grains.  In addition, the said compressed columns 
undergo periodic unstable buckling and rebuilding of such columns, so that the en-
tire process while apparently monotonic at the force-displacement level is unstable, 
non-homogeneous and non-monotonic at the level of grain structures, which form 
vortices and other patterns [Koz16]. Similar conclusions were derived from much 
later studies of discrete element methods [Iwa98]. This prompted to investigate even 
small-scale experiments as BVPs and treating their stability and uniqueness through 
global criteria. Finally, there is a question of validity beyond the point of loss of 
stability or uniqueness of the stress-strain curves obtained in a single experiment. 
Indeed each such curve in a non-uniqueness range is just one of an infinity of possi-
ble responses, as they go through a singularity point of H=0.  
Some additional insight may be expected from multi-scale analyses using DEM 
computations, together with a progress in a rigorous approach to inter-scale data 
interpretation.   
 
 
5. Boundary value problems: uniqueness, stability at 
the field level 
 
Landslides 
Landslides are the most common consequences of soil and rock instabilities at the 
field-scale. In addition, they more common than earthquakes, and may claim many 
victims per occurrence in populated areas. Classically, shallow sliding is considered 
separately from deep rotational slope failures. The latter ones are considered here 
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only. The traditional factor of safety (FOS), understood as a ratio of resisting result-
ant moment to the driving resultant moment, approaching unity is considered as a 
condition of failure in classical geotechnics. However, as will be seen in what fol-
lows, in several historical landslides, failure occurred at a FOS substantially higher 
than 1, 2, or even 3. Incorrect evaluation of several variables, material properties or 
contributing processes led to misleading assessment of FOS.  
 
A recent (Feb. 2010) well-documented landslide is that of Maierato (Vibo Valentia), 
Calabria, which occurred at a site of paleo-landslides of 1783 and 1932. A rare, 
dramatic, but very instructive video by Patrizia Venturino [Ven10] has documented 
http://www.youreporter.it/video_Frana_Maierato_il_video_integrale_in_presa_dirett
a_1 the event in detail. The most important in this video is to note a succession of 
localized rotational collapses of individual scarps, intercalated with a mass flow. 
The general trigger of the landslide was a protracted period of rainfalls. As in so 
many similar cases there were numerous pre-cursors of the final event, in this case a 
day, to several hours of minor local slides, one of them toppling a high voltage pow-
er-line. Because of that warning signs no fatalities occurred. The area affected was 
0.3 km2, with a front of ab. 800m, depth of 60-70 m and involving ab. 10 Mm3, 
figure 11. The geological structure, shown in a cross-section in figure 12, points out 
to two particularities of relevance: the presence of two particularly weak permeable 
rocks: evaporitic limestone and Miopcene sandstone, intercalated by two, ab. 10 m 
thick layers of clay. Prior to the main collapse a substantial swelling was observed 
suggesting a rotational collapse of a part of mass. It is believed [Gat12], and 
confirmed by lab experiments that evaporitic limestone transformed from plastic to 
semi-fluid behavior. Such transformation is suggested to explain rapid change from 
a mode of sliding to flowing debris mass, observed in the videos. 

 

 
 

Figure 11: General view of the Maierato landslide site [Bor14] 
 
The most surprising finding from preliminary FE calculations [Gat12] is that when 
dry the slope has FOS equal to 3.36, with slip surface within the evaporitic lime-
stone, while with water table up by max 10-15 m there is a reduction of FOS by 
40%, but still to ab. 2. Thus, the conventional understanding of slope stability highly 
overestimates FOS. Among the causes of failure not given a proper consideration, 
the [Gat12] list penetration and pressurization of pore water along the contact be-
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tween Miocene sandstone and Miocene clay, as well as presence (and evolution 
upon inundation) of evaporitic limestone and Miocenic sandstone, as well as au-
tobrecciation processes induced by dissolution of halite and gypsum dur-
ing…weathering and dissolution diagenesis [Gat12] [Bor14].  
 
 

 
 Figure12: A geological profile across the area prior to landslide. Green line denotes 
post event topography (from [Gat12].  
 
The most surprising finding from preliminary FE calculations [Gat12] is that when 
dry the slope has FOS equal to 3.36, with slip surface within the evaporitic lime-
stone, while with water table up by max 10-15 m there is a reduction by 40%, but 
still to ab. 2. Thus, the conventional understanding of slope stability highly overes-
timates FOS. Among the causes of failure not given a proper consideration, the 
autors list penetration and pressurization of pore water along the contact between-
Miocene sandstone and Miocene clay, as well as presence (and evolution upon in-
undation) of evaporitic limestone and Miocenic sandstone, as well as autobreccia-
tion processes induced by dissolution of halite and gypsum during…weathering and 
dissolution diagenesis [Gat12] [Bor14].  
 
These findings from the preliminary analyses of Maierato landslide by [Gat12] 
[Bor14] interestingly connect to observations made about instability of slopes made 
by Terzaghi in his 1950 paper on “Mechanism of Landslides” [Ter50].  Analyzing 
“landslide producing processes” he emphasizes the difference between the “causes” 
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and the “contributing factors” of landslides. He defines the latter via an example as 
follows: “if a slope is old, heavy rainstorms (…) can hardly be the sole cause of a 
slopefailure, because it is most unlikely that they are without any precedent in the 
history of the slope. They can only be considered contributing factors”. In the same 
paper, in Table 1, Terzaghi introduces causes or “acting agents”, among which there 
is water from heavy rainstorm or snow melt. Among several “modes of action of 
agent” linked to water, he lists at #9 the chemical weathering, which “weakens inter-
granular bonds” which leads to decrease of cohesion. For an “old slope” slide of 
Mount Turtle in Alberta, 1903, he then shows after McConnell and Brock [McC04] 
a progressive decrease in Factor of Safety, over 15 years, with some variations cor-
responding to dry and wet spells, reaching eventually 1, in conjunction with “a con-
tributing factor” of high pore water pressure, figure13. He returns to this mechanism 
in the case of loess, where water from external reservoirs is listed as removing solu-
ble binders destroying intergranular bond(s), with the same macroscopic effect of a 
decreasing cohesion. 
 

 
 
Figure 13: Evolution of Factor of Safety of the slope at Mount Turtle along the pro-
cess of soil weathering (from Terzaghi [Ter50]) 
 
Sensitivity of basic mechanical soil properties to chemical processes in the environ-
ment has been seen to become a critical factor of stability of slopes and coastal 
structures for a variety of reasons, from periodic changes in salinity of pore water 
affecting clay behavior of coastal slopes, to heat effect at the slip surface during a 
creep phase of the process, to oxidation and dissolution of sandstone, to dissolution 
of calcite, dissolution of silica in aging sediments, dissolution of gypsum in aban-
doned mines, to mention just a few examples. 
 
The conclusion from the above considerations, in a bit more modern terms, is that a 
proper approach to a realistic evaluation of FOS would be to view the stability as a 
scenario composed of several processes coupled between them. These processes 
would be solid- and fluid- mechanical as well as geo-chemical, coupled through 
both balance equations including exchanges, as well as through constitutive (phe-
nomenological) coupling, i.e. reactions vs porosity (permeability) vs elasticity or 
softening. The processes may be either simultaneous, or sequential. Hence, the eval-
uation of the instability of such processes, or differential equations describing them 
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should be approached accordingly, either as instability of the whole process, or of 
any of the element of the sequence. 
 
An example of such an approach proposed by Veveakis et al. [Vev07] is an analysis 
of Vajont dam landslide of 1963 in Northern Italy, Figs.14-16. This was one of the 
largest disasters of this sort in the previous century, killing nearly 2000 people in a 
town below the dam (which survived). In their analysis Veveakis at al. postulated 
that 2-3 year prior to the collapse, creep of the rock mass localized in a clay-rich 
layer was self-alimented by shear generated heat pressurizing and possibly vaporiz-
ing water within the layer, and thus leading to thermal softening of clay and acceler-
ating the creep leading eventually to the massive landslide.  
  

  

 
 
Figures 14-16: View of the landslide scarp (2014)-top left; a crack (50-100cm 
across, -2 km long developed parallel to the reservoir shore a few months before the 
collapse-top right; The town of Longarone 2km below the dam, before and after the 
tragedy 
  
They calibrated their model against the data from the site obtaining 35ºC tempera-
ture and 2.5 MPa of pore pressure increases, which were sufficient to produce veloc-
ity of creep of 20cm/day, prior to the failure (Fig. 17). 
The model has been subsequently generalized to a thermo-plasticity simulation by 
Cecinato et al. [Cec11]. 
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Figure 17: (left) Predicted tempearture and excess pore pressure arising in the shear 
band during sliding vs time (sec.); (right) Calculated velocity of creep vs time in 
months, compared to other assessments (from [Vev07].) 
 
In a similar spirit, a case study of two landslide slip surfaces at Diao Jiao Zui and 
Qian Jiang Ping sites in the Three Gorges area, China, has been undertaken using a 
multi-physics approach. Geochemical testing revealed that due to acid rain (with pH 
between 5.4 and 3.45) potassium ions at the slide surface were released, the cemen-
tation was reduced, and the ratio of interlayer clay minerals evolved. Accordingly, 
illite or montmorillonite–illite mixtures were transformed first into kaolinite and 
subsequently into montmorillonite associated with a complex chemical softening 
evolution, including a 30% drop in shear strength at the slide surface, but not at a 
close vicinity [Zhao11]. Interestingly, both effective internal friction angle and co-
hesion appear for remolded smectite samples to be non-monotonic functions of time, 
figure 18. 
 

  
Figure 18: Evolution with time of the effective internal friction angle and cohesion 
during laboratory simulated chemical transformation due to increase of pore water 
pH of a model smectite soil corresponding to the slip surface at Diao Jiao Zui and 
Qian Jiang Ping sites in the Three Gorges area, China (from [Zha11]. 
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In a similar direction of chemo-mechanical coupling at the slide surface, an interest-
ing extension of their thermal run away creep instability developed for Vajont simu-
lation, was proposed by Veveakis et al. [Vev10].  They postulated that the aforemen-
tioned frictional motion is not only affected by the generated heat, but also the strain 
rate. It appears that steady state heat diffusion across the shear band may be unstable 
and lead to localization of heat dissipation (and hence thermal softening) at the cen-
ter of the band. Hence, the Autors consider the effect of localized dissipation on 
endothermic chemical reaction, leading to a variety of possibilities depending on the 
nature of specific chemical reaction.  
In an analogous spirit Stefanou and Sulem [Ste15] investigated conditions of chemi-
cally induced compaction band instability via chemo-plasticity model.  
 
 
Thermal pressurization problem 
 
One of concerns in the technology of nuclear waste disposal in clays is the effect of 
heat of nuclear decay on mechanical behavior of clay as a supporting medium sur-
rounding the heat source. One of the multi-physics effects results from a huge dif-
ference between thermal expansion of pore water and thermal expansion (or thermal 
contraction of clay, depending if it is in elastic or plastic range). Laboratory experi-
ments have shown that undrained heating at constant total stress loading conditions 
of relevance to the technology leads to instability, at temperatures between 70 – 
90ºC, as can be seen from the effective stress path in figure 19a [Hue91]. 
(a)                 (b) 

  
 
Figure 19: (a) Effective stress paths during undrained heating of Boom clay 
[Hue91]. Notably the thermally generated pore pressure caused the effective stress 
to reach values where their further decrement is statically inadmissible, see Sect. 3. 
Compare to figure 10. 
 
In a borehole bvp, the problem is exacerbated by a very low permeability of clay, 
compared to thermal conductivity. Indeed, the effective stress path up to the 0.5 m 
vicinity of the waste canister approaches the critical states, in both considered cases 
of constant and variable friction angle, figure19b [Hue11]. As the thermo-elasto-
plastic deformation is coupled with heat flow and hydraulic flow, its stability and 
uniqueness should result from consideration of all three fields.  
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Localization during drying of geomaterials 
 
Cracking of geomaterials during drying is a purely mechanical problem, but highly 
coupled with the pore fluid flow.   Per definition, drying is a multi-phase phenome-
non, with a quite complex multi-physics, including phase change, capillarity, flow, 
deformability, and (perhaps) water cavitation during the phenomenon of air entry, 
which per se is a fluid - gas interface instability. In addition, it requires considera-
tions to be made at three scales: macroscale continuum, meso-scale of grain and 
pore clusters, and micro-scale of individual pore structure or grains with liquid 
bridges. Hueckel et al. [Hue14] postulate that drying cracking consists of a series of 
processes, starting with evaporation of water at the external surface, inducing a neg-
ative liquid pressure and flow out from the deformable soil undergoing shrinkage in 
response. The air invasion according to Terzaghi takes place when the menisci at the 
saturated external soil surface reach the size of the biggest pores, but when the soil 
pores are deformable, that affects air entry. As for the drying-cracking, it is postulat-
ed that air finger entering the soil as an instability of the water surface (figure 20) 
constitutes a defect in the soil body, around which a stress concentration arises, 
when there are external constraints to shrinkage. An amplification of total tensile 
stress induces local tensile effective stress despite a high suction value, resulting in a 
tensile failure, i.e. crack. Hence, a local value of air entry suction controls local 
stress amplification at the defect. The meso-scale linear fracture mechanics analysis 
yields the stress values in the plausible range of tensile strength. In this scenario, the 
cracking needs to be considered at a continuum scale, while the air entry is a micro-
scale phenomenon. In addition, the air entry requires certain threshold suction to 
develop, which in turn changes the size of the pores. Hence, certain processes are 
sequential. 
 

  
 
Figure 20: Evolution of the water body between 8 glass spheres subjected to evapo-
ration at a constant temperature and constant ambient vapor pressure. The arrow 
indicates a localized non-symmetric unstable mode of the interface evolution (air 
entry finger).  
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There is a host of other similar problems in which multi-physical behavior leads to 
instabilities, which were addressed here due to limited space. They include, e.g. 
liquefaction, instability of rock faults, and mine pillars related to earthquakes, break-
through flow due to dissolution of minerals affecting permeability, sinkholes, mine 
collapses.  
 

5  Conclusions 

A wide range of failure, instability, non-uniqueness and strain localization phenom-
ena developing in geomaterials were reviewed. It was concluded that in many real 
life problems such occurrences result from complex multi-physical fields, including 
flow of pore water, differential thermal expansion of soil constituents, generation of 
heat through friction, geochemical reactions, evaporation, air invasion, etc.  Me-
chanical instabilities of the solid skeleton, while no doubt an important part of the 
overall behavior of geomaterials, do not exhaust the complexity of the overall be-
havior of such materials. A call for a comprehensive approach to multi-physics in-
stability is more than due. The phenomena involved can be modeled as scenarios of 
processes that occur either simultaneously or sequentially, that are either coupled, or 
depend on accumulation of dissipative variables. Hence, the stability of such pro-
cesses should be investigated as those of coupled mechanical, hydraulic, thermal and 
chemical processes, or as of single processes of a sequence. In the latter case, an 
instability of one step-process likely affects the formulation of the successor process 
model. As pointed out by Terzaghi, the causes of the instabilities are often long-term 
phenomena rather than single events, such as major rainfalls, which are contributing 
factors. The need for a proper description of these long-term phenomena and their 
coupling to variable mechanical properties of soil and rock is emphasized. 
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Geomechanical systems are of particular interest as they involve various multiphys-

ical, non-linear processes at several length and time scales. These complex mecha-

nisms are described by non-linear differential equations that express the evolution 

of the various state variables of a system (e.g. displacements, temperature, pore 

pressure etc.). The solution of the governing equations, if it is possible to find, can 

provide complete information of the system and its behavior in time, but for specific 

initial and boundary conditions. Bifurcation theory and stability analysis are very 

useful tools for investigating qualitatively and quantitatively the behavior of com-

plex systems without determining explicitly the solutions of its governing equations 

for various initial and boundary conditions. This chapter is an introduction to the 

corresponding mathematical theories. It aims at providing the basic ideas of bifur-

cation theory and stability analysis, it focuses on giving the necessary vocabulary 

for the classification of equilibria and of common bifurcations that are often met in 

applications and, finally, it presents the application of the theory for studying strain 

localization in solids. Some aspects related to shear band thickness, mesh depend-

ency and generalized continua are also briefly discussed. 

1 Introduction 

Geomechanical systems are of particular interest as they involve various multiphysi-

cal, non-linear processes that are characterized by several length and time scales. 

The inherent complex geomechanical procedures span from the terrestrial kilometric 

scale to the nanoscale of rock porosity, grain comminution and physicochemical 

activity, as well as from the geological time scale to the sudden formation of shear 

bands related to earthquake nucleation, landslides or failure of geotechnical sites. 
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These complex mechanisms are described by non-linear differential equations that 

express the evolution of the state variables of a system in time (e.g. the evolution of 

displacements, temperature, pore fluid pressure, internal energy etc.). The solution 

of the differential equations can provide complete information of the system and its 

behavior in time. 

Ideally we would like to compute directly and in analytical form all the solutions of 

a differential equation. Unfortunately, this is not possible except in the case of linear 

equations with constant coefficients or in the case of some special types of non-

linear differential equations. Numerical methods can help us go further and by using 

fast computers to approximate the solutions of specific initial and boundary value 

problems. Nevertheless, these are unique solutions, bound to the specific choice of 

numerical values for the initial and boundary conditions and no further information 

can be deduced for the spatio-temporal evolution of the system even for small per-

turbations of these conditions. Moreover, a universal numerical method that can 

solve any problem (any system of non-linear differential equations) does not exist 

yet. Numerical problems such as non-convergence of the numerical algorithm and 

inaccurate numerical results are common in practice. Finally, in most of the cases 

we are not interested in the exact evolution of the complete system, but just in the 

evolution of some critical state variables or of its equilibrium. 

It is natural therefore to ask if we can investigate the qualitative and quantitative 

properties of the solutions of a complex system without solving its governing equa-

tions analytically or numerically. Stability analysis and bifurcation analyses are the 

main tools for that. 

A complete list of references on bifurcation and stability analysis exceeds the scope 

of the present chapter. Here, we refer only to some that we find fundamental from a 

pedagogical point of view. For an introduction to bifurcation theory and stability 

analysis of general dynamical systems we refer to [Bra69, Cro91, Str94]. Of course 

the pioneering work of Lyapunov [Lya66, Lya92a, Lya92b] is very interesting for 

deepening into dynamical systems and their stability. Concerning the application of 

bifurcation theory in solid mechanics and plasticity we refer, among others, to 

[Big91a, Big91b, Lem09, Ric76]. Focusing on geomechanics and multiphysical 

couplings for classical and generalized continua such as Cosserat, we suggest the 

following references [Ben00, Ben03, Vev13, Bes00, Bés01, Iss00, Per93, Ste14, 

Sul11, Var95, Vev12]. 

Despite the various theoretical and mathematical complications related to constitu-

tive modeling, one has to bear in mind that once the equations for the (dynamical) 

system are established, bifurcation (and stability) analysis is a standard methodolo-

gy. One needs to identify and solve for certain types of solutions that act as attrac-

tors (or repellers) of the system of equations, i.e. "special" types of solutions that 

irrespective of the initial data all other solutions will tend towards to (or move away 

from). These might be time independent equilibria or periodic motions, for instance. 

In Figure 1 we attempt to illustrate this concept. The solid lines (constant solutions) 
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depict the time independent solutions and the dashed lines are the time dependent 

ones. We observe that the latter can hover around (top), deviate (middle) or ap-

proach (bottom) the equilibria as time elapses. In this way, one might know where 

all the solutions will tend to in time without the need of computing them. Further-

more, the bifurcation theory can help us determine whether a particular attractor of a 

system, which we might not even know explicitly, is the only one, under which 

conditions (due to parameter variations) it might lose stability and become a repeller 

or whether other possible solutions can exist. 

For instance, consider a homogeneously deformed solid under loading. Bifurcation 

analysis can indicate the existence of other solutions under a given a load and their 

stability (for example a localized zone inside the solid, such as a shear band, can 

develop). In other words bifurcation theory can help us determine under which con-

ditions a small perturbation of the reference solution (in this example the homoge-

neous deformation of the solid) will grow in time (unstable solution leading to strain 

localization) or not (see Figure 1). 

It is worth emphasizing that the notion of stability, well established and defined by 

the original work of Lyapunov [Lya92a] in the end of 19
th

 century, is related with 

the time evolution of a system. Even if in common practice time is neglected (quasi-

static conditions), the transition from a state (e.g. the homogeneous deformation 

state) to another one (e.g. the formation of shear bands) happens in a certain time 

scale, which might be very short (sudden failure of brittle materials) or very slow 

(geological phenomena). This is why time is central in stability theory as it will be 

seen in the following sections.  

The current chapter follows the following structure. In the beginning of section 2 we 

present a simple example of a dynamic mechanical system in order to introduce 

some basic notions of stability and bifurcation theory. Then, the necessary defini-

tions of stable and unstable equilibria are given. The stability of general linear and 

non-linear systems is investigated next. In section 3 the dynamics and stability of 

two dimensional systems is described. A classification of the various equilibrium 

points is made. The dynamics can be surprisingly rich allowing even to represent 

Romeo’s and Juliet’s affair (see Love mechanics, paragraph 3.2). In section 4 we 

present the most common bifurcations and their classification. The notion of limit 

cycles is also introduced. All these sections focus on Ordinary Differential Equa-

tion’s (ODE’s), which is the key block for studying bifurcation and stability. The 

study of Partial Differential Equations (PDE’s), which is of main importance in 

geomechanics, is based on the same principles and techniques with ODE’s. In sec-

tion 5 we discuss how the study of ODE’s is generalized in the case of PDE’s. The 

condition for deformation band formation (such compaction, shear, dilation bands 

and their combinations) is retrieved (acoustic tensor) with two different approaches 

and their stability is discussed. Finally, some aspects related to shear band thickness, 

mesh dependency and generalized continua are also briefly discussed. 
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Figure 1. Different types of stability. Solid lines depict the fixed points and dashed 

lines depict the time evolution of solutions starting from initial conditions near them. 

From bottom to top the fixed points are asymptotically stable, unstable and (neutral-

ly) stable. 
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Figure 2: Spring - rigid beam system. 

2 Bifurcation and stability of dynamical systems 

Let’s start with the simple example of the mechanical system of Figure 2, which is 

subjected to a vertical force P . The spring coefficient is k , the length of the rigid 

beam  and its moment of inertia with respect to the out-of-plane axis passing 

through point A is I . The dynamic behavior of the system is described by the 

following non-linear differential equation: 

 
2 sin cos

P
I k

k
  

 
  

 
  (1) 
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where   is the rotation angle around A, as shown in Figure 2. The double dot repre-

sents the second derivative in time. By setting    the above equation can be 

written in the following equivalent form: 

 
2 sin cos

P
I k

k

 

  

 

  

  
 

  (2) 

The system is in equilibrium when 0   or equivalently when 0   and 0  . 

Therefore, in order to be in equilibrium either 
0cos P k   or 

0 n  , where 

n . Figure 3 shows all the possible values of the angle   for which equilibrium 

is possible for given P P k  . Points 
iB  are called bifurcation points of the (equi-

librium) solutions. The diagram of Figure 3 is called bifurcation diagram and P  

bifurcation parameter. Depending on the problem at hand various bifurcation pa-

rameters can be selected. The bifurcation diagram is a very useful tool for presenting 

the possible equilibria or steady states of a system (mechanical, chemical, geome-

chanical etc.). More details about bifurcation types and bifurcation diagrams are 

given in section 4. It is worth mentioning that for a given value of P  we may have 

several equilibrium solutions. However, some equilibria might be stable and some 

other unstable, in the sense that, if we are in a certain equilibrium and a tiny pertur-

bation takes place (a fly that sits on the beam!) the system will stay close to its initial 

equilibrium (stable equilibrium) or it will diverge away of it (unstable equilibrium, 

see Figure 1). But how stability is rigorously defined and how we can assess it for a 

given system? 

 
Figure 3: Bifurcation diagram. Dashed lines represent unstable braches and solid 

stable. 
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2.1 Definition of stability 

Let us consider a physical system which is described by the following ODE’s (set of 

first order ordinary differential equations): 

 ( )y f y   (3) 

y  is a vector of n  components that contains the various quantities that determine 

the evolution of the physical system. The dot represents again the time derivative 

and f  is a vector function that does not depend explicitly on the independent varia-

ble which is the time t  (autonomous system). f  belongs to 1( )C D  ( 1( )f C D ), 

which assures existence and uniqueness of the initial value problem defined by 

Eq.(3). D  is the n -dimensional real Euclidean space over which f  is defined and 

1C  denotes that f  and its derivatives, in terms of the components of y , are con-

tinuous. The existence and uniqueness of solutions of the initial value problem does 

not mean that the system has only one equilibrium point. It means that for given 

initial conditions the system follows a unique trajectory. In other words it can be 

proven that the response of the initial value problem, even if it is very sensitive to 

initial conditions (chaotic behavior), has a unique evolution in time as long as 
1( )f C D . Though, various equilibria points (or steady states) might exist, as 

shown in the previous example (Figure 2, Figure 3). In practice, when we use the 

term loss of uniqueness (see [Cha04] for a discussion) of solutions we refer to the 

existence of several different equilibrium solutions that satisfy 0( ) 0f y  . 0y  are 

called fixed points.  

The important question, as far as applications are concerned, is if a certain equilibri-

um is stable or not. In other words, if at time 
0t  we are in equilibrium (

0 0( ) 0y f y  ) and a tiny perturbation   takes place such as 0y   , do we 

return to the initial equilibrium, 0y , or the system diverges to another state? Lya-

punov [Lya66, Lya92b, Lya92a] introduced the following definitions of stability: 

Definition 1: The equilibrium solution 0y  is said to be stable if for each number 

0   we can find a number 0   (depending on  ) such that if ( )t  is any solu-

tion of Eq.(3) having 
0 0( )t y    then the solution ( )t  exists for all 

0t t  and 

0( )t y    for 
0t t  (see Figure 1,top).  

.  denotes here the Euclidian norm (
2 2 2

1 2 ... na a a a     ). 
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Definition 2: The equilibrium solution 0y  is said to be asymptotically stable if it is 

stable and if there exists a number 
0 0   such that if ( )t  is any solution of Eq.(3) 

having 
0 0 0( )t y    then 0lim ( )

t
t y


  (see Figure 1,bottom). 

Definition 3: The equilibrium solution 
0y is said to be unstable if it is not stable (see 

Figure 1,middle). 

2.2 Linear systems of ODEs’s 

The simplest dynamical system for which stability questions can be easily addressed 

is the following first order linear system of ODE’s: 

 y A y   (4) 

where A  is a real constant n n  matrix. 0 0y   is the equilibrium solution.  

We would like to determine its evolution in time. In other words, if initially the 

system was in equilibrium, how a small, tiny perturbation would evolve over time? 

To answer this question, we can determine the general solution of the system, a task 

that is possible because of its linearity. 

A particular solution of the above system is ( ) stt e  , where   is a vector of 

constants with 0   . Injecting this form into Eq.(4) we obtain: 

   0A sI     (5) 

As   is not the zero vector, the above equation is satisfied for s  such that the de-

terminant  det 0A sI  . Equation (5) defines an eigenvalue problem, which has 

n  eigenvalues, 
( )is , and n  associated eigenvectors 

( )i . The calculation of the de-

terminant results to a polynomial of n  degree in terms of s , which is called charac-

teristic polynomial and whose roots are called eigenvalues 
( )is . If the eigenvalues of 

the system are distinct (no repeated eigenvalues, called simple eigenvalues) the gen-

eral solution of this ODE system is: 

 
( )( )

1

( )
i

n
i s t

i

i

t c e 


   (6) 
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where 
ic  are constants that are determined by the initial conditions of the problem. 

The eigenvalues of the system can be real or imaginary. The imaginary part is re-

sponsible of an oscillatory behavior of the system while the real part is related to 

stability. If one of the eigenvalues is positive, then Eq.(6) indicates that the solution 

of the system will increase exponentially in time (monotonously increasing term).   

If the characteristic polynomial has p  distinct eigenvalues (roots) 
( )is  (1 i p  ) 

with multiplicity 
( )im  each one (if the eigenvalue k  is simple, then 

( ) 1km  ) and 

associated eigenvectors 
( )i , then it can be shown that the general solution of the 

ODE system is: 

 

( )

( )( ) 1

,

1 1

( )

i

i
p m

i j s t

i j

i j

t c t e  

 

   (7) 

where again 
,i jc  are n , in total, constants that are determined by the initial condi-

tions of the problem. For example, if the system consists of 3n   ODE’s and it has 

only two distinct eigenvalues (one of the eigenvalues has multiplicity 2) then its 

general solution is: 
(1) (2) (2)(1) ( ) ( )

1,1 2,1 2,2

s t i s t i s ty c e c e c t e     . Notice, the term 

( 2)s tt e , which is strictly increasing in a region close to 0t  , 0 t   , even if 

(2) 0s  . 

By combining the aforementioned definitions of stability and the behavior of the 

solutions of Eq.(4) the following theorem can be proven [Bra69]: 

Theorem 1: 

- If all eigenvalues of A  have non-positive real parts and all those eigenvalues 

with zero real parts are simple, then the zero solution 0 0y   of Eq.(4) is stable. 

- If (and only if) all eigenvalues of A  have negative real parts, the zero solution 

of Eq.(4) is asymptotically stable.   

- If one or more eigenvalues of A  have a positive real part, the zero solution of 

Eq.(4) is unstable. 

In other words the stability of the equilibrium state of a linear system is investigated 

by simply studying the eigenvalues of the matrix A . 

Can this theorem be extended for non-linear systems as the one presented in the 

beginning of this section? 
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2.3 Non-linear systems of ODE’s 

The system described by Eq.(3), ( )y f y , is non-linear in the sense that ( )f y  is a 

non-linear function of y . Expressing its solution ( )t  in the form: 

 0( ) ( )t y t     (8) 

where 0y  is one of the equilibrium solutions (fixed point), we obtain: 

 0 0 0( ) ( ( )) ( ( )) ( )t f y t f y t f y         (9) 

If the difference at the right hand side can be written in the following almost-linear 

form: 

 ( ) ( )t A p      (10) 

where 

0

0( ) i

j y y

f
A J y

y


 
 

   
  

 the Jacobian of ( )f y  at point 0y  ( A  is a real con-

stant n n  matrix), p  a continuous function with (0) 0g   and 
0

( )
lim 0

p






 , 

then the following theorem can be proven [Bra69]: 

 

Theorem 2: Suppose that p  is continuous, k  , where 0k   is a constant, and 

g  is small in the sense that 
0

( )
lim 0

p






 , then: 

- If all eigenvalues of A  have negative real parts, the solution 0   of Eq.(10) is 

asymptotically stable. 

- If one or more eigenvalues of A  have a positive real part, the solution 0   of 

Eq.(10) is unstable. 

Notice that if the second derivative of f  with respect to y  exists, then the term 

( )p   is the remainder of a Taylor expansion of f , which satisfies (0) 0p   and 
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0

( )
lim 0

p






 . If all eigenvalues of A  have non-positive real parts and there exists 

at least one eigenvalue with zero real part then the dynamics of the linearized system 

do not represent the dynamics of the non-linear system and no conclusion can be 

safely derived for the stability of the non-linear system. However, in the special case 

of conservative (systems where a conserved quantity exists, e.g. the total energy) or 

reversible systems  (systems with time reversal symmetry) it can be proven that 

when all the eigenvalues of A  have non-positive real parts and there exists at least 

one eigenvalue with zero real part, then all orbits close to a fixed point are closed 

(see [Str94]). In this case the (isolated) fixed point is called non-linear center and is 

stable in the Lyapunov sense (but not asymptotically stable). 

The above theorem gives the conditions for which any perturbation   is bounded, 

decays or grows exponentially with time. According to the definitions of stability, 

the system will be respectively (asymptotically) stable or unstable. Therefore, the 

eigenvalues of the matrix A  can provide useful information about the stability of an 

equilibrium solution, even in the case of non-linear ODE’s. The investigation of 

stability by using the above theorem is called Linear Stability Analysis (LSA), as it 

is based on the linearization of ( )f y .  

2.4 An example of Linear Stability Analysis 

The system presented in the beginning of this section (Eq.(2)) is expressed in the 

form of Eq.(3) as follows: 

 y




 
  
 

 and 2

sin cos
f k P

I k



 


 
 

       

  (11) 

 

At equilibrium 0y   and 0y y . Perturbing the equilibrium solution we replace 

( )y t  by 0( ) ( )t y t    (Eq.(8)). Performing a Taylor expansion of f  up to the 

first order around the point 0y y  we retrieve a linear equation of the form of (10) 

where: 

0

2 2
0 2

0 0 0

0 1

( )
cos cos sin 0

i

j y y

f
A J y k P k

y
I k I

  


 

 
  

           

. 

The characteristic polynomial of the eigenvalue problem is: 
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2 2

2 2

0 0 0cos cos sin 0
k P k

s
I k I

  
 

 
    

 
  (12) 

which leads to two eigenvalues: 

 

2 2
2

1,2 0 0 0cos cos sin
k P k

s
I k I

  
 

 
    

 
  (13) 

Now we can investigate the stability of the various branches of the bifurcation dia-

gram (Figure 3). When we are on the sinusoidal branch 0cos 0
P

k
  , and there-

fore 

2

1,2 0sin
k

s
I




  , which means that there is always a positive eigenvalue 

(imaginary part is zero). When we are on the vertical branches 
0sin 0   and 

2

1,2 1
k P

s
I k

 
   

 
 for 

0 2n   or 

2

1,2 1
k P

s
I k

 
    

 
 for 

0 (2 1)n   . 

In the first case, i.e. for 
0 2n  , if P k  then one of the eigenvalues is positive 

(the imaginary part is zero), which means that the system is unstable. If P k  then 

2

1,2 1
k P

s
I k

  i , which are two distinct imaginary eigenvalues ( 1 i ) and 

consequently, according to paragraph 2.3, the equilibrium is (neutrally) stable (con-

servative and reversible system). In the second case, i.e. for 
0 (2 1)n   , if 

P k   then one of the eigenvalues is positive (the imaginary part is zero), which 

means that the system is unstable. If P k   then 

2

1,2 1
k P

s
I k

  i  which are 

two distinct imaginary eigenvalues and consequently, according to paragraph 2.3. 

the equilibrium is (neutrally) stable. Figure 3 summarizes these results in the bifur-

cation diagram. If P k   and 
0 n  , then 

1,2 0s   and no conclusion can be 

drawn about the stability of these points. 
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3 Stability of two dimensional linear dynamical sys-

tems 

The general form of a two dimensional linear system is: 

 
1 1 2

2 1 2

y a y b y

y c y d y

 

 
  (14) 

The equilibrium solution of this system (fixed point) is obviously 0 0y  . The con-

stants matrix is 
a b

A
c d

 
  
 

 and the characteristic polynomial: 

 
2 0s s      (15) 

where a d    and ad bc   . Let 
1s  and 

2s  be the roots of the characteristic 

polynomial (eigenvalues of A ): 

 
2 2

1 2

4 4
, ,

2 2
s s

        
    (16) 

3.1 Classification of fixed points 

Take for instance the following case for 
0

0 1

a
A

 
  

 
. The eigenvalues are 

1s a  

and 
2 1s   . Let also a  real. The solution of this linear system is 

1 1

aty c e , 

2 2

ty c e  (see paragraph 2.2). The initial conditions determine the constants 
1c  and 

2c . Plotting this solution in the (phase) space 
1 2( , )y y  we obtain the trajectories 

presented in Figure 4 for various  initial conditions. Such a diagram is called phase 

diagram and it depicts the dynamics or the so-called mathematical flow of the sys-

tem. From the solution of this system we get 
( 1)1 1

2 2

a tdy c
a e

dy c

  , which illustrates 

that the dynamic behavior of the system evolves (is concentrated) in the direction 

with the slowest in absolute value eigenvalue (slow eigen-direction of the linearized 

system). In other words, for 1a   , 
2y  reduces faster than 

1y  and the solution 

approaches the equilibrium point having as an asymptote the axis 
2y  (see Figure 

4a). The direction of the slowest evolution of the system is called slow manifold 

(slow manifold of an equilibrium point of a dynamical system). The contrary holds 

for 1 0a    (see Figure 4b). In both cases the equilibrium point is an attractor (
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1y  and 
2y  are stable manifolds) and the fixed point is called stable node. If both 

eigenvalues are real and positive then the fixed point is called unstable node. If 

0a   then 
2y  is constant (

1 1y c ) and the system evolves as shown in Figure 4c. 

In the case that 0a   the system is unstable and the equilibrium point is a saddle 

node (Figure 4d). For initial conditions such that 
1 0c   the system will evolve to-

wards the equilibrium point. However, for tiny values of 
1c  the system will diverge 

from the equilibrium point (
1y  is a stable manifold and 

2y  unstable - saddle).    

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4. Phase diagram for (a) 1a   , (b) 1 0a   , (c) 0a   and (d) 0a  . A 

black dot indicates a stable fixed point (stable node, attractor), while an open circle 

indicates an unstable one (unstable node-repeller or saddle). 
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In the general case (see Figure 5) of real eigenvalues the manifolds (eigenvectors) 

are not perpendicular (except if A  is symmetric). If the real part of both eigenvalues 

of A  is zero and they have different non-zero imaginary parts the equilibrium is 

neutrally stable (stable in the Lyapunov sense for a linear system, see definitions in 

paragraph 2.2 and 2.3). If the eigenvalues are complex with negative real part then 

we have oscillations of reducing amplitude until equilibrium (Figure 6). If the real 

part is positive and the imaginary part non-zero then we diverge from equilibrium 

(oscillations with increasing amplitude, see also Figure 1). In the case of repeated 

but non-null eigenvalues, if the eigenvectors are distinct, then we have a star node, 

and when there is only one eigenvector the fixed point is called degenerated node 

(Figure 7). For a nice online application for generating phase diagrams for various 

A  we refer to [Che16]. 

Figure 8 summarizes the various types of fixed points in function of   and  . In 

the bifurcation example of the previous section 0  . Therefore, we had either 

saddle points (unstable equilibria) or centers (neutrally stable equilibria). 

 

 

 

(a) 

 

(b) 

Figure 5. (a) Unstable fixed point with non-orthogonal eigenvectors (saddle). (b) 

Neutrally stable fixed point (center). 
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(a) 

 
(b) 

Figure 6.Stable (a) and unstable (b) spiral fixed points. 

 

 
(a) 

 
(b) 

Figure 7. Degenerate cases: (a) star node and (b) degenerate node. 
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Figure 8. Classification of fixed points of a two dimensional dynamical systems. 

3.2 Love mechanics: Romeo and Juliet 

Two dimensional systems are certainly more interesting than one dimensional. 

While one dimensional systems can have nodes that are either stable or unstable and 

the solution might simply diverge or converge towards the equilibrium points, two 

dimensional systems involve richer dynamics, such as oscillations.  

Strogatz (see [Spr04, Str88, Str94]) used a simple linear two dimensional system to 

describe the romantic affair between Romeo and Juliet! In his example 
1y  describes 

the love of Romeo for Juliet ( R ) and 
2y  the love of Juliet for Romeo ( J ): 

 
R a R b J

J c R d J

 

 
  (17) 

Positive values for J  or R  signify love and negative hate. 0J R   signifies 

mutual indifference. The parameters , , ,a b c d  have a simple meaning as well. 0a   

means that Romeo is a cautious lover. The more he realizes that he loves Juliet the 

more he is afraid, which reduces his affection. But if 0b   is great enough the af-

fection of Juliet makes his feelings stronger ( 0R  ). Similarly, Juliet’s love is char-

acterized by the parameters ,c d . 

Let’s investigate the scenario with 0a d  , 0b   and 0c  . Let’s say that at the 

beginning Romeo is in love with Juliet and also Juliet with him. Though, the more 

Romeo loves her ( R  ) the more Juliet is afraid and wants to run away (

0 0J c R J    ). Romeo gets disappointed and backs off (
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0 0R b J R    ). But then Juliet begins to find him again attractive (

0 0J c R J    ) and after a while Romeo echoes her ( 0 0R b J R    ). 

But then again Juliet loses her interest and so on… The sad outcome of this relation 

is a never ending cycle of love and hate (see Figure 5b)! If Romeo was also a cau-

tious lover ( 0a  ) then their love would end soon following a stable spiral towards 

the fixed point of mutual indifference 0J R  . If Romeo was an enthusiastic lover 

( 0a  ) their relation would be an unstable spiral of increasing hate and love, but 

again if 0a   is very high the more Romeo loves Juliet the more she is afraid and 

draws away. However, if both Romeo and Juliet were attracted in the beginning, 

their love would become a love fest provided that their love characteristics , , ,a b c d  

were such that to have an unstable node or saddle in the phase space (see Figure 5b). 

In other words, love is an instability! 

Of course in reality the dynamics of love are much more complicated than this sim-

ple model and certainly non-linear. Non-linearities and more degrees of freedom 

were taken into account in [Spr04] and interesting dynamics were observed. 

 

Figure 9. Sketch of beam buckling due to high load. Here, the load acts as a control 

(bifurcation) parameter, which determines the transition from axial deformation to a 

buckled, flexural state. 

4 Common types of bifurcations 

The evolution laws that we commonly use in Mechanics (and other scientific disci-

plines) can involve parameters that are unknown or non-constant (e.g. the loading of 

a beam or the elastic parameter of a spring). The dynamics of a system can signifi-

cantly change with the variations of these parameters. For instance, in the example 

of section 2, the fixed point 0 0   becomes unstable for values of the normalized 

vertical load 1P   (see Figure 3). This is typical in many mechanical systems and 

central for the design of structures (see buckling of a beam due to high load, Figure 

9).  
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In general, depending on the values of the parameters, fixed points can be created 

(appear) or destroyed (disappear) and/or their stability can change. These qualitative 

changes in the static and dynamic response of a system of equations are called bifur-

cations and the parameter values at which they first occur are called bifurcation 

points. The study of bifurcations is important since it provides the onset of instabili-

ties and the transition across different states depending on the variation of the gov-

erning (bifurcation) parameters. In the following we will go through some of the 

most well-known (mathematical) bifurcation types for ODE’s. 

4.1 Saddle-node bifurcation 

The most fundamental bifurcation is the appearance and disappearance of equilibri-

um points for different values of a bifurcation parameter. This is the so called sad-

dle-node (or fold) bifurcation of equilibria. In this case, as the parameter varies, two 

fixed points of the underlying system of equations move towards each other, collide 

and mutually annihilate. The following differential equation is a classic example of 

this kind of bifurcation: 

 2y y    (18) 

where   is a real number that can admit any real value. When   is negative, the 

right-hand-side of equation (18) (equilibrium solution) has two fixed points, one 

stable and one unstable (see Figure 10). 

  

Figure 10. Saddle-node bifurcation. A half full circle denotes half stable fixed 

points. 

(d)

(a) (b) (c)
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As 0   from negative values, the two fixed points move towards each other and 

they collide to a half-stable point at 0 0y   for 0  . This is the bifurcation point, 

since for 0   the dynamics change completely, equation (18) presents no fixed 

points and predicts infinite growth of y  in time. This behavior is depicted in Figure 

10a-c. As   plays the role of the independent variable, we can plot the steady state 

solutions of equation (18) in an 0y   diagram (Figure 10d), where we can observe 

the number of steady state solutions in function of the parameter  , as well as their 

stability (calculated as described in section 2). As mentioned in section 2, such a 

diagram, where the fixed points of the equations (for a norm of the solution) are 

plotted against the bifurcation parameter is called bifurcation diagram.  

Note that equation (18) along with its symmetric 2y y  , are representative of 

all saddle-node bifurcations. This means that close to a saddle bifurcation, the dy-

namics of a given system are qualitatively the same with 2y y   or 2y y   

(see Appendix). Equations like equation (18), which can characterize the dynamics 

of any system near a bifurcation point are called normal forms of that bifurcation. 

4.2 Transcritical bifurcation 

The transcritical bifurcation happens when a pair of fixed points exchange stability 

as the bifurcation parameter varies. Its normal form is:  

 2y y y    (19) 

As shown in Figure 11a-c, the point 0 0y   is always a fixed point. Starting from 

negative values of  , 0 0y   is stable and there exists a second fixed point, 

0y  , which is unstable. As the value of the parameter   increases, the second 

fixed point moves towards 0 0y   and for 0   (which is also the bifurcation 

point in this case) they collapse on a half-stable point. Upon further increasing of the 

parameter value, the two fixed points reappear but have opposite stability, 0 0y   is 

unstable and 0y   is stable. Thus, we can say that the transcritical bifurcation is a 

mechanism for exchanging stability between two fixed points. This is more apparent 

if one observes the corresponding bifurcation diagram (Figure 11d). 
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Figure 11. Transcritical bifurcation.  

4.3 Supercritical and subcritical pitchfork bifurcation 

Pitchfork bifurcation (both the super- and the sub-critical one) is common in prob-

lems that have symmetry and describe the appearance (or disappearance) of a sym-

metrical pair of fixed points after some critical value of the bifurcation parameter.  

Revisiting the example of the buckling of a beam (see Figure 2 or Figure 9), after 

the load exceeds the critical threshold there exists no preferred direction for the 

deformation and only a defect in the mechanical problem or the perturbation itself 

can lead the beam to “choose” one direction or another, thus breaking its symmetry.  

The normal form of the supercritical pitchfork bifurcation is: 

 3y y y    (20) 

Notice that changing the variable y y  does not change the equation of the sys-

tem. This symmetry justifies mathematically the aforementioned existence of a 

symmetrical pair of fixed points. 

 The fixed point 0 0y   exists for all   . For 0   it is stable. At 0   the 

pitchfork bifurcation occurs and for 0   a symmetric pair of stable fixed points 

(d)

(a) (b) (c)
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appears ( 0y   ). Therefore, three fixed points exist ( 0y    and 0 0y  ) 

for 0  . 

 The reason for which this type of bifurcation is called “pitchfork” becomes apparent 

upon observing the bifurcation diagram of Figure 12d.  

The subcritical pitchfork bifurcation has the following normal form: 

 3y y y    (21) 

As shown in Figure 13, the corresponding bifurcation diagram is similar to the one 

of Figure 12d, but the pitchfork is inverted. The pair 0y     is unstable and it 

exists only for 0  . In addition, even though the origin is a fixed point for all 

  , it is stable only for 0  . For all 0   there is no stable equilibrium 

solution and the system blows up, i.e. y   as time elapses. Furthermore, one 

can show that the blow-up happens in finite time for all initial conditions. It is worth 

mentioning that this type of bifurcation is the normal form of the bifurcation of the 

example studied in sections 2 and 3 (see Figure 2 and Figure 3). 

 

Figure 12. Supercritical pitchfork bifurcation. 

(d)

(a) (b) (c)
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Figure 13. Bifurcation diagram of the subcritical pitchfork bifurcation. 

4.4 From one to two dimensions - Limit cycles 

All the cases considered in the previous paragraphs concerned bifurcations of equi-

librium solutions in one-dimensional problems. What about bifurcations in problems 

of high order?  

Non-linear dynamical systems of order higher than one can present perfectly period-

ic solutions. Such solutions appear on the phase space as isolated closed orbits, 

which can attract or repel all neighboring trajectories, much like the fixed points. 

These orbits are called limit cycles. Limit cycles are an inherent phenomenon of two 

or higher dimensional systems that are non-linear. Even though, linear systems can 

present closed orbits, when the fixed point is a stable center (neutral stability, see 

Figure 5b), such solutions are non-isolated, i.e. if ( )x t  is a periodic solution, then 

( )c x t  is also a periodic solution for all *c . 

An illustrative example of a system with a stable limit cycle in polar coordinates is: 

 
 21

1

r r r



 



  (22) 

where 0r  . It is easy to identify that the two equations are uncoupled and that the 

first one if treated alone, it has two fixed points, namely 0r   (unstable) and 1r   

(stable). This means that all trajectories approach 1r  . However, the system of two 

equations has no fixed points at all because 1 0   . 1   describes the angular 

velocity, which is constant. Therefore, all trajectories on the phase plane are ap-

proaching the unit circle ( 1r  ) monotonically. This can be visualized if we revert 

again to Cartesian coordinates (Figure 14 (a)), i.e.  ( ) ( )cos ( )x t r t t  and 

50 Fundamentals of bifurcation theory and stability analysis

ALERT Doctoral School 2016



 ( ) ( )sin ( )y t r t t .  The evolution in time of the x -coordinate, for (0) 0.01r   

and (0) 0   is presented in Figure 14 (b). As we can see, the amplitude of the os-

cillations is 1r   and the period is 2T  . 

One of the most famous examples of equations that present limit cycles is the van 

der Pol equation, 

  2 1 0y y yy      (23) 

where 0   is a parameter. In this equation, the non-linear term  2 1y y   forc-

es the oscillation. The limit cycle is no longer a circle (Figure 15a) and the wave-

form is not sinusoidal (Figure 15b). 

 

Figure 14. (a) Phase diagram of the system of Eq.22. We observe the trajectories 

moving towards the limit cycle of the system. (b) Evolution in time of the system of 

Eq.22 for (0) 0.01r   and (0) 0  . 

A question that follows naturally is if fixed points and limit cycles are the only pos-

sible attractors (or repellers) of the trajectories of a system of ODE’s. The answer to 

that is negative for higher dimensions. In two dimensions, the dimensionality of the 

system (and thus the corresponding trajectories on the phase space) is equal to the 

dimensionality of the limit cycles (both equal to two) and hence all trajectories on 

the phase space can be attracted to either points or closed orbits. On the contrary, 

dynamical systems of order 3n   can have trajectories that might be in an open, 

bounded domain, yet, they can move freely inside it without settling into a fixed 

point or a closed orbit. They can be attracted to topological manifolds (called stable 

manifolds) or even to complex geometric objects that are called strange attractors or 

(a) (b)
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fractals. The study of such complex (or chaotic) dynamics is out of the scope of the 

present chapter and the reader should refer to [Hal91, Str94] for a first introduction 

to these phenomena. 

4.5 Bifurcations in two dimensions - Supercritical and subcritical Hopf bi-

furcation 

We are now ready to answer the question about bifurcations in two dimensional 

systems. In terms of bifurcations of fixed points, all the basic examples discussed in 

paragraphs 4.1-4.3 have their analogs in two (and in higher) dimensions. The corre-

sponding normal forms in two dimensions are: 

 
2

1 1

2 2

y y

y y

 

 
  (24) 

 
2

1 1 1

2 2

y

y

y y

y

 

 
  (25) 

 
3

1 1 1

2 2

y

y

y y

y

 

 
  (26) 

 
3

1 1 1

2 2

y

y

y y

y

 

 
  (27) 

for the saddle-node, transcritical, supercritical pitchfork and subcritical pitchfork 

respectively. It is easy to prove that at the bifurcation point  0  , the correspond-

ing linearized problem has a zero eigenvalue. This means that they always involve 

the collision of fixed points. Furthermore, irrespectively of the dimensionality of the 

problem, these types of bifurcations are inherently one-dimensional phenomena in 

the sense that they occur on the one-dimensional unstable manifold of the unstable 

fixed point. There exists however another way for a fixed point to lose stability and 

it involves the creation or destruction of a limit cycle around it. 

This case is the so-called Hopf (or Andropov-Hopf) bifurcation. Let us assume that 

the dynamical system at hand,  ,y f y  , has a stable fixed point. This means 

that the eigenvalues, 1 , 2 , of the Jacobian matrix of the system have negative real 

parts. The imaginary part is not necessarily zero. In other words the eigenvalues lie 

on the left half-plane of the complex plane (see Figure 16). For a two dimensional 

system, there are only two possible cases for its eigenvalues, either 1 2,     or 

they are complex conjugates. Let us then assume that there exists a value of the 
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parameter H   for which the fixed point loses stability. In the first case, as we 

approach this bifurcation point by varying the parameter   one of the eigenvalues 

becomes zero. This corresponds to the cases of saddle-node, transcritical and pitch-

fork bifurcations. In the second case, the pair of complex conjugate eigenvalues 

crosses simultaneously the imaginary axis into the right half-plane (Figure 16). The 

latter is the fundamental mechanism described by the Hopf bifurcation. 

As mentioned before, the Hopf  bifurcation describes the creation or destruction of a 

limit cycle around a fixed point when the latter loses stability. The first potential 

scenario is the creation of a limit cycle from a fixed point. In this case, for all values 

𝜇 < 𝜇𝐻, the system is stable and the fixed point is a stable spiral (Figure 6). As 𝜇 

increases it approaches and then surpasses the critical value 𝜇𝐻 for which the spiral 

becomes unstable. This is the case of the supercritical Hopf bifurcation and its nor-

mal form is given by: 

 
 

 

2 2

2 2

x x y x x y

y x y y x y





   

   
  (28) 

or equivalently in polar coordinates: 

 
3

1

r r r



 


  (29) 

It is worth mentioning that the unstable spiral is surrounded by a stable limit cycle. 

Notice that the system (29) is just a generalization of the system 22. For 0   it 

yields that 0r   and thus all oscillations have decreasing amplitude. This means 

that the only attractor is the origin and it is a stable spiral (Figure 17a). For 0   

the origin becomes a center. For 0    as shown also in paragraph 4.4 the origin 

becomes an unstable spiral and is surrounded by a stable limit cycle (Figure 17b). If 

we consider  ( ) ( )cos ( )x t r t t  it is easy to show from the roots of 3r r   that 

the amplitude of the oscillations is r   and the period 2T  . 
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Figure 15. (a) Phase diagram of the van der Pol equation for 1  . (b) Evolution of 

the solution of the van der Pol equation for (0) 0.5y   and 1  . 

 

 

Figure 16. Sketch of a pair of complex eigenvalues crossing the imaginary axis. 

We should notice here that the normal form represents the so-called topological 

equivalent of the Hopf bifurcation. This means that all limit cycles that are created 

by a Hopf bifurcation are equivalent (in a mathematical sense) to an oscillation of 

amplitude   and period 2  (in other words, of angular velocity 1  ). Based on 

(a) (b)
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the system 29 one can construct more general systems of equations that can admit 

different modes of sinusoidal wave forms as solutions. Such a system is: 

 

3

2

r r ar

br



 

 

 
  (30) 

where   is  the frequency of the infinitesimal oscillations (near 0  ) and b  

describes the dependency of the frequency (and of the angular velocity) on the am-

plitude. For 0a   it can be shown that the amplitude is /r a  and the period is 

 22 /T br   . 

The second potential scenario is the destruction of a limit cycle and it us called sub-

critical Hopf bifurcation. Its normal form is as follows: 

 
 

 

2 2

2 2

x x y x x y

y x y y x y





   

   
  (31) 

or equivalently in polar coordinates: 

 
3

1

r r r



 


  (32) 

 

Figure 17. Phase diagram of the supercritical Hopf bifurcation. We observe the tran-

sition from a stable spiral in Figure (a) to an unstable one which is surrounded by a 

stable limit cycle (b). 

(a) (b)
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Figure 18. Phase diagram of the subcritical Hopf bifurcation. Figure (a) is for 0   

where we observe that origin is a stable spiral that is surrounded by an unstable limit 

cycle (marked with red dashed line). All trajectories starting from inside the cycle 

tend to the origin while those starting out of it diverge.  The cycle radius decreases 

with increasing   until it collapses to the fixed point for 0  . Figure (b) is for 

0   where we observe that there exists only the origin as a fixed point and it is an 

unstable spiral. 

In this case, for 0   the right-hand-side of the radial equation has two roots, 

0 0r   and 0r  . It is easy to show that the origin is a stable fixed point (stable 

spiral). However, the second root represents an unstable limit cycle for the system. 

This means that all trajectories that start inside the cycle move towards the origin 

whereas all the trajectories that start outside the cycle diverge since the cycle repels 

them (Figure 18a).  

As the value of the parameter increases the radius of the cycle decreases and col-

lapses to the origin for 0  . For 0   the limit cycle is destroyed and the origin 

exchanges stability with it becoming unstable (Figure 18b). This means that for 

0   there is no stable solution (fixed or periodic) for the system (32). 

4.6 Mathematical Bifurcations in PDE’s 

The bifurcations presented in the previous paragraphs are just indicative cases. As 

stated in paragraph 4.4 the higher the order of the system, the more complex the 

behavior can be. However, change in the number of the equilibrium solutions as 

well changes in the stability of equilibrium or periodic solutions are the most com-

(a) (b)
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mon and important bifurcations that can occur in systems of equations modelling 

problems in Mechanics. Even though the analysis was so far restricted in ODE’s 

these mathematical bifurcations are observed in PDE’s as well.  

One famous example is the Bratu equation [Bra14, Gel63] here written as boundary 

value problem with symmetric boundary conditions and in one dimension: 

 

   

2
( )

2

( )
0

1 1 1

T xd T x
e

dx

T T

 

  

  (33) 

where x  is the spatial coordinate and   a bifurcation parameter. This equation can 

describe the time-independent behavior of an infinite layer under simple shear 

[Che89]. This means that it provides the steady state solutions (
( , )

0
T x t

t





), which 

is the equivalent of the fixed points of ODE’s. The steady state problem of equations 

(33) has two solutions for c  , one for c   and none for all c  , where 

c  is the is the critical value of  for which the bifurcation occurs. This type of 

bifurcation is a saddle-node bifurcation. 

Notice that when dealing with PDE’s, the equivalent of a fixed point is a time-

independent solution which can either be homogenous (i.e. constant in space) or 

inhomogeneous (i.e. non-constant profile in space). One way of studying the stabil-

ity of equilibrium solutions of PDE’s (and their bifurcations to an extent) is using 

the so-called Linear Stability Analysis. An example of that method will be presented 

in paragraph 5.2. Such an analysis can predict the growth or decay of perturbations 

near an equilibrium solution, thus providing information about the stability of the 

equilibrium solution. By that means, one can derive when one steady state is pre-

ferred from another and determine the bifurcation point from the onset of instability. 

A famous example is the formation of Bénard (convection) cells in the Rayleigh-

Bénard problem (Figure 19). 

In this problem, there are various types of steady states and corresponding bifurca-

tions. The critical parameter that governs these instabilities is called Rayleigh num-

ber and for low values, where conduction prevails, a linear temperature profile is 

predicted. Upon reaching a critical value though, a bifurcation occurs and convec-

tion becomes the dominant mechanism. In this case the flow appears to be steady in 

time but periodic in space (Figure 19b). For more information, the reader should 

refer to [Cha61] where the results of linear stability analyses for various boundary 

value problems of this type are presented. 

In the following we will present the study of a problem that is more relevant to Ge-

omechanics applications, the localization of shear and volumetric strain  
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Figure 19. (a) Experiments on hydrothermal convection where the famous Bénard 

cells appear. (b) Streamlines and isotherms in numerical simulation of the 

corresponding two dimensional problem. 

5 From ODE’s to PDE’s 

The above sections were dedicated to the notion of stability and bifurcation focusing 

on ODE’s. In this section we try to extend the above concepts to Partial Differential 

Equations (PDE’s) who cover a variety of systems including mechanics of solids, in 

general, and geomechanics. A classical problem of bifurcation and instability is 

strain localization in materials. Strain localization is frequently manifested as thin 

bands where deformation is localized. Depending on the kinematics of strain locali-

zation three main types of deformation bands are distinguished. These are dilation 

(or extension) bands, shear bands and compaction bands [Ber02]. Whatever their 

type is, deformation bands appear at the moment that the homogeneous deformation 

of a system becomes an unstable equilibrium solution. In other words the system 

bifurcates to a non-homogeneous solution where the strain is localized. The classical 

approach for determining when this localization takes place is based on calculating 

the determinant of the acoustic tensor [Rud75]. 

5.1 Deformation bands and the acoustic tensor 

Consider a homogeneous, homogeneously deformed solid subjected to quasi-static 

increments of deformation. Let’s assume that after an increment, a deformation band 

(a)

(b)
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is formed, which breaks the aforementioned homogeneity of the deformation field 

(and consequently of the stress field) as shown in Figure 20. The displacement field 

remains continuous across the boundaries of the band, but its gradient does not (dif-

ferent strains inside the band): 

 
,0 andi i j i ju u g n      (34) 

where [[.]]  denotes discontinuity across the deformation band boundary (e.g. 

[[ ]]a a a   ), 
in  is the orientation vector of the deformation band with 1,2,3i   

is the three-dimensional space, 
iu  the displacement field and Δ denotes the incre-

ment of a field.  
,i

 denotes derivation in terms of 
ix . 

The vector 
ig  describes the direction of the discontinuity and its inner product with 

the orientation of the band, 
in , determines the type of the deformation band (see 

Figure 20). In particular, if 0i in g  , the deformation band is a pure shear band, if 

1i in g    a pure compaction band and if 1i in g    a pure dilation (extension) band. 

The intermediate states,  0 1i in g   and 1 0i in g    correspond respectively to 

dilatant and contracting shear bands. 

In quasi-static conditions, the stress vector has to be continuous across the defor-

mation band boundary: 

 0i ij jt n      (35) 

Consider the class of materials that for a small increment Δ, the constitutive law can 

be written (linearized) as follows: 

 
,ij ijkl k lL u     (36) 

The tensor 
ijklL  can be continuous across the boundary of the band ( 0ijklC  ) or 

discontinuous in the sense that elastic unloading can occur outside the band, while 

continued inelastic loading continues within the band. In the first case we say that 

we have continuous bifurcation, while in the second discontinuous bifurcation. It is 

shown that continuous bifurcation precedes discontinuous bifurcation [Ric80]. 

By replacing Eq.(36) into (35) and using (34) we obtain: 

 
, 0ij j ijkl k l j j ijkl l kn L u n n L n g      (37) 

Stefanou and Alevizos 59

ALERT Doctoral School 2016



The tensor 
ik j ijkl ln L n   is called acoustic tensor. If its determinant is not zero, then 

the 
kg  has to be zero, which means that the deformation is continuous along the 

assumed deformation band. In other words no discontinuity of the gradient of the 

displacement field can appear across the boundary of the deformation band and the 

homogeneous solution prevails. Otherwise, if: 

 0ik    (38) 

the homogeneous solution seizes to be the only one and deformation bands are pos-

sible. For an orientation 
in  the type of the deformation band is given by the (eigen-

vector 
ig ).  

The above condition for strain localization is independent of the material constitu-

tive behavior as long as Eq.(36) can be written. For instance, for an elastoplastic 

material whose plastic behavior is a function of the first and second invariants of the 

stress tensor (Figure 21), Issen and Rudnicki [Iss00] (see also [Bes00]) showed that 

under axisymmetric compression conditions of loading strain localization is possible 

when the hardening modulus becomes smaller than a critical value 
crh  for given 

values of   and   (see Figure 22). 

 

 

Figure 20. Schematic representation of a deformation band and of the discontinuity 

of the displacement field. 
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Figure 21. Elastoplastic yield envelope with hardening/softening (dotted lines). 

Compression is considered negative. 

 

 

Figure 22. Critical hardening values in function of the β and μ for strain localization 

[Iss00]. Notice that for non-associate plastic flow rule, localization can occur even 

with hardening (
crh >0). The above diagram was derived by using the acoustic ten-

sor criterion for localization (Eq.(38)). 

Stefanou and Alevizos 61

ALERT Doctoral School 2016



For the above derivations we considered quasi-static conditions. If we remove this 

restriction, the jump of the shear stresses at the boundary of the shear band is not 

necessarily zero due to acceleration (not in equilibrium). From the linear momentum 

balance we obtain: 

 
i ij j it n c        (39) 

where c  is the velocity of a propagating discontinuity in direction 
in  such that 

[[ ]] [[ ]]i i iv cg     (see Hadamard conditions on propagating discontinuities 

[Had03, Lem09]). Inserting Eq.(36) into (39) and using (34) we get: 

  2 0j ijkl l ik kn L n c g      (40) 

This equation shows that if there are accelerating waves ( [[ ]] 0i icg   ) the eigen-

values of the tensor 
ij  are equal to the square root of their wave velocity 

2c . This 

is why 
ij  is called acoustic tensor. The condition of localization derived in quasi-

static conditions (Eq.(38)) corresponds to 0c   or in other words to the existence of 

stationary acceleration waves. 

5.2 Deformation bands as an instability problem 

The same condition with Eq.(38) can be derived by studying the stability of the 

homogeneous solution of the continuous system. In this case we do not have a sys-

tem of ODE’s anymore for which we saw how to investigate the stability of an equi-

librium point, but a PDE. Nevertheless, the bifurcation analysis approach is similar. 

Stability is defined as in paragraph 2.1. 

The general PDE’s of the problem are: 

 
,ij j iu    (41) 

where  is the density of the material and the double dot represents the second time 

derivative (acceleration). Suppose again a homogeneous, homogeneously deformed 

solid that it is in equilibrium: 

 , 0ij j     (42) 

Considering the same class of materials that can be linearized around the above 

equilibrium point such as Eq.(36) to hold we get: 
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 ,ij ij ij ij ijkl k lL u            (43) 

where, as in 5.1 
iu  is the increment in displacements, i.e. 

i i iu u u    . 
iu  can 

be seen also as a perturbation of the reference, homogeneous solution 
iu  (see para-

graph 2.1). By injecting the above equation in (41) and using (42) we obtain: 

 
, iijkl k ljL u u  

..

  (44) 

Notice that 
ijklL  is calculated at 

iu  and therefore it is independent of 
iu  (Taylor 

expansion of 
ij  around ij

 ). Therefore, Eq.(44) is a linear PDE that can be solved 

by separation of variables (or Fourier transform). The linearization of the stress 

tensor around the equilibrium point (Eq.(36)) is central in strain localization analy-

sis. Consequently, the conditions derived either in paragraph 5.1 or in the current 

one are valid as far as this linearization is possible. 

Using the method of separation of variables, ( ) ( )i k iu X x U t  . Replacing in (44) 

we obtain:  

 , ( )ijkl lj k iL X U t X U   (45) 

This equation has sinusoidal solutions in terms of X . Moreover, we are looking for 

deformation bands, which are planar as shown in Figure 20. Therefore, the solution 

in terms of X  takes the form: ( ) i ii k n x

iX x e ,where 
in  is the orientation vector of 

the deformation band as in the previous paragraph and k  the wave number (of the 

perturbation). If   is the wavelength corresponding to the wave number k  (

2 /k   ), in order to satisfy the boundary conditions at the boundary of the de-

formation band /H N  , where N  is a integer. Inserting X  in Eq.(45) and by 

setting 
i iU V  we obtain the following the following system of ordinary differential 

equations: 

 

2
1 2

i j ijkl l k

i i

V n L n U

U V



 

 
   

 



  (46) 

In this way we transformed the PDE’s of the problem to a system of ODE’s, which 

we can study in the same way as in the previous sections. As shown in section 2, the 

above equations take solutions of the form ( ) st

k kU t g e . After some algebraic 

manipulations the eigenvalue problem becomes:  
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2

0
2

j ijkl l ik k

s
n L n g


 



  
    

   

  (47) 

which is identical to (40) by setting 
2

s
c




 . If the real part of 2 0c   then the 

homogeneous solution 
iu  is unstable and the system bifurcates to a non-uniform 

solution, a band, with direction 
in . As before, the type of the deformation band 

(compaction, shear, dilation band) is determined by the product 
i in g . It is worth 

emphasizing that the above condition is independent of the specific constitutive law, 

provided that it is rate-independent. For rate dependent materials, a similar approach 

can be followed. The methodology is quite general and can be applied in many prob-

lems, including problems with multiphysical couplings, such as thermo-poro-chemo-

mechanical couplings (e.g. [Ste14, Sul15]). Moreover, even though a Cauchy 

(Boltzmann) continuum was considered here, the same approach can be applied in 

Cosserat or even higher order continua (e.g. [Müh88, Sul11]). 

If the eigenvalues of 
ij  do not depend on the (perturbation) wavelength   and  

s , then the acceleration wave velocity c  is constant (does not depend on  ). If in 

addition they have a positive real part, the perturbation that propagates faster has 

zero wave length because 2
c

s 


  (for 0  , s  ). In other words the minor 

imperfection in size will propagate faster and dominate the other imperfections of 

larger wavelength. This is why in the classical Cauchy continuum, which has no 

internal lengths, the deformation band thickness is zero (the localization takes place 

on a mathematical plane). The fact that the smallest perturbation propagates faster 

justifies also the mesh dependency in Finite Element calculations. For instance, in 

the frame of classical simulations in elastoplasticity of Cauchy rate-independent 

continua with softening behavior (or even in perfect plasticity), the numerically 

predicted shear band thickness depends on the finite element discretization and on 

the element size (Figure 23).  
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Figure 23. Shear band formation and mesh dependency for a rate-independent elas-

toplastic, von Mises, Cauchy medium with strain softening. The shear band thick-

ness is always 1-2 elements thick and therefore mesh dependent. The plastic strains 

and the global energy dissipation are also mesh dependent. Abaqus v6.14 was used 

for the simulations. 

6 Summary 

The target of the present chapter was to give the basic ideas and tools of bifurcation 

theory and stability analysis. The definition of (Lyapunov) stability was given, as 

well as the fundamental theorems that allow studying the stability of linear and non-

linear systems of ODE’s. The notion of bifurcation was explained and illustrated 

through examples and a classification of the most common bifurcations and instabil-

ities was presented. The focus was given on ODE’s as their behavior is central for 

understanding bifurcation and stability. The study of PDE’s is an extension of the 

ideas presented for ODE’s and it was presented in the last section. The strain locali-

zation conditions of homogeneously deformed solids were derived as an example 

(acoustic tensor). After studying this chapter the reader would be able to distinguish 

the basic notions of stability and bifurcation and apply the different concepts in 

more complicated systems in geomechanics that are characterized of advanced con-

stitutive law and multiphysical couplings. 

Appendix 

Let  ,y f y   be a dynamical system with a bifurcation point at 0y y  for 

c  . A Taylor expansion of the equation yields: 

Stefanou and Alevizos 65

ALERT Doctoral School 2016



 

   
 

 
 

 
 

0

0 0

0 0

,

2
2

0 2
, ,

,

1

2

c

c c

y

c

y

c

x

f
x f y y

y

f f
y y

y

y



 



 



   



 
   

 

  (48) 

In the case of saddle-node bifurcations we have that the term  0 , 0cf y    since 

0y  is a fixed point and   
 0 ,

/ 0
cy

f y


    by definition for this specific bifurcation. 

Therefore, 

    
2

0cy a b y y        (49) 

where, 
 0 ,

/
cy

a f


    and 
 0

2 2

,
1/ 2  /

cy
b f y


   . Thus, for  ,y   sufficiently 

close to  0 , cy   along with , 0a b  , we can neglect the higher order terms result-

ing to the normal forms: 2y y   or 2y y  .  
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In this chapter, the principles of strain localization analysis as applied to geo-

materials are presented. Conditions for the formation of different types of defor-

mation bands are given. Extension of the analysis to fluid saturated porous media is 

also presented.  

1 Introduction 

Failure of many engineering structures is characterized by the formation and propa-

gation of a failure plane. Laboratory experiments as well as in field observations that 

the orientation of the failure plane (or fault surface) is controlled by the directions of 

the principal stresses. In the well-established Mohr-Coulomb’s theory, the inclina-

tion  of the failure surface with respect to the direction of the minimum (in absolute 

value) principal stress is given as where  is the friction angle of the material. For 

typical values of Coulomb friction angle , 30° to 50°, values of  range from 60° to 

70°, which is comparable with the range of observed failure plane inclinations. 

Mohr-Coulomb’s theory is commonly used in geomechanics as the dominant feature 

in the behavior of geomaterials is its frictional character. The orientation of a failure 

surface can be deduced from the knowledge of the orientation of the principal 

stresses (not their magnitude) and of one material property (the internal friction 

angle). Inversely, the orientation of the principal stresses can be simply deduced, 

using Mohr-Coulomb’s theory, from the orientation of the failure plane and the 

knowledge of the friction coefficient of the material.  

Although the simplicity of this approach has made it very useful, the predictions of 

Mohr-Coulomb’s theory have been criticized because it is commonly observed that 

the complete inelastic response of a material influences the conditions of incipient 

failure and not only one material parameter such as the internal friction angle.  
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Moreover for studying the response of a structure in the post-failure regime when 

the strength is suddenly dropping, one has to understand what failure physically 

means. The first observation was that what appears as a failure plane is in fact a 

zone of localized shear deformation. Thus the study and the modelling of strain 

localisation phenomena have proven to be very useful in the understanding of failure 

mechanisms. Based on the theoretical studies of material stability as developed by 

Hadamard [Had03] for elastic materials and later extended by Thomas [Tho61], Hill 

[Hil62] and Mandel [Man66] for inelastic materials, the localisation process is seen 

as an instability that can be predicted from the pre-failure constitutive behaviour of 

the material. The conditions for the onset of localisation are thus established by 

seeking the possible critical conditions for which the constitutive equations of the 

material (in the pre-localised stage) may allow the existence of a bifurcation point 

for which the deformation mode will localize into a planar band [Ric76, Var76]. In 

this approach, the initiation of failure in the form of the incipient of a shear band is 

modelled as a constitutive instability and consequently a great number of studies 

have been dealing with the development of appropriate constitutive relationships 

which can predict satisfactorily the onset of shear banding. Geomaterials are charac-

terised by a non-associated and non-coaxial plastic behaviour and this has important 

effects on the localisation process [Rud75]. Numerous experimental studies on soils 

and rocks have been performed to understand the physical processes which control 

strain localization and validate the theoretical and constitutive concepts [e.g. Bés00, 

Des04, Sul99, Var80]. 

Shear band formation in the form of localized shear deformation is not the only 

possible localized deformation mode. Zones of localized deformation are sometimes 

observed in the direction normal to the maximum compressive stress as observed in 

highly porous rocks. These structures are interpreted as compactions bands [e.g. 

Bau04]. Deformation zones in the form of shear bands or compaction bands in geo-

materials are observed on a very large range of scales from sub-millimetric (grain 

size) to kilometric scale (geological structure). The formation of deformation bands 

is associated with an induced heterogeneity of strength and of other material proper-

ties (e.g. porosity, grain size, pore size, permeability…) in relation with the trans-

formation at the micro-scale of the microstructure of the rock inside the band. In 

geological structures, shear zones also play a major role in the nucleation of earth-

quakes, landslides and slope failure. They also are of prime importance in the flow 

of water, gas and oil in the subsurface as they can serve as conduits or barriers for 

fluid and heat fluxes. On the other hand, compaction bands are usually characterized 

by a significant reduction of the pore space, which in most cases is accompanied by 

an important reduction in permeability [Ols02]. Their presence can lead to largely 

anisotropic flow in fluid infiltrated porous rocks. Therefore, compaction bands are 

also of primary importance in reservoir mechanics for hydrocarbons production, 

CO2 storage and mineral exploration. 

The problem of modelling localized deformation in geomaterials is quite a challeng-

ing task, due to the difficulties which are encountered while dealing with softening 

materials and moving elastoplastic boundaries. It is however one of the most inter-
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esting bifurcation problems [Ste16].  Asking the question of possible spontaneous 

change of the deformation mode for a given loading history and subsequent evolu-

tion of this secondary deformation mode, one may search for the conditions of 

uniqueness and stability of the corresponding boundary value problem. It turns out 

that the result of such analyses dealing with geomaterials depends primarily on the 

assumed physical non-linearities which are inherent to the underlying constitutive 

description and is in a lesser degree influenced by geometrical non-linearities. 

It is not possible in a single paper to review the important literature published in the 

last forty years on the subject. We will thus choose to address some points in rela-

tion to the mathematical and physical background of bifurcation analysis as applied 

to geomechanics with some special emphasis on the effects of fluid and temperature. 

2 Shear band model 

Extensive presentation of shear band analysis in geomaterials can be found in 

[Var95] (see also [Bés04, Des02] for a review). The strain localization analysis 

consists in searching the incipient of a shear band in a solid as a mathematical bifur-

cation condition for the deformation field. Considering an infinitesimal neighbor-

hood of a point in an elastic-plastic solid which is homogeneous as for the constitu-

tive law and stress state, the strain localization phenomenon is understood as the 

appearance of a discontinuity in strain rates which marks the onset of non-uniform 

response. Such a bifurcation of the velocity gradient along a loading path can be 

caused by material destabilizing effects such as softening and lack of plastic normal-

ity in the constitutive law, as well as geometrical destabilizing effects such as large 

deformation affecting equilibrium equations. This bifurcation condition is obtained 

from (a) the constitutive relationships of the material, (b) the conditions of mechani-

cal equilibrium across the shear band boundary and (c) the kinematic compatibility 

conditions which expresses that the velocity field is to be continuous (no material 

discontinuity). The latter condition implies that only the normal component of the 

velocity gradient across the shear band is discontinuous whereas the tangential one 

is continuous (weak discontinuity). The above conditions describe the so-called 

‘continuous’ bifurcation modes. It has been shown that the critical state for continu-

ous bifurcation precedes the one for ‘discontinuous’ bifurcation where a discontinui-

ty of the velocity field itself (and not only its gradient) is considered [Sim93]. Non-

trivial solution for the condition of continuous bifurcation is a necessary condition 

for the shear band existence and provides both the shear band orientation and the 

deformation jump across the shear band. Rudnicki and Rice [Rud75] and Rice 

[Ric76] have obtained solutions for realistic elasto-plastic constitutive relationships 

for geomaterials. 

2.1 Strain localization criterion 
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According to the definition proposed by Hill [Hil62], a shear band is viewed as a 

thin layer that is bounded by two parallel material discontinuity surfaces of the in-

cremental displacement gradient (Figure 1). These material discontinuity surfaces 

D
(1)

 and D
(2)

 are called shear-band boundaries and their distance, 2dB, is the thick-

ness of the shear-band. Within the frame of constitutive theories without material 

length, the shear-band thickness dB is undetermined.  

 

Figure 1: Model of a deforming shear-band with heat and fluid fluxes 

Let denote by n the unit vector normal to the band. Inside the band the incremental 

displacement field 1u depends only on the position across the band; outside the 

band the rate of deformation is assumed to remain homogeneous. Assuming that the 

displacement field is continuous across the band, then according to Maxwell theo-

rem, only the normal derivative of this field may be discontinuous across the band. 

Accordingly the following kinematic compatibility conditions hold:  

   0 and  
ji i i ju u g n     

 
 (1)  

where [.] denotes the jump of the quantity across the shear band boundary. Note that 

as emphasized by [Bés04], the form of equation (1) requires that 
j iu  

 
has a 

vanishing intermediate eigenvalue and thus contains a plane of zero incremental 

displacement. Consequently, localization is favoured when the pre-bifurcation, ho-

mogeneous field contains a plane of zero extension rates, as in plane strain whereas 

highly destabilizing effects as strong softening behaviour is needed to generate shear 

band formation in axisymmetric deformation. 

Incremental strains and stresses are linked through the constitutive relationships: 

 ij ijkl l kC u     (2)  

Equilibrium across the shear band boundary implies the following static compatibil-

ity condition: 

 0ij jn     (3)  
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We observe that there are two possibilities, namely that the constitutive behaviour 

across the shear band boundaries is either continuous or discontinuous. Concerning 

discontinuous bifurcations one has to examine the possibility that elastic unloading 

occurs outside the shear band while continued elastic-plastic loading occurs within 

the band. If the elasto-plastic constitutive law admits a single smooth yield surface 

and plastic potential, [Ric80] have shown that continuous bifurcation analyses pro-

vide the lower limit to the range of deformations for which discontinuous bifurca-

tions can occur. Accordingly, we restrict ourselves here to the first possibility of 

continuous constitutive behaviour, namely 0ijklC    . 

Using the constitutive relationships (2), the static compatibility condition (3) and the 

kinematic compatibility conditions (1), we finally obtain 

 0ik kg   (4) 

where ik ijkl j lC n n   is the acoustic tensor. It follows that weak stationary disconti-

nuities for the incremental displacement exist only if the acoustic tensor is singular: 

 det 0Γ  (5) 

Equation (5) is the characteristic equation in terms of the direction cosines ni of a 

statically, kinematically and materially admissible discontinuity surface. If the char-

acteristic equation provides real solutions for the direction cosines ni, discontinuity 

surfaces for the incremental displacement gradient exist and may also develop in due 

course of the deformation. Equation (5) is thus the localization criterion. 

The vector dot product  n.g determines the nature of deformation band created at 

localization. The following classification describes the deformation band types (Fig-

ure 2): 

 

      1 :             pure dilation band

0 1 :       dilatant shear band band

      0 :            simple shear band

1 0 :    compactive shear band

      1 :          pure compaction



 



  

 

n.g

n.g

n.g

n.g

n.g  band









 (6) 
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Figure 2: Localized deformation with shear, compaction and dilation modes [Ber02]. 

In a simple shear band the instantaneous relative movement is tangent to the band. 

In a dilatant (respectively compactive) shear band the angle between the unit vectors 

n and g is acute (respectively obtuse), and thus the band exhibits some form of in-

stantaneous expansion (respectively contraction). Pure dilation and pure compaction 

bands exhibit little or no shear offset [Bor04].  

2.2 Strain localization, loss of ellipticity and vanishing speed of 

acceleration waves 

The governing equations of an incremental boundary problem are obtained from the 

equations of equilibrium 0j ij    (for simplicity we omit here the body forces), 

the constitutive relationships of the form given by equation (2), and the boundary 

conditions (prescribed tractions or displacements at the boundary of the considered 

body). Incorporating the constitutive equations (2) into the equilibrium equations 

and assuming piecewise linear incremental constitutive equations yields the follow-

ing second order differential system: 

 0ijkl j l lC u     (7) 

The ellipticity condition of the above differential system is expressed as follows: 

 ,  is strictly definite positive.ijkl j lC n nn  (8) 

Consequently, the localization criterion (5) corresponds to the state of loss of ellipti-

city of the governing equations. They change type and from elliptic they turn to 

hyperbolic. Shear bands are thus identified with the characteristic lines of the gov-

erning hyperbolic partial differential equations. 

Let us consider now the propagation of acceleration waves in a solid body along the 

direction n. Acceleration waves are weak discontinuities of the various mechanical 

fields across wave-fronts which propagate with the speed c. One can show that the 

propagation speed c is the solution of an eigen-value problem [cf. Var95] and that c 

is obtained from the following equation: 
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  2det ik ikc    (9) 

where is the density of the material. Thus, if the acoustic tensor is strictly definite 

positive, all the velocities of acceleration waves are real. When all waves are able to 

propagate with real velocity, the material is stable in a dynamic sense. This is called 

the Hadamard’s stability criterion [Had03] first established for hyperelastic materi-

als. Consequently the localization criterion (5) corresponds to a state for which the 

velocity of wave propagation in the direction normal to the band is null (stationary 

wave).   

3  Shear band formation in element tests on rocks 

3.1 Drucker-Prager model 

As seen above, the localization criterion depends on the constitutive relation. The 

Drucker-Prager plasticity model with non-associate flow rule is commonly used for 

porous rocks. The yield surface and the plastic potential are expressed as 

 ( );F q Q          (10) 

where / 3kk   is the mean stress (negative in compression), / 2ij ijs s   is the 

Mises equivalent stress (with ij ij ijs    ),  is the friction coefficient and  is the 

dilatancy coefficient. For low-porosity rock, inelastic response is dilatant and ; 

however, compressed high-porosity rock typically experiences initial compaction, 

followed by either dilation or further compaction, depending upon the stress state. 

Negative values for the dilatancy coefficient and negative values for the friction 

coefficient at high mean stress can be thus observed as for cap yield surface. The 

critical value of the hardening modulus for which the localization is satisfied (equa-

tion (5)) is given by [Rud75]: 

  
2

21 1

9(1 ) 2 3

cH
N

G

   
 



   
    

  
 (11) 

where G is the elastic shear modulus,  is the Poisson’s ratio,  is the friction coeffi-

cient and  is the dilatancy coefficient N is the normalized intermediate principal 

deviatoric stress ( /ij ijN s  ) and varies from 1/ 3  for axisymmetric extension 

1 2 3( )    to 1/ 3  for axisymmetric compression 
1 2 3( )    . The value 

N=0 corresponds to pure shear 
1 3 2( , 0)     . The shear band is in a plane 

parallel to the intermediate principal stress and its normal is inclined with an angle 
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B with respect to the - direction (most compressive direction) expressed as 

[Rud98]: 

 
2

1 (2 / 3)(1 )( ) (1 2 )
arcsin , with 

4 2 4 3
B

N

N

    
  

   
  


 (12) 

The above equations give the largest critical value of the hardening modulus and the 

shear band orientation as established by [Rud75]. As mentioned by Perrin and Le-

blond [Per93], these solutions are valid only if 1  , thus when the magnitude of 

 is small enough 

  
2 2(1 2 ) 4 3 (1 2 ) 4 3

2(1 ) / 3 2(1 ) / 3

N N N N 
 

 

     
  

 
 (13) 

The case for which 
2(1 2 ) 4 3

2(1 ) / 3

N N
 



  
 


corresponds to the formation of 

dilation bands in the direction normal to the least compressive principal stress, 

B=, whereas, the case for which 
2(1 2 ) 4 3

2(1 ) / 3

N N
 



  
 


corresponds to 

the formation of compaction bands in the direction parallel to the least compressive 

principal stress, B=[Iss00]. The corresponding critical hardening modulus has the 

form 

  
2

2 21 1 1 3
1

9(1 ) 1 2 3 4

k

c

k k

H
N N

G

   
 

 

     
        

     
 (14) 

where 1k  for the dilation bands and 3k  for the compaction bands and N1 and N3 

are the least and most compressive principal values of the normalized deviatoric 

stress tensor. These solutions for the critical hardening modulus and the orientation 

of the band are continuous over the limits of equation (13). 

For plane strain deformation an approximate solution for the shear band inclination 

(equation (12)) has been given by [Var80]: 

 
4 4 4

  
p p

B

 
  (15) 

where p and p are respectively the friction angle and the dilatancy angle at peak 

values. This expression was first proposed by [Art77] on the basis of experimental 

observations. 
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3.2 Non coaxial plasticity 

In classical flow theory of plasticity, the direction of the plastic deformation is fixed 

with respect to the normal to the plastic potential. Consequently, the direction is 

fixed by the current state of stress and does not depend upon the direction of the 

stress increment. The plastic deformation rate possesses the same principal axes as 

the stress tensor, which means that it is coaxial to the stress tensor. This is a strong 

assumption and its consequences on the prediction of shear localization have been 

discussed in many papers [e.g. Pap95, Rud75, Var80]. In order to arrive to better 

predictions for shear-band formation, one has to abandon the concept of classical 

coaxial plasticity flow rule and resort to hypoplasticity flow rules, which consider 

one way or the other the effect of stress rate. Rudnicki & Rice [Rud75] have consid-

ered the contribution of a non-coaxial term motivated by a yield vertex plasticity 

model. Other examples of non-coaxial constitutive models have been proposed in 

the form of a deformation theory of plasticity [e.g. Sul90, Ver86]. More generally, 

the incrementally non-linear laws of Darve [Dar85] and Chambon and Desrues, 

[Des89] developed for granular soils and rocks are non-coaxial.  

These modifications of the plasticity flow rule result in significant changes in mate-

rial response for non-proportional loading paths [Bés04, Des02]. 

3.3 Cataclastic shear banding 

At high confinement, suppressed dilatancy may lead to grain crushing or cataclasis 

inside the shear band [Bie02] as shown in Figure 3 which in turn leads to substantial 

porosity and permeability reduction [Sul06]. At large scale, similar phenomena are 

observed in faulted zones when sheared. Usually in fault zones, two main domains 

can be identified: a fault core of small thickness constituted of highly comminuted 

ultra-cataclasites is surrounded with a damage zone which consists of fractured host 

rock [e.g. Che98]. The ultracataclastic structure is the results of numerous earth-

quake ruptures. As shown for example in a recent study of [Sul04] dedicated to the 

characterisation of Aigion fault material in the Gulf of Corinth (Greece), the perme-

ability of the fault core is very low so that this zone acts as an impervious barrier to 

transverse fluid flow, whereas the highly fractured damage zone around acts mostly 

as conduits for nearly along-strike flow. Similar observations can be found in the 

work of Wibberley and Shimamoto [Wib02]. 
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Figure 3: Cataclastic shear banding in Fontainebleau sandstone (El Bied et al. 2002) 

3.3 Post-localization behavior 

The various drawbacks and shortcomings of the classical continuum theory in con-

nection with strain localization are related to the fact that in the post-bifurcation 

regime we deal in general with mathematically ill-posed governing equations. The 

origin of this undesirable situation can be traced back to the fact that conventional 

constitutive models do not contain material parameters with dimension of length, so 

that the shear band thickness (i.e. the extent of the plastically softening region) is 

undetermined. We can say that localization of deformation leads to a change in scale 

of the problem so that phenomena occurring at the scale of the grain cannot be ig-

nored anymore in the modelling of the macroscopic behaviour of the material. Then 

it appears necessary to resort to continuum models with microstructure to describe 

correctly localization phenomena. These generalized continua usually contain addi-

tional kinematical degrees of freedom (Cosserat continuum) and/or higher defor-

mation gradients (higher grade continuum). Cosserat continua and higher grade 

continua belong to a general class of constitutive models which account for the ma-

terials micro-structure. The contemporary formulation of these models are based on 

the work of Mindlin [Min64], Germain  [Ger73a, Ger73b]. Rotation gradients and 

higher velocity gradients introduce a material length scale into the problem, which 

as already mentioned is necessary for the correct modeling of localization phenome-

na. This idea was widely publicized by the paper of Mühlhaus and Vardoulakis  

[Müh87]. In this case the underlying mathematical problem describing localization 

phenomena is 'regularized' and the governing equations remain elliptic. Moreover, 

this technique allows robust computations to follow the evolution of the considered 

system in the post-bifurcation regime and to extract additional information such as 

the shear band thickness or to assess the effect of scale. In the two last decades, large 
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scale numerical simulations which account for higher order continuum effects have 

been developed [Col06, Col16, Mat02, Pap16a, Pap16b, Pap92, Zer01].  

4  Strain localization in fluid saturated porous media 

4.1 Strain localization criterion in fluid saturated porous media 

The rate constitutive equations for saturated porous elastic-plastic media can be 

written in the following two alternative forms [Ben03, Cou04]: 

  1

d

u

p

D

 

  

σ C ε K

σ C ε K
 (16) 

where C
d
 is the drained tangent modulus related to the stress rate under drained 

conditions (constant pore pressure p) and C
u
 is the undrained tangent modulus relat-

ed to the stress rate under undrained conditions (constant fluid content ) 
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In the above equations, 
d

eC (resp. 
u

eC ) is the drained (resp. undrained) elastic tensor, 

F is the yield function, Q is the plastic potential, b is the Biot elastic coefficient, M is 

the Biot modulus, K
u
 is the undrained elastic bulk modulus, with 
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and h
d
 is the drained plastic hardening modulus. 
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The stability of homogeneous deformation is investigated by considering an infini-

tesimal perturbation X to the set X of all fields describing the response of the 

medium (displacements, stresses, pore pressure, etc.). The perturbation field is writ-

ten in the form of  exp i st   X X n.x where n is a unit vector, is a wave-

number, s is the rate of growth of the perturbation. Instability in the form of un-

bounded growth of the perturbation occurs when the following condition is met 

[Ben03]:  

 
2det det 0u dsD k        n.H .n n.H .n  (19) 

where k is the permeability of the medium. Thus the rate of growth s is given by: 

  

2 det
0

det

d

u

k
s

D

     
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n.H .n

n.H .n
 (20) 

From the above equation, it is seen that unbounded growth of the perturbation oc-

curs whenever for some directions n we have: 

 det .det 0d u       n.H .n n.H .n  (21) 

Therefore, strain localization occurs when the drained or the undrained acoustic 

tensor becomes singular: 

 

det 0

or

det 0

d

u

   

   

n.H .n

n.H .n

 (22) 

Thus the two conditions must be checked on the real deformation path (which is not 

necessarily drained or undrained.) to infer which one is met first. For associative 

behavior, it is shown that the singularity of the drained acoustic tensor occurs before 

the singularity of the undrained acoustic tensor which means that instability occurs 

when the condition of localization of the underlying drained deformation is met 

[Ben00]. On the other hand, for non-associative behavior, instability is controlled 

either by the drained or the undrained properties, depending on the constitutive 

equations and on the loading path.   

4.2 Drucker-Prager model for saturated porous medium 

For saturated porous media, the Drucker-Prager yield surface and plastic potential 

are expressed as: 

 ( ( )); ( )f fF q p Q p             (23) 
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The drained and undrained tangent moduli for the constitutive equations of a Druck-

er-Prager elasto-plastic model are 
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where 
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uK and 
dK are the drained and undrained elastic bulk moduli respectively, b is the 

Biot coefficient, M is the Biot modulus and 
u

bM
B

K
 (Skempton coefficient). The 

undrained hardening modulus uh is given by: 

 
d

u d

u

K
h h M

K
   (26) 

In Figure 4, we represent the critical conditions for drained and undrained behavior 

assuming associative flow rule (Figure 4a) or non-associative flow rule (Figure 4b). 

Figure 4a shows that the singularity of the drained acoustic tensor precedes the one 

of the undrained tensor. On the contrary, Figure 4b shows that depending on the 

loading path (represented by parameter N), the singularity of the undrained tensor 

may precedes the one of the drained tensor.    
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(a)                                                          (b) 

Figure 4: Critical hardening modulus at localization under drained and undrained 

conditions for (a) associative flow rule, (b) non associative flow rule 

( 60 MPa, 0.3, 7500 MPa, 1,  0.08, 0)E M b        [Ben03]. 

5  Conclusion 

Bifurcation analysis and localization theory constitute the basis of contemporary 

continuum theory of failure as a natural extension of classical theory of strength of 

materials. The basic notions in relation with the shear band model are presented. The 

bifurcation condition corresponds to the singularity of the acoustic tensor. It is 

shown that the localization criterion corresponds to a state for which the velocity of 

wave propagation in the direction normal to the band is null. Extension to saturated 

fluid saturated media is presented. For associative behavior, it is shown that instabil-

ity occurs when the condition of localization of the underlying drained deformation 

is met. On the other hand, for non-associative behavior, instability is controlled 

either by the drained or the undrained properties, depending on the constitutive 

equations and on the loading path.  
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[Had03]  Jacques Hadamard. Leçons sur la propagation des ondes et les équations 

de l’hydrodynamique. Paris : Librairie Scientifique A.Hermann, 1903. 

[Hil62]  R. Hill. Acceleration waves in solids, J. Mech. Phys. Solids 10(1961):1–16, 

Sulem 83

ALERT Doctoral School 2016



1962. 

[Iss00]  Kathleen A. Issen, John W. Rudnicki. Conditions for compaction bands in 

porous rock, J. Geophys. Res. 105(B9):21529, 2000. 

[Man66]  J Mandel. Conditions de Stabilite et Postulat de Drucker. In: Rheology 

and Soil Mechanics / Rhéologie et Mécanique des Sols : International Union 

of Theoretical and Applied Mechanics, 55–68, 1966. 

[Mat02]  Takashi Matsushima, Ren� Chambon, Denis Caillerie. Large strain 

finite element analysis of a local second gradient model: application to 

localization, Int. J. Numer. Methods Eng. 54(4):499–521, 2002. 

[Min64]  R.D. Mindlin. Micro-structure in linear elasticity, Arch. Ration. Mech. 

Anal. 16(1), 1964. 

[Müh87]  H.B. Mühlhaus, Ioannis Vardoulakis. The thickness of shear bands in 

granular materials, Géotechnique 37(3):271–283, 1987. 

[Ols02]  William A. Olsson, David Holcomb, John W. Rudnicki. Compaction 

Localization in Porous Sandstone: Implications for Reservoir Mechanics, 

Oil Gas Sci. Technol. 57(5):591–599, 2002. 

[Pap16a]  Panos Papanastasiou, Antonis Zervos. Numerical modelling of strain 

localization. In: Modelling of instabilities and bifurcation in Geomechanics, 

ALERT geomaterials doctoral school, 2016. 

[Pap16b]  Euripides Papamichos. Numerical modeling of bifurcation: Applications 

to borehole stability, multilayer buckling, and rock bursting. In: Modelling 

of instabilities and bifurcation in Geomechanics, ALERT geomaterials 

doctoral school, 2016. 

[Pap92]  Panos C. Papanastasiou, Ioannis G. Vardoulakis. Numerical treatment of 

progressive localization in relation to borehole stability, Int. J. Numer. Anal. 

Methods Geomech. 16(6):389–424, 1992. 

[Pap95]  E. Papamichos, Ioannis Vardoulakis. Shear band formation in sand 

according to non-coaxial plasticity model, Géotechnique 45(4):649–661, 

1995. 

[Per93]  G Perrin, JB Leblond. Rudnicki and Rice’s analysis of strain localization 

revisited, J. Appl. Mech. (93):842–846, 1993. 

[Ric76]  James R Rice. The localization of plastic deformation. In: KOITER, W. T. 

(Hrsg.): Theoretical and Applied Mechanics (Proceedings of the 14th 

International Congress on Theoretical and Applied Mechanics). Delft : 

NorthHolland Publishing Co., 207–220, 1976. 

[Ric80]  James R Rice, J.W. Rudnicki. A note on some features of the theory of 

localization of deformation, Int. J. Solids Struct. 16:597–605, 1980. 

[Rud75]  John W. Rudnicki, James R Rice. Conditions for the localization of 

deformation in pressure-sensitive dilatant materials, J. Mech. Phys. Solids 

23(6):371–394, 1975. 

[Rud98]  John W. Rudnicki, William A. Olsson. Reexamination of fault angles 

predicted by shear localization theory, Int. J. Rock Mech. Min. Sci. 35(4)–

(5):512–513, 1998. 

[Sim93]  J. C. Simo, J. Oliver, F. Armero. An analysis of strong discontinuities 

induced by strain-softening in rate-independent inelastic solids, Comput. 

Mech. 12(5):277–296, 1993. 

84 Material instability and strain localization analysis

ALERT Doctoral School 2016



[Ste16]  Ioannis Stefanou, S. Alevizos. Fundamentals of bifurcation theory and 

stability analysis. In: Modelling of instabilities and bifurcation in 

Geomechanics, ALERT geomaterials doctoral school, 2016. 

[Sul04]  Jean Sulem, Ioannis Vardoulakis, Hichem Ouffroukh, Marc Boulon, Julien 

Hans. Experimental characterization of the thermo-poro-mechanical 

properties of the Aegion Fault gouge, Comptes Rendus - Geosci. 336:455–

466, 2004. 

[Sul06]  Jean Sulem, Hichem Ouffroukh. Shear banding in drained and undrained 

triaxial tests on a saturated sandstone: Porosity and permeability evolution, 

Int. J. Rock Mech. Min. Sci. 43(2):292–310, 2006. 

[Sul90]  J. Sulem, I. Vardoulakis. Bifurcation analysis of the triaxial test on rock 

specimens. A theoretical model for shape and size effect, Acta Mech. 83(3)–

(4):195–212, 1990. 

[Sul99]  Jean Sulem, Ioannis Vardoulakis, Euripides Papamichos, Ahmed Oulahna, 

Johan Tronvoll. Elasto‐plastic modelling of Red Wildmoor sandstone, Mech. 

Cohesive‐frictional Mater. 4(3):215–245, 1999. 

[Tho61]  T.Y. Thomas. Plastic flow and fracture in solids : Academic Press, 1961. 

[Var76]  Ioannis Vardoulakis. Equilibrium theory of the shear bands in plastic 

bodies, Mech. Res. Commun. 3, 1976. 

[Var80]  Ioannis Vardoulakis. Shear band inclination and shear modulus of sand 

in biaxial tests, Int. J. Numer. Anal. Methods Geomech. 4(January 

1979):103–119, 1980. 

[Var95]  Ioannis Vardoulakis, Jean Sulem. Bifurcation Analysis in Geomechanics. 

Glascow : Blackie — ISBN 0203697030, 1995. 

[Ver86]  P.A. Vermeer, G.J. Schotman. An extension to th e deformation theory of 

plasticity. In: 2nd International Symposium Numerical Models in 

Geomechanics : Jackson and Son, 33–41, 1986. 

[Wib02]  Christopher A J Wibberley, Toshihiko Shimamoto. Internal structure and 

permeability of major strike-slip fault zones: The Median Tectonic Line in 

Mie Prefecture, Southwest Japan, J. Struct. Geol. 25:59–78, 2002. 

[Zer01]  A. Zervos, P. Papanastasiou, I. Vardoulakis. Modelling of localisation and 

scale effect in thick-walled cylinders with gradient elastoplasticity, Int. J. 

Solids Struct. 38(30)–(31):5081–5095, 2001. 

 

 

 

 

 

Sulem 85

ALERT Doctoral School 2016





Experimental investigation of the emergence
of strain localization in geomaterials

P. Bésuelle, P. Lanatà

Univ. Grenoble Alpes & CNRS, Lab. 3SR, Grenoble, France

Failures of geomaterials, including soils, rocks and concretes, are generally associ-
ated with a localized deformation. For about 40 years, strain localization phenomena
have been investigated experimentaly in different materials. Most of these studies have
been motivated by the theoretical background of shear band analysis using bifurca-
tion theory. Strain field measurements have been developed to characterize strain
localization, especially for sand specimens. Full field methods, imaging tools and
experimental loading apparatus have evolved considerably over past 15 years. This
chapter looks at on the contributions of recent developments on the characterization
of the strain localization process. The emergence of strain localization involves the
progressive evolution from diffuse to localized deformation. The text introduces the
methods used and then shows some selected experimental results obtained from some
sands and porous rocks.

1 Introduction

Localized deformation is a ubiquitous phenomenon in geomaterials (soils, rocks, con-
crete). It occurs over a vast range of size scales, from the microscale level of grains to
faults extending over hundreds of kilometers. It occurs in a variety of forms, as a con-
centration or coalescence of cracks; a distinct, planar frictional surface; a gouge zone
of finely comminuted material; or simply a region of higher shear strain or relative
grain movements. In geomaterials, the severe shearing in regions of localized de-
formation may be accompanied by dilatancy (inelastic volume increase) and/or com-
paction (inelastic volume decrease) as well as by chemical alteration. If the material
is fluid-saturated, as is frequently the case, inelastic volume changes can induce the
flow of fluid or changes in pore pressure which will affect the response. Localization
occurs under a variety of conditions that depend on the material and the loading pro-
cess (e.g., mean stress and loading rate). Although most frequently associated with
the formation of faults under nominally brittle conditions or shear bands –semi-brittle
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conditions–, localization can also occur by cataclastic flow of rocks at higher mean
stresses and by ductile shearing at temperatures and pressures typical of depths of 10
to 15 km into the Earth’s crust. A large transition zone bridges the brittle and duc-
tile regimes. This distinction between the different types of localization can also be a
matter of observation scale.

Sometimes, the occurrence of localization essentially coincides with failure. For ex-
ample, in the axisymmetric loading of porous rock or sand specimens, more or less
homogeneous deformation is terminated by the sudden appearance of a sharp fault or
shear band in the sample and by rapid loss of strength. However, the transition from
homogeneous deformation to clearly localized deformation is still an open question
as far as eventual precursors are concerned. In other instances, incipient localization
may be only the first step in a continuing process: a shear band can be de-activated
but still exist (non reversible deformation) and can be potentially re-activated later. In
other circumstances, a shear band can evolve as a fault, marking an inability of the ma-
terial to support large strain or highly concentrated micro-deformation mechanisms,
and switch to a material discontinuity.

Obviously, the phenomenon of localization in geological materials is both rich and
complex and its consequences can be important. Seismic activity on large faults is
a threat to human life and is a concern for the siting of structures. Shear zones and
fractures of a more modest scale can be problems for foundations and underground
structures of all types. The formation of a localized slip surface is frequently a pre-
decessor to slope failure. More generally; however, features of localized deformation
control not only the mechanical behavior but also the transport behavior of the crust.
For example, faults often form impermeable barriers that trap hydrocarbons or bound
aquifers. The presence of localized zones of deformation may disrupt efforts to with-
draw or inject fluids into the subsurface. Although faults and shear zones typically in-
hibit flow perpendicular to their strike, they can also act as high-permeability channels
for flow along the strike and carry fluid much further and more rapidly than predicted
by assuming a homogeneous formation.

The importance of localization has motivated numerous experimental, theoretical and
numerical works in the field of geomechanics, especially since the 1970s. However,
open questions exist about how the occurrence of localization and its subsequent evo-
lution are related to the stress state, deformation history, material properties and the
coupling of deformation with the transport of fluid and heat and with chemical alter-
ation.

In term of theoretical approach, ever since pioneering works of [Hil62] and [Ric76],
bifurcation theory considers strain localization as a loss of uniqueness problem. If
one considers a homogeneous body subjected to boundary conditions such that one
possible solution for the next increment is additional homogeneous deformation, the
bifurcation approach seeks conditions for which an alternative solution is possible,
corresponding to localized deformation in a planar band (see [VS95] and [BR04] for
comprehensive reviews).
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Numerical modeling of strain localization concerns, in particular, the practical aspect
of the band thickness. The absence of a length scale in the classical constitutive models
causes numerical simulations to depend spuriously on the mesh size (in terms of band
thickness and de facto energy dissipation). Recent developments have introduced a
length scale in the continuum using micromorphic models ([Cos09], [MV87], [FH97],
[CCM01]) or non-local models ([BLPC87], [BPC88], [VA91]), to cite a few studies.

Concerning experimental characterization, a large amount of work has also been pro-
duced, on soil and rock mechanics (see for example [VS95], [Des98], [PW05] for
extended reviews). Pioneering studies have characterized strain localization by post
mortem or destructive analysis (especially in rock mechanics). At the end of mechani-
cal tests, after the specimens have been removed from the loading device, the patterns
of localization, shear band orientation, local porosity and grain scale damage are ana-
lyzed with regard to experimental and loading conditions (boundary conditions, mean
stress level, stress rate, material initial state, fluid saturation, etc.).

This chapter attempts to review recent experimental observations about the progres-
sive evolution from diffuse to localized deformation. Spatial descriptions of physical
quantities and the time evolution of these fields are needed for this aim, in contrast to
more conventional measurement techniques based on global measurement by trans-
ducers positioned outside of the loading device and/or at the specimen boundaries
(no field measurement) or on post mortem characterization (no time evolution). Such
techniques which are referred to as full-field measurements became more and more
popular during the last two decades ([VH12]). They are potentially well adapted to
detecting, during laboratory tests, the transition from the initial (quasi-) homogeneous
regime to the localized regime.

Full-field methods represent a long list of different techniques. Kinematic (displace-
ment) field measurements seem obvious for detecting strain localization. Once the
displacement field is measured, the strain field can be deduced quite easily by ap-
plying continuum mechanics. Many techniques exist, including among others, image
correlation, the grid method, speckle interferometry and the moiré method ([Gr4],
[VLMS02]). Other methods for non-kinematic measurements exist based on imagery
techniques of physical processes, such as ray absorption, wave propagation or atten-
uation, temperature and electrical resistivity. Some methods use tracer emission de-
tection (e.g., gamma ray emission). Generally, these methods are not direct and need
reconstruction algorithms to quantify the physical properties: X-ray tomography, neu-
tron tomography, ultrasonic tomography, electrical resistivity tomography, magnetic
resonance tomography, positron emission tomography, dynamic thermal tomography,
etc. Acoustic emission monitoring is also interesting for geomaterials. The acoustic
events (AEs) generated during deformation (due to micro-cracking) are detected by
transducers on the specimen boundaries and are located by inverse analysis, giving a
field of AEs resolved in time (e.g., [FSDG09]). A review of the different full field
measurement methods is beyong the scope of this chapter. We will simply present the
digital image correlation (DIC) method because it is the most popular kinematic field
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method in geomechanics. The method can be used with classical images from a digital
high resolution camera (2D measurement) or combined with more complex imaging
techniques such as X-ray tomography (3D measurements). The success of DIC in
geomechanics comes, in 2D, from the relative simplicity of the specimen preparation
in generating a needed random speckle, the availability of commercial codes and the
trend in decreasing costs of digital cameras. Moreover, in 3D (volume), the possibility
to use the natural heterogeneity of the geomaterial as a random speckle is crucial.

To continue the chapter, some selected results will be presented, to illustrate the tran-
sition from diffuse to localized deformation in sands and porous rocks. Note that we
have chosen to present results coming, in large part, from our research group in Greno-
ble. We chose to select some results that we know well, and not necessarily the most
advanced results from the literature each time. However, this selection should give
quite a wide view of the subject. The first results concern the strain localization in
a Hostun sand observed in plane strain compression. Then, the strain localization in
sands will be presented at a smaller scale –at the scale of the grains –thanks to X-ray
CT. Afterward, the localization in two porous rocks (a Vosges sandstone and a clayey
rock) observed under plane strain compression will be discussed.

2 Methods

This part describes the methods and tools used to obtain the results presented in a later
part. Digital image correlation (DIC) is first presented. The method became popu-
lar in geomechanics several years ago. It has superseded the false relief stereopho-
togrammetry (FRS) which was used in the ’70s-’90s ([BHA70], [DV04]). FRS is
based comparing of photographs taken from a fixed viewpoint at different times of
the specimen’s deformation. An essential feature of FRS is that the deformation is
directly perceived as a fictitious relief (hence the name of the method) by using the
well-known stereoscopic effect on successive pairs of photographs. The relief ob-
served is due to the (plane) deformation taking place in the time interval between the
two photographs, and not the real 3D geometry of the object. When two photographs
are viewed in stereo, displaced regions appear elevated, with the elevation being pro-
portional to the magnitude of the displacement. In the presence of a shear band, the
deforming specimen appears as two planes of different elevation connected by a slope.

X-ray computed tomography is then described, which allows imaging of the specimens
in 3D (volume). X-ray CT can directly detect the shear bands in specimens undergoing
dilatancy or compaction (mass density change). However, the combination of X-ray
CT with DIC is a much more powerful tool for detecting incipient shear bands because
it measures the full strain tensor field (including shear strain) inside the specimen, and
not only the mass density change (volume strain field).

The adaptation of experimental loading devices for geomaterial to full field measure-
ments will be discussed. The devices need to be transparent to visible light (classical
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camera) or to X-rays for X-ray computed tomography (X-ray CT). This adaptation of
the loading device can become complex, especially for rock mechanics due to the high
strength and stiffness of the specimens.

2.1 Digital image correlation (DIC)

Digital image correlation (DIC) provides a displacement field measurement between
two images of the specimen. One of the images is called the reference image and
the image corresponding to a deformed state of the specimen is called the deformed
image. The displacement field corresponds to the transformation that matches the
reference image to the deformed image. The measure at a discrete set of positions
(nodes) using a correlation algorithm is based on a principle of optical flow conserva-
tion. Then, the strain tensor field can be deduced from the displacement vector field
using spatial derivation methods for a discrete field. Note that an extended descrip-
tion of the method can be found in [Hal12] and a state of the art description of good
practices can be found in [BBD+08].

The nodal displacements of the specimen are determined by correlating of small sub-
sets (centered on the nodes) of the two digital images of the sample. Originally,
DIC was applied to photographs of a plane surface of the specimen (e.g., [PR82],
[SWPM83]), but has been extended to volume 3D pictures of the specimen (e.g.,
[BSFS99], [VvRH04]).

We call X the position in the reference picture and x the position in the deformed
picture. The displacement is defined by u(x) = x −X . u, v and w are the displace-
ment components of u in the space coordinates x, y and z of X , respectively. The
displacement gradient tensor is defined by:

F = I +
∂u

∂X
=



1 + ∂u

∂x
∂u
∂y

∂u
∂z

∂v
∂x 1 + ∂v

∂y
∂v
∂z

∂w
∂x

∂w
∂y 1 + ∂w

∂z




The three main types of DIC can be described in the following:

• 2D-DIC needs one camera and two pictures of a flat surface of the specimen
(defined as z = z0). The components of the displacement vector u(x, y, z0) and
v(x, y, z0) are measured, which allows the components Fxx, Fxy , Fyx and Fyy
to be determined. The surface of the specimen can be prepared with a random
speckle.

• 3D-surface DIC (stereo-vision plus stereo-correlation) needs two cameras (and
requires special calibration of the two cameras’ frame) and two times two pic-
tures of the surface of the specimen. The surface is not necessarily flat. The
components of the displacement vector u(x, y, z0), v(x, y, z0) and w(x, y, z0)
are measured, which allow the components Fzx and Fzy to be determined, in
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addition to the previous components. The derivative with respect to z is not ac-
cessible, it is still restricted to surface analysis. It is applicable to the evaluation
of non-planar objects and out-of-plane deformations.

• 3D-volumetric DIC (also known as digital volume correlation or DVC) needs
a 3D imaging device (e.g., X-ray tomograph) and two 3D volume images. The
three components of the displacement vector u(x, y, z), v(x, y, z) andw(x, y, z)
are measured, which allow all of the gradient tensor’s component to be deter-
mined. It is applicable to analysis of 3D deformation including internal de-
formation, but requires the object to have an internal “character” that may be
followed (correlated) between images.

The Green-Lagrange strain tensor is defined as

E =
1

2
(FT .F − I)

and the linearized strain tensor (for small strain assumption)is defined by

ε =
1

2
(FT + F )

The components of Exx = 0.5 (F 2
xx + F 2

yx + F 2
zx − 1), Exy = 0.5 (Fxx.Fxy +

Fyx.Fyy +Fzx.Fzy) and Eyy = 0.5 (F 2
xy +F 2

yy +F 2
zy − 1) can be computed exactly

with 3D-surface DIC, while they are approximated with 2D-DIC under the assump-
tion that the out-of-plane displacement is quite homogeneous with respect to x and
y, which is correct in plane strain deformation (no out-of-plane displacement). The
approximation is also correct in the case of small stretching and small rotation, when
E tends toward ε.

The displacement field is estimated for a set of nodes. 2D or 3D digital images corre-
spond to some grey-level pixelated pictures. Each node is characterized by the grey-
level distribution in its vicinity, called a subset, which is composed of pixels (2D) or
voxels (3D). The subset from the reference image is associated with a subset in the
deformed image that optimizes a similarity with the reference subset. The similarity
is measured with a correlation coefficient. The difference in the positions of the two
subsets corresponds to the displacement of the node. The process is repeated for each
node selected on the reference image to obtain the displacement field.

The deformation of the subset, centered on the position X0, from the reference image
to the deformed image can be approximated at the first order:

φ(X) = X + u(X) ≈ X + u(X0) +
∂u

∂X
(X0).(X −X0)

where u(X0) is the searched displacement of the subset. The main difference be-
tween the correlation methods comes from how to estimate the similarity between
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the reference and the deformed subset, including the choice of correlation function
and the assumptions on the transformation of the subset. The assumed transformation
can simply be a rigid translation (∂u/∂X (X0) = 0) or can take into account a rigid
rotation and a stretching of the subset.

Figure 1: Material deformation of the subset (from [BCD+04]).

The DIC method is decomposed into several steps, including an approximation of the
displacement at an integer number of pixels and a sub-pixel refinement (Fig. 2):

1. The set of nodes distributed on the reference image is defined. Generally the
nodes are regularly spaced, with a given number of pixels for the distance be-
tween nodes.

2. The subset around the node is determined, which is generally a square (2D) or
a cube (3D) with a size of a few pixels (voxels).

3. The zone of research (zone of interest) is determined and the most similar subset
in the deformed image is searched.

4. For all possible positions in the research area, a correlation coefficient is mea-
sured corresponding to a displacement of an integer number of pixels, assuming
a rigid displacement (no deformation of the subset). The position that maxi-
mizes the similarity coefficient is guessed as the best approximation.

5. The previous approximation is refined by a sub-pixel algorithm, because the true
displacement rarely corresponds to an integer numbers of pixels. Generally, the
subset size in this step is smaller than in step 2. Moreover, the zone of research
(step 3) is reduced to very few pixels (voxels).

There are different kinds of sub-pixel approximations (e.g., [PXD06]). The simplest is
based on an interpolation of the correlation coefficient for positions around the approx-
imation in 4. The coefficient is computed for rigid displacement of the subset with no
stretching. The sub-pixel approximation corresponds to a maximum of the interpola-
tion of the correlation coefficient. More complex methods account for the stretching of
the subset, which generally corresponds to a linear approximation (which can also be
a second-order function). Then, the parameters of the transformation are searched to
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Figure 2: Schematic of a 2D-surface DIC analysis approach (from [Hal12]).

optimize the correlation coefficient. The optimization can concern the displacement,
rotation and stretching parameters. However, this process can be time consuming;
to reduce the computation time, the stretching of the subset is sometimes determined
out of the optimization loop ([BCD+04]) and can be updated during an iterative algo-
rithm. The zone of research during the sub-pixel correlation needs to be restrained to
maintain a reasonable computation time. Several optimization algorithms exist, that
are more or less robust and efficient (Newton-Raphson, Levenberg-Marquart, etc.).
The sub-pixel correlation needs an interpolation of one of the two images to work
on a continuous grey-level picture (not pixelated). The selection of the interpolation
scheme is a key factor and directly affects the calculation’s accuracy and convergence
efficiency. A first and second-order continuity is preferable to assure the smoothness
of the intensity function and its derivatives.

The grey-level distribution in the subset can be interpreted as the signature of the cen-
tral node. This implies the need of a ”character” of the image to be able to distinguish
the subset in a unique manner. With some geomaterials, the natural heterogeneity of
their material structure is sufficient to serve as speckle pattern. This is especially im-
portant for volume-3D DIC. With the surface DIC methods, a synthetic pattern can
be deposited onto the specimen surface. The speckle pattern acts as a fixed reference
that follows the movements of the material, meaning that its morphology is an im-
portant parameter that directly affects the accuracy of the measured displacements.
A synthetic pattern can be obtained using by a layer of white paint and an ultra-fine
layer of black paint droplets such as using an airbrush. The speckle density, grey-
level contrast and characteristic size affect the quality of the measure. This implies
that each speckle pattern must comply with a predetermined quality requirement to be
considered appropriate for imaging. It should be adapted to the pixel(voxel) size of
the digital images (see [BBD+08]).

DIC can be adapted to a material’s specificities. For example, for a granular mate-
rial studied using X-ray CT, DIC can be used to measure a ”continuous strain field”,
using the standard procedure described above. DIC can also be used to measure the
kinematic displacement (and rotation) of each grain; this is the discrete volumetric
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DIC ([HBD+10]). Before the DIC procedure, the grains have to be individually iden-
tified through image segmentation. Then, the DIC subset has to be mapped onto each
grain, using an ad hoc mask for each grain. Then, the (quasi)standard DIC procedure
can be used to search the rigid displacement and rotation that optimize the correlation
coefficient of each grain between the two images.

2.2 X-ray computed tomography (X-ray CT)

X-rays are a high-frequency form of electromagnetic radiation discovered at the end
of the 19th century by W. C. Röntgen. They have can penetrate matter, depending
on the wavelength spectrum. Many interactions exist between X-ray photons and
matter, including photoelectric absorption. This absorption depends on the X-ray’s
characteristics and the atomic number of the matter. X-rays are thus a type of radiation
that is able to be transmitted through matter, and is sensitive to the atomic number of
the material that it is radiating through. For geomaterials, this absorption depends on
the mass density and the mineralogy.

An X-ray radiograph is a two-dimensional measurement of the amount of X-ray pho-
tons arriving at each point onto a detector during a given exposure time, which is an
integration of the X-ray attenuation of the matter being traversed along the path of the
X-rays.

X-ray computed tomography is a method of reconstructing a 3D field of an X-ray at-
tenuation coefficient inside an object, starting from a series of different projections
(radiographs) of the object. The different projections are generally acquired by a rel-
ative rotation of the object and an image acquisition system. The source and detector
rotate in medical applications; in industrial/laboratory applications such as this one,
the specimen is usually rotated – with a vertical axis of rotation – by a rotation stage.
Note that this technique is fully detailed in a number of textbooks on tomography,
such as [Hsi09].

The kind of X-ray source distinguishes medical/industrial/laboratory tomographs from
synchrotron facilities. The firsts are X-ray vacuum tubes that emit a cone-beam in the
direction of the object and detector. Synchrotron light sources are large particle accel-
erator facilities. The main differences with respect to the previous small sources, for
our applications, are the considerably higher brightness (photon flux) and capability
for quasi-parallel beams (which can be advantageous in term of imaging), which allow
fast scanning, (quasi)monochromatic X-ray light, phase contrast reconstruction, etc.
The cone-beam of a laboratory tomograph is also interesting because the field of view
changes, depending on the relative position of the object with respect to the detector
and the source and the specimen can be enlarged on the detector due to geometric
magnification. See [KC01] for an introduction to X-ray CT for geomaterials. The
experimental results on geomaterials that will be described in the next section come
from the X-ray scanner in Laboratoire 3SR (Grenoble). A detailled description of the
scanner can be found in [And15].
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2.3 Experimental devices for in situ full field measurements

2.3.1 A plane strain apparatus for soils

Desrues and coworkers originally developed a plane strain compression apparatus
adapted for full-field measurement using one classical camera. The design of this
device (the biaxial apparatus, hereafter) shares its underlying concept with those de-
veloped by [VG81] and [DVH90], in that the biaxial apparatus was specifically con-
ceived to allow free shear band formation in a soil specimen.

Within this device, a 35 mm thick prismatic sand specimen, surrounded by a latex
membrane, is mounted between two rigid walls that induce plane strain conditions
(see Fig. 3). The initial nominal height and width of the specimen (in the plane of
deformation) can vary in the range of 75–350 mm and 90–175 mm, respectively. The
side walls are 50 mm thick glass plates which allow photographs to be taken of a spec-
imen’s in-plane deformation during the test. All surfaces in contact with the specimen
are enlarged and lubricated with silicone grease to minimize friction. The lower and
upper loading platens house porous stones connected to drainage lines. The top platen
is free to rotate and slide horizontally in the plane of deformation, although it can be
locked. This allows free lateral displacement of the upper part of the specimen once
a shear band forms due to deviatoric loading. A large cell, filled with silicone oil,
surrounds the specimen. The cell can sustain up to 2 MPa; and has two opposite pairs
of large Plexiglas windows on its lateral surface. Strain-controlled axial loading is
applied through a screw jack that rests atop the device.

The jacket around the specimen can be observed through the glass plate. The jacket
follows the deformation of the specimen. Because the full-field measurement used
was FRS, a grid was drawn on the jacket; however, a random speckle pattern for DIC
analysis can be deposited as well.

2.3.2 A true triaxial cell for rocks

A true triaxial apparatus was developed at Laboratoire 3SR in Grenoble (France), with
the aim of characterizing the onset of localization and the post-localization regime in
rocks (see [BL16] for more details). The device can apply three independent stresses
along the three space directions of a prismatic rock specimen, and allows its visual-
ization under loading. A simplified schematic of the apparatus is shown in Fig. 4.
The specimen’s surfaces, perpendicular to the principal stress (direction 1) and inter-
mediate compressive stress (direction 2), are in contact with rigid platens, which are
moved by two perpendicular pistons, as in some triaxial setups developed previously
([Mog71], [HC00]). The two surfaces of the specimen, perpendicular to the minor
stress (direction 3), are free to deform because the stress is applied by a confining
fluid (by means of a soft silicon membrane). Since deformation bands and cracks are
generally parallel to the intermediate stress (at least for an isotropic material, or an
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Figure 3: Schematic diagram of the plane strain apparatus for soils (from [DV04]).

anisotropic material with specific orientation of the symmetry directions), the speci-
men is free to deform and fail with no kinematic constraints imposed on the formation
of the failure zone. Moreover, one of the two surfaces perpendicular to the inter-
mediate stress (direction 2) is in contact with a hard window, in order to observe the
specimen under loading. The two pistons can be controlled according to either a stress
or displacement mode. The intermediate stress can be regulated to ensure that there
is no deformation along this direction, thus allowing the application of plane strain
loading, which implies that the kinematic of the surface in contact with the window
is representative of the kinematic of the whole specimen, up to strain localization and
beyond that level of stress. The surface of the specimen opposed to the horizontal
piston is in contact with a thick, transparent, sapphire window (7), whose surfaces are
optically polished. This surface of the specimen can be observed and photographed.
For contact symmetry, the surface on the side of the horizontal piston is in contact with
a thin sapphire platen, in order to ensure the same boundary conditions. The minor
stress in direction 3 is applied to the two lateral surfaces of the specimen by a confin-
ing fluid. The specimen remains hydraulically isolated from this fluid by means of a
silicone membrane (Fig. 5a). The membrane contains the specimen and wraps around
the four loading caps (two caps along direction 1 and two along direction 2). This
arrangement ensures that there is direct contact between the specimen and loading
platens, particularly the sapphire window. It is worth noting that along the axial di-
rection (direction 1), a special arrangement of platens with a wedge shape (8), placed
between the specimen and the top and bottom loading caps, ensures that the loading
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caps have the same thickness of the specimen along the intermediate stress (direction
2) (see Fig. 5b), and larger than the specimen along direction 3. If a compression
or extension of the specimen occurs along direction 2, the set of wedges automati-
cally adapt to this variation, thus avoiding an extrusion of the membrane during the
deformation of the specimen. In both the axial and horizontal directions, a loading
cap (Fig. 4, elements 9-10) is in contact with a piston by means of a spherical head,
which allows the compensation, during the setup, of small parallelism offsets of the
two opposite surfaces of the prismatic specimen. However, due to friction between the
surfaces of the spherical head, once the contact is firmly established, they do not move
anymore, and as such, this component does not show a degree of freedom (rotation)
during the loading.

Figure 4: Schematic diagram of the plane strain apparatus for rocks (from [BL16]).

The surface of the specimen receives light through the sapphire window from a set of
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20 LEDs, focused onto the sample surface using 20 optical fibers, which pass through
orifices (11) made on the frame. These provide even and homogenous illumination
for the taking of photographs, since the light power of each LED can be separately
adjusted. Photographs of the visible surface of the specimen were taken throughout
the loading with a high resolution camera. DIC analysis can thus be carried out on
the resulting images to compute the displacement and strain fields. It is worth not-
ing that to apply DIC, the observed specimen must have a random pattern, which is
here artificial. The four surfaces of the specimen, which are in contact with the three
rigid loading caps and the window, are lubricated. A thin layer of this lubricant is
sufficiently transparent to allow good visualization of the pattern through the window.

The size of the specimen is 50 mm in the axial direction, 30 mm in the direction of in-
termediate stress and 25 or 50 mm in the direction of minor stress, which corresponds
to slenderness ratios (the ratio between the height and width) of two and one, respec-
tively. The loading cell can apply a maximum confining pressure of 100 MPa, while
the axial and the horizontal pistons can apply forces of 500 and 700 kN, respectively.
These values correspond to a differential stress, with respect to the confining pressures
of 670 and 530 MPa, respectively, for a specimen with a slenderness ratio of two, and
half of these values for a 50 mm width specimen.

Figure 5: (a) Photograph of the silicon membrane that separates the specimen from
the confining fluid and (b) scheme of the adaptable wedges at the top and bottom of
the specimen. (from [BL16]).

2.3.3 An X-ray transparent triaxial cell

The system allows microtomography to be performed on a specimen under load (in
situ), using a specifically built load frame that can be placed in the X-ray beam, either
from a laboratory scanner or synchrotron microtomography beamline ([LBD+07]).
Figures 6 and 7 show the experimental setup used at ESRF. The apparatus includes a
small triaxial cell and a loading device designed specifically for microtomography on
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small soil or rock specimens under load ([Len06]). The triaxial apparatus is practically
the same as a conventional triaxial testing system, except for its much smaller size and
the shape of its confining cell, which was designed to be as transparent as possible
to the X-rays. A 10 mm thick confining cell made of polycarbonate was used, that
is both transparent to the X-rays and capable of sustaining the 10 MPa confinement
pressure and the tensile reaction force. The axial load and hence the deviator stress are
applied in a displacement controlled manner using a motor-driven screw actuator. The
loading system, which can be placed in the X-ray beamline without interfering with
the tomographic scans, is quite compact and light, which is important because it sits
directly on the translation and rotation stage during the experiment. The system has
a maximum loading capacity of 7.5 kN. The same device can be used in a laboratory
scan ([And15]).

Figure 6: Schematic of the X-ray microtomography set-up for triaxial testing. (from
[LBD+07]).

Higher capacity in terms of confining pressure and axial loading are needed to exper-
iment on stiffer rocks. It can be necessary to work with stiffer (and with low X-ray
absorbance) cell materials such as PEEK, aluminum, beryllium and carbon fiber (e.g.,
[TO04]).
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Figure 7: Tomography set-up for triaxial testing at the beamline ID15A at ESRF.
Complete set-up on the beamline (left) and zoom on the rock specimen inside the
triaxial cell (right). (from [LBD+07]).

3 Selected Materials

Hostun sand

Hostun sand is produced in a quarry close to the commune of Hostun in the depart-
ment of Drôme, in the Rhône-Alpes region of France. It is approximately 60 km
from Grenoble. The material is excavated as clumps made of a range of different sil-
ica grain sizes and lightly cemented by kaolin. The silica particles making up these
clumps have been crushed in-situ from larger rocks, and consequently have not been
transported very far. Since the particles were generated by crushing and have not been
transported very far they are very angular. After quarrying, the clumps are washed to
remove the kaolin, and are then sorted by grain size. Depending on the year of extrac-
tion (and the version of sieves), the D50 of the Hostun sand called S28 and then HN31
is about 0.34 mm. A uniform gradation of the natural sand was used, with 100 %
of the material passing a 0:63 mm sieve and retained on a 0:16 mm sieve. The con-
ventional minimum and maximum volumetric weights are 13.24 and 15.99 kN/m3,
respectively, and the specific gravity Gs is 2.65 (see [FDP90], [DV04] and [And15]
for more details).
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Caicos ooids sand

Caicos ooids are made of CaCO3 and more than 96 % of the material is Aragonite, the
rest being calcite and “high-magnesium calcite.” The D50 of this material is around
0.42 mm. This sand comes from the Caicos platform in the British West Indies. Ooids
grow from small seeds such as shell fragments, small quartz or calcite grains, and pro-
gressively become larger. They grow in marine environments, where the waves drive
the accretion of material around the seed. Two principal mechanisms exist for an ooid
to grow: by physical attachment of material as the ooid rolls (like a snowball), or by
precipitation over the surface of the ooid. Both of these mechanisms tend to generate
rounded grains – from whence the name comes – although the images acquired show
some grains that are prolate spheroids (see [And15] for more details).

Vosges sandstone

The tested rock is a natural sandstone coming from the Woustviller quarry in the Vos-
ges mountains, Eastern France ([BDR00]). It is a pink quartz sandstone (quartz =
93 %), a few percent of which is feldspar and white mica. The sandstone is poorly
cemented, its cohesion is due to the interpenetration between the grains. Its porosity
is about 22 %. The dimension of the grains fluctuate between 0.15 and 0.45 mm with
a mean value of about 0.30 mm. Its uniaxial compression strength is about 35 MPa.

Callovo-Oxfordian clayey rock

The material tested is Callovo-Oxfordian argillite, which has been considered as a
potential host rock for radioactive waste disposal facilities, from the ANDRA Un-
derground Research Laboratory (URL) located in Bure (Meuse/Haute-Marne, Eastern
France) at approximately 500 m below the ground surface. It is a sedimentary rock
composed of phyllosilicates (20-60 %, mainly illite and interstratied illite-smectite,
kaolinite, mica and chlorite), tectosilicates (10–40 %, mainly quartz and feldspars),
carbonates (15–80 %, mainly calcite and dolomite) and pyrite (0–3 %) ([RSC+12]).
Clay particles are clustered into aggregates, which are globally oriented along the
stratication, whereas the other mineral inclusions have no preferential orientation. The
structure presents a microscopic scale described by a microcrystalline and porous clay
matrix and a mesoscopic scale related to the organization of the nonporous carbonate
and tectosilicate grains (with grain size in the range of 1 to 50 m) which are embedded
into the clay matrix. Centimetric or multi-centimetric pipe shapes filled by heavy min-
erals (pyrite) are the markers of bioturbation ([DRM07]). At the investigated depth,
the material has an extremely low permeability (10−20–10−22 m2), a porosity of 15 %
and a water content of about 6 %. Its uniaxial compressive strength is about 20 MPa.
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4 Strain localization in sands

The progressive strain localization in sands is analyzed below. First, some results
based on false relief stereophotogrammetry (FRS) of plane strain compression tests
on Hostun sand are presented from the work of Desrues and co-workers ([DV04],
[Des04]). In this application of FRS, the photographed image is the side of a sand
specimen deforming under load, and the source of the differences between the suc-
cessive images is the deformation process undergone by the specimen. FRS is now
obsolete because of the relative low space resolution of the displacement field (with
respect to DIC); however, experimental studies are still important. Then, a work that
combines X-ray CT and DIC is presented. The analysis was in 3D, with a high space
resolution and was extended for grain-scale analysis ([And15], [AHV+12]). A former
work, based on in situ X-ray CT during triaxial tests is also presented to discuss the
volume strain inside shear bands ([DCMM96]).

4.1 Plane strain compression by FRS

Three tests from [DV04] were selected to discuss the emergence of strain localiza-
tion in Hostun sand. Tests were performed in the plane strain apparatus described in
part 2.3.1, with a lateral pressure of 80-90 kPa and a slenderness ratio (H/W) of 2-2.2,
and the two loading platens in contact with the specimen were locked (no translation,
no rotation), excepted in test shf06 for which rotation was allowed. The initial densi-
ties of the specimens corresponded to a dense state for shf06, a loose state for shf03,
and an intermediate state for shf00.

Figure 8 shows the corresponding stress strain response obtained for each selected
test, in terms of the effective stress ratio t/s′ vs. the global axial strain. Figures 9-11
show the stereophotogrammetry-based shear strain intensity (εs = (ε1 − ε3)/2) and
volumetric strain (εs = (ε1 + ε3)/2) for each photographic increment. The size of
the symbols is proportional to the value of the relevant quantity (note that the symbol
scale is different for each increment). As far as volumetric strain is concerned, square
symbols are for dilatancy and hexagons are for contractancy. The photograph numbers
are noted on the relevant curve of the effective stress ratio t/s′ vs the global axial
strain, see Figure 8.

The evolution of the shear strain field of test shf00 (Figure 9) showed that the shear
band pattern was partially in place at (or even just before) the stress peak (increment 4-
5), as compared to the post-peak pattern (increment 5-6) which showed a shear band
reflected on the top platen. The shear band was not yet reflected in increment 4-5.
Two other bands were visible but less active; one was conjugated to the main shear
band, and the second one was sub-parallel and initiated more or less from the top-
left specimen corner. These two bands were de-activated in the next increment. The
strain field was not homogeneous in the previous increments 3-4 and 1-2; however,
the spatial resolution of FRS does not unambiguously show wether the deformation is
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Figure 8: Stress strain responses from various tests; the numbers noted on each curve
are the photographs numbers. (from [DV04]).

localized or not. Non-homogeneity can be a consequence of an initial heterogeneity
in the specimen (void ratio heterogeneity) or early strain localization (or both). Volu-
metric strains were localized in the same band as the shear strains (increments 4-5 and
5-6) and are mostly dilative inside the shear band.

In test shf03 (Figure 10), the incremental shear strain fields (top row) indicated that a
localized region first formed during increment 2–3 (before stress peak), showing two
(or even three) parallel bands. Then, the pattern switched in the subsequent increment
3–4 (at the peak), resulting in a conjugate deformation pattern. A shear band could be
observed in the last available photographic increment (4–5), which corresponded to
the main band in increment 2–3 that was re-activated. In the first increment (1-2), the
deformation was slighly non-homogeneous; however, the spatial resolution of FRS
does not allow the deformation regime to state on. The final deformation pattern was
characterized by volumetric strains that were localized in the same band as the shear
strains. Both contractive and dilative incremental behaviors were exhibited inside the
band.

In test shf06 (Figure 11), the shear strain fields (top row) indicated that two parallel
zones of strain localization formed in the middle portion of the specimen in incre-
ment 3–4 (shortly prior to the stress peak). Note that the shear strains were always
larger in the left shear band, which was the only one maintained throughout the test
and finally intersected the entire specimen, whereas the other shear band eventually
disappeared. A non-homogeneous deformation already existed during increment 2–3
if not, to a lesser extent, from the beginning of the test (increment 1–2). This hetero-
geneous shear strain field, could not clearly be qualified as localized (due to the FRS
space resolution); however, it evoked a crossed shear bands pattern. The conjugated
”bands” seemed very large; however that these large bands were an apparent combi-
nation of thinner parallel bands cannot be ignored. The authors of the paper called
the apparent transformation of the deformation pattern a phenomenon of the progres-
sive ”condensation” of a centrally located heterogeneity of the deformation. However,
from our experience and observations on thinner cohesive materials (presented later),
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Figure 9: Test shf00: stereophotogrammetry-based incremental fields of shear strain
intensity (top row) and volumetric strain (bottom row). (from [DV04]).
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Figure 10: Test shf03: stereophotogrammetry-based incremental fields of shear strain
intensity (top row) and volumetric strain (bottom row). (from [DV04]).
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this apparent condensation could be interpreted as a phenomenon involving the selec-
tion of numerous bands in which some of them stay active and the others bands are
de-activated. Volumetric strain fields (bottom row) essentially confirm such a picture.
Note that the soil is always dilating in the localized regions.

Figure 11: Test shf06: stereophotogrammetry-based incremental fields of shear strain
intensity (top row) and volumetric strain (bottom row). (from [DV04]).

The understanding of the strain localization process in sands given by these results is
limited by the space resolution of the FRS. However, it can be concluded that the strain
localization is not a sudden appearance of shear bands in an initially homogeneous
strain field. The evolution is quite progressive and heterogeneity starts well before the
stress peak, probably by early strain localization. We can now consider more recent
results obtained with more effective full-field methods.

4.2 Triaxial compression by X-ray CT and DIC

Here, we analyzed the COEA01 test on the Caicos ooid sand ([And15], [AHV+12],
[AHD+12]). This triaxial compression test was performed with a confining pressure
of 100 kPa on a small dense specimen (10 mm diameter and 20 mm height). The test
was performed in situ in the X-ray CT apparatus of Laboratoire 3SR (Grenoble) with a
voxel size of 15 µm, using a transparent triaxial cell (see part 2.3.3). The axial loading
was applied from the bottom of the specimen. The kinematic field was measured using
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both continuous volumetric DIC (described in part 2.1) and a grain-tracking algorithm
(based on grain identification and not on image correlation, see [And15]).

Figure 12: Test COEA01: Slices of the X-ray CT scan of specimen COEA01 in its
initial configuration. These slices are taken are 90o from each other. (from [And15]).

Figure 12 shows two vertical slices taken from the 3D image of the specimen before
the axial loading. Figure 13 shows the stress-strain response and global volume curve
measured for this test. There was a stress peak followed by a strain softening. There
was a small contraction at the beginning of the axial loading; thereafter, the specimen
dilated.

Figure 13: Test COEA01: Stress strain response; the numbers noted on curve are the
X-ray CT scan numbers. (from [And15]).

The kinematic field was measured at the grain scale using a grain-tracking algorithm.
The displacement vector and the Euler rotation angles were determined for each grain
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(Figure 14). The grain displacement was higher at the bottom than at the top, due to
the loading conditions. The displacement field showed an evolution from a diffuse
deformation regime to a localized regime, clearly exhibiting an inclined shear band.
The grain rotation field was more instructive. The rotation field was quite homoge-
neous at the beginning (increments 01-02 and 02-03), but was localized with a shear
band at the end (from increment 09-10). The deformation pattern was more complex
just before and after the stress peak (increments 05-06 and 06-07, respectively). Sev-
eral bands could be identified; while some were parallel to the final main band, others
were conjugated with respect to this final band. This pattern could also be identified
in increment 04-05.

The equivalent continuum strain field was determined by two methods: i) using the
grain displacement measured by the grain tracking and ii) by a continuous volumet-
ric DIC (Figure 15). Note that the comparison and consistency of the two measures
exclude the assumption of artifacts of the measure. The above observations of the
rotation fields were confirmed. The transition from an initially homogeneous strain
field (increment (01-02) and a localized regime with one active shear band at the end
(from increment 09-10) was complex. The intermediate deformation pattern showed
several shear bands that were parallel and conjugated, before and just after the stress
peak. The number of active bands decreased during the subsequent loading step and
was progressively reduced to a low number of shear bands –generally one band (for a
small specimen size).

The same full-field analysis was extended to Ottawa sand (D50 = 0.25 mm) and Hos-
tun sand (D50 = 0.34 mm) ([And15]). A comparison of the tests on the three sands
is presented in Figure 16, which shows the deviatoric strain calculated in five key
increments for these three tests:

• A: The first increment, close to the maximum slope of increase of porosity;

• B and C: Two increments at the maximum slope of local porosity increased, one
at the beginning and one at the end;

• D: One increment when the gradient of porosity reduction started to change;
and

• E: The last increment at the beginning of the plateau when the local porosity
increased.

This figure shows that the beginning of the local change in porosity had a clear mean-
ing: some very slight, diffuse features of localized strains could be seen for all speci-
mens in increment A ([And15]). Increments B and C for every specimen lie on either
side of the peak. For COEA01, some considerable conjugate structures are visible in
states B and C, that were visible in specimen HNEA01 at state B. These were less
visible in specimen OUEA06. In increment C, HNEA01 showed two parallel main
bands. What was noticeable in all specimens for increments B and C was that the dif-
fuse zone of localization visible in increment A was concentrated in space. There was
a progressive process of shear band de-activation –a kind of selection in which very
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Figure 14: Test COEA01: (top) slice of the grain displacement field during the test
(numbers corresponds the the scan numbers). (bottom) slice of the grain rotation.
(from [And15]).
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Figure 15: Test COEA01: (top) slice of the strain field during the test, measured from
the grain displacement field by grain tracking algorithm (numbers corresponds the the
scan numbers). (bottom) slice of the strain field, measured by a continous volumetric
DIC. (from [And15]).
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few bands stay to be active at the end. In increment D, the shear band was in a much
more recognizable form compared to each specimen’s residual state. By increment D,
all of the specimens had started the “second phase” of localized strain in which the
strain was concentrated in a very limited area. By increment E, the shear band was
very close to fully mature: the second phase of strain concentration crossed all of the
specimens, and the increments all corresponded to increments just at the end of strain
softening.

To conclude, the results confirm that strain localization is not an abrupt process. Quite
the contrary, there is a progressive evolution from a quite homogeneous deformation
toward a relatively diffuse shear band pattern before the stress peak, and the number
of active bands progressively decreases to converge to very few shear bands.

However, the observation of a pattern with several bands does not mean that all
bands work at the same time. They can be active successively. This is suggested
by [LBAS+14], which used spatially resolved diffusing wave spectroscopy to mea-
sure a strain quantity field on very short loading increments. The authors worked on a
glass bead specimen with a plane strain compression apparatus. They showed the in-
termittency of the early bands, although the behavior of glass beads sometimes differs
from that of natural sand.

4.3 Triaxial compression by X-ray CT, the critical void ratio

We report here some observations obtained by X-ray CT on the volume strain inside
shear bands ([DCMM96]). The study used a medical tomography apparatus that had
poor spatial resolution with respect to the actual standard: the voxel size was 0.7 x
0.7 x 4 mm3. However, the results were interesting concerning the evolution of the
void ratio in shear bands. The results introduced the notion of a critical void ratio in-
side shear bands. Several tests were performed on Hostun sand at the same confining
pressure (60 kPa). Several initial specimen void ratio were obtained by sand pluvi-
ation, with different pluviation heights depending on the expected void ratio. The
specimen size had a diameter and height of 100 mm. The local void ratio was deter-
mined from X-ray scanning, using a linear relation between the void ratio and X-ray
absorption (grey-level in 3D pictures). The authors measured the void ratio before
strain localization and then both inside and outside the shear bands after strain local-
ization. They observed that, independently of the initial specimen void ratio (either
loose or dense specimens), the void ratio inside the bands tended to move toward a
unique value during the specimen loading (Figure 17). For dense specimens, the ma-
terial dilated in the band, while for loose specimens, the porosity decreased lightly in
the band.
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Figure 16: Comparison of the strain field during tests on three sands: (top) test
COEA01 on Caicos ooids sand, (middle) test OUEA06 on Ottawa sand and (bottom)
test HNEA01 on Hostun sand. (from [And15]).
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To conclude, once the strain is localized in a specimen, the volume strain in the speci-
men is itself localized. The dilation (or compaction) of the specimen is mainly concen-
trated in the deformation bands. Here, both the space resolution and porosity change
detection are too poor to clearly understand the transition from a homogeneous to a lo-
calized regime, compared to the previous part 4.2. However, we have to keep in mind
that the first observations of the diffuse shear band patterns in the previous part were
associated with the specimen dilation, suggesting that this dilation originates from the
early strain localization.

Figure 17: Comparison of triaxial tests on loose and dense Hostun sand specimens:
void ratio evolution inside and outside shear bands. (from [DCMM96]).

5 Strain localization in porous rocks

We consider here the emergence of strain localization in some porous rocks. Many
studies exist that characterized strain localization using post-mortem analysis (see
[PW05] for a review), which are out of the scope of this chapter. Two experimen-
tal studies are considered here on two different rocks: Vosges sandstone and a clayey
rock. Tests were performed on the true triaxial cell described in part 2.3.2, using 2D
full-field measurement.

5.1 Strain localization in Vosges sandstone

The mechanical behavior and failure by strain localization in Woustviller red Vosges
sandstone was extensively studied through axisymetric compression and extension
tests in [BDR00], [B9́9]. The recent work of [Lan14] –from which selected results

114 The emergence of strain localization in geomaterials

ALERT Doctoral School 2016



are presented here –has extended the analysis to plane strain compression tests. Minor
stress was applied by a fluid and was constant, the axial loading was controlled in dis-
placement and the loading was controlled in the third direction (intermediate principal
stress direction) to satisfy zero displacement.

Two tests were selected: test BxR GVR 06 was performed at a lateral stress of 20 MPa
and test BxR GVR 11 at 50 MPa. From [BDR00], we know that the behavior of the
rock at the lowest mean stress is quite brittle, the mean stress dependency on the
deviatoric stress peak envelope is positive (cohesive-frictional behavior) and the shear
bands are dilative. At the highest mean stress, the behavior was more ductile, the mean
stress dependency on the deviatoric stress peak envelope was negative (cap surface),
the shear bands were compactive and the inclination of the bands with respect to the
axial loading direction was also higher than for a lower mean stress ([B0́1a], [B0́1b]).

Figure 18: Test BxR GVR 06: (top) differential stress (σ1 − σ3) vs axial strain and
(bottom) volume strain vs axial strain ; the numbers noted on each curve are the se-
lected photographs numbers. (from [Lan14]).

Figure 18 shows the stress-strain response and global volumic curve measured for the
test BxR GVR 06. There was first a quasi linear part of the stress vs. strain curve,
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followed by an incurvation up to a stress peak and a progressive and then sudden
strain softening. The loss of control during the softening was due to the relative low
cell stiffness compared to the specimen’s stiffness. The loop of the curve after the
fast softening was due to a delay in the axial piston pressure control. The stress level
stabilized at the end of the test. The global volume strain compacted at the beginning
and then dilated. The maximum compaction corresponds more or less to the loss of
linearity of the upper curve. At the end of the test, the volume strain rate vanished.

Some photographs were selected during the test (Figure 18): the incremental strain
fields between these images are presented in Figure 19. The strain field was quite ho-
mogeneous during the linear part of the stress vs. strain curve (increment 8533-8549).
The small fluctuations in both shear and volume strains correspond to the noise of the
DIC measure. Once the stress vs. stain curve significantly left its quasi-linear regime,
which corresponded to a significant reduction of the specimen volume compaction
(increment 8593-8608), the shear strain field was no longer homogeneous. We dis-
tinguished a dense, diffuse strain localization band pattern: these bands were parallel
and conjugated. This pattern was more visible in the next increment, 8608-8624. A
similar pattern was visible in the volume strain field, showing dilatancy in the bands.
This step corresponded to dilatancy in the global volume. Before the stress peak (in-
crement 8624-8655), the complex pattern was less dense and some shear bands still
existed (plastic strain) but were de-activated. The active shear bands continued to di-
late. After the peak (increment 8655-8675), the number of active bands significantly
decreased and the shear and volume dilatancy became increasingly concentrated in
a decreasing number of bands. During the abrupt softening (the position of photo-
graph 8676 on Figure 18 is not well defined due to a fast failure), one main shear
band started to propagate from the bottom left corner and dominated the other bands.
After the softening, the band was fully propagated through the specimen and was still
dilating. The dilantancy decreased later (not shown). The inclination of the early
bands before the stress peak, with respect to the axial loading direction, was about
45o, which decreased to around 30o at the end of the test.

Figure 20 shows the stress-strain response and global volume curve measured for the
test BxR GVR 11. The curve is similar to that of test BxR GVR 06, but less brittle.
There is first a quasi linear part in the stress vs. strain curve, followed by an curve up
to a stress peak and a progressive and then a plateau on the curve. The global volume
strain compacted from the beginning to the end. This kind of response was already
described in [BDR00]. At the end of the test, the volume strain rate almost vanished.

Some photographs were selected during the test (Figure 20) and the incremental strain
fields between these images are presented in Figure 21. The strain field was quite
homogeneous during the linear part of the stress vs. strain curve (increment 3138-
3158). The small apparent strain concentration on the right side of the specimen was
probably an artifact due to the optical effect of the thin lubricant layer deposited on the
specimen’s surface. Once the stress vs. strain curve significantly left its quasilinear
regime (increment 3196-3213), the shear strain field was no longer homogeneous.
We distinguished a dense, diffuse strain localization band pattern: these bands were
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Figure 19: Test BxR GVR 06: (the two first lines) incremental second strain tensor
invariant (shear strain) fields; the numbers at the top of pictures correspond to the pho-
tographs numbers. (the two last lines) incremental first strain tensor invariant (volume
strain) fields. (from [Lan14]).
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Figure 20: Test BxR GVR 11: (top) differential stress (σ1 − σ3) vs axial strain and
(bottom) volume strain vs axial strain ; the numbers noted on each curve are the se-
lected photographs numbers. (from [Lan14]).
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parallel and conjugated. This pattern was more visible in the next increment, 3213-
3230. A similar pattern was visible on the volume strain field, showing compaction
in the bands. Before the stress peak (increment 3230-3242), the complex pattern was
less dense and some shear bands still existed (plastic strain) but were de-activated. The
active shear bands continued to be compactant. After the peak (increment 3242-3259),
two main conjugated bands were still active and were around several short bands. The
main bands were not very straight and they seemed to result from the coalescence of
many smaller bands. In the following strain softening, only one band persisted, which
crossed the top-left specimen corner. It also seems to result from the coalescence
of many smaller bands. In the residual step (on the stress plateau), a second main
band appeared, parallel to the previous one. Additionally, several conjugated small
bands existed in the relay area between the main band. The bands persisted in the
next increments (not shown). The volume strain was compactant in the bands. The
inclination of the early bands before the stress peak, with respect to the axial loading
direction, was about 45o, which stayed around 45o at the end of the test. This was also
observed in [BDR00], based on post-mortem X-ray CT scans.

To conclude, these observations show the progressive nature of the strain localization
process in porous sandstone. The strain localization is dependent on mean stress. A
common observation between the two tests, one of which was performed at 20 MPa
lateral stress and the other at 50 MPa, was the early diffuse strain localization, well
before the stress peak. Once the stress vs. strain curve lost its linearity, a complex
pattern of parallel and conjugated bands appeared, oriented at about 45o with respect
to the axial direction. At 20 MPa, the bands dilated and induced a global volume
dilatancy, while they were compactant at 50 MPa and extended the global specimen
compacting regime. The number of active bands decreased during the subsequent
loading to a very small number after the peak. The inclination of the bands, after the
peak, stayed constant at 50 MPa, while it decreased significantly at lower mean stress.

5.2 Strain localization in a clayey rock

We selected two tests performed on Callovo-Oxfordian clayey rock. Tests BxR COx 06
and BxR COx 13 were performed at a lateral stress of 12 MPa, which corresponded
to the in situ stress of the material.

Figure 22 shows the stress-strain response and global volume curve measured for the
test BxR COx 06. There was small curvature at first, then a quasi linear part in the
stress vs. strain curve, followed by an curvature up to a stress peak and a progressive
and then sudden strain softening. The loss of control during the softening was due to
the relative low cell stiffness compared to the specimen’s stiffness. The loop of the
curve after the fast softening was due to a delay in the axial piston pressure control.
The stress level stabilized at the end of the test (plateau). The global volume strain
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Figure 21: Test BxR GVR 11: (the two first lines) incremental second strain tensor
invariant (shear strain) fields; the numbers at the top of pictures correspond to the pho-
tographs numbers. (the two last lines) incremental first strain tensor invariant (volume
strain) fields. (from [Lan14]).
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Figure 22: Test BxR COx 06: (top) differential stress (σ1 − σ3) vs axial strain and
(bottom) volume strain vs axial strain ; the numbers noted on each curve are the se-
lected photographs numbers. (from [B1́2]).
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compacted at the beginning and the compaction was progressively reduced up to a
maximum, after which the specimen dilated slightly and, then the volume strain rate
vanished. The maximum compaction corresponded to the stress peak of the upper
curve.

Some photographs were selected during the test (Figure 22) and the incremental strain
fields between these images are presented in Figure 23. The strain field is quite ho-
mogeneous during the linear part of the stress vs. strain curve (increment 0025-0101).
The small fluctuations in both shear and volume strains corresponded to the noise of
the DIC measure. However, at the lower third of the specimen there was a shear stress
concentration on the left side. This area corresponded to a large calcite inclusion very
close the observed surface of the specimen, which was observed by X-ray CT after the
test. The contrast in stiffness between the large inclusion and the rock matrix induced
this strain concentration. Once the stress vs. strain curve showed a small curvature
(increment 0146-0236), the appearance of shear strain field changed. It was not noisy
like the previous increment but instead seemed structured. A very dense pattern of
parallel and conjugated shear bands seemed to emerge. This pattern was confirmed in
the next increments 0169-0272, 0272-0312 and 0312-0344. During these increments,
one first observes that the initial strain concentration detected in the first increment
propagated progressively as a shear band. Moreover, during the pre-peak steps, the
number of active bands of the pattern decreased progressively. Only three bands were
still active at the stress peak (increment 0344-0354), two of them propagated from
the top-right and bottom-left corners. These two bands continued to propagate dur-
ing the strain softening (increment 0371-0378). The term fault propagation should be
more appropriate here; indeed, the strong strain intensity suggests a material discon-
tinuity. Only one fault was active on the stress plateau: the fault initiated from the
top-right corner. The propagation of this fault during the previous increment (0371-
0378) showed that the process zone in front of the fault was itself composed of several
parallel and conjugated shear bands.

As far as the volume strain fields are concerned, some horizontal ”bands” were ob-
served, that corresponded to a well-known artifact of the DIC method, generally due
to the subpixel step. They had no physical meaning. The first volume strain localiza-
tion was observed at increment 0371-0378, where the fault dilated (propagation in a
mixed mode I and II). This corresponded to the global dilatancy of the specimen. The
volume strain in the last increment showed some area of compaction and dilatancy
around the fault. This is probably evidence of roughness in the fault, where some
areas resist sliding more. The inclination of early bands before the stress peak, with
respect to the axial loading direction, was about 45o.

Figure 24 shows the stress-strain response and global volume curve measured for the
test BxR COx 13, performed in the same conditions as for BxR COx 06. It differed
a little from the previous test because of the strong initial curvature of the stress vs.
strain curve and its lower stress peak. This questions the low experimental repro-
ducibility on such materials, mainly due to their natural heterogeneity.

The incremental strain fields are presented in Figure 25. The quality of the digital
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Figure 23: Test BxR COx 06: (the two first lines) incremental second strain tensor
invariant (shear strain) fields; the numbers at the top of pictures correspond to the pho-
tographs numbers. (the two last lines) incremental first strain tensor invariant (volume
strain) fields. (from [B1́2]).
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Figure 24: Test BxR COx 13: (top) differential stress (σ1 − σ3) vs axial strain and
(bottom) volume strain vs axial strain ; the numbers noted on each curve are the se-
lected photographs numbers. (from [B1́2]).
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image is not as good as in the previous test. This can be due to the quality of the
synthetic speckle or the camera’s focus adjustment, which impacted the quality of the
DIC results and the ability to detect small details. The results were not as fine as those
for test BxR COx 06. However, the usual dense pattern of parallel and conjugated
shear bands was observed in increments 0931-0995 and 0995-1046. More interesting
was the evolution after the stress peak. A large band composed of several parallel
and conjugated bands was observed in increment 1046-1084. During the following
increment, the width of the large band decreased progressively to converge to one
band, which became a fault. The transition from strain localization to a fault here
resulted from a condensation, during which the external bands were progressively de-
activated, and the central band stayed active to evolve toward a fault.

Also the process of localization was progressive in a clayey rock and showed some
early shear bands in a complex pattern, well before the stress peak. The early bands
were very numerous, thin and close together. The thickness of the shear bands in a
material with such a fine microstructure could not be measured with the digital camera
used here. However, the band thickness was quite obvious directly linked with the
microstructure internal’s lengths. The volume strain inside the band showed a small
dilatancy for this clay rock and the mean stress level used here. The two tests showed
two examples of transition from shear bands to faults. One was by a fault propagation
in a strain-localized pattern, with evidence of strain localization in the process zone.
The other came from a phenomenon of condensation: a large band comprised several
thinner bands became condensed by a de-activation of external thin bands. The few
remaining bands became faults that coalesced to form a major fault.

6 Conclusions

Until now, the phenomenon of strain localization in geomaterials was understood as a
propagation of shear bands or the birth of an abrupt shear band from a diffuse strain
field associated with the stress peak of the specimen’s response. The strain softening
of the material in the bands induced a global softening of the specimen. Historically,
this aspect came from observations of the specimens after the tests, in which rela-
tively simple patterns of shear bands or faults were generally observed. This was also
enforced by the theoretical approach of shear band analysis using bifurcation theory.
This approach is generally quite consistent with experimental results at the stress peak.

The development of more efficient imaging tools and methods for full-field measure-
ment has allowed better quantification of the deformation with better space and time
resolutions and at a smaller scale. The recent results on a broad range of soil and
porous rock suggest that the transition from a diffuse regime to a localized regime is
more progressive than what is recalled above. A complex pattern of numerous par-
allel and conjugated shear bands appears well before the stress peak. These diffuse
shear-band patterns can generate volume strain, dilatancy or compaction, depending
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Figure 25: Test BxR COx 13: (the two first lines) incremental second strain tensor
invariant (shear strain) fields; the numbers at the top of pictures correspond to the pho-
tographs numbers. (the two last lines) incremental first strain tensor invariant (volume
strain) fields. (from [B1́2]).
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on the material and stress state. Some bands are progressively de-activated, and close
to the stress peak, only a few shear bands stay active which concentrates the deforma-
tion. They are generally prone to strain softening, inducing global strain softening. In
cohesive materials, these shear bands can evolve as faults or gouge zones of granular
materials.

The recent trend of developing in situ micro-experiments to quantify the micro mech-
anisms of deformation at the scale of the microstructure should improve our under-
standing of early strain localization. In parallel, early band prediction appears to be a
challenge for constitutive law development and numerical computation.
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[And15] E.C. Andò. Experimental investigation of microstructural changes in de-
forming granular media using x-ray tomography. PhD thesis, University
of Grenoble, France, https://tel.archives-ouvertes.fr/tel-01144326, 2015.
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[MV87] H.-B. Mühlhaus and I. Vardoulakis. The thickness of shear band in gran-
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ABSTRACT.  We present two higher order continua with microstructure that are 

used to regularize the ill-posed mathematical problem of strain-softening material to 

enable the modelling of progressive localization of deformation in zones of  intense 

shearing that leads to failure of geomaterials and underground structures. The first 

model is based on a Cosserat plasticity model which in addition to the translational 

degrees of freedom of the classical continuum possesses independent rotation as 

well. The independent rotation introduces in the model curvatures and coupled 

stresses. The second higher order continuum is of gradient type and is called 

Gradient Elastoplasticity in which higher order deformation strains and  internal 

length scales are present in both the elastic and the elastoplastic regime. The 

existence of the higher order strains requires numerical discretisation based on 

displacement formulation with a C1 finite element. In both models the introduction 

of internal length, related to grain size, improve the computational stability and 

allows for robust progressive localization modelling in the post failure regime. It is 

demonstrated through examples that the models are capable of predicting advanced 

deformation modes such as surface buckling and localization of deformation in 

shear bands that may cause failure in a structure. As illustration we present results 

of two applications from geotechnical and petroleum geomechanics: the modelling 

of failure in thick walled cylinders under external and internal pressure and the 

stability of elliptical shape perforations. The obtained results show clearly a 

progressive failure mechanism and the computed modes are in a good qualitative 

agreement with laboratory and field observations 
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1. Introduction 

Failure in soil and rock masses is often accompanied by the concentration of 

deformation into narrow bands of intense shearing such as shear bands or shear 

interface layers. These bands may intersect the boundary of a free surface leading to 

failure. Near a failure state, the material inside these localisation zones, which are 

shown by experiments to have a finite thickness [Muh87], undergoes significant 

deformation and degradation, while the rest of the material remains rather inert. 

 

During the last three decades numerous researches described localization 

phenomena in solids by utilizing the theory of equilibrium bifurcation. These studies 

were mainly analytical for the infinite-domain problem with various constitutive 

models and yielded mainly expressions for the critical hardening modulus and the 

localization band orientation angle at bifurcation; see for example in [Rud75]. 

Shear-band analyses for more complicated boundary-value problems and, more 

importantly, for post-localization analyses leading to failure can only be carried out 

computationally.  

 

In order to link the above analytical bifurcation studies with the post-failure analysis 

we will explain here the terminology used in numerical analyses of stability and 

bifurcation problems. According to Figure 1 we distinguish among the primary 

branch (I) and the secondary branch (II), which intersects (I) at the bifurcation point. 

The primary path (I) corresponds to the trivial or homogeneous deformation solution 

whereas the secondary path corresponds to the localized deformation solution. The 

analytical studies mentioned above were restricted in the primary path and to the 

location of the bifurcation point [Var88, Pap89, Pap95a, Pap95b]. The bifurcation 

point is a singular point; thus the global stiffness matrix has at least one zero 

eigenvalue. In order to model localization at bifurcation point and beyond one has to 

switch from the primary to the secondary path. The method of switching from 

branch (I) to branch (II) is to perturb the primary solution with the eigenvector of the 

vanishing eigenvalue at the bifurcation point. Alternatively, one can introduce a 

material or a geometry imperfection to resort to an 'imperfect' structure which will 

follow the smooth branch (III), and is asymptotic to branches (I) and (II) in the 

relevant regimes. The introduction of a small imperfection transfers the bifurcation 

problem to a limit problem of branch III. At the limit point the slope of the load-

displacement response is zero. We found that the Cosserat model and gradient 

models follow smoothly the branch (III) without the need to disturb the solution 

with the eigenvector of the zero eigenvalue [Pap92, Pap94]. The deformation pattern 

at the first equilibrium point after bifurcation is consistent with the eigenvector of 

the lowest eigenvalue. 

 

Modelling of failure in rocks near underground openings requires the incorporation 

of 'extreme' dilation and 'extreme' strength loss in the material constitutive law 

[Ewy93]. Local or material softening can be considered as a macroscopic reflection 

of inhomogeneities at the microscopic scale (i.e.micro-cracks, weak spots, fissures 

etc.). The simplest way to account for these inhomogeneities in a continuum is by 
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smearing them in a strain-softening constitutive model. The material softening is the 

physical mechanism which triggers and promotes localization. However, a major 

drawback of strain-softening models is that it leads to loss of ellipticity of the 

governing equations [Var95] resulting in mathematically ill-posed boundary value 

problems, whose numerical analysis is sensitive to mesh refinement and 

convergence problems. Since in classical constitutive models there is no material 

length, the discretization sets the length scale. The localization region which is 

associated with strain softening, depends on the size of the mesh used for spatial 

discretization; i.e. the thickness and spacing of the shear-band are governed by the 

mesh size. A constitutive theory without internal length leads often to a softening 

zone of negligible thickness and hence at zero energy dissipation. Consequently, 

numerical computations based on classical theories give spurious or mesh dependent 

results in the post-peak regime. 

 

 
 

Figure 1: Primary and secondary branches in a bifurcation problem. 

 
The governing equations can be regularised by resorting to higher order continuum 

theories. These theories take into account the micro-structure of the deforming solid 

through additional parameters of material length. These parameters are typically 

related either to the mean grain diameter or to some other, larger characteristic scale 

such as the microcrack length. The shear band thickness scales with this material 

length and is no longer indeterminate, allowing robust post-localisation numerical 

computations. In addition, the introduction of material lengths permits modelling of 

the scale effect that is often observed in geomechanics problems but cannot be 

modelled by classical theories. 

 

Different methods for regularizing quasi-static, boundary-value problems with strain 

softening were proposed in the literature. Higher order theories found in the 

III 

II 

I 
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literature include the Cosserat continuum theory [Cos09, Muh87, Pap92, Sul95], the 

Mindlin theory [Min64, Zer08a], non-local continua [Pij87], gradient plasticity, 

where higher-order derivatives of the plastic strain enter the yield function or certain 

constitutive quantities [Var91, Bor92, Aif92, Var92a, Var92b, Var94a, Var94b, 

Sul95, Cha98, Mat02], and gradient elastoplasticity [Zer01a, Zer01b, Zer07, 

Zer08b], where higher-order derivatives of the strain are used in both the elastic and 

the elastoplastic regime. The inclusion of gradient terms in both regimes ensures that 

the governing equations remain of the same order throughout the whole deformation 

history, avoiding the need for boundary conditions at the elastoplastic boundary. 

There is no a clear consensus which of the higher order continua is preferable, based 

on a better agreement of computational results with the experimental evidences. In 

order to decide among the various competing models one has to take into account 

the physics of the problem. For example if one considers stability of underground 

openings in sandstones in which there are evidences that initial localization is 

accommodated by grain rotations as sheared [Zer00] the Cosserat model appears to 

be appropriate. In applications characterized by strong deformation inhomogeneity 

the gradient models could be the choice.    

 

In this chapter we describe the implementation of two higher order continua in finite 

element analysis to solve the ill-posed mathematical problem and mesh dependence 

problem of strain softening and to model localization of deformation and failure in 

boundary value problems. The first model is based on a Cosserat plasticity 

continuum which possesses micro-structure [Muh96]. The second model is of a 

gradient type and it is called gradient elastoplasticity. In this chapter we present first 

the Cosserat model in section 2. We describe briefly the governing equations in 

section 2.1, the numerical implementation in section 2.2, the material parameters in 

section 2.3 and two applications of localization modelling near underground 

openings of cylindrical cavity in section 2.4 and elliptical cavity in section 2.5.  In 

the second part we present briefly the theory and the numerical formulation of 

gradient elastoplasticity, and use them to model the emergence of localisation of 

deformation in biaxial test specimens and in the cases of collapsing or expanding 

cylindrical cavities. The theory and numerical formulation are presented in Section 

3.1. Sections 3.2 and 3.4 present numerical results and discussion for biaxial loading 

and expanding cavities respectively. Through the presented examples it is shown 

that the theories and the numerical formulations enable the tracking of emergent 

instabilities, robust modelling of the post-peak material behaviour leading to 

localisation of deformation and capturing quantitative details of the final localised 

failure mechanism. The final conclusions are drawn in section 4. 
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2. Cosserat Modelling 

2.1 Governing equations  

We describe briefly in this section the essentials of the Cosserat model [Cos09]. A 

full description of Cosserat plasticity theory can be found in [Muh87] and [Var95]. 

A Cosserat continuum possesses at material points, in addition to their translational 

degrees of freedom ui, independent rotational degrees of freedom ωc as well (Figure 

2). The displacements are defined by the motion of the material points, while the 

rotations are given independently by the micro-rotations represented by the 

orthogonal tensor. Point rotation and its gradient give rise to a non-symmetric stress 

tensor and to couple stresses, such that the non-symmetric part of the stress tensor is 

in equilibrium with the divergence of the couple stresses (Figure 2). A dimensional 

analysis reveals that micro-rotation gradients and couple stresses introduce an 

internal length into the problem. Considering a two-dimensional analysis, the state 

of deformation is described by the four components of the relative deformation 

 

11 11 12 1 2

21 2 1 22 2 2

c

, ,

c

, ,

u u

u u

  

  
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  
                                           (1) 

 

and the two components of curvature given by the micro-rotation gradient  

 

1 ,1 2 ,2

c c                                                      (2) 

The above six kinematic quantities are conjugate in energy to six stress quantities. In 

the absence of body forces and body couple forces, force and moment equilibrium 

result in 

 

21 120 0ij , j k ,k, m in V                                              (3) 

                             
ij j i i in t , m n m on V                                                       (4) 

where ti and m prescribe tractions and couples on a part V of the boundary of V. 

The symmetry of the stress tensor follows from equation (3) in the special case when 

the couple stresses or their divergence vanishes. Αs in classical plasticity in a 

Cosserat plasticity theory, generalized incremental strains are decomposed into an 

elastic and a plastic part  
e p

ij ij ij                                                        (5) 

Elastic and plastic strains are defined here by generalizing the definition of elastic 

strain-energy potential, as well as the definitions for the yield surface and the plastic 

potential of the classical plasticity theory. The relationship between elastic strain and 

stress increment can be written as 
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Figure 2: (a) Displacement and rotation field, (b) stresses and couple stresses in a 

Cosserat continuum. 
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with κ=K/G=1/(1-2ν). G, K and ν are the elastic shear modulus, the compression 

modulus and Poisson ratio, respectively. R is the internal length which is defined 

through constitutive equations and hi will be given below. 

 

 As in the classical flow theory of plasticity, plastic strains are generated when the 

yield condition is satisfied. The Mohr–Coulomb yield criterion can be written as 

 

0

0F
p p


  


                                        (7) 

 

where the material parameters are the mobilized friction coefficient μ and the 

intercept p0 of the yield surface with the p-axis which is related to the material 
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cohesion, p0=c/tanφ. In equation (7) p and τ are invariant measures of average 

normal and shear contact tractions over the periphery of a macrocell of the ‘‘static’’ 

Cosserat model medium given in [Muh87]  

 

                 23 4
2

kk

ij ij ij ji i ip s s s s / m m / R


                                          (8) 

 

where sij is the deviatoric stress, sij= σij+pδij . In the above definitions the internal 

length R can be identified as an equivalent radius of a typical grain or assembly of 

grains.  

 

In this friction hardening/softening plasticity model we assumed that the friction 

coefficient μ is a function of a plastic hardening parameter, μ=μ(γ
p
) and the intercept 

p0 of the yield surface with the p-axis is a material constant. Hardening is taking 

place when μ is monotonously increasing and softening when μ is monotonously 

decreasing with increasing γ
p
. The hardening parameter is defined as the integral 

over the entire loading history of the increment of the generalized plastic shear 

strain, p pd   . 

 

The plastic shear-strain increment, dγ
p
, is defined so that it is energy conjugate to the 

generalized shear stress intensity τ in equation (8) 

 

                              
  23 2p p p p p p p

ij ij ij ji i id d / R d d                                 (9) 

where dε
p

ij is the deviator of the plastic relative deformation. When the couple 

stresses mi and curvatures dki
p 

vanish, the definitions
 
of τ and dγ

p
 in equations (8) 

and (9) coincide with those of the classical
 
plasticity. 

 

In analogy of the yield surface, we postulate a plastic potential to which the 

normality condition is applicable as 

                                                   
0

Q
p p


 


                                                    (10) 

 

where β=β(γ
p
) is the mobilized dilatancy coefficient. Plastic strain and plastic 

curvature increments are derived from the flow-rule 

 

p p

ij

ij

Q
d d 







                                              (11) 

For the case of μ=β the material obeys an associated flow rule and the incremental 

plastic strain vector in stress space is normal to the yield surface. In the most general 

case geomaterials obey a non-associated flow rule. The actual value of dγ
p
 is 

determined from Prager’s consistency condition, F=0 and dF=0.  
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2.2 Finite Element Formulation of Cosserat Model 

The numerical implementation of the Cosserat model can be easily constructed with 

simple extension of the algorithms used in classical elastoplasticity to include the 

additional terms as it is explained below [Bor91, Pap92]. 

 

For finite element analysis it is convenient to express the equilibrium conditions (3) 

and (4) in a matrix form through the principle of virtual work 
 

                                    
T T

V V

dV u t dS  


                                       (12) 

 

where the vectors for the generalized displacement {u}, strain{ε}, stress {σ} and 

tractions {t}  are defined by 
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                          (13) 

 

Τhe introduction of R in the form of equation (13) makes the components of 

generalized stress and strain vectors to have the same dimensions and closer order of 

magnitude. 
 

In Cosserat plasticity theory, the generalized incremental strains are decomposed 

into elastic and plastic parts as in classical plasticity 
 

                                           e pd d d                                                           (14) 

 

The relationship between elastic strain and stress increment is written in a single 

matrix equation 

                                              e ed D d                                                          (15) 

 

where the matrix [D
e
] contains the elastic parameters of a two dimensional, linear-

elastic, isotropic Cosserat continuum defined by 
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where G
C
  is the  elastic stiffness of the Cosserat medium with respect to relative 

rotations and M is the normalized bending stiffness. For the so-called static Cosserat 

model in [Muh87] proposed  
 

                                            
21

2

CG M
, R

G G
                                                (17)   

 

The plastic strain and plastic curvature increments are derived from the flow-rule 
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As mentioned before, the actual value of dγ
p
 is determined from Prager’s 

consistency condition, F=0 and dF=0; the last equation results in 
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where p

th d / d  is the  plastic modulus. 

The stress increment {dσ} can be expressed in terms of the total strain increment 
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where the elastic-plastic stiffness matrix [Dep] is given by 
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Loading of the yield surface F=0 takes place when dγ
p
>0 and accordingly the switch 

function <1> in equation (22) is defined such that 
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Robustness in the computations and insensitivity of the results to general mesh 

refinement for the present Cosserat model has been demonstrated in [Pap92]. In 

contrast, computations based on classical elastoplasticity with the same material 
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parameters are mesh sensitive due to the implementation of the material softening in 

the constitutive equations. 

2.3 Material Parameters 

In the next computations the material parameters for the Mohr–Coulomb 

elastoplastic constitutive model were derived from triaxial compression tests on 

Castlegate sandstone and a calibration procedure. 

 

The elastic parameters were found to be E=8,100 MPa and ν=0.35. The parameter 

related to the material cohesion is p0=9.81 MPa. The calibration of the friction 

coefficient, μ=sinφm as a function of the plastic shearing strain γp
 was based on 

interpolation of pre-peak triaxial data. Post-peak softening behavior was modeled by 

extrapolation of a function which was fit to the pre-peak data. The corresponding 

curve-fit was given by the hyperbolic function 

 0
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1 2

1 p p

p

c

c c
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


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
                                               (23) 

 
where μ0=463 is the value of the friction coefficient that defines the state of initial 

yield; c1=0.0077, c2=7.5 and c0=12 is a control parameter of the rate of softening. 

 

The dilation coefficient β=sinψm was taken equal to the mobilized friction 

coefficient μ because the Castlegate sandstone exhibits pronounced dilation in the 

low confinement pressure triaxial tests, i.e., an associated flow rule was assumed 
 

                                                                                                                      (24) 

 

Τhe internal length required by the Cosserat model is set equal to R=0.2 mm. This 

value is related to the microstructure of the sandstone, e.g., the grain size. We 

emphasize here that the inclusion of the grain size in the constitutive equations 

provides the Cosserat model with the capability to predict the scale effect observed 

in the thick walled cylinder tests. 

5.1 Failure in thick walled cylinder test 

We modeled the problem of a thick-walled cylinder under external pressure. The 

results are compared with those of a physical experiment. The main dimensions of 

the cylinder are the internal radius, ra=1.45 cm and the external radius, rb= 7.5cm. 

The external pressure was applied incrementally while the internal pressure was 

maintained zero.  
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Figure 3 shows a comparison of the experimental results with model predictions in 

terms of the applied external pressure versus normalized hole closure. The solid line 

shows the closure in the direction of breakouts and the dashed line shows the closure 

in the direction 90° from the breakouts. The initial part of the curve is almost linear 

although initial yielding at the hole wall takes place quite early, below 10 MPa. The 

first signs of failure in the experiment were observed after the pressure had reached 

35 MPa. This prediction is well compared with the bifurcation point detected by the 

break of axisymmetry at pressure 34.75 MPa. 

 

 After bifurcation the deformation is characterized by a warping mode of finite wave 

number m=10, caused by surface buckling. As mentioned earlier the Cosserat model 

switches to the localized branch smoothly, without the need to perturb the primary 

solution with an imperfection. The computations confirmed that in the primary path 

the Cosserat rotation remains inactive everywhere, whereas after localization it 

increases by more than three orders of magnitude only on the boundaries of the 

shear bands due to the intense shearing [Pap92]. The predicted failure mode is 

depicted in Figure 4 where the contours of the plastic strain have been drawn in the 

vicinity of the hole after localization of deformation has taken place. Once 

localization of deformation starts, almost all the region close to the borehole wall 

unloads elastically, except the narrow zones of the forming shear bands, which 

continue to plastically soften and progress towards the interior. The shear bands 

bend further until they finally meet their symmetric image, leading to a familiar 

breakout form. Similar computations and extensive analysis can be found in [Pap92, 

Pap10]. 

 
 

Figure 3: External pressure vs normalized hole closure. 
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Figure 4: Contours of the shear plastic strain after localization of deformation. 

 

We carried out a series of computations to investigate the issue of scale effect. 

Experimental results showed that small holes, compared to large holes, fail at higher 

external pressure [Hai89, Pap95, Hoe00, Pap10]. Computations were performed for 

models with different internal radii but with fixed ratio 5:1 of the external radius to 

the internal. The results are shown in Figure 5 where we plotted the load at which 

bifurcation takes place (dashed line) and the peak load (solid line) as a function of 

the hole radius normalized by the internal length. It is clear that both bifurcation and 

peak loads increase as the hole radius decreases. For very small holes bifurcation 

does not take place and limit point is reached. Smaller holes bifurcate with lower 

warping modes. The scale effect fades out rapidly with increasing hole size. As the 

hole gets bigger, the scale effect becomes less pronounced, a tendency also observed 

in the experiments of [Hai89, Pap95]. The scale effect also fades out for very small 

hole size because bifurcation disappears and the load reaches a limit value. This 

finding is also supported by experimental results discussed in detail by [Hoe01]. 

Bifurcation in the limit of a large borehole, which approaches a half space, is 

expected to take place with infinite wavelength mode once the stress state enters the 

softening regime for associated material.  
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Figure 5: Bifurcation load and peak load vs normalized hole radius. 

5.2 Stability analysis of elliptical shape perforations 

In another illustration we present in this section a stability analysis of elliptical 

shape perforations embedded in a compressive stress field. The material parameters 

are those of the Castlegate sandstone which were used in the above computations. 

The application is related to the stability of perforation tunnels that are used for the 

flow of hydrocarbon in the wellbores. It is demonstrated that it is essential to carry 

out advanced localization analysis in order to reach correct results upon which a new 

perforation shape design can be based. Classical stress analysis predicts that an 

elliptical hole suffers less stress concentration than a circular hole when its major 

axis is aligned with the direction of the major principal stress and its axis ratio is the 

same as the applied stress ratio. However, this failure analysis based on localization 

of deformation will show that an elliptical hole is stronger if its axis ratio is greater 

than the ratio of the applied stresses.  

 

Figure 6 shows the hole closure in terms of a change in cross-sectional area vs 

applied maximum insitu stress (σmax/ σmin=1.5) for a circular hole, a/b=1, and the 

elliptical holes with axis ratio a/b=1.5, 3.  
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Figure 6: Hole closure vs applied stress for a circular hole and elliptical perforations 

with different ratio of the major/minor axis, a/b. 

 

The predicted failure mode is depicted in Figures 7 and 8 where the displacement 

fields after localization and the contours of the plastic shear strain were draw for the 

circular hole and for an elliptical hole. Although an elastic stress analysis suggests 

through the stress concentration near the hole that the more stable ellipse is the one 

with its axis ratio the same as the ratio of the applied stresses, this localization 

analysis has shown that an ellipse with axis ratio greater than the ratio of the applied 

in situ stress is even stronger. More computations and details can be found in [PAP 

00]. 

 

To mention few other applications, [Tei93] analysed interface mechanisms in silos 

filled with granular medium which was simulated by the aforementioned Cosserat 

plasticity model. [Adh97] used Cosserat model for layered materials. More recently 

[Pap10] studied the stability of a borehole in anisotropic stress field and compared 

the predictions of the Cosserat model with experimental data.   
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Figure 7: Incremental displacement field after localization of deformation around a 

circular hole and elliptical hole. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8:  Contours of shear plastic strain around a circular hole and an elliptical 

hole. 

3. Gradient Elastoplasticity 

3.1 Governing equations 

Following decomposition of the total strain rate 
 
into an elastic part 

 and a plastic part , we define the total (equilibrium) stress rate  in terms 

of the elastic strain rate and its Laplacian, as 

 

 

                                             (25) 

 

 

Here  is the tensor of elastic moduli and  is a material parameter with 

dimension of length, called the elastic material length. Also, we omitted the first 

spatial derivative from equations (25) to avoid introducing directionality in the 
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material response. Plastic deformations develop when the stress state meets the yield 

condition . The plastic strain rate is defined through the flow rule 

  

                              (26) 

where  is a plastic potential and the scalar quantity  is the plastic 

multiplier. In the special case of associative plasticity, . 

 

The yield function  and the plastic potential  depend on the reduced stress 

 and on a hardening/softening parameter . The back stress  

evolves according to the constitutive law 

 

 

         (27) 

 

 

where the scalar  is another material parameter with dimension of length, called 

the plastic material length. As back stresses are expected to develop due to micro-

inhomogeneities in the plastic flow, an assumption that the back stress is 

proportional to the plastic strain as well as its Laplacian would be more accurate. 

However, here we confine ourselves to the simpler assumption that back stresses 

develop only where the deformation becomes sufficiently inhomogeneous, allowing 

for the region surrounding a material point to contribute to its strength. 

 

The plastic strains are determined from the consistency condition of plasticity, 

 

  , and    (28) 

 

which ensures that during plastic deformation the stress state remains on the 

evolving yield surface. 

 

Substituting equations (25), (26) and (27) into equation (28), using the strain rate 

decomposition and the definition of the reduced stress, and assuming that  

and  vary slowly in space, the plastic multiplier is expressed as 
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An approximate solution of equation (29) can be obtained by noting that 

 and that both  and  are small, since they represent some micro-

structural length scale of the material. The differential operator applied on the left 

hand side of equation (29) can then be inverted and transferred to the right hand 

side. Neglecting higher order terms, equation (29) then yields [Zer01a] 
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The assumption of slow spatial variation of  and , on which the 

derivation of equation (29) is based, is only valid for an initial bifurcation from a 

relatively homogeneous ground state of plastic straining. In the post-bifurcation 

regime this assumption progressively breaks down as deformations localise. Then 

terms  and  are not necessarily negligible. However 

the inclusion of such terms would necessitate a rather complicated numerical 

treatment of the consistency condition and lead to strongly non-linear and expensive 

calculations. 

 

Here we use equations (29) and (30) even in the post-localization regime, bearing in 

mind their approximate nature. Numerical results obtained using this approach have 

been shown to reproduce in a realistic manner localization phenomena observed in 

experiments [Zer01a, Zer01b, Zer02].  
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For a total strain increment , equations (26) and (30) can be used to calculate the 

plastic part . The elastic part is then . Substituting to Equations 

(25) and (27), the constitutive quantities can be expressed in terms of total, rather 

than elastic and plastic strain increments as follows: 

 

 

             (31) 

                (32)

  

Here  is the known plastic stiffness matrix of classical plasticity 

     (33) 

 

where  for loading (i.e.  and ) and  for unloading 

(i.e. , or  and ).  is the usual elastoplastic 

stiffness matrix and 

     (34) 

is a stiffness matrix for the higher order terms. 

 

Due to the approximation introduced to arrive to equation (30), the consistency 

condition is satisfied to an approximation                  . In the numerical 

implementation presented in the next subsection, errors are prevented from 

accumulating by checking that the stress state of points undergoing plastic or neutral 

loading remains on the evolving yield surface and mapping it back if needed 

[Zer01a]. 

 

To derive the equation of virtual work, the above equations are reinterpreted within 

the framework of Mindlin's theory of microstructure [Min64]. It follows that they 

describe a restricted Mindlin continuum, i.e. a Mindlin continuum whose 

microscopic and macroscopic deformations coincide. To that end, equation (31) is 

rewritten as 
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In Mindlin's terminology  is the Cauchy stress rate, which is identified as the 

constitutive stress rate tensor of classical elastoplasticity. The second term is seen as 

a relative stress rate. We postulate the existence of a double stress rate , whose 

gradient equilibrates the relative stress. Then 

 

 

                  (36) 

 

In the absence of body forces and inertial terms, the principle of virtual work is 

written as [Var95; Zer01a, Var91] 

  

                (37) 

where  is the part of the boundary where Neumann-type boundary conditions are 

applied and  is its unit normal.  is the applied boundary traction vector,  the 

applied boundary double traction vector and  the virtual displacement rate 

vector. 

 

3.2 Finite element formulation 

Since the rate of all constitutive quantities can be expressed in terms of the total 

strain rate and its derivatives, the usual displacement formulation of the finite 

element method is suitable for solving boundary value problems of gradient 

elastoplasticity. However, the existence of strain gradients in the virtual work 

demands that strains be continuous. Therefore the interpolation of displacements 

must be C
1
-continuous, instead of C

0
 that is adequate for classical elastoplasticity. 

 

In the following we restrict the analysis to 2D plane strain and use the three-noded 

C
1
 triangle with 18 degrees of freedom for each interpolated field (namely the 

displacement and all its spatial derivatives of first and second order at each node) 

[Das90]. The displacement field varies as a complete quintic with a cubic normal 

derivative along the element edges. The displacement  is interpolated as 
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where  are the shape functions and  the nodal degrees of freedom. 

Strain rates, their gradients and their Laplacians are written in vector form as 

uBuNLε 11
ˆˆ      (39) 
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where , ,  and  are appropriate differential operators. The 

constitutive relations of equations (32), (35) and (36) are then written in vector form 

as 
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                                     yy εCmεCm
m

x

m

x
  ,          (43) 
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where ,  and  are the tensors ,  and  in matrix form. 

Substitution in the virtual work equation (37) results in the following linear system 

of equations for the nodal degrees of freedom: 
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where  is the outward unit normal to the boundary.  and  are the 

boundary traction and the boundary double traction vectors respectively. 

 

The stiffness matrix on the left hand side of equation (45) is integrated using an 

)( 7hO -accurate, 13-point Gauss quadrature scheme, which is adequate to preserve 

convergence [Zer01a]. Equation (45) is solved iteratively for the degrees of freedom 

with the Newton-Raphson method. 
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3.3. Material model 

We consider that the material behaviour is approximated adequately by a non-linear 

Mohr-Coulomb yield criterion and plastic potential. To avoid numerical problems 

related to the apex of the yield function at the point , the corner is 

“rounded” by a circular arc of radius . The arc is taken tangent to the Mohr-

Coulomb line, so that the derivative of the yield function remains continuous. The 

modified function is depicted in Figure 1 with a solid line and is written as 

 

 (46) 

 

where  is a friction coefficient and 

 is the equivalent stress.  is the angle of internal 

friction and c is the material cohesion.  defines the centre of the arc and 

 is the line normal to the Mohr-Coulomb line, 

passing from its point of contact with the arc. Geometrical considerations lead to 

 

    (47) 

               (48) 

The arc is defined uniquely by the abscissa  of the contact point, which here is 

taken such that the arc covers  of the tensile part of the function. Equation (22) 

is also used for the plastic potential, which is defined by the angle of dilatancy  in 

place of the angle of friction . The condition for associative plasticity is . 

The hardening/softening behaviour is described by assuming dependence of 

 on the accumulated equivalent plastic strain . The latter is defined as 

the rate of dissipated work divided by the equivalent stress. The hardening/softening 

law is: 

 

     (49) 
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which is fitted on experimental data.  and  are calibration constants, while 

 defines the state of initial yield. The constant  controls the rate of softening 

and it is an open parameter because, due to bifurcations and end restraints, standard 

laboratory calibration tests cannot determine the “true” material softening. The 

material lengths  and  are also open parameters, although they are usually 

considered to relate to a characteristic micromechanical length scale of the material, 

such as the average grain size [Muh87]. As the role of microstructure in the elastic 

regime is not expected to be significant, extra information on the shear-band 

thickness and the scale effect could, in principle, be inverted using the gradient 

elastoplasticity model to obtain the unknown softening rate and plastic material 

length . The elastic material length  can then be taken to be a proportion of . 

 

The introduction of two material lengths gives gradient elastoplasticity the 

advantage that boundary conditions need only be prescribed on the external 

boundary. In gradient plasticity theories, where only one material length is used, the 

order of the governing equations changes at the elastoplastic boundary, necessitating 

a special treatment. In gradient elastoplasticity this is unnecessary, as gradient terms 

are introduced in the elastic regime as well. However, it is the plastic material length 

that dominates the behaviour of the material, as deformation gradients are much 

higher in the plastic than in the elastic regime. 

 

The material parameters used in the computations correspond to a weak reservoir 

sandstone. The elastic parameters were found to be  and . 

The friction angle is considered constant and equal to . The calibration 

constants for the hardening behaviour were determined as  and

, while the equivalent stress at initial yield is .  The 

material lengths are set to . The constant controlling the softening 

rate is taken . 

 

3.3 Modelling of the Biaxial Test 

Modelling of the biaxial test has been consistently used in the literature as a 

“benchmark” for localization computations, as it readily demonstrates a model’s 

ability to capture localised zones of finite thickness. Although it would be 

interesting from the practical point of view to compare the predictions of the theory 

presented here with predictions of other existing higher-order theories, meaningful 

comparisons cannot be made without access to the relevant raw experimental data 

for calibration purposes. We will therefore consider such comparisons outside the 

scope of this paper. 
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The geometry of the test and the applied boundary conditions are shown in Figure 9. 

The sample is 5x10cm and is assumed to deform in plane-strain. Deviatoric load is 

applied by prescribing the vertical displacement increment of the top platen. The 

platen is considered to be rigid and lubricated, allowing the sample to slip without 

friction. Due to the initial uniformity of the stress and strain fields an imperfection is 

needed to trigger localization, so the initial cohesion has been reduced by 10% at a 

region 0.5x0.5cm at the lower right hand-side corner of the sample. The size of the 

imperfection does not influence the computed failure mode [Zer01a]. 

 

 

Figure 9: Biaxial geometry, loading and boundary conditions. 

A parametric study was conducted to examine the effect of non-associativity on 

shear-band geometry. The dilatancy angle  was varied every  between  

(zero plastic volumetric strain) and  (maximum plastic volumetric strain). 

The results were obtained with a mesh of 21x41=861 nodes and 10,332 degrees of 

freedom. It has been shown that this mesh provides converged results
 
[Zer01a]. 

 

The calculated vertical load vs vertical displacement curves are shown in Figure 10. 

The initial branch, which corresponds to uniform deformation, is identical for all 

dilatancy angles but the curves differ in the softening branch. In all cases the 

observed failure mechanism is a shear-band. In the associative case the deformation 

starts localizing at peak load. However, as non-associativity increases, localization 

starts earlier, in the hardening branch. This result agrees with the predictions of 

bifurcation theory [Var76; Ric76] and experimental observations [Ord91]. For the 

non-associative cases the curve is steeper, suggesting more severe structural 

softening. 
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The thickness  of the formed shear-bands is shown in Table 1. It decreases with 

decreasing dilatancy angle. Comparison of the associative case with the case of 

 reveals a decrease of more than four times. This is visualised in Figure 11 

where the equivalent plastic is plotted. The material outside the shear-band points 

unloads elastically. The difference of shear-band thickness between the associative 

case (Figure 11a) and the non-associative ones (Figures 11b, 11c and 11d) is 

obvious.  
 

 

Figure 10: Vertical load vs. vertical displacement. 

Table 1: Normalized shear-band thickness for different dilatancy angles and constant 

friction angle 05.32  

Dilatancy angle 
  

Band thickness 

pld  

32.50º 56.0 

25.00º 45.8 

20.00º 42.3 

15.00º 35.2 

10.00º 31.7 

5.00º 24.7 

0.00º 14.1 

 

The inclination of the shear-band (angle  between the shear-band and the x-axis in 

Figure 9) also decreases with decreasing dilatancy angle. As shown in Table 2, the 

maximum inclination occurs for the associative case. The effect of non-associativity 

is better seen in Figure 11, where contours of the equivalent plastic strain are 

d

00


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plotted. Plastic deformation is localised inside the shear-band allowing for the 

inclination to be graphically determined from the direction of the contour lines. 

Again, the difference between the associative case (Figure 12a) and the non-

associative ones (Figures 11b, 11c and 11d) is clear. These results are in close 

agreement with the predictions of bifurcation analysis which relate the shear-band 

inclination to the angles of friction and dilatancy [Ric76, Var80]. A comparison is 

shown in Table 2. In Figure 11 we also observe that the inclination of the shear-band 

changes as it approaches the left hand-side boundary of the specimen. Similar shear-

band re-orientations have been observed experimentally [Var95, Fin97, Bes00]. The 

explanation is that the shear-band is influenced by the natural boundary conditions 

as it approaches and subsequently intersects the free boundary. The inclination  

at the boundary can then be approximated by the Roscoe solution, 

 [Ben89]. The measured intersection angles are shown in 

Figure 11, at the upper left corner of each plot, and compared in Table 3 with the 

Roscoe solution. The difference is within the error of measurement. In the 

associative case the angle remains constant, while for . 

 

Table 2: Theoretically predicted and numerically determined shear-band inclination, 

for different values of the dilatancy angle ψ and constant friction angle φ=32.5
ο
. 

 

Dilatancy angle 


 

Numerical 

  

Theoretical 
bif  

32.50º 60.0º 61.27º 

25.00º 58.0º 59.35º 

20.00º 56.5º 58.05º 

15.00º 55.0º 56.74º 

10.00º 53.5º 55.42º 

5.00º 53.5º 54.11º 

0.00º 52.5º 52.80º 

 

Table 3: of numerical results on shear-band inclination next to the free boundary 

with the Roscoe solution, for different dilatancy angles and constant friction angle
05.32 . 

Dilatancy angle 


 

Numerical 
b  

Theoretical 
R  

32.50º 60.5º 61.27º 

20.00º 54.2º 55.00º 

10.00º 49.5º 50.00º 

0.00º 44.5º 45.00º 

 

 

 

 

 

b

24   Rb

00 45,0  b
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(a) Associative   (b) Non-associative, 
020  

  

(c) Non-associative, 
010   (d) Non-associative, 

00  

Figure 11: Contours of the equivalent plastic strain p  
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3.4 Modelling cavity expansion  

The problem of cylindrical cavity expansion is of significant interest in petroleum 

engineering, in the design of hydraulic fractures. Hydraulic fracturing is a technique 

of stimulating oil and gas reservoirs by inducing and propagating fractures through 

the injection of a high viscosity fluid [Eco00]. The pressure level at which a tensile 

fracture is initiated, i.e. the breakdown pressure, can be determined assuming that 

the crack forms when the hoop stress exceeds the tensile strength of the rock. For 

weaker rocks, however, where plastic deformations develop, analyses predict either 

higher breakdown pressures than the ones observed, or even that a tensile state of 

stress cannot be achieved during pressurisation. Nevertheless, significantly lower 

breakdown pressures are observed in the experiments [Pap95b]. In this section we 

investigate the possibility that tensile failure is preceded by the onset of shear 

localisation.  

 

We model internal pressurisation of four thick-walled cylinders of a weak sandstone, 

with Ri = 5, 10, 20 and 40 cm, and Re = 6Ri; a detailed account appears in [Zer08b]. 

The material parameters of Section 4 are used. Both internal pressure pi and external 

pressure pe are applied: first the cylinders are loaded with pi=pe=30 MPa and 

subsequently pi is increased under constant pe. A mesh with a total of 32, 640 

degrees of freedom is used, which suffices to provide converged results. 

 

Initially, while pi = pe, no yielding occurs. In the second stage, as pi increases, the 

material near the hole yields first. Deformation is initially axisymmetric, however, 

as pi approaches 110MPa, axisymmetry is lost and the radial displacement 

increment in the vicinity of the hole assumes the sinusoidal form shown in figure 12. 

This happens spontaneously, and the relevant discussion of Section 4 applies here as 

well. Subsequently, regions near the cavity progressively unload while the 

deformation localises into thin bands of softening material that continue to shear. 

These are shown in Figure 12 with black points, while grey points show material 

still in the hardening regime. As can be seen, the shear-bands initiate from the cavity 

wall and propagate towards the outer boundary. The development of similar shear-

bands has been observed experimentally on sand specimens [Als92]. The hoop stress 

σθθ remains below the tensile strength, excluding the possibility of tensile failure 

before shear failure. 

 

The corresponding internal pressure vs hole expansion curve is presented in figure 

13, where the trivial deformation path, corresponding to axisymmetric expansion, is 

also shown for comparison. The two curves coincide up to the bifurcation point, 

where axisymmetry is lost. Then they slowly separate, as the curve corresponding to 

the bifurcated solution levels off at a pressure lower than the limit pressure, to which 

the trivial path asymptotically tends. The mechanism of localised shear failure is 

thus more critical than the attainment of limit pressure under axisymmetric 

deformation. From a practical point of view, this suggests that rupture in cavity 

pressurisation may occur at lower internal pressure than the limit pressure, which is 
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used in the interpretation of geotechnical tests or in fracture initiation prediction in 

weak rock formations. 

 
 

Figure 12: Radial displacement increment at bifurcation (left) and final material 

state (right) for the Ri = 10cm model. 

 

 

 

 
 

Figure 13: Internal pressure vs hole expansion for the Ri = 10cm model. 

4. Conclusion  
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In this review paper we presented two advanced theories with higher order continua 

one based on a Cosserat continuum and the other on Gradient Elastoplasticity. 

Numerical results were presented for different problems and load paths, showing 

that in all cases the Cosserat continuum and the gradient elastoplasticity can 

regularise the ill-posedness caused by strain-softening. It is able to track the 

spontaneous emergence of instabilities and to provide robust predictions of the post-

localisation deformation, capturing quantitatively details of the localised 

mechanism. In other words, both models are capable of modelling the localization of 

deformation in shear bands which often leads to failure in geomaterials. The model 

are also capable of predicting the existence of the scale effect, observed in thick-

walled cylinders, which is essential for interpreting the small-scale laboratory tests 

and for extrapolating the results to field wellbore dimensions.  

 

The use of localization theories in practical applications is still limited by the issue 

of material parameters determination. Appropriate procedures or values for the 

internal lengths and the softening rate must be determined. We identify this as an 

open issue which requires further research investigation. We see more applications 

of these theories with microstructure in the problem of sand prediction as the 

geometry dealing with small holes perforations in reservoir sandstones [Hoe01]. As 

mentioned earlier, small holes show in experiments a pronounced strength that 

cannot be predicted by classical plasticity theories. Furthermore, we showed that 

localization analysis predicts that an elliptical hole with long axis parallel to the 

major insitu stress is more stable than a circular hole. This finding can be used in the 

design of new perforations based on elliptical shape. 
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cations to borehole stability, multilayer 

buckling, and rock bursting 

Euripides Papamichos 
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____________________________________________________________________ 

Typical boundary value problems of bifurcation are presented such as (i) borehole 

stability with applications in the oil and gas industry and in tunneling, (ii) multilayer 

buckling with application in the folding of geological formations, and (iii) spalling 

and buckling of surface parallel cracks with application in rock bursting in mining. 

The formulation of the bifurcation problem in all these cases is described together 

with the numerical implementation and the main results. If the formulation is in 

terms of a continuum with microstructure, such as the Cosserat continuum, scale is 

introduced into the bifurcation problem, which leads to size effect. For example, in 

borehole failure smaller diameter holes fail at higher stresses than larger holes. 

1 Introduction 

Three typical bifurcation boundary value problems are formulated and solved nu-

merically. In Section 2, borehole stability is formulated and analyzed within a finite 

element method scheme for elastoplastic Cosserat materials and the results are com-

pared with experimental data. In Section 3, multilayer buckling in anisotropic elastic 

and viscoelastic materials under initial stress is analyzed using the matric transfer 

method. Finally, in Section 4 buckling of anisotropic elastic half-spaces with surface 

parallel cracks under initial stress are analyzed using the displacement discontinuity 

boundary element method. Conclusions are presented in Section 5. 

2 Borehole stability 

Borehole failure has been an important geomechanical problem for the assessment 

of the integrity of tunnels, wellbores and perforations in the field. The most common 

failure mode for dilatant rocks is the formation of breakouts. A relevant laboratory 
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experiment is the Hollow Cylinder (HC) test with or without fluid flow. HC experi-

ments under various axial and lateral stress paths in Red Wildmoor sandstone 

[Pap10a] have demonstrated the lateral and axial borehole failure modes shown in 

Figure 1 as suggested by Maury [Mau92]. The first prevails when the tangential 

stress at the hole is the largest compressive principal stress and failure takes place in 

the form of shear bands concentrated on two diametrically opposed locations of the 

borehole. The second prevails when the axial stress at the hole is the largest com-

pressive principal stress and failure takes place in the form of shear bands forming 

toroids around the hole perimeter. 

 

(a)       

(b)       

Figure 1: Vertical (left) and horizontal (right) X-ray CT scan images of hollow 

cylinder specimens demonstrating (a) lateral borehole failure with breakouts, and (b) 

axial borehole failure with toroids [Pap10a]. 

 

Analysis based on elasticity and a Mohr-Coulomb failure criterion for the rock 

has been traditionally used to predict borehole failure. However, comparisons with 

experimental results have long demonstrated that such an approach greatly underes-

timates the borehole failure strength. For successful predictions, the borehole failure 

problem has been treated as a bifurcation phenomenon [Var88] often in connection 

with continua with microstructure (Cosserat or gradient) (e.g. [Var95] and refer-

ences therein) and elastoplastic constitutive laws. The advantage of this approach is 

that it describes naturally the observed failure patterns of shear bands and breakouts. 

In the following the Cosserat elastoplastic model is implemented in a finite 

element scheme for the solution of the HC failure test. Figure 2 shows the geometric 

layout of the problem in the cylindrical (r, θ, z)-coordinate system. A thick-wall 

cylinder of external radius re, internal radius ri and height H is compressed radially 

with uniform external σrext and internal σrint stresses with 
rext rint  > 1. Axially a 

uniform strain εzz is applied to simulate the experiment where the axial load is 

applied through steel (i.e. rigid) loading platens. The strain εzz is controlled such that 
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it produces a prescribed axial load Fz. The uniform axial strain boundary condition 

means that the HC test is a 2d problem, i.e. it varies only in two dimensions in the 

r,θ-plane normal to the hole. The effect of pore pressure on borehole failure is not 

included here for brevity but the reader is referred to Papamichos [Pap10b] for a 

description of the formulation with steady state fluid flow. As in the experiments 

5e ir r . Section 2.1 presents the implementation for the axisymmetric solution of 

the primary path of cylindrical convergence of the HC hole and Section 2.2 

formulates the bifurcation condition for borehole failure. Section 2.3 presents 

simulation results and comparison with experimental data. In Sections 2.1 and 2.2, 

standard mechanics notation of tension positive is employed for the stresses and 

strains. However, in Section 2.3, compressive stresses and strains are taken positive 

to avoid carrying the negative sign and plotting the results in negative axes. 

 

 

Figure 2: Geometric layout of the thick-wall hollow cylinder configuration: (a) plane 

view with lateral hole warping, and (b) vertical section with axial hole warping. 

2.1 Primary loading path 

During the axisymmetric deformations of the primary loading path, shear stresses 

and Cosserat couple stresses vanish and therefore the solution for the primary load-

ing path can be significantly simplified and become 1d with dependence of the 

quantities only along the radial direction. The finite element formulation is based on 

the variational equation within a volume V with boundary V, which in axisymmet-

ric problems under uniform and prescribed axial displacement can be written in the 

cylindrical coordinate system (r,θ,z) as 

    rr rr r r

V V

dV t u dS



 



      (1) 

where σrr is the radial and σθθ the tangential stress, dual in energy to the radial εrr and 

tangential εθθ strains, respectively, and tr is a prescribed traction on a part Vσ of the 

boundary V. Moreover, δεrr, δεθθ and ur are variations of the radial and tangential 

strains and the radial displacement ur, respectively. The integrands in Eq.(1) are 
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independent of the  and z-coordinates and thus Eq.(1) can be integrated with re-

spect to these coordinates and written in matrix form as 

     int

e

i e

i

r
T

r r i r rext er r r r

r

rdr u r u r     
 

    (2) 

where the strain variation    and the stress    vectors are defined as 

        , , , 
T T

rr rr        (3) 

and the stress boundary conditions at the hole and the external surface have been 

considered in the left-hand side. 

In an elastoplastic analysis, incremental and iterative methods are used to solve 

these equations, where the total external loads are added in increments step by step. 

At the (m+1)
th

 loading step 

        
1

int



 
   
  

e e

i e

i i

r r
m

T T m

r r i r rext er r r r

r r

d rdr u r u r rdr         (4) 

where the first term in the right-hand side of the first equation is the load at the 

(m+1)
th

 step, 
m
{σ} is the stress vector at the m

th
 step and  d  the stress increment 

vector. Using the constitutive relations of Cosserat elastoplasticity [Pap10a] 

       
epd C d   (5) 

and taking into account the fact that dεzz is constant with r, Eq.(4) can be written as 

 

   

       

1

int



 
        

 



 

e

i e

i

e e

i i

r
m

T ep

A r r i r rext er r r r

r

r r
T m T ep

zz B

r r

C d rdr u r u r

rdr d C rdr

     

   

 (6) 

where the constitutive matrix   
ep

AC  and vector  ep

BC  are the following parts of 

matrix   
epC  in Eq.(5) 

   1311 12

2321 22

,
    

       
    

epep ep

ep ep

A B epep ep

CC C
C C

CC C
 (7) 

The finite element solution is obtained with a one-dimensional discretization 

along the radius r. A fine discretization is required close to the hole to obtain mesh 

insensitivity. This is achieved by discretizing the domain in 100 elements according 

to a geometric progression with common ratio 1.05. Three-node elements with La-

grange polynomial basis functions of second-order are used. Each node has one 

degree of freedom, the radial displacement ur. 
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In nonlinear constitutive models such as elastoplasticity, in contrast with linear 

elasticity, if a uniform along the radius axial strain is applied, the result will be a 

non-uniform axial stress σzz along the HC radius. The experiments in the laboratory 

are performed by applying a uniform axial strain such that it produces a prescribed 

axial load Fz. Numerically, this can be accomplished by implementing an axial load  

servo-control algorithm to control the applied axial strain [Pap10b]. 

2.2 Hole failure 

In this section, the bifurcation condition for lateral HC failure is formulated and 

implemented in the finite element scheme. For axial HC failure the reader is referred 

to Papamichos [Pap10b]. The underlying hypothesis of the bifurcation theory is that 

spalling and shear banding in rocks are the result of material instabilities, termed 

equilibrium bifurcations. The bifurcation approach associates failure with the occur-

rence of the instabilities in contrast to classical procedures where failure is usually 

assumed ad hoc to be an intrinsic material property associated with the elastic-

plastic limit. The analysis here focuses on the prediction of the bifurcation point of 

warping of the hole that subsequently may lead to spalling or shear banding as it has 

been demonstrated in post-bifurcation numerical analyses (e.g. [Pap92], [Pap10c]). 

The bifurcation condition is formulated on the basis that in addition to the trivial 

solution of cylindrical convergence of the hole during the primary loading path, 

there exists another non-trivial warping solution that fulfils homogeneous boundary 

conditions. Thus, the bifurcation problem for the HC failure can be formulated with 

the homogeneous and incremental form of the virtual work equation for a Cosserat 

continuum 

    ˆ ˆ 0
T

V

d d dV    (8) 

where  ˆd  and  ˆd  are the generalized stress and strain increment vectors, re-

spectively, that correspond to the non-trivial bifurcation solution. This solution in-

volves the Cosserat rotations and couple stresses, in contrast to the solution of the 

primary path, and therefore the bifurcation condition depends on the internal length. 

The bifurcation condition for lateral failure which corresponds to warping of the 

hole on the (r,)-plane normal to the HC axis, as shown in Figure 2a, is obtained by 

solving Eq.(8) for the non-trivial, plane-strain, displacement and microrotation in-

crement field 

 

           

     

ˆˆ , cos  ,      , sin

ˆˆ , sin  ,      0

ˆˆ 0 ,                                 0

 

 

 

c

r r z z

c

r

c

z

du r V r m d r W r m

du r V r m d

du d

 



    

  



 (9) 

where m = 1, 2, 3, ... is the wavenumber of the warping mode. The wavelength of 

the deformation is given as 2 iW r m . For this displacement and microrotation 
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field, the generalized displacement, strain and stress increment vectors reduce to 

 

   

   

   

ˆˆ ˆ ˆ, ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , ,







T c

r z

T

rr r r z rz

T

rr r r z rz

du du du d

d d d d d Rd Rd

d d d d d d R d R



   

   



      

      

 (10) 

For small deformation analysis the strain-displacement relation is given by 

          ˆ ˆ       or        d B dU d B dU     (11) 

where {dU} is the displacement increment vector of nodal points related to the dis-

tributed displacement  ˆdu  by 

     du N dU  (12) 

in which  N  is the matrix of shape functions. The strain-displacement matrix  B  

is defined as 

     B L N  (13) 

and [L] is a differential operator matrix such that 

     ˆ ˆd L du  (14) 

Following the analysis of axisymmetric problems submitted to non-symmetrical 

loading [Zie89], a typical term of the [N] matrix of shape functions for the general-

ized velocity field Eq.(10) is 

  
 

 

 

cos 0 0

0 sin 0

0 0 sin

 
 

  
 
 

i

i i

i

N m

N N m

N m







 (15) 

On substitution of the shape functions (15) into Eq.(13), a typical term of [B] is 

  

 

   

     

   

 

 

,

,

,

cos 0 0

1
cos cos 0

1
sin sin sin

0 sin sin

0 0 sin

0 0 cos

 
 
 
 
 
  

  
 
 
 
 
 
 

i r

i i

i i i
i

i r i

i r

i

N m

m
N m N m

r r

m
N m N m N m

B r r

N m N m

RN m

mR
N m

r



 

  

 





 (16) 
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which is conveniently separated to 

      sin cos       
s c

i i iB B m B m   (17) 

By combining Eqs.(8) and (11) with the incremental constitutive equations (5), 

the governing equation, may be written as 

        0
T

V

B D B dV dU  (18) 

where [D] contains only the relevant components of the tangent constitutive matrix 

  
epC  in Eq.(5). Equation (18) can be simplified by using Eq.(17) and performing 

the integration with respect to the  and z-coordinates, reducing to 

          0 ,         
e

i

r
T T

s s c c

r

K dU K B D B B D B rdr                  (19) 

which results in an eigenvalue problem for the critical bifurcation loads σrint, σrext and 

εzz. Within a finite-element discretization scheme, the solution to this eigenvalue 

problem is obtained by requiring that the global stiffness matrix [K] becomes singu-

lar, i.e. 

  det 0K  (20) 

which is the bifurcation condition for lateral instability. 

The governing Eq.(19) gives significant computational advantages because it re-

duces the two-dimensional problem to an one-dimensional finite element discretiza-

tion with respect to the r-coordinate. The finite element solution of the eigenvalue 

problem Eq.(20) for hole failure is obtained with the same one-dimensional discreti-

zation along the radius r of the thick-wall HC used for obtaining the solution for the 

primary path. Each node has now three degrees of freedom. These are the radial Vr 

and tangential Vθ displacement amplitude and the Cosserat microrotation Wz ampli-

tude. The initial failure bifurcation condition requires that the global stiffness matrix 

[K] becomes singular. In inhomogeneous problems like the present, failure of local 

stability conditions does not necessarily imply loss of uniqueness [Pap92]. In fact, 

the obtained bifurcation points correspond to loading states where elements close to 

the hole have entered the softening regime. Although at these elements the local 

stability criterion is violated, the global stiffness matrix remains positive. The load-

ing stresses at which the bifurcation condition is satisfied depend on the wave-

number m of the bifurcation mode. In a Cosserat continuum there exists for the HC 

problem a critical wavenumber mcr that corresponds to the least required loads. It is 

obtained by solving the bifurcation condition for various m and selecting the mcr 

corresponding to the least required loads. It maybe, therefore, assumed that the hole 

would fail under mcr. 
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2.3 Simulation of hollow-cylinder experiments 

Theoretical results from finite element simulations of HC tests under various loading 

paths are presented and compared to experimental data [Pap10a]. The bifurcation 

predictions for failure depend on the Cosserat internal length R. The internal length 

cannot be calibrated from standard triaxial test data. For this reason a parametric 

study with various internal lengths between R = 2 and 20 m was performed, in 

order to select the internal length R from back calibration of the experimental results 

on hole failure. Once the internal length is selected, a size effect analysis can be 

performed for failure predictions of holes of various sizes. 

For lateral failure, isotropic, plane-strain and radial loading tests at 3.6, 7.2, 12.5 

and 14.5 12.5 MPa (average) axial stress were simulated and the results were com-

pared with experimental data. In these tests, the hole remains unsupported while 

axial and external radial stresses are applied. In the isotropic tests, the applied axial 

and external radial stresses are the same. In the plane-strain tests, external radial 

stress is applied under zero axial strain. Finally, in the radial-loading test after an 

initial isotropic loading to 3.6 or 7.2 or 12.5 or 14.5 MPa, the external radial stress is 

increased while the axial stress is kept constant. 

Figure 3 shows the bifurcation stresses for various R together with experimental 

failure stresses. The bifurcation point for the smallest R is found immediately after 

the material at the hole begins to soften. As R increases, the external stresses for 

failure increase. The theoretical predictions show that to capture the experimental 

data, R must be between 10 and 15 μm. This is the case for all loading paths leading 

to lateral failure, which means that once R is back calibrated on experimental data 

for one loading path, e.g. isotropic loading, then it can be used to forward predict 

failure at other loading paths. The average grain diameter dg of Red Wildmoor sand-

stone is 107 μm. Thus the ratio of the back-calibrated R to the grain diameter is 

0.09 0.14gR d   . 

 

 

Figure 3: Experimental data and theoretical results for lateral hole failure for various 

loading paths and internal lengths. 
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Figure 4: External radial stress at bifurcation failure vs. bifurcation mode m and 

internal length R for isotropic loading. The minimum in each curve leads to the 

selection of the critical mode mcr corresponding to the least external radial stress. 

 

Figure 4 shows the selection of the critical bifurcation mode mcr for isotropic 

loading where the dependency of the external radial stress for failure with the bifur-

cation mode m and the internal length R is illustrated. Although the actual evolution 

of the critical bifurcation mode requires post-bifurcation analysis, it can be assumed 

that high critical modes of small wavelength would lead to spalling all around the 

hole, whereas low modes would lead to more localized spalling. Experimental and 

numerical evidence show that although localization may initiate under a high mode, 

a lower mode may finally evolve. Indeed experiments show that an initial mode m = 

6 localization evolves to an apparent mode m = 3 failure [Hai93]. At the same time, 

post-bifurcation computations show that an initial mode m = 12 evolves into a single 

shear-band failure zone [Pap92]. The results show that the relation between the mcr 

for lateral hole failure and R is independent of the loading path and that mcr decreas-

es with a power law with R that can be approximate as 

  
0.92

0.074cr im R r


  (21) 

Figure 5 compares, as an example, the simulation results for isotropic and plane 

strain loading with experimental data where the external radial stress is plotted vs. 

the internal and external tangential strains. The internal tangential strain corresponds 

to the normalized (with its radius) hole closure. In addition, the points of hole failure 

for R = 10 μm are indicated. The results compare well with the experimental data up 

to the failure point after which post-failure analysis is required to capture the defor-

mations involved. Theoretical results on the stress profiles along the radius of the 

HC demonstrate that for isotropic loading the axial stress σzz is always the interme-

diate principal stress. Therefore, σzz does not influence plastic yielding since a Mohr-

Coulomb yield surface is employed. However, for plane-strain loading σzz is not 

always the intermediate principal stress but it becomes the least principal stress 

away from the hole. This leads to a higher stress concentration at the hole for plane-

strain and results in earlier hole failure. 
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The value R = 10 m was chosen to construct scale effect diagrams in terms of the 

hole diameter for the various loading configurations. The results are illustrated in 

Figure 6 where the normalized external radial stress is plotted vs. the hole diameter. 

The normalization is done with the external radial stress for failure of the 20-mm 

diameter hole which is considered as the reference hole. The plot includes also the 

scale effect equation [Pap10a] 

 

2 5

1 2
 ,        20 mm

3 3

refF
ref

Fref

D
D

D





 
   

 
 (22) 

 

 

Figure 5: Isotropic and plane-strain loading. Numerical simulations and experi-

mental results for the external radial stress vs. internal tangential strain. The hole 

failure points are indicated. 

 

 

Figure 6: Theoretical predictions of scale effect for lateral hole failure during iso-

tropic, plane-strain and radial loading tests at axial stress 7.2, 12.5 and 14.5 MPa and 

internal length R = 10 μm. 
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that was used to approximate experimental results. In Eq.(22), σF is the isotropic 

failure stress of a hole with diameter D, and Fref the isotropic failure stress of a 

reference hole with diameter Dref = 20 mm. The results show that the scale effect is 

similar for all radial loading paths while a stronger size effect is predicted for the 

plane-strain and the isotropic loading paths. 

3 Folding of elastic media as a bifurcation problem 

The constitutive equations of large strain elasticity theory are utilized to study 

buckling of elastic layered media. These buckling modes can explain the occurrence 

of various periodic structures in geology such as folds. The analysis of the behavior 

of stratified elastic or viscoelastic media under compression is of interest to the 

structural geologist. Biot has presented an analysis of folding of stratified 

sedimentary rock in a series of pioneering papers and in his book ([Bio65] and 

references therein). The particular type of folding mechanism considered in Biot’s 

theory is the spontaneous folding caused by instability under a compressive load 

acting in a direction parallel to the layers. From the geological viewpoint, a purely 

elastic theory is not sufficient to explain folding. Time-dependent phenomena such 

as viscous behavior must be taken into account. Biot [Bio57] developed a general 

theory of folding of a compressed viscoelastic layer embedded in an infinite medium 

of another viscoelastic material. He showed that, in general, there exists a lower and 

a higher critical load between which folding occurs at a finite rate with a dominant 

wavelength. This is the wavelength whose amplitude increases at the fastest rate. An 

experimental verification of Biot’s theory of folding of stratified viscoelastic media 

in compression is presented by Biot et al. [Bio61]. 

3.1 Buckling of a layer under initial stress 

The problem considered here is the non-homogeneous, plane-strain deformation of a 

layer of thickness 2h, due to constant horizontal and vertical compressions σ1 and σ2, 

respectively, as shown in Figure 7. The theory in this analysis is based on incremen-

tal plane-strain deformations superimposed on the large strain uniform compression. 

The problem is formulated in terms of the first Piola-Kirchhoff stress πij with dπij 

being its increment referred to the deformed initially stressed state. In the case of 

constant body forces, the equations of equilibrium for the incremental problem take 

the form , 0ij jd  , where a subscript preceded by a comma denotes partial differ-

entiation and repeated indices are summed. The incremental stress boundary condi-

tions are jij id n d  , where dπi are the components of prescribed traction incre-

ments referred to the initial stressed state and nj are the components of the outward 

unit normal of the boundary. Let dui be the instantaneous incremental displacement 

components in the current configuration. The stress increment dπij is related to the 

Jaumann increments of the cororated Cauchy stress dTij, the initial stress field σij and 

the incremental strain dεij and spin dωij as follows 
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Figure 7: A single layer under initial stress σ1 and σ2. 

 

 ij ij ik kj ik kj ij kkd dT d d d           (23) 

The Jaumann stress increments are related directly to the strain increments 

through constitutive relations for anisotropic materials 

 

11 11 11 12 22

22 21 11 22 22

12 122

dT C d C d

dT C d C d

dT Gd

 

 



 

 



 (24) 

Using Eq.(23) and the constitutive Eq.(24), the equations of equilibrium become 

 
   

   

11 1,11 1,22 12 2,12

21 1,12 2,11 22 2,22

0

0

C du G du C G du

C G du G du C du

 

 

     

     
 (25) 

where  1 2 2    . For the considered non-homogeneous deformation mode, 

the displacement field is assumed to be given in terms of two unknown amplitude 

functions of the dimensionless coordinates 
1x x L , 

2y x L  

 
     

     

1

2

sin ,

cos ,

y

y

du U y x U y Ae

du V y x V y Be









 

 
 (26) 

where L is a reference length associated with the wavelength W and β a 

dimensionless wavenumber. The wavelength W of the deformation mode can be 

written as 2W L  . By substituting the displacement field (26) in the differential 

equations (25) and letting Z   , we obtain a system of two linear homogeneous 

algebraic equations with respect to the integration constants A and B 

 
   

   

2

11 12

2

21 22

0

0

A C G Z B C G Z

A C G Z B G C Z

 

 

           

           

 (27) 

For non-trivial solution in terms of A and B, the determinant of the system of 

equations (27) must vanish. This leads to the following biquadratic equation for Z 

 4 2 0aZ bZ c    (28) 
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where  22a C G   ,    11 22 12 21 12 21b C C C C C G C G        and 

 11c C G   . The four roots of Eq.(28) correspond to four solutions Uk and Vk for 

the displacement field amplitudes. The complete solution for U(y) and V(y) is then 

given as a linear combination of the function base as 

    
4 4

1 1

,k k k k

k k

a U Vy y aU V
 

    (29) 

where ak are integration constants. The base functions Uk and Vk are given explicitly 

in [Pap88]. 

3.2 Eigendisplacements and tractions at layer boundaries 

The incremental displacement amplitudes at the upper (1) and lower (2) boundaries 

of the layer are obtained directly from Eqs.(29) 

 

   

   

1

2

4 4
1

1 1

4 4
2

1 1

,

,

k k k k

k k

k k k k

k k

a U h L V a V h L

a U h L V

U

U a V h L

 

 

 

   

 

 
 (30) 

The boundary tractions i ij jndd   are written through Eqs.(23), and (24) as 

        1 2sin , cosd T y x d S y x
L L

 
      (31) 
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



    
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


 (32) 

where  1 2 2p     and   d dy  . The stress amplitudes S and T at the upper 

(1) and lower (2) boundaries of the layer, in accordance with Eq.(30), are 

 

   

   

1

2

4 4
1

1 1

4 4
2
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,
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 
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 

   

 

 
 (33) 

In matrix form the general solution for the upper  1i   or lower  2i   

boundary displacement and traction amplitudes is written 
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11 2 3 4

21 2 3 4

31 2 3 4

41 2 3 4

i i i ii

i i i ii

i i i ii

i i i ii

aU U U UU

aV V V VV

aS S S SS

aT T T TT

    
    

        
    
         

 (34) 

3.3 Buckling of a layer system—the transfer matrix technique 

Buckling of a layer system can be analyzed and solved numerically using the 

solution for a single layer and the transfer matrix technique [Buf65]. Figure 8 shows 

a system of n layers of different materials and different initial stresses parallel to the 

layer axis with a global coordinate system located at the top layer. This medium is 

obtained by superposing adhering layers, each of which can be viewed individually 

as a single layer. The layers are numbered from 1 to n starting at the top. By 

assuming perfect adherence at the interfaces, the incremental stresses and 

displacements are continuous along the interfaces. Under these conditions, the 

equations for the buckling of the system of layers are derived immediately from the 

results of Section 3.2 provided that all local coordinates are expressed in the global 

coordinate system. From Eq.(34), the amplitude of the incremental stresses and 

displacements for the i
th

 interface of the j
th

 layer can be assembled in matrix form as 

 

 

Figure 8: Multilayered medium under compressive initial stresses. 

 

 

1 2 3 4 1

1 2 3 4 2

1 2 3 4 3

1 2 3 4 4

ij ij ij ij jij
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    
    

        
    
        

   or      ij ij jX F A     (35) 

By requiring continuity of the incremental displacements and tractions at all 

interfaces, the integration constants of every layer are linked to the integration 

constants of the top layer as follows 
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         1 11 2, ,
k kn n k kkA F A F F F F F F

                     
 (36) 

In order to formulate the eigenvalue problem we have to consider boundary 

conditions only at the upper and lower boundary surfaces of the layered medium. As 

an example, the case of zero tractions at the upper boundary surface (i = 1, j = 1) and 

zero displacements at the lower boundary surface (i = n+1, j = n) is considered. 

These boundary conditions can be written in matrix form as 

    1 1 0 , 0n nY A Y A         (37) 

where 1Y    contains the last two rows of 11F    and nY    the first two rows of 

 1n n
F

 
 

. By taking into account Eq.(36), the matrix Eq.(37) can be assembled in a 

homogeneous algebraic system of equations for the integration constants  1A  

 
 

    1 1

1
0 or 0

nY F
A Y A

Y

      
    

 (38) 

The resulting homogeneous system of equations has non-trivial solutions in terms 

of the integration constants involved only if the determinant of the system is zero, 

i.e.   det 0Y  . This provides an equation whose roots gives the corresponding 

eigenvalues. In this equation, we fix the wavenumber β and we consider it as an 

equation for the load. When monotonic loading is assumed, then the lowest loading 

level associated with the least eigenvalue provides the critical buckling load. 

3.4 Buckling of layered half space 

The buckling condition for a homogeneous half-space is independent of the 

wavelength of the considered mode. This is because no length appears in this 

problem and consequently the various modes corresponding to different 

wavelengths cannot be differentiated. The introduction of length leads to the 

selection of a particular buckling mode. An example is the buckling of a layer on top 

of a half-space due to a horizontal homogeneous strain field, as shown in Figure 9a. 

Both media are assumed isotropic and compressible with elastic parameters G, v and 

GL, νL for the half-space and the layer, respectively. Figure 9b presents the results 

for the critical buckling stress. The wave number is given as 2 h W   where h is 

the thickness of the layer and W the wavelength of the deformation field. For the two 

limiting cases of vanishingly short wavelength (β  ) and infinitely large 

wavelength (β  0) the buckling stress corresponds to that of a homogeneous half-

space. For short wavelengths, the layer behaves like a half-space whereas large 

wavelengths cannot ‘see’ the layer. If the layer is stiffer than the half-space then 

there is a dominant buckling mode, the wavelength of which depends on the 
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(a)  

 

(b)  

Figure 9: (a) Buckling of a layer on top of a half space, and (b) critical buckling 

stress as a function of wavenumber for various values 
LG G . 

 

stiffness contrast
LG G . 

For viscoelastic behavior for the layer and the half space there exists a dominant 

wavelength for fastest growth [Pap88]. Figure 10 plots the critical buckling stress as 

a function of wavelength β for various rates of growth and relaxation constant 

0.01Lr r   Maxwell type viscoeleastic materials are elastic for fast deformations (p 

 ) but in slow deformations (p  0) exhibit Newtonian viscosity. In all cases the 

stiffness of the layer is sufficiently higher than that of the half-space and both are 

incompressible, i.e. ν = νL = 0.5. Figure 10 shows that for a given load there exists a 

wavenumber of fastest rate of growth, i.e. highest value of p. The possibility of 

buckling with multiple wavelengths is also possible. If e.g. more than one different 

loads are applied, the dominant wavelength of each load will be present and will be 

superposed. This fact is of great interest in the mechanics of folding and can reveal 

the stress states that the formations have experienced in the past. 

L L L 
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Figure 10: Critical buckling stress of a viscoelastic layer on a viscoelastic half space 

with relaxation constant ratio 0.01Lr r   and rate of growth p. 

4 Axial splitting and spalling 

Axial splitting in uniaxial loading, spalling of a free surface and rock bursting are 

common phenomena in brittle materials, like rock and concrete, under compressive 

stresses parallel to a free surface. A micromechanically-motivated mechanism is 

presented here that views axial splitting and spalling as a result of the interaction 

between surface instabilities and surface parallel Griffith cracks. According to this 

mechanism, surface instabilities in a uniformly stressed half-space, produce second-

ary tensile stresses, which, for material points close to a free surface remain unbal-

anced in the direction normal to the surface. These tensile stresses cause latent, sur-

face parallel cracks to open and thus magnify the effect of diffuse bifurcation. Ten-

sile stress concentrations develop at the crack tips resulting in unstable crack growth 

and finally axial splitting and spalling of the material. 

Unstable crack growth and axial splitting correspond to some critical crack sur-

face density (distributed material damage) which manifests itself in the mean spac-

ing of forming spalls. The fractured material becomes much weaker than the intact 

one due to the lower buckling stress of individual columns. Keeping this model in 

mind, we may consider that rock bursting is the result of buckling of flaked rock 

surfaces, the flaking itself being triggered by surface instabilities. In order to inves-

tigate this mechanism, the buckling problem under plane-strain conditions due to a 

uniform compression of a semi-infinite medium containing surface parallel Griffith 

cracks is considered. Analytical solutions for these type of problems have been pre-

sented by Keer et al. [Kee82], who solved the buckling problem in solids containing 

a periodic array of coplanar cracks and by Nazarenko, who considered a sinlge crack 

[Naz86]. Vardoulakis and Papamichos [Var91] and Papamichos [Pap92] have de-

182 Numerical modeling of bifurcation: Applications

ALERT Doctoral School 2016



veloped a numerical boundary element solution based on the displacement disconti-

nuity method for solving the problems of an arbitrary number and/or geometry of 

surface parallel cracks in elastic, anisotropic media. In the following, the weakening 

of a medium due to the presence of periodic crack arrays is investigated. 

4.1 Buckling of a half-space with surface parallel cracks 

The buckling problem of a half-space containing a single or periodic arrays of 

coplanar cracks is solved using a numerical solution for the eigendisplacements of 

the two crack faces and the free surface. The problem is formulated using the 

boundary element method for crack problems in semi-infinite anisotropic media 

under initial horizontal stress [Var91]. The method was constructed by modifying 

the Displacement Discontinuity Method [Cro1l] to account for the existence of the 

initial stress field. It is based on the analytical solution to the problem of a constant 

displacement discontinuity over a finite line segment in a semi-infinite, anisotropic 

medium. For a line segment, the displacement discontinuity Di is defined as the 

difference in displacement between the two sides of the segment. The formulation 

provides the functions that allow the determination of the displacement and first 

Piola-Kirchhoff stress increments at any point in a half-space due to a displacement 

discontinuity increment Di over the line segment. 

Figure 11 shows the deformed crack shape and the free surface due to buckling of 

a single crack for three values of the ratio h a , where h is the distance of the crack 

from the free surface and α the crack half-length. At each point along the crack, the 

relative displacements between the two faces are the eigendisplacement 

discontinuities of the crack. The two sides of the crack deform by different amounts 

and, as expected, the disturbed region of the free surface localizes with the crack 

approaching the free surface. For a periodic crack array (Figure 12), the infinitely 

extended crack array is approximated with ten 25-element cracks. Such an 

approximation is considered satisfactory since it was found that an increase in the 

number of cracks does not affect significantly the results. Figure 13 presents the 

results where the normalized critical buckling stress G    is plotted as a 

function of the dimensionless depth h L  and the dimensionless crack length L , 

where L is the spacing between the cracks. Poisson’s ratio has the value of 0.3 in all 

calculations. This is the solution for the first bifurcation mode which is 

antisymmetric and corresponds to cracks tending to open and close alternately, as 

shown in Figure 13a. The numerical results of the advanced solution for the 

symmetric mode of all open cracks are shown in Figure 13b. Higher stress is 

required for the all open mode and in fact, the critical stress in this case increases 

with decreasing spacing. 

Once the periodic crack array problem is solved, additional crack arrays can be 

placed in the half-space to investigate the weakening of the medium due to the 

presence of additional crack arrays. The crack arrays were approximated with ten 

20-element cracks. For L = 0.5, h a  between 0.5 and 5 and the lowest buckling 

mode, the second crack array reduces the critical buckling stress by approximately 6 
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Figure 11. Deformed shape of crack and free surface due to buckling of the half-

space for h/α = (a) 0.5, (b) 1, and (c) 3 (boundary element solution, ν = 0.3). 

 

 

Figure 12. Half-space with periodic array of collinear cracks compressed by uniform 

horizontal stress. 
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Figure 13. Critical buckling stress G    of a half-space with a periodic array of 

collinear cracks, for (a) alternate open mode, (b) all open mode (ν = 0.3). 

 

percent, while the third array reduces it by an additional 1.5 percent. This means that 

the buckling load is mainly determined by the cracks closer to the free surface. 

Furthermore, the eigendisplacements at the critical state show that the buckling of 

the half-space affects primarily the crack array closer to the free surface, suggesting 

a progressive spalling behavior that starts close to the free surface and subsequently 

progresses deeper into the material. This spalling advancement was observed exper-

imentally for example in Berea sandstone specimens tested in the surface instability 

detection apparatus [Pap94]. 

5 Conclusions 

A three-dimensional Cosserat non-linear elastic, Mohr-Coulomb elastic-plastic 

model was formulated and calibrated based on generalizations of classical 

continuum models. The model was calibrated on Red Wildmoor sandstone data and 

applied to the bifurcation problem of borehole failure. The Cosserat internal length 

was calibrated on back analysis of borehole failure data from HC tests. Once 

calibrated, it can be used for forward predictions under different loading paths and 
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fluid flows. The lateral borehole failure mode was analyzed. This mode prevails 

when the tangential stress at the borehole is the largest compressive principal stress. 

In elastic, semi-infinite media containing surface parallel Griffith cracks, the 

resistance to crack propagation is diminished as the critical stress for surface 

instability is approached. In particular, the effective stress intensity factor increases 

rapidly near the surface instability condition and therefore we may assume that any 

crack at this stress level will propagate. Furthermore, the critical buckling stress of 

the media under consideration decreases rapidly with increases relative to the depth 

and length of the cracks. This suggests that in the case of a constant far-field stress 

(e.g. load control conditions in a laboratory setting), cracks close to the free surface 

will tend to become unstable once they begin to grow, leading to spalling of the 

surface. For a stable crack growth, a reduction in the value of the far-field stress will 

be necessary (e.g. displacement control conditions). Thus, a material with surface 

parallel cracks could be modeled as a softening material with respect to the crack 

length and spacing. 
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The purpose of this chapter is to provide a review of recent research regarding the 

effects of temperature, pore-pressure, chemical reactions and microstructure on 

strain localization in geomaterials. Examples have been taken in relation with seis-

mic slip and with compaction banding. Strain localization is treated as an instability 

from a homogeneous deformation state.  

1 Introduction 

Although strain localization in the form of shear band formation can occur with 

negative or positive rate of strain hardening, the latter being possible for defor-

mation states close to plane strain [Rud75], softening behavior definitely favors 

shear banding. This softening behavior may correspond to a mechanical degradation 

of the rock properties (microcracking, grain crushing and grain size reduction…) 

[Das11], but various other physical processes can be responsible for it [Reg13]. The 

effect of an infiltrated pore fluid which interacts with a rock mass can lead to a hard-

ening or softening behavior depending on the volumetric response of the rock (dila-

tant or contractant). The effect rapid heating of a saturated geomaterial leads to pore-

fluid pressurization due to the discrepancy between the thermal expansion of water 

and solid grains. Thermal pressurization is a softening mechanism as it results in a 

decrease of the effective mean stress and thus of the shear strength. Chemical reac-

tions such as dissolution/precipitation, mineral transformation at high temperature 

(dehydration of minerals, decomposition of carbonates, …) affect the solid phase of 

the rock, sometimes release a new fluid phase in the system (dehydration reactions) 

and can induce a positive feedback in the progressive mechanical degradation. On 

the other hand, mechanical damage increases the reaction surface between the reac-

tive fluid and the solid and enhances dissolution and further material weakening 

[Hu07a, Hu07b]. 
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A key parameter when studying multi-physics effects on the formation and evolu-

tion of deformation bands is the actual width of the localized zone. Obviously, this 

parameter plays a major role in the energy budget of the system as it controls the 

feedback of the dissipative terms in the energy balance equation. As emphasized by 

[Ric14] narrow deforming zones concentrate the frictional heating, which leads to 

large temperature rises and thus to more rapid weakening. The width of the deform-

ing zone is determined by the various physical processes involved in the weakening 

mechanisms but it also controls the multi-physics couplings which occur during 

dynamic slip. 

It is well known that strain localization analyses performed for rate-independent 

materials within the frame of classical continuum theories lead to infinitesimally 

narrow localized zone. This reflects the ill-posedness of the underlying mathemati-

cal problem and can be traced to the absence of a material length in the constitutive 

equations. Viscous regularization by considering strain rate hardening is commonly 

considered to overcome this problem. Another approach is to resort to continuum 

models with microstructure to describe on a more physical basis the localization 

phenomena. These generalized continua usually contain additional kinematical de-

grees of freedom (Cosserat continuum) and/or higher deformation gradients (higher 

grade continuum).  They introduce material internal lengths and also characteristic 

time scales. The internal length and the micro-inertia introduced from generalized 

continua permit to describe localization phenomena in zones of finite thickness and 

lead to a finite evolution rate of a deformation band like in strain rate dependent 

constitutive laws [Sul11, Vev12, Vev13]. 

In this paper, we review some multi-physics couplings, which enhance strain locali-

zation in geomaterials. The first part of the paper focusses on shear banding, empha-

sizing thermal and chemical effects in relation with shear heating. As mentioned 

above the localization zone thickness can be captured either by considering rate 

dependency of the constitutive law or by resorting to higher order continua that 

possess an internal length. In order to explore the link between the two different 

modeling approaches a comparison between a) rate dependent Cauchy continuum 

and b) rate independent Cosserat continuum is shown for the scaling of the localized 

zone thickness. The comparison is made on the basis of a simplified example in 

order to illustrate the main differences and aspects of each modeling strategy. The 

last part of the paper is focused on compaction band formation in porous materials 

triggered by dissolution as an example of another type of chemo-mechanically in-

duced strain localization. 
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Figure 1: Model of a fault zone as an infinite layer under uniform shear strain rate 
V

D
 . 

2 Thermo-chemo-chemical couplings and stability of 

shear zones 

2.1 Problem statement 

We consider a layer of saturated rock with thickness D deformed in shear at a slip 

rate V (Figure 1). Several investigations have shown that the ultracataclastic gouge 

zones forming the fault core have a much lower permeability (< 10
-19

 m
2
) than that 

in the surrounding damage zone (e.g. [Sul04, Wib02]). Therefore, as fluids and heat 

are trapped inside the slip zone during an earthquake, it is interesting to investigate 

the stability of undrained adiabatic shearing of such a gouge layer. This is done by 

assuming that drainage and heat flux are prohibited at the boundaries of the layer. It 

is also assumed that the normal stress n acting on the layer is constant. 

In this 1D-model the velocity components, u1(x2, t), and u2(x2, t) in the direction 

parallel and normal to the fault respectively depend only on the time since the onset 

of slip and on the position x2 in the direction normal to the band. Inside such a shear-

band the pore pressure pf and the temperature T are assumed to be functions only of 

time t and of the position x2 in the direction normal to the band. 

The governing equations of the system are the balance laws of linear momentum, 

mass and energy. Neglecting inertia effects [Ric06a], mechanical equilibrium leads 

to shear and normal stress which do not depend on x2.  
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The fluid mass balance equation (equation (2)) is the sum of three terms: the diffu-

sion term, the thermal pressurization term and the term corresponding to the effect 

on pore pressure of inelastic porosity change (for example dilatancy). Chemical 

effects and their impact on the localization zone will be discussed later in the paper. 
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In equation (2), chy is the hydraulic diffusivity, * is the storage capacity, pn t  is 

the rate of inelastic porosity change,   */f nn     is the undrained thermal 

pressurization coefficient, where f is the pore fluid thermal expansion coefficient 

and n is the thermal expansion coefficient of the pore volume, and n is the porosity 

of the rock. Typical values for  range from 0.1 to 1MPa/°C [Gha08].  

The energy balance equation (equation (3)) is the sum of two terms: the diffusion 

term and the source term corresponding to the frictional heat. 
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In equation (3), cth is the thermal conductivity, C is the specific heat, 
0

p is the 

plastic work which is assumed to be entirely converted into heat. The shear stress  

is proportional to the effective Terzaghi stress:  0nf p    where f is the fric-

tion coefficient. 

Considering that the layer is homogeneous and uniformly sheared at a constant 

strain rate 0 /V D where V is the imposed slip rate, pore pressure and temperature 

are independent of x2. A closed form solution for their evolution in time has been 

given by Lachenbruch [Lac80, Ric06b, Sul07]:  
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  (4) 

The pore-pressure increases towards the imposed normal stress n  and the tempera-

ture increases towards  0 0 /n fT T p    . In due course of the shear heating 

and fluid pressurization process, the shear strength is reduced towards zero. We 

observe that the length scale L, which controls the shear stress evolution, is the same 

as the one which controls the temperature evolution. 
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Figure 1. Homogeneous layer at 7 km depth ( 

0 0 n210 C, 70MPa, 180MPafT p     ), uniformly sheared at a constant strain 

rate (imposed slip velocity V = 1m/s) under locally undrained and adiabatic condi-

tions. 

2.2 Stability of adiabatic undrained shear 

The stability of the above undrained adiabatic (uniform) solution can be studied by 

performing a linear perturbation analysis. Details of such an analysis are found in 

the paper of [Ric14, see also Sul11]. Note that when performing this stability analy-

sis, spatially-dependent perturbations are considered inside the layer so that heat and 

fluid diffusion is allowed inside the layer, whereas zero heat and fluid fluxes are 

imposed at the boundaries of the layer. If we assume constant friction coefficient, 

this solution is unstable for all wave lengths of the perturbation. Therefore, strain 
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will localize into a zone of zero thickness, which corresponds to the solution of slip 

on a plane given by [Ric06b] for which the temperature rise is 

  01 hy th n fT c c p     . Considering the very low permeability of the 

fault gouge, chy and cth are of the same order of magnitude so that the temperature is 

in that case about twice bigger than the undrained adiabatic uniform solution. As 

mentioned in the introduction, the infinitesimally thin localized zone is reflecting the 

lack of a material length in the model (for example the grain size) that will act as a 

localization limiter. [Ric14] have considered a rate-dependent friction coefficient 

derived from rate-and-state friction (RSF) laws which are commonly used in seis-

mology [Die79],  0 0logf f a    , where a is a strain rate-hardening (or soften-

ing) parameter and it depends on temperature . Under temperature increase, a is not 

monotonous and experimental evidence shows that either thermal softening or ther-

mal hardening takes place [Che92, Sch98]. This coupling is important as it plays a 

direct role on the stability of faults and of course on localization [Ale14, Pou14, 

Vev14]. The choice of the RSF law depends on the available experimental data and 

its mathematical form can lead to differences regarding temperature increase 

[Vev10]. As it will be shown in the next paragraphs, temperature increase and strain 

localization are key factors as far it concerns the interplay between mechanics, heat 

and pore-pressure diffusion and the activation of chemical reactions induced by 

frictional heating.  

Neglecting the direct effect of temperature increase on the RSF law, Rice et al. 

(2014) have obtained that for strain-rate softening (a < 0), the uniform solution of 

undrained adiabatic shearing is unstable for all wave lengths of the perturbation. For 

strain-rate hardening (a > 0), only shear zones with a thickness h smaller than a 

critical value 
 0 0 02

th hy

cr

c ca C
h

f f a




 





can support stable homogeneous defor-

mation. This critical thickness is interpreted as the thickness of the localized shear 

zone and this statement was corroborated by numerical simulation in the post-

localization regime performed by [Pla14]. Interestingly, this expression of the criti-

cal shear zone thickness exhibits two competing processes: Fluid and thermal diffu-

sion and rate-dependent frictional strengthening tend to expand the localized zone, 

while thermal pressurization tends to narrow it. As emphasized above, strain locali-

zation in a narrow zone leads to faster and stronger temperature rise than that pre-

dicted if localization is ignored.  

For representative values of the material parameters, stress and temperature condi-

tions of a fault at a seismogenic depth of 7 km, [Ric14] have obtained typical values 

of few microns to few tens of microns for the thickness of the localized zone. This 

value is comparable to the gouge grain size and therefore it might be important to 

take into account the granular microstructure of the material. This has been proposed 

by Sulem et al. [Sul11] which studied localization in a fluid-saturated material ac-

counting for the motion of individual grains using a Cosserat microstructure. In a 

Cosserat continuum, each material point possesses additional rotational degrees of 
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freedom so that a rolling resistance is attributed to the grains. Note that an internal 

length R related to the grain size of the material is introduced in the formulation of 

constitutive laws for a Cosserat material. A stability analysis of undrained adiabatic 

shearing of an elastoplastic layer with strain hardening and dilatancy has been pro-

posed. It was shown that instability can occur even in the hardening regime of the 

underlying drained stress-strain response if dilatant hardening cannot compensate 

the thermal pressurization of the pore fluid. A remarkable result is that if we do not 

take into account the effect of microstructure and the associated micro-inertia, the 

underlying mathematical problem is ill-posed, i.e. for a hardening modulus lower 

than the critical hardening modulus at instability, the growth coefficient in time of 

the instability is infinite. The complete dynamic analysis for a Cosserat continuum 

shows that the growth coefficient of the instability is always finite and that it de-

pends on the wavelength of the instability mode. The wavelength of the instability 

mode for which the growth coefficient is maximum will evolve faster and it will 

dominate the others. This selected wavelength is depicted in Figure 3. For repre-

sentative values of a fault zone at 7 km depth, it was found that the selected wave 

length is about 200R. The localized zone thickness is half of this value, so that for 

typical values of a grain size of few microns for the fault gouge, this corresponds to 

a shear band thickness of few hundreds of microns which is compatible with field 

observations in fault zones.  

 

 

Figure 2. Wave length selection:  is the wave length of the perturbation normalized 

by the Cosserat internal length R, H
*
 is the strain hardening modulus of the elasto-

plastic model. 

2.3 Chemical weakening and earthquake nucleation 

An interesting situation corresponds to shear localization in a chemically weakening 

material. This case is relevant for understanding the nucleation of intermediate and 
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deep earthquakes within subduction zones.  As discussed by Green [Gre07], deep 

earthquakes have been a paradox since their discovery in the 1920s. The combined 

increase of pressure and temperature with depth precludes brittle failure or frictional 

sliding beyond a few tens of kilometers. Nevertheless, earthquakes still occur in 

subduction zones to 700 km. Growing evidence suggests that the great majority of 

subduction zone earthquakes shallower than 400 km are initiated by breakdown of 

hydrous phases and that deeper ones probably initiate as a shearing instability asso-

ciated with breakdown of metastable olivine to its higher-pressure polymorphs. 

Reaction weakening behavior has been extensively documented in the case of rocks 

containing dehydrating minerals such as gypsum and serpentinite. In the case of 

serpentinite dehydration, the reaction products may be weaker. This is the case for 

the dehydration of lizardite for which the produced ultra-fine grained olivine is 

weaker than the serpentinite aggregates [Rut88]: 

 

2 5 4 10 243 4 3 2 2

olivinelizardite talc

    5 Mg (OH) Mg (OH) 6 MgSi O Si O 9 H OSiO

     

   

   

This leads to a self-lubrication of the fault by the newly formed material. The intrin-

sic reaction-weakening process assumed here is thus an interesting possibility for 

dehydration-induced earthquakes at intermediate depths. Brantut and Sulem [Bra12] 

have assumed a simple evolution law for the friction coefficient f in order to de-

scribe chemical weakening during dehydration: 

  0 0ln /f f a b       (5) 

0f  is a reference friction coefficient for a reference strain rate 0  and a and b are 

positive constitutive parameters. This friction law is similar to the commonly used 

RSF laws where the ‘state’ is identified as the reaction extent  .  

The reaction rate is assumed to be of first order, which accounts for temperature 

dependency following an Arrhenius law and depletion:  

 (1 )exp aE
A

t RT




  
   

  
  (6) 

where A is an pre-exponential factor, Ea is the activation energy of the reaction and 

R is the gas constant. It is shown that due to the endothermic character of the miner-

al decomposition reaction, the temperature is buffered during the reaction to a value 

close to the critical temperature Tc at which the reaction is triggered [Bra11, Sul09]. 

Therefore, the reaction rate can be linearized above Tc: 
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The pore pressure evolution is given by the fluid mass balance [Bra11, Sul09]:   

 

2

2 *

1f f

hy w

f

p p T
c m

t y t t

 

 

    
   

   
  (8) 

where mw is the mass of water that is released due to the reaction per unit of rock 

volume and  is the ratio of pore volume creation to fluid volume release due to the 

dehydration reaction. 

The temperature evolution is given by the energy balance equation. Heat is generat-

ed by dissipation of the frictional energy (shear heating), and is partitioned into 

temperature change and diffusion and reaction enthalpy, which is a heat sink for 

endothermic reactions. Denoting 0m the mass of reacting mineral per unit of total 

rock volume and H  the reaction enthalpy, we obtain [Bra11, Sul09]: 

 
2

02th

T T H
c m

t y C C t

 

 

   
  

  
  (9) 

where   is the applied shear stress on the fault and  is the strain rate. 

The linear stability analysis of the above system of equations has been performed by 

Brantut and Sulem [Bra12] and they have obtained the following expression for the 

critical wavelength (smallest wave length for which the growth coefficient of the 

instability is positive), below which all perturbations vanish in time:  

 
0 0

2ch th
cr

T

cac C

b c


 

 
   (10) 

This value corresponds to the smallest wave length for which the growth coefficient 

of the instability is positive. We observe that it depends only on the thermo-chemical 

parameters and that it is not influenced by the pore pressure effect. 

In order to illustrate this analysis, we use the parameter values given in Table 2. 

They are taken from Brantut & Sulem (2012) for lizardite dehydration of a layer at 

30 km depth, which is sheared at a very low strain rate of 10
-6

 s
-1

. 

It is worth investigating the evolution of the localization zone in a simple case of a 

gouge layer of 5 m thickness. An initial small perturbation of the shear strain field is 

imposed with a wavelength equal to the gouge thickness. According to (10), this 
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wave length is unstable. In particular, the critical wave length given by (10) is 0.12 

m.  

Figure 4a shows the evolution of the shear stress and of the shear strain rate in the 

middle of the localization zone. Figure 4b presents the profile of the shear strain at 

various time instants showing the localization and the de-localization process when 

the reaction is depleted.  Note that in this example, a very low strain rate corre-

sponding to a subducting slab was assumed. For this strain rate and due to partial 

dehydration (the material in the middle is depleted but not in the adjacent zones) 

chemical traveling waves are triggered and travel towards the boundaries of the 

gouge layer. Figure 4c depicts the temperature increase due to shearing in the middle 

of the shear band. It is worth mentioning that after a point the (endothermic) chemi-

cal reaction buffers the temperature rise. Figure 4d shows the evolution of the chem-

ical reaction and the pore pressure increase in the middle of the shear band. 

 

Figure 3. Growth coefficient (Lyapunov exponent) in terms of perturbation wave-

length. The real part is plotted in solid line and the imaginary part in dotted line. 

Black color signifies the mode related to chemical instability and blue the mode 

related to thermal pressurization (Re[s]<0 for this mode). The smallest wave length 

for which s becomes positive is given  

by equation (10). 
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Table 1. Parameter values for lizardite dehydration at a depth of around 30 km 

[Bra12]. 

Quantity Value 

Friction coefficient, 0f  0.6
 

Rate strengthening parameter, a 0.002 

Reaction weakening parameter b 0.5 

Specific heat capacity, C  2.7 MPa°C
-1 

Thermal dependency of the chemical 

     kinetics, Tc   
2.58 × 10

-7
 °C

-1
s

-1 

Depletion dependency of the chemical 

     kinetics,  c  
2.12 × 10

-6
 s

-1
 

Initial shear stress, 
0   240 MPa 

Nominal strain rate, 0   10
-6

 s
-1

 

Thermal pressurization coefficient,    0.5 MPa °C
-1

 

Thermal diffusivity, thc  10
-6

 m
2
 s

-1
 

Hydraulic diffusivity, 
hyc  10

-6
 m

2
 s

-1
 

 

It is worth investigating the evolution of the localization zone in a simple case of a 

gouge layer of 5 m thickness. An initial small perturbation of the shear strain field is 

imposed with a wavelength equal to the gouge thickness. According Figure 3, this 

wave length is unstable. In particular, the critical wave length given by (10) is 0.12 

m (Figure 3).  

Figure 4a shows the evolution of the shear stress and of the shear strain rate in the 

middle of the localization zone. Figure 4b presents the profile of the shear strain at 

various time instants showing the localization and the de-localization process when 

the reaction is depleted.  Note that in this example, a very low strain rate corre-

sponding to a subducting slab was assumed. For this strain rate and due to partial 

dehydration (the material in the middle is depleted but not in the adjacent zones) 

chemical traveling waves are triggered and travel towards the boundaries of the 

gouge layer. Figure 4c depicts the temperature increase due to shearing in the middle 

of the shear band. It is worth mentioning that after a point the (endothermic) chemi-

cal reaction buffers the temperature rise. Figure 4d shows the evolution of the chem-

ical reaction and the pore pressure increase in the middle of the shear band. 
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(a) 

 

(b) 

 

 

(c) 

 

 

(d) 

Figure 4. Strain localization due to chemical softening in a 5 m thick dehydrating 

gouge layer: (a) Shear stress drop in the middle of the shear band and shear strain 

evolution. The system localizes to a narrow band because of dehydration, but then it 

delocalizes due to depletion; (b) Evolution of shear band localization – profile of 

shear strain rate; (c) Temperature and pore pressure increase in the middle of the 

shear band. The chemical reaction buffers temperature rise; (d) Evolution of the 

chemical reaction in the middle of the shear band. At 
0

0.1t  the reaction effects 

become important and the material is rapidly depleted in the middle of the gouge (

1  ) until 
0

0.3t . Due to partial depletion, chemical shock waves are trig-

gered and travel towards the boundaries of the gouge. 
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3  Dissolution weakening and compaction banding  

3.1 Multi-scale modelling of strong chemo-poro-mechanical coupling  

In a recent paper [Ste14], instabilities in the form of compaction bands as triggered 

by chemical degradation of the solid skeleton have been studied. Chemical dissolu-

tion and grain breakage have been considered. The interest of the approach is in the 

strong chemo-poro-mechanical coupling which was considered. As the stresses and 

the deformations evolve, the grains of the material break leading to an increase of 

their specific surface. As the dissolution rate depends upon the area of contact be-

tween the reactive fluid and the minerals, dissolution is accelerated by grain fractur-

ing and grain breakage and chemical softening is further enhanced.  

The effect of chemical dissolution is important in field and in reservoir applications. 

For instance, the experimental results of Xie et al. [Xie11] showed that the chemical 

dissolution of a limestone leads to a significant increase of the porosity (from 23% 

for the intact rock to 27% for the degraded one). According to the same authors, the 

plastic pore collapse threshold is also reduced from about 30 to 20 MPa and the 

chemically degraded materials become more collapsible and more ductile due to the 

increase in porosity and the degradation of the inter-granular cementation. This 

evidence is corroborated by other authors  [e.g. Bus12, Cia14, Hu07c, Hu07a, 

Nov03] for a class of geomaterials and results in a contraction of the elastic domain 

only due to chemical reasons (chemical softening). In parallel, in a saturated porous 

geomaterial, the progressive mechanical damage of the solid skeleton during com-

paction has as a result the increase of the interface area of the reactants (i.e. of the 

solution with the solid) and consequently the acceleration of the dissolution rate of 

the solid phase [Rim80]. Thus, the solid skeleton is degraded more rapidly (mass 

removal because of dissolution), the overall mechanical properties of the system 

diminish (contraction of the elastic domain – chemical softening), deformations 

increase and the solid skeleton is further damaged (intergranular fractures, debond-

ing, breakage of the porous network etc.). Figure 5 schematically shows this positive 

feedback process, whose stability is not guaranteed. Notice that chemical softening 

is central for compaction banding in the absence of other softening mechanisms such 

as mechanical softening. 
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Figure 5. Positive feedback process due to dissolution and solid skeleton damage 

(e.g. intergranular fracturing, breakage of the porous network, matrix cracking, 

grain-matrix debonding etc.) 

A two-scale approach was proposed as the reaction kinetics is considered at the 

micro-scale (grain level), whereas the balance and constitutive equations are written 

at the macro scale i.e. the RVE. Due to the existing heterogeneity of the microstruc-

ture (e.g. different grain sizes and constituents in the RVE) the dissolution rate may 

not be homogeneous over the RVE. The size of the RVE is a finite statistical quanti-

ty that depends upon the geomaterial at hand. The chemical softening rate of the 

yield surface is therefore related to the average, over the RVE, of the reaction rate at 

the grain level. This average procedure naturally introduces a characteristic length 

(size of the RVE). This approach is directly inspired from the development of non-

local continuum theories. For heterogeneous materials, the constitutive law at a 

point of the continuum should involve weighted averages of a state variable over a 

certain neighborhood of that point. This leads to an integral type of constitutive 

equations. Along the same lines of thinking, gradient type constitutive models take 

into account the field in the vicinity of the considered point by enriching the local 

constitutive equations with higher order gradients of the deformation field [Ger73, 

Var95]. As emphasized by [Baž02], resorting to nonlocal continuum appears to be 

an effective means for regularizing boundary value problems with strain softening. 

In our problem, the introduction of this ‘chemical’ characteristic length gives a 

length scale to the problem and naturally leads to a selection of a particular wave 

length when performing a linear stability analysis of the system. Details of the anal-

ysis can be found in the paper of Stefanou & Sulem [Ste14]. We just recall in the 

following the main assumptions and the principal results. 

Micro-scale: 

Solid skeleton 
mechanical 

damage 

Increase of 
effective 

specific area 
of reactants 

Acceleration 
of dissolution 

Chemical 
Softening 
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We consider a dissolution process of the form: 
     3 1 2

solid+solvent solution . For ex-

ample the dissolution/precipitation of quartz in water is described by the following 

chemical equation: 

 2 2 4 4SiO (solid)+2H O(liquid) H SiO (aqueous solution)
  

Another example is the dissolution of calcite with water that is saturated with carbon 

dioxide: 

 
 3 2 3 3 2

CaCO (solid)+H CO (aqueous solution) Ca HCO (aqueous solution)
   

This equation represents a set of consecutive reactions that take place and are re-

sponsible for the dissolution of carbonate rocks [Grg11]. The reaction kinetics is 

written in a simplified manner as: 

 2 2

2

1
eq

w S w
k

t e w

  
  

  
  (11) 

where 2w  is the mass fraction of the dissolution product in the fluid, k 
 is a reaction 

rate coefficient, e  is the void ratio, S  is the specific surface of a single grain (which 

is inversely proportional to the grain size) and 
2

eqw  the mass fraction of dissolution 

product to the fluid mass at chemical equilibrium. It should be emphasized that 

Eq.(11) is written at the microscale and that 
2w , S  and e  represent local quantities, 

which are not necessarily homogeneous over the RVE. Grain crushing is also de-

scribed at the micro-scale. We use here a simple empirical expression for the evolu-

tion of the grain size in terms of the mechanical work input as proposed by Lade et 

al. [Lad96]:  

 0

T

a
D D

a E

 
  

 
  (12) 

where 0D  is the effective grain size of the initial gradation and 
TE  is the total ener-

gy input density, a  is a fitting parameter, which represents the grain crushability. 

Considering that the specific effective surface of a grain S is inversely proportional 

to the grain diameter, it is natural to assume the same type of relationship: 

 0 1 TE
S S

a

 
  

 
  (13) 

Macro-scale: 
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At the macro-scale, the constitutive equations are derived from a modified Cam-

Clay elasto-plastic model for which an associative flow rule is assumed for sake of 

simplicity:  

 2 2 ( ) 0cF p pq M p      (14) 

where p  and q  are respectively the Terzaghi effective mean stress and the shearing 

stress intensity (square root of the second invariant of the deviatoric part of the stress 

tensor). 
cp  is a material parameter (namely the yield stress under isotropic loading) 

which is assumed to decrease from 
0p  (initial reference state) to 

Rp  (residual yield 

stress once the chemical reaction is completed) according to the following law 

 0c R Rp p p p       .   is an exponent that can be experimentally determined for 

the material and the chemical process at hand and 0/sM M   is the ratio of the 

current solid mass over its initial value, which is taken here as a chemical softening 

parameter. 

This chemical softening parameter  can be expressed in terms of the average mass 

fraction of the dissolution product over the RVE 2 2

1

T

M

T V

w w dV
V

  . Assuming that 

 2 2 ,w w z t  (oedometric conditions) is a function that can be expanded into Taylor 

series up to the second order in z: 

 
2

2 2
2 2 2

M

c

w
w w

z


 


 (15) 

where 
1

24 5

REV
c REV  appears as a characteristic internal length and REV  is 

the size of the RVE in z-direction. 

3.2  Compaction banding in oedometric compression 

In the following we refer to the main results obtained in [Ste14] for oedometric 

compaction in a carbonate reservoir at 1.8 km depth because of CO2 injection. In 

Table 2 we present some typical values for the chemo-mechanical parameters of a 

porous carbonate rock. At this depth, we assume that the water pressure is 

18MPafp  and the total vertical stress is 45MPan .  
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Table 2. Indicative material properties of a carbonate grainstone. 

Quantity Value 

Hydraulic diffusivity, 
hyc  10

-3 
m

2 
s

-1 

Grain diameter, 
50

0D  0.2 mm 

Initial effective grain surface area to 

     volume ratio, S  
25 mm

-1
 

Bulk modulus, K  5 GPa 

Shear modulus, G   5 GPa 

Porosity, n   0.25 

CSL slope, M   0.9 

Initial yield stress, 
0p   35 MPa 

Residual yield stress, Rp   30%
0p  

Chemical softening exponent,   2 

Grain crushing parameter, a  1 MPa 

Fluid density, 
f   1 g cm

-3
 

Solid density, s  2.65 g cm
-3

 

Dissolution rate, k


 1.6 10
-10

 m/s 

 

Stefanou and Sulem [Ste14] have derived the instability conditions for which com-

paction bands formation is possible from a Linear Stability Analysis. The details of 

the analysis can be found in the aforementioned paper. In particular, there is a region 

in the q p  plane where compaction band formation is possible. In other words 

homogeneous deformations are unstable and the system bifurcates to non-

homogeneous solutions. Figure 6 shows the instability zone for the chemo-poro-

mechanical parameters of the carbonate grainstone considered in this example.  

Inside the instability region there exists a minimum critical wavelength above which 

perturbations are unstable (positive growth coefficient). This critical wavelength is 

related to the characteristic internal length, c , which was introduced in the previ-

ous paragraph. If 0c    then the system is unstable for any perturbation wave 

length. 
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Figure 6. Instability region (shaded) for compaction bands under oedometric condi-

tions for a carbonate grainstone. The outer envelope (solid line ellipse) represents 

the initial strength of the material. The straight dashed line depicts the linear elastic 

oedometric path. Point A corresponds to the initial stress state at 1.8km depth. The 

inner ellipse (solid line) represents the residual strength of the grainstone after com-

plete dissolution of the rock. The stresses are normalized by the applied vertical 

stress at 1.8 km depth, which is constant. 

Initially we assume that the material is in a state of elastic deformation (Point A) 

under the applied total vertical stress of 45 MPa. At time 0t  , the injection of the 

CO2 solution starts. It is assumed that the CO2 solution is continuously renewed in 

such a way that practically open flow conditions hold (  2 0 0w t   ). In field, CO2 

injection open flow conditions would correspond to a zone outside the gas plume, 

where the formation fluid is saturated with CO2, but is not in chemical equilibrium 

with the rock so that carbonate dissolution occurs continuously (
2 2

eqw w ).  

As a result of CO2 injection, the system is not in chemical equilibrium and dissolu-

tion occurs. Consequently, the material is progressively degraded due to chemical 

softening and the chemical softening parameter decreases from its initial value 

0 1  . When 0.9   the material yields, plastic strains are accumulated and 

solid skeleton damage occurs (Eq.(13)). This phase of deformation under constant 

applied loading (i.e. the overburden) corresponds to the creep behavior that is ob-

served due to CO2 injection [Gue07, Lit09, Rut12].  
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(a) (b) 

  

(c) (d) 

Figure 7. Evolution in time of (a) deformation, (b) the specific surface, (c) the chem-

ical softening parameter and (d) of the stress path during imposed homogeneous 

dissolution of a specimen under oedometric conditions. 

We emphasize that Linear Stability Analysis only gives the conditions for compac-

tion band triggering. However, in order to assess the evolution of the system and the 

gradual strain localization inside the band one has to study the post-bifurcation 

[Sul16]. A numerical simulation is first performed by imposing homogeneous de-

formation. The conditions are oedometric and the numerical analysis starts from 

point A ( 0.9  ). Figure 7 shows the evolution of the total (homogeneous) defor-

mation, of the specific surface, of the chemical softening parameter ζ and the stress 

path followed during combined dissolution and chemical softening. Due to dissolu-

tion, we observe a slow increase of the compressive deformations from 2×10
-3

 to 

5×10
-3

 (creep) and a limited increase of the specific surface of the grains. At the end 

of the simulation, the grainstone is depleted ( 0  ) and no more dissolution is pos-

sible. The situation is different when the unphysical constraint of homogeneous 

deformation is removed.  

The system is now free to develop non-homogeneous deformation and strain locali-

zation in the form of compaction banding can occur. An initial perturbation with a 
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wavelength equal to the height of the sample and amplitude 10
-5

 is imposed (200 

mm). Compaction band formation is possible for this perturbation wavelength only 

when the stress state falls into the unstable zone (Figure 7d). At the beginning of 

CO2 injection the system creeps from point A to point B. No compaction band is 

triggered and the system behaves as in the previous case of homogeneous defor-

mation. Once the stress path crosses the shaded area non-homogeneous defor-

mations start to grow and a compaction band forms. Figure 8 shows the profile of 

the vertical deformation at various times. The deformations localize into a narrow 

band whose thickness depends on the characteristic internal length, c . Here we 

chose 4 mmc   (~20 grains for a typical grain size of 200 µm).  In Figure 9 we 

present the average vertical deformation over the entire sample, the vertical defor-

mation at the peak of the compaction band and the vertical deformation of a point 

far from the localization zone. The vertical deformation at the peak of the compac-

tion band is 14 times larger than the vertical deformation far from it. Figure 10 

shows the stress path of the point at the peak of the compaction band and the stress 

path of a point far from the localization zone. In the beginning the stress paths coin-

cide, but after entering in the instability zone they start to diverge due to compaction 

band formation. 

It is worth emphasizing that compaction band thickness depends on the chosen char-

acteristic length. This is shown by Linear Stability Analysis [Ste14] and it is corrob-

orated numerically by choosing a different characteristic length, 16 mmc   (~80 

grains). Figure 11 shows how a larger characteristic length leads to larger compac-

tion band thickness. On the contrary, in the absence of internal length ( 0c  ) the 

compaction band thickness is zero. 

 

 

Figure 8.  Profile of the vertical deformation at various times and for 4 mmc   (20 

grains). The deformations localize into a narrow band, i.e. compaction band. 
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Figure 9. Vertical deformation in function of time: at the peak of the compaction 

band, average over the entire sample and at a point far from the localization zone. 

 

 

Figure 10. Stress paths of the point at the peak of the compaction band (ABC2) and 

of a point far from the localization zone (ABC1). The dashed line corresponds to the 

stress path of the homogeneous deformation (see Figure 7d). 

 

208 Multiphysics couplings and strain localization in geomaterials

ALERT Doctoral School 2016



 

Figure 11. Profile of the vertical deformation at various times for 16mmc   (80 

grains). The deformations localize into a band which is thicker than in the case of 

4mmc   (20 grains, see Figure 8). 

5  Conclusions 

We have reviewed in this paper some recent work on the effect of temperature, pore 

pressure and chemical reactions on strain localization in geomaterials. Examples 

have been taken in relation with seismic slip and with compaction banding. Strain 

localization is triggered by the softening of the material strength. Weakening mech-

anisms can be of various origins: mechanical (e.g. microcracking), hydraulic (e.g. 

pore fluid pressurization), thermal (e.g. shear heating), chemical (e.g. dissolution).  

We have presented the framework of localized failure in earthquake rupture as the 

result of instability of the deformation process. It was shown that it is necessary to 

introduce a localization limiter in order to obtain a finite thickness for the localized 

shear zone. Rate independent constitutive models for a classical (Cauchy) continu-

um lead to an infinitesimally thin zone. On the contrary, a rate dependent friction 

law or a Cosserat framework lead to a finite value for the critical wave length of the 

perturbation, above which, homogeneous deformation is unstable.  

We have also analyzed compaction banding induced by dissolution. A strong 

chemo-mechanical coupling is considered: the material softens in due course of 

dissolution whereas the dissolution process accelerates with increasing damage 

(because of the increase of the specific surface of the grain and thus of the area of 

contact between the reactive fluid and the minerals). A two-scale approach has been 

proposed in order to account for the heterogeneity of the dissolution process over the 

RVE. This naturally introduces a ‘chemical’ material length related to the non-local 

character of the relation between the softening rate of the yield surface (at the mac-

ro-scale) and the dissolution process (at the grain scale). Here again, the introduction 
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of this material length is crucial to limit the compaction band thickness to a finite 

value. Post-localization robust computations have been performed to simulate the 

progressive evolution of compaction band under open flow conditions. 

Some challenging open questions remain such as the modelling of coupled thermo-

chemo-hydro-mechanical phenomena with evolution of the microstructure of the 

material through various mechanical and chemical processes. This would require 

methods for cross scale couplings, advanced homogenization techniques and en-

riched continua models. 
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Thermo-poro-mechanics of chemically active
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Shear zones in outcrops and core drillings on active faults commonly reveal two scales
of localization, with centimeter to tens of meters thick deformation zones embedding
much narrower zones of mm- to cm-scale. The narrow zones are often attributed to
some form of fast instability such as earthquakes or slow slip events. Surprisingly, the
double localisation phenomenon seem to be independent of the mode of failure, as it is
observed in brittle cataclastic fault zones as well as ductile mylonitic shear zones. In
both a very thin layer of chemically altered, ultra fine grained ultracataclasite or ul-
tramylonite is noted. We present an extension to the classical solid mechanical theory
where both length scales emerge as part of the same evolutionary process of shearing
the host rock. We highlight the important role of any type of solid-fluid phase transi-
tions that govern the second degree localisation process in the core of the shear zone.
In both brittle and ductile shear zones chemistry stops the localisation process caused
by a multiphysics feedback loop leading to an unstable slip. The microstructural evo-
lutionary processes govern the time-scale of the transition between slow background
shear and fast, intermittent instabilities in the fault zone core. The fast cataclastic
fragmentation processes are limiting the rates of forming the ultracataclasites in the
brittle domain, while the slow dynamic recrystallisation prolongs the transition to ul-
tramylonites into a slow slip instability in the ductile realm.

1 Introduction

The geologist in the field is often confronted with two scales of localisation when
investigating shear or fault zones[CC98, BZS03]. Brittle fault zones show striking
examples of extremely localized slip events, occurring within a thin shear zone, <
1 − 5 mm thick, called the principal slipping zone (PSZ) [Sib03]. This localized
PSZ lies within a finely granulated fault zone of typically tens to hundreds millimeter
thickness. These fault zones are either cataclastic in the brittle regime or mylonitic in
the ductile regime.
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Exhumed field examples for the morphology of these brittle fault zones can be found
in the North Branch San Gabriel fault [CEB93], the Punchbowl fault of the San An-
dreas system in southern California [CC98], the Median Tectonic Line fault in Japan
[WS03], and in the Hanaore fault in southwest Japan [NS05]. Active faults have been
intersected in wells in e.g. the Aigion system, central Greece, where the fault zone
of clay size particles consists of finely crushed radiolarites, extended to about 1 m.
This localized zone of deformation was found to be intercepted by a “fresh”distinct
slip surface of sub-millimiter size [SLV07, CDMB04]. Other wells that have been
specifically designed to intersect active faults are the completed San Andreas Fault
project [HvDS+11] and the ongoing Alpine Fault drilling project [Tow09]. The San
Andreas Fault project revealed a fault zone of 1-2.5 m width at 3km depth, with several
ultralocalized PSZ’s.

Similarly, in the ductile field the dynamic recrystalization of the matrix minerals is
telltale of crystal plastic or diffusion creep, forming shear zones of vast thickness
interrupted by ultralocalized anastomosing patterns of extreme grain size reduction
in the ultramylonite. Exhumed thrusts in creeping carbonates around the world like
the Naukluft thrust in Namibia [RFMM12], the McConnell thrust in Alberta Canada
[KL97] or the Glarus Thrust in Switzerland [HHp+08], all present a common structure
of a meter-wide (1−5 meters) zone which accomodates several thin (mm-cm at most)
veins of ultralocalized deformation and chemical alteration.

The brittle field features micro-mechanisms, governed by grain breakage, rolling,
cleavage and brittle fragmentation processes. The ductile field features dislocation,
diffusion and dissolution mechanism. Although these mechanisms are completely
different they surprisingly exhibit he same dual pattern of localisation: a broad meter
wide shear zone with ultra localised PSZ’s in its middle.

Each of the different phenomena can be explained independently but to date no com-
prehensive theory has been suggested that can investigate the reason for the double
degree localisation process and the potential commonalities between brittle and duc-
tile localisation. This is because the dynamic process of the extreme localisation and
the quasi static response of the background flow of the shear zone are treated as two
different fundamental theories. The former instability is described in Solid Mechanics
and the latter flow in Fluid Dynamics.

While Solid Mechanics is capable of accurately describing the conditions for failure it
does not emphasise the long term post-failure behaviour. This is due to the nature of
the solid materials that maintain a high degree of structural integrity after failure and
are not significantly affected by the elapsed time. The consequence of this is that a
quasi static approach is preferred thus making it possible to cast the weak rate effects
into approximate laboratory determined hardening laws.

Fluid Dynamics on the opposite does not have the concept of failure, it knows nothing
about the processes that happen prior to failure and is totally concerned with the de-
scription of the rate of flow of the material under an applied stress. Since most mantle
convection codes are based on the fluid dynamical approach, the geophysical commu-
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nity has over the recent years expended a lot of effort into incorporating the theory of
Solid Mechanics.

The fact that both theories apply to geology has been universally acknowledged and
the after dinner contribution of Reiner on the ’Deborah Number” [Rei64] is well worth
reading. The number is defined as the ratio of the stress relaxation time over the time
of observation. Reiner’s quote ”the mountains flowed before the lord” implies that
given enough time one may smoothly transition from one to the other theory. This can
be easily conceptionalized in a Newtonian (linear viscous) viscoelastic framework,
however, the inclusion of non-linear temperature dependence of the creep processes
gave rise to the Time-Temperature Superposition (TTS) in polymer sciences [TA45].
The TTS principle implies that the temperature dependent behaviour of materials can
be substituted by appropriate experiments at different time-scales for a reference tem-
perature. It is thereby assumed that the time evolution described in the temperature
equation is the only time-scale relevant for the long term mechanical behaviour of
solids. This simple concept allows us to directly extend it for the nonlinear viscous be-
haviour of solids within a single theoretical framework incorporating elasticity, plastic
failure and viscous post failure evolution.

In the present work we summarise a theory that couples the solid and fluid-like be-
haviour. This theory must be able to provide the framework for modeling both the
formation of faults (refer, for more in depth reading, to [RLVP+13a, RLVP+13b] )
and their post-failure evolution. We show that the formation and post failure evolu-
tion of faults depend strongly on the coupled multiphysical effects affecting pressure,
temperature and chemical conditions. We thus aim at providing in this paper a com-
prehensive guide through the energetics of faults and explain how they apply to the
different types of failure.

2 Time-independent formation of shear zones from Solid
Mechanics

The theory describing the onset of localized failure from uniform deformation has
been a direct extension of the classic Mohr’s theory of the strength of materials ,
and is applied to geomaterials using the so-called Thomas - Hill - Mandel shear-band
model [Hil62, Man66], which was introduced in the early 60s. A seminal paper was
contributed by Rudnicki and Rice [RJ75]. More recently, the mathematical formu-
lation of bifurcation and post-bifurcation phenomena and related instabilities were
summarized in [VS95] to form the basis of an improved continuum theory of failure
of geomaterials.

This theory defines failure as stationary elastic wave and does not consider time evo-
lution as a degree of freedom. While velocity dependent solutions are sought, they
are independent of their evolution in true time. This is known as quasi-static deforma-
tion. The fundamental stress and strain solutions therefore degenerate into a geometric
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problem where failure lines appear with a finite width d.

These concepts of shear banding as material bifurcation of an elasto-plastic skeleton
have led to the identification of a material length scale defining the width of shear
bands. The critical stress, as well as the orientation and the thickness of the localized
shear failure planes (shear zones) are calculated through the eigenvalues of the elasto-
plastic stiffness modulus Cepijkl of the material [RJ75] obeying a rate-independent rhe-
ology, σ̇′ij = Cepijklε̇kl (the prime denoting effective stress). Within the framework of
the solid mechanical instabilities the shear (fault) zone thickness emerges as a solution
depending on the microstructure [MV87, PV11].

This rate-independent regime is typically used as an adequate descripion of brittle pro-
cesses, thus placing the formation of the shear zones (onset of localization) near the
maximum deviatoric stress [RJ75]. For example, in linear elastic fracture mechanics
brittle fracture occurs without thermal activation when a critical stress level is reached
to split the bonds. At a critical energy threshold an elastodynamic fast time scale in-
stability ensues where a variety of dissipative processes kick in such as grain/particle
rotations which release heat in extremely fast timescales. The fast time scale instabil-
ity simplifies the processes as temperature and fluids do not have time to diffuse. This
regime is called undrained-adiabatic and is characterising extremely fast co-seismic
slip [Ric06, SSV11] of brittle failure events.

Within this brittle, solid mechanical framework recent studies [SSV11, VSS12, VSS13]
derived different levels of localisation corresponding to different energy (temperature)
regimes. This result is a direct generalisation of the extension of the visco-elastic
Deborah number concept to different temperatures using the time temperature super-
position principle [TA45] for elasto-plastic media. This approach is generalising the
concept of visco-elastic relaxation experiment at different temperatures to that of non-
linear visco-elasto-plastic solutions where quasi static solutions are sought for differ-
ent temperatures.

In order to so we first freeze time by adopting classical, rate-independent, elasto-
plastic theory for a fault zone material incorporating chemical, hydraulic and thermal
sensitivity. In the brittle field these fault zones are characterised by a damage zone
surrounding the fault zone with an embedded PSZ as shown in Fig. 1 (a). In the
brittle crust the width of this hierarchical damage zone can be up to 3-5 km wide
[BZS03, ABZ12], containing in principle multiple localization zones [FLR03]. In
order to keep the mathematical model tractable, we restrict the present work to the
study of a single fault zone.

We therefore calculate the extent (thickness) of the brittle fault zone at different tem-
perature regimes, marked by: (1) the temperature inferred from geothermal consider-
ation for the boundary of the fault zone, (2) the activation temperature of the dominant
chemical reaction observed in the PSZ. The details of the approach can be found in
[SSV11, VSS12, VSS13] and the results are summarised in Figure 1 (b) and (c).
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2.1 Shear Zone Thickness at Boundary Temperature Conditions

The general solution for a quasi static shear zone considers the average of the back-
ground particle size d50, the fluid pressure and the dominant chemical reaction at a
given temperature. Both fluid pressure and reaction rate are strongly affected by the
temperature. At ambient geothermal temperatures of the shear zone the chemical re-
action is inactive and the thickness of the shear zone is predominantly controlled by
the thermal-elastic pressurisation of the poro-elastic skeleton (Fig. 1 (b)), character-
ized by the pressurization coefficient Λ =

αf−αs
Ks+Kf

(MPa/K). In this expression, α
is the thermal expansion coefficient and K the compressibility, with subscripts s, f
denoting solid and fluid phases, respectively.

The solid mechanical thickness of the shear zone can be calculated directly as function
of the average particle size d50, and the thermal pressurisation Λ as well as a multiplier
C representing the elasto-plastic material:

d

d50
=

√
C

Λ
(1)

For a Drucker-Prager, Cosserat material it was shown in [VSS13] that C = 17.5 ·
103KMPa−1. For typical values of Λ between 10−4 (MPa/K) [CZV11] and 1 (MPa/K)
[Ric06], with d50 of the order of 1 mm, the shear zone width ranges between 0.1 and
13 meters.

2.2 Shear Zone Thickness at Elevated Temperature

The effect of chemical reaction can be incorporated by considering the reaction rate
to follow Arrhenius kinetics. In this framework the reaction rate depends on the ac-
tivation enthalpy QF and the reaction rate frequency kF . The reaction is activated at
elevated temperatures, near the activation temperature of the reaction at given pressure
conditions. At these temperature conditions, and considering calcite decomposition as
a typical reaction for a carbonate host rock [FNB+08, SF09], the thickness of the PSZ
is several orders of magnitude smaller than the low temperature shear zone as shown
in Fig. 1 (c).

This result is reconciling field observations from two different temperature regimes
but has no predictive power on how these temperatures may have been achieved. The
traditional concept of TTS is not extendable to obtain extended solution for non-linear
solids. We therefore need a non-linear superposition that allows fault zone evolu-
tion through time. The non-linear concept in this work is introduced by a Taylor
expansion of the plastic strain rate, accounting for higher-order terms describing the
non-linearities.

In Geomechanics several studies have been devoted to the thickness of shear bands
in soils. Under purely mechanical effects the thickness of the initial shear band (with
thickness D in Figure 1) in a granular medium is around 16d50 with d50 the average
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(50% weight) grain diameter [MV87]. This zone appears to be too wide to be consid-
ered as the PSZ [Ric06]. In principle the PSZ represents a very fine shear localiza-
tion, consisting of ultrafine particles that have usually undergone mechano-chemical
degradation (gelification, decarbonation and dehydration reactions, melting, as thor-
oughly discussed by [THH+11]). Therefore, the initial mechanism such as the shear
band formation from homogenous deformation [MV87] is a consequence of the solid
mechanical failure while the formation of PSZ’s may be considered an effect of the
fluid-like deformation following the onset of the initial structure.

Such post-failure behaviour may for instance be significantly influenced by the pres-
ence of fluids interacting with the rock, hence inducing coupled effects including
shear heating and pore fluid pressurization. These mechanisms are therefore expected
to control the strength during fault slip [Sib73, Lac80, WS05] and the weakening
effect displayed in catastrophic landslides [Var2a, VVD07, LA07, BE08, GAA10].
Thermo-poro-mechanical couplings due to shear heating [SJP05, Ric06] can be also
associated to chemical effects such as dehydration of minerals or decomposition of
carbonates, theoretically studied recently by [BSCS10, BSS11, SF09, VAV10] and re-
ported to take place in real faults [Hea07] and experiments at laboratory conditions
[HSH+07, FDHS10, BHS+11, PHM+11, CVTM13]

3 Time-dependent evolution of shear zones

To this end, we assume a smooth function of the effective stress, temperature T and
additional internal variables ξ, expressing the constitutive behaviour of the material

ε̇pij = f(σ′ij , T, ξ) (2)

The temperature and ξ obey their own evolution laws, namely the energy balance for
T and experimentally deduced evolution laws for ξ. By expanding Eq. (2) around the
effective yield stress σ′Y we obtain

ε̇pij = f ′
(
σ̄ij
σ′n

)
+
∑

m≥2

f (m)

(
σ̄ij
σ′n

)m
(3)

where σ̄ij = σ′ij − σY , σ′n a reference stress and f (m) = 1
m!

∣∣∣∣
dmf(σ′

ij ,T,ξ)

dσ
′m
ij

∣∣∣∣
σ′
ij=σ

′
Y

.

The first order of the Taylor expansion corresponds to the time independent solid
mechanical regime presented earlier and describes the formation of the fault near ini-
tial yield. Once the fault has been formed after initial yield it continues to deform
plastically (irreversible deformation) upon continuation of loading. This restricts our
modelling efforts to the behaviour of the material inside the solid mechanical shear
zone obtained from the first order expansion. Therefore, by considering explicitly the
rate sensitivity emerging from the higher order terms of the expansion we study the
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Figure 1: (a) Conceptual model of the internal structure of a fault described by two
scales: the Principal Slip Zone (PSZ) in the centre surrounded by the fault zone. (b)
using the geothermal temperature as a thermal condition for the boundary of the fault
zone we obtain the thickness of the fault zone as a function of its internal structure
(average particle size) and the thermal pressurisation. (c) Using the higher temperature
required for chemical reactions as recorded in the PSZ a much length scale down to 3
times the average grain/particle size is obtained.

Veveakis 221

ALERT Doctoral School 2016



non-linear (fluid-like) evolution of the mechanisms inside the solid mechanical fault
zone solution.

The higher order terms of Eq. (3) give a natural extension of the classical TTS in
the nonlinear visco-plastic space. If the solid mechanical yield is considered as a
large scale reference state of our model we can describe the higher order terms in the
nonlinear fluid dynamic space by the so-called overstress σ̄ij = σ′ij − σ′Y , defined as
the stress that follows the evolution post the initial yield point [Per66], hence σ̄ij > 0
is always satisfied. The rate of plastic strain is therefore expressed as

ε̇pij =
∑

m

f (m)

(
σ̄′ij
σ′n

)m
when σ̄ij > 0 (4)

where f (m) has now dimensions of (s)−1, being thus a reference strain rate.

In this sense the nonlinear TTS expresses a straight forward extension of the linear
TTS with the difference that the time scale now plays an explicit role. In the classical
TTS the time scale is simply derived from relaxation experiments returning the sys-
tem near to its equilibrium whereas in the nonlinear TTS the system is always driven
far from equilibrium. In the nonlinear framework the relaxation experiments there-
fore must be replaced by far from equilibrium energy considerations which define the
time scales over which the rate of processes exchange energy inside the fault zone
[RLYF09].

3.1 Energy considerations

We introduce the Helmholtz free energy ψ, being a function of the elastic strain, tem-
perature and the internal variables ξ. The energy balance equation, together with the
second law of thermodynamics and Fourier’s law of diffusion provide the local form
of the entropy production equation [RRRH00, RLYF09]:

∂T

∂t
+ vmk

∂T

∂xk
= cth

∂2T

∂x2
k

+
qe

(ρC)
+

Φm
(ρC)

+
L

(ρC)
(5)

where vmk is the barycentric velocity of the system, cth = kth
(ρC) is the thermal diffusion

coefficient of the mixture (usually depending weakly on temperature and strongly on
the microstructure, here considered constant), C = −T ∂2ψ

∂T 2 is the specific heat ca-

pacity of the mixture under constant volume, qe = ρmT
∂2ψ

∂T∂εeij
ε̇eij is the thermoelastic

rate of heating. Note that in the framework of solid mechanics the advective terms are
neglected, thus vmk = 0.

The term L = ρmT
∂2ψ
∂T∂ξ ξ̇ = ∆h r represents the latent energy produced or absorbed

during a higher order energy transition (∆h is the enthalpy of the energy transition
and r its rate). This includes any microstructural changes such as grain size reduction
and damage in the case that the state variable is a grain size or a damage parameter
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[LBZ14b, LBZ14a], respectively. In the case where the state variable refers to the
chemical constituents it corresponds to the well known latent heat of a phase change.
Finally Φmis the local dissipation, i.e. the mechanical power that is converted into
heat in the system. In generalised thermodynamics the dissipation is defined by the
product of a thermodynamic force times a thermodynamic flux. In mechanics the
thermodynamics force is the stress σ′ij and the thermodynamic flux is the plastic strain
rate ε̇pij . In the generalised framework, when additional state variables/processes are
considered the force becomes a generalised force such as a damage force Eξ and the
thermodynamic flux is the rate of change of the state variable ξ̇.

Φm = σ′ij ε̇
p
ij − Eξ ξ̇ = χσ′ij ε̇

p
ij . (6)

with Eξ = ρm
∂ψ
∂ξ the energy dual of the internal variable ξ. The Taylor-Quinney ratio

χ expresses the amount of the mechanical energy converted into heat [TQ34], and
is in principle a history dependent quantity rather than a constant (0 < χ < 1). Its
importance is discussed in the following section.

3.2 The Taylor-Quinney coefficient

The Taylor-Quinney coefficient is a function of the elastic strain, the temperature and
the internal variables:

χ = χ(εeij , ξ, T ) = 1− Eξ ξ̇

σ′ij ε̇
p
ij

. (7)

The Taylor-Quinney coefficient is unity if all deformation work is converted into heat.
For values smaller than unity and larger than zero it describes the portion of defor-
mation work that is stored in microstructure. The coefficient can be derived through
thermographic deformation experiments [RRRH00]. The Taylor-Quinney coefficient
as derived from thermography often starts at initial yield being close to zero and pro-
gressively evolves in the transient deformation regime towards a steady state value
of 0.9 for most materials [CB92]. Its evolution between these two values is there-
fore prescribed by the development of the internal state variables. As such it has a
fundamental meaning for discriminating deformation mechanisms.

If the dissipation process is for instance a rapid fracture the evolution time of the
Taylor-Quinney is extremely fast and obtained from the bond energy between the co-
valent or electronic bonds of the atoms. This equates macroscopically to an elastic
interaction potential. In linear elastic fracture mechanics brittle fracture occurs at ex-
plosive timescales (of the order of seconds). The Taylor-Quinney coefficient prior to
fracture is zero as all mechanical work is stored elastic deformation. At the critical
threshold an elastodynamic fast time scale instability ensues where a variety of dissi-
pative processes kick in such as grain/particle rotations which release heat therefore
increasing the Taylor Quinney coefficient. This is the typical mechanism for brittle
fracture.
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Similarly in ductile deformation processes the Taylor-Quinney coefficient is zero at
initial yield, however, in contrast to brittle deformation the failure is thermally ac-
tivated. A series of micro-mechanical processes such as dislocation and diffusion
mechanisms kick in that feature a time scale that is relatively slow compared to the
elastodynamic time scale. The thermal activation is often described by an Arrhenius
temperature activation. This rate-dependent failure mechanism is known as ductile (or
creep) fracture.

Φm = Φ0 χ(ξ)

(
σ̄ij
σ′n

)m+1

e−
T0
T (8)

where Φ0 = σ′nε̇0 is the reference dissipation, σ′n is a reference stress value and
T0 = Qd/R the thermal sensitivity (activation temperature) of dissipation.

3.3 Chemical reactions

From the analysis of the brittle regime (Section 2) we obtained that chemical reactions
have a critical role in the system, defining the ultimate width of localization (the PSZ
thickness). In this work we will emphasize on fluid release reactions, due to their
fundamental importance in earth systems. Fluid-release reactions occur when either
a hydrous mineral such as a clay mineral, serpentinite, mica, gypsum etc. looses its
water at a critical activation enthalpy or when a mineral that is made of fluid phase
and a solid constituent breaks down such as carbonate breaking to lime plus carbon
dioxide upon critical activation enthalpy [FNB+08, SF09].

We treat these shear zone minerals as generalized solids characterised by the bonded
chemical speciesA andB forming the solid compositeAB. We assumeB to represent
fluid species filling the porous matrix ofAB at initial conditions. At high temperatures
the solid AB breaks down, producing excess B fluid, and increasing the fluid pore
pressure through a general fluid-release reaction of the form ν1AB(s) ⇀↽ ν2A(s) +
ν3B(f).

The kinetics of this reaction are assumed to obey the standard Arrhenius dependency
on temperature (see appendix A). Following these considerations, the rates of the
forward (rF ) and reverse (rR) first order reactions (and for ν1 = ν2 = ν3 = 1) can be
calculated to be

rF =
ρAB
MAB

(1− φ)(1− s)kF e−QF /RT (9)

rR =
ρAρB
MAMB

(1− φ)s∆φchemkRe
−QR/RT

The total reaction rate is subsequently

r =

[
(1− s)− s∆φchem

ρAρB
ρ2
AB

M2
AB

MAMB
K−1
c e∆h/RT

]
(1− φ)ρABkF e

−QF /RT

(10)
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where Kc = kF /kR and ∆h = QR − QF . In these expressions kF , kR, QF , QR
are the pre-exponential factors and activation enthalpies of the forward and reverse
reaction, respectively and Mi and ρi is the molar mass and density of the i−th con-
stituent. The porosity φ consists of an initial value φ0 and the new interconnected
pore volume created from the reaction ∆φchem, φ = φ0 + ∆φchem. The partial solid
ratio s is the volume ratio of the produced solidA in the solid matrix. The expressions
for the dependency of φ and s on the reaction kinetics are given in [APV14] and are
summarized here in appendix A. This formulation is essentially a damage mechanics
formulation with porosity being the damage parameter being controlled by the physics
of the chemical reactions.

4 Post failure evolution of a shear zone

We focus on the post failure evolution of a shear zone with thickness d, formed by
material bifurcation (Fig. 2). Due to the small thickness of the shear zone compared
to the thickness of the overburden, its momentum balance prescribes a constant stress
profile across the shear zone, thus σyx = τn(t) and σyy = σn(t) [Ric06, VAV10].
In addition, in the presence of a fluid, the stress can be decomposed according to
Terzaghi’s principle [VS95] to σ′ij = σij + pfδij , with δij the Kronecker’s delta
and pf = pn + ∆p the pore fluid pressure, consisting of a hydrostatic part pn at the
boundary and the excess pore pressure ∆p. The final system of equations is obtained
once the energy equation is coupled with the mass balance equation [VAV10, APV14,
VPA14, VRL14]:

∂∆p?

∂t?
=

∂

∂y?

[
1

Le

∂∆p?

∂y?

]
+ Λ

Tc
σ̄′n

∂θ

∂t?
+ (1− φ)(1− s)µre

Arθ
1+θ (11)

∂θ

∂t?
=

∂2θ

∂y?2
+ δ

[
Gr (1−∆p?)

m
e
aAr
1+θ − (1− φ)(1− s) + (1− φ)s∆φchemηK

−1
c e

xAr
1+θ

]
e
Arθ
1+θ

where the fields were normalised with the help of a reference temperature Tc:

t? =
cth

(d/2)2
t, y? =

y

d/2
, θ =

T − Tc
Tc

, ∆p? =
∆p

σ̄′n
(12)

The kinetics of the reactions are normalised using the Arrhenius scaling

Ar =
QF
RTc

, a = 1− Qd
QF

, x = 1− QR
QF

(13)
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The remaining dimensionless quantities appearing in the system (11) are defined as

δ =
|∆h|(d/2)2

kthTc
kF ρABe

−Ar (14)

η =
ρAρB
ρ2
AB

M2
AB

MAMB

µr =

(
ρAB
ρB

MB

MAB

)
(d/2)2

cthσ̄′n

kF
(βf + βs)

e−Ar

Le =
cthµf (βf + βs)

k

Gr =
χ(ξ)Φ0

kF |∆h|(ρAB/MAB)

where kth = cth(ρC) the thermal conductivity of the system. The system of Eqs.
(11) is fully described when the 8 dimensionless numbers (a, x, µr, Le, δ, Gr, Kc,
and the boundary temperature θb since Ar is implicitly considered in these groups)
are determined. However, the system has a much lower dimensionality which can be
revealed through a comprehensive analysis of its steady state and transient responses.
These analyses has been presented in [APV14, VPA14, PVRLY14], identifying the
dominant parameters of the system. Of critical importance is the Gruntfest number
Gr, as it incorporates the energetics of the microstructure through the Taylor-Quinney
coefficient, as well as the mechanical loading and the characteristics of the chemical
reaction. High values of Gr correspond to a regime where the mechanical input is
sufficient to trigger the chemical reaction. Due to its fundamental nature, Gr will be
treated as a bifurcation parameter.

The post-failure evolution of the shear zone is summarized in Fig. 3. The first panel
(a) illustrates the fundamental three phase stability S-curve typical to all systems of
the generalized type discussed above (Eq. 11) [YS77]. The first phase is illustrated
in details in panel (b) showing a steady state creep solution acting as a global stable
material response without instabilities. The panel (c) is the solution for the phase of
elevated Gruntfest numbers but below the critical point B of Fig. 3 (a). For any initial
conditions below line BC of (a) the system relaxes back to the stable branch AB. For
any initial condition above line BC of (a) the system features a solitary oscillation.
Panel (d) of Fig. 3 illustrates the behaviour in domain III where a stable oscillator
emerges. This stable oscillator is self-sustained and has a fundamental role in the post-
failure evolution of shear zones. This area, where Gr > GrB , is the domain where
localisation of dissipation occurs owing to critical energy transitions. This means that
the latent energy term L of Eq. 5 is triggered and energy is released. This domain
does not depend on the exact micro mechanism, as shown in [VAV10], but describes
a generalised material instability where the changes of the state variable form the
localisation phenomenon. The state variable can be for instance a grain size, a damage
or porosity change as discussed in this study.

Alevizos et al. [APV14] provided asymptotic criteria for the area of oscillations to be
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Figure 2: (a) Sketch of the continuum mechanical concept of shear failure as a material
bifurcation [RJ75]. At a critical stress ratio of the original stresses (in the coordinate
system x1−x2) a conjugate pair of shear zones emerge, having a thickness d and dip-
ping at angles±θ thereby defining the rotated coordinate system of failure, x−y. For
visual purposes only the shear zone dipping at θ is shown here. (b) Processes inside
the shear zone of (a). The loading conditions and the filter velocity vfz − vsz , along
the content of a saturated rock, are depicted. We assume that any chemical reaction
is taking place at the solid-pore interface. Hence all the produced fluid contributes
to the interconnected pore volume and is concentrated on the grain boundaries. We
also assume that the produced solid is added to the skeleton, establishing a common
velocity field vsz with the reactant solid.
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admitted. This occurs when the following inequalities simultaneously hold:

Gr >

(
1 +

e−Arθb

Arδ

)
e−aAr , µrLe < Ar−3/2 , log(Kc)� 1 (15)

These inequalities correlate most of the dimensionless groups of the system, implying
that in environments where strong (irreversible) endothermic reactions are favoured
(hence log(Kc)� 1 is always satisfied) any 2 of the remaining groups can always be
selected as control over oscillatory instabilities.

4.1 Analysis of the system’s response

The solution discussed in Fig. 3 is obtained under the assumption of a constant loading
stress and chemistry as well as internal microstructure thus giving a constant Gruntfest
number. In the more general case either of these parameters can evolve in time thus al-
lowing the system to cross all three areas of the phase diagram. This leads potentially
to a multiplicity of chaotic responses marked by phases of self-organised chaos, tran-
sition from aseismic creep to seismic slip and back. For example if the system follows
the hysteretic loop ABB’CA of Fig. 3 we find all three different system responses in
one and the same shear zone.

Of particular interest for plate tectonic loading is the particular attractor depicted in
Fig. 3 (d) where a constant plate velocity would lead to a constant shear stress over
time, allowing for a steady state evolution of the microstructure and chemistry. The
periodic instability that emerges in this regime corresponds to a stick-slip type of in-
stability, as illustrated in Fig. 4 where the limit cycle is plotted in the logarithmic
strain rate versus normalised time space. The limit cycle is characterised by two dis-
tinctly different time scale phenomena, the first being a long time scale of slow creep
interrupted by a short time scale fast response owing to fluid the release reaction.

In addition to the two timescales characterizing the system’s time evolution, its spatial
manifestation also comprises two length-scales. Fig. 5 shows profiles of strain rate
(red line), porosity (blue line) and solid product (green line) inside the solid mechan-
ical shear zone, at their maximum points in the limit cycle. Starting from a flat initial
profile when the solid mechanical shear zone is established, the strain rate localizes in
an ultrathin core zone during the fast timescale. The extreme localisation of strain rate
in the centre of the solid mechanical shear zone is a robust outcome for any chemical
reaction. The thickness of this ultralocalized shear band inside the global mechani-
cal shear zone depends on the activation enthalpy of the forward reaction. For large
enthalpy reactions the localised zone is ultra-sharp and broadens with reducing en-
thalpy. This localisation is then followed by a chemical-mechanical localisation wave
propagating towards the boundaries of the shear zone [VRL15, VRLW14, SS14].

We expect from this result two important outcomes. The first is that the shear zone
will show at least two different scales of localisation, linked to the corresponding
timescales. The broad solid mechanical zone acts as a vessel for the long creeping
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Figure 3: Summary of the system’s response when Eqs. (15) are satisfied. (a) Steady
state response of the dimensionless core temperature (solid line) and the dimensionless
core excess pore pressure (dashed line). The three lines annotated correspond to the
three areas of interest, providing the phase diagrams of: (b) a stable, aseismic creep
behavior (line I), where all the initial conditions in the ∆p−T phase plane end up at the
stable node depicted as a circle, (c) non-periodic events (line II), where the line a-b-c
separates the linear paths towards the lower stable node (circle) from the homoclinic
orbits tending to the circle via the unstable spiral orbit of the upper solution (triangle),
and (d) periodic instabilities (line III), appearing in the ∆p− T phase plane as stable
limit cycles around the unstable upper steady state solution (circle). The magnitude
of the cycle increases with decreasing Gr, obtaining its maximum amplitude at point
B, where a homoclinic bifurcation takes place, with the periodic orbit colliding with
the saddle point B. Note that values of ∆p larger than 1 indicate possible hydraulic
fracturing in the vicinity of the fault’s core, limiting the present model.

timescale, whereas the sharp fluid-dynamic length-scale accompanies the fast pressur-
ization timescale. The second outcome is that the width of the fluid dynamic locali-
sation can be used to identify the activation energy of the chemical reaction involved.
The spatial extent of the fluid release reaction is shown in the blue porosity curve in
Fig. 5 to broadens with reducing enthalpy of the reaction. The same trend applies to
the solid constituent of the reaction. This additional information may be used in the
field as added constraint for identification of activation enthalpies.

4.2 Timescales of the system

We expand the temperature field with respect to ε = 1/Ar [Fow97]. At leading order
the chemical reaction is inactive, thus reducing the system to a single equation, known
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the initial conditions, the system in this area undergoes cycles of abrupt acceleration
followed by prolonged relaxation.
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Figure 5: Influence of the characteristics of the reaction. Snapshots of the profiles of
porosity φ, solid product content and strain rate near the time of their maximum values
(the point of maximum temperature in the limit cycle of Fig. 3d). (a) For ∆h = QF ,
(b) for ∆h = 3/4QF , (c) for ∆h = QF /2. We notice that as ∆h decreases the
reaction broadens its extent inside the shear zone d. For ∆h ≈ QF porosity and s
are weakly produced at the core of the shear zone, and the strain rate is smaller in
magnitude (a). Once s and φ reach their maximum values (in this case s = 1 and
φ = 0.75) the reaction takes place in an increasingly broader zone as QR increases
(b-c).
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as the Frank-Kamenetskii limit:
∂θ

∂t?
=

∂2θ

∂y?2
+ λeθ (16)

where λ = δ
(
GreaAr − 1

)
. Equation (16) is correspondingly the Frank-Kamenetskii

equation [Fuj69], known to have the semi-analytic solution [VVD07]:

θ = θcore − ln
[
λ(tI − t?) +

y?2

4(c1 − ln(tI − t?))

]
(17)

where θcore is the initial temperature at the core (maximum), tI = 1/λ is the time that
temperature presents a singularity (blow-up time), and the constant c1 is determined
by the boundary conditions [VVD07]. We note that the initial condition should be the
temperature at which the fault is initially formed. For flat, isothermal profile inside
the shear zone, θcore = θb.

As discussed in [VVD07], past a critical strain rate achieved at t ≈ 0.88tI , the ana-
lytical solution of Eq. (17) indicates that dissipation (strain rate) localizes towards the
center of the shear band while abruptly increasing. When reaching the critical value
of temperature to trigger chemical pressurization, then the system enters the pres-
surization regime and excess pore pressure is being generated from the reaction in an
undrained adiabatic setting. The time at which the temperature at the center of the faul
zone (y = 0) reaches the activation temperature of the reaction, θcr, is approximately
the time-scale of the frictional (stable creep under zero ovepressures) process,

t?cr =
1

λ

[
1− e(θcore−θcr)

]
(18)

Thus, the time at which chemical pressurization will set in is a function of the initial
configuration of the system θcore, of the pressurization temperature θcr and of all
the material, chemical and loading parameters of the problem, incorporated into λ.
Recalling thatGr (hence λ) incorporates the Taylor-Quinney coefficient, t?cr is directly
influenced by the evolution of the internal variables, thus of the microstructure.

Note that when θcr = θcore then t?cr = 0, meaning that the fault will enter the pres-
surization regime directly, without admitting any period of creep. On the other hand,
when θcr � θcore, then t?cr = 1/λ and the fault will admit all its creeping capability.
Once the chemical reaction is triggered it evolves in a fast timescale, estimated by the
higher order of the expansion, where undrained-adiabatic conditions establish. In this
regime, the timescale is inversely proportional to µr [VAV10]

t?p ∼
1

µr
(19)

5 Comparison to Field Observations

We have identified in the above theoretical considerations two fundamentally different
processes (rate/temperature independent and rate/temperature dependent) with similar
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outcomes. Both processes lead to two scales of localisation. The large scale is asso-
ciated with the solid mechanical solution and the small scale with the fluidised fault
zone material inside the master shear zone.

In the rate/temperature independent solution the ultralocalised PSZ appears without a
creeping phase. From Eq. (18) we conclude that the system is already in a critical
state and does not require shear heating to be brought to criticality. In physical terms
this could be seen as a transition that is equivalent to allowing phase changes, or
grain size reduction, or damage to start at a negligible input of energy. This leads
to the identification of the fast time-scale elastodynamic instability, where the energy
released in the PSZ causes extreme localisation with an internal time scale governed by
the energy change process. In our example we postulated a fluid release reaction and
obtained the pressurisation time scale of Eq. (19). Other mechanisms, such as damage
or grain-size, impose different time scales for instability based on their energetics.
This dual localisation is therefore the hallmark of brittle shear zones as illustrated in
Figure 6 (a).

In the case where the system is not close to criticality and is creeping the equivalent
ductile localisation mechanism can emerge. Upon a finite time after release of de-
formational work into heat inside the creeping shear zone, the system can reach the
critical point for a fast energy transition. At this point the creeping zone forms a PSZ
upon which the micro mechanical or chemical changes of the fast energy process oc-
cur. We have discussed the example of a chemical breakdown reaction which results
into an accelerated slip instability forming the PSZ. A number of other microstruc-
tural processes are often activated in the course of this instability leading to a rich
microstructure inside the PSZ. This could be dynamic recrystallisation, fluid release,
dissolution-precipitation etc. The complex nature of these instabilities leads to com-
plex geometries and time series such as slow slip/earthquake signatures. The dual
feature of creeping zone and ultralocalized PSZ, therefore is also a hallmark of ductile
shear zones as illustrated in Figure 6 (b).

To juxtapose the outcomes of the theoretical approach with field evidence, we com-
pare our solutions with observation from brittle and ductile shear zones. Figure 6
shows in (a) the famous Punchbowl cataclastic fault described by Chester and Chester
[CC98]. The fault shows a cataclastic fault zone of the order of meter thickness with
an ultralocalized, pulverised PSZ. The mineralogy of the host rock and PSZ indicate
a transition from quartz and feldspar dominated to clay mineralogy in the cataclastic
fault zone and ultimately higher ordered smectite and quartz in the PSZ[CC98]. This
indicates a series of mineral dissolution-precipitation reactions that are typical for the
ingression of water under lower temperature environments. The addition of water can
decrease the activation temperature and thereby render the system critical at ambient
conditions.

The same style of deformation is also recorded in the UNESCO world heritage Glarus
fault that shows a meter-thick, chemically altered tectonite (known as Lochsite tec-
tonite), blending the hanging wall and footwall minerals [PVH+14]. The tectonite is
deformed an folded by ductile deformation and has an ultralocalised PSZ (Fig. 6b)
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F.M. Chester, J.S. Chester / Tectonophysics 295 (1998) 199–221 205

Fig. 3. Excavation of the ultracataclasite layer mapped at a scale of 1 : 1. Basement at the top and sandstone at the bottom. Note the
porphyroclasts of basement rock in the ultracataclasite layer and the subsidiary fault in the sandstone. The prominent fracture surface is
located in the center of the layer and identified by arrows. The less cohesive brown ultracataclasite occurs in a layer along the basement
side of the pfs. The location of the 1 : 1 map (Fig. 5) is shown.

the Punchbowl Formation. Melanocratic and leuco-
cratic units are distinguished in the basement. Two
main ultracataclasite units are distinguished on the
basis of color. Color was classified for freshly broken
surfaces of the ultracataclasite by comparison with
a rock color chart. The two ultracataclasite units are
subdivided further on the basis of fracture, vein, and
cohesion characteristics.
The mineralogy of the host rocks and ultracat-

aclasite were determined through petrographic and
X-ray diffraction analyses of samples collected in
the Devil’s Punchbowl area (Table 1).

4. Structure of the Punchbowl fault zone

4.1. Punchbowl Formation

The damaged zone in the Punchbowl Formation
is typically about 15 m thick. The zone is distin-

guished by the increase in mesoscopic fracture and
subsidiary fault density above regional levels. Sed-
imentary layering and other sedimentary structures
are evident within the zone, often to within 1 m of
the ultracataclasite layer. All along the contact with
the ultracataclasite layer, the sandstone is penetra-
tively fractured and faulted, and displays cataclastic
textures. The cataclastic sandstone always is textu-
rally distinct from the ultracataclasite and forms a
sharp contact with the ultracataclasite layer.
In the region of the slip-parallel strip map, a

discontinuous layer of medium-grained cataclastic
sandstone exists between the fine-grained sandstone
and the ultracataclasite layer (Fig. 4). Shear along
the contact between the two sandstone units is in-
dicated by a thin accumulation of reddish-brown
ultracataclasite (Fig. 5). Subsidiary faults cut both
sandstone units, however, the contact between the
fine- and medium-grained sandstones is not offset.
Many of the faults in the medium-grained sandstone

!(a)! !(b)!

1"m"Footwall!

PSZ!

Footwall!

PSZ!

Hanging!
wall!

tectonite!

Figure 6: (a) Punchball fault from Chester and Chester [CC98] featuring two scales of
localisation, the cataclastic fault zone and the ultracatlastic PSZ annotated by arrows.
(b) The Glarus Thrust at the Lochsite, featuring two scales of localsation, the creeping
zone forming the carbonate rich tectonite and the ultralocalized PSZ in its centre.

in its middle. Field evidence include a multiplicity of PSZ’s inside the tectonite, im-
plying repetitive fast events interrupting ductile creep. The key chemical reaction
controlling both the tectonite formation and the thickness of the PSZ was identified to
be carbonate decomposition and precipitation [HHp+08]. For the ductile localisation
instability additional heat is required as the carbonate decomposition reaction happens
at much larger temperature than the boundary of the thrust zone. The addition of tem-
perature is readily available from the long-term dissipation of the creep process, which
becomes a prerequisite for the ductile instability. Because the shear zone has a charac-
teristic background temperature, the chemical reaction has a critical temperature to be
triggered and the microstructure has equilibrated over time, to quasi-steady state, the
ductile instability is inferred to have periodic signature in time. This implies a regular
stick-slip type of behaviour for the ductile PSZ whereas the brittle PSZ is expected to
be chaotic in time. The reason is that brittle instabilities are always at criticality while
ductile instabilities require time to be brought to criticality.

6 Application to ETS sequences

The temporal predictions of the model presented can be tested against real measure-
ments from Episodic Tremor and Slip events (ETS) at the plate interface during the
subduction of oceanic plates below the continental ones. In these subduction environ-
ments, key minerals controlling both the rheology and the fluid-release reaction are the
minerals of the serpentinite family [PVRLY14]. We may therefore specify the fluid
release reaction to be the dehydration of serpentinite minerals. For the example of
antigorite dehydration, AB could correspond to antigorite (Mg48Si34O85(OH)62),
A would represent all the solid products such as olivine (MgSiO4) and enstatite
(MgSiO3) and B the fluid H2O. In this section, we use the values presented by
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[PVH+14] for the material properties of the system and study regular and irregular
GPS signals from two different subduction environments.

6.1 Regular sequences - Cascadia ETS sequence

We begin with the periodically consistent case of the Cascadia ETS sequence in
Canada (for a more detailed analysis refer to [APV14, VPA14, PVRLY14]). Episodic
transient movements are continuously recorded from a network of GPS sensors re-
vealing consistent periodicity between slip events over 20 years. The magnitude of
the slip events is about 10 mm, being accumulated over approximately 2 weeks. We
model the detailed displacement data available from the GPS stations in Vancouver
Island [NAS], exhibiting a period of 14 months between the slow slip events. Because
of the nearly perfect periodic sequence, it is expected that the model will be able to
predict the evolution with a single fundamental mode of oscillation. All the GPS data
used in this section were de-trended from the background to obtain a zero average
velocity. No further geophysical techniques were used to remove annual effects, so
that the model can be juxtaposed against the raw signals.

The model replicates the temporal sequence of the last 20 years, as shown in Fig. 7,
highlighting the validity of the suggested interplay between dehydration reactions and
the mechanical response. The inverted values of the parameters used [PVH+14] show
that the serpentinite family minerals creep in an interface shear zone of about 6 m
thickness in which the ETS sequence takes place.

The GPS data show some irregularities and offsets between the events, thus suggesting
perturbations to the system due to seasonal or secondary transient effects. However,
within the 20 years interval these perturbations are recovered by the system back to
its fundamental mode, the stable multiphysical oscillator of fig. 7b. This in turn
could suggest that there is small variation in the parameters and only one eigenmode
is preferred. Thus, the system can absorb these perturbations due to the stable nature
of the fundamental limit cycle and cannot switch to a different one.

In the case of Cascadia ETS sequence the loading conditions used (τn and σn) were
constant in time. Therefore, as suggested above, the 20 years of GPS recordings
were matched with a single limit cycle of the system (Fig. 7b). This result reveals
that Cascadia is a self-sustained process equilibrating near the minimum dissipation
capacity of the subduction system.

6.2 Alternating modes - Hikurangi ETS sequence

A question that naturally arises is whether the suggested formulation can also be used
for less regular GPS signals. The application of the present model to an irregular case
study was performed by [PVH+14]. The basic assumption is that, unlike the Cascadia
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Figure 7: Regular ETS sequence in South Vancouver Island, Cascadia, station ALBH
[NAS]. (a) The GPS data (blue dots) represent raw displacement data with its linear
trend removed. The continuous sequence is shown split into the period from mid-1996
to mid-2006 (upper row) and beginning 2006 to end-2015 (lower row). The 20-year
ETS sequence is matched (red and green lines) by a single stable limit cycle (b) and
the strain rate curve (black line) incorporates the long slow creep periods (path 1-2)
as well as the slow earthquake events due to the fluid release during the reaction (path
2-3). Any perturbations are recovered bringing the system back to the same cycle, as
reflected in the GPS data of (a). The perturbation of mid-2000 was recovered by the
system in 2001 and the perturbation, which affected the system in 2008, was recovered
in 2011. Note that in October 2003 the sequence was interrupted due to a jump of the
GPS sensor. The numerical fit is shifted (green line) to account for this jump.
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case, the existence of irregular ETS sequences can be attributed to non constant param-
eter values which forces the system to switch between different material oscillators.
Such a case could be obtained if, for instance, the dimensionless groups are allowed
to evolve in time (as shown in [PVRLY14]) or in space, accounting for the different
geologies and ambient conditions intersected by the fault. A natural consequence of
the temporal and spatial variation of the parameters is that the system would turn into a
multi-period, multi-scale chaotic attractor and the subduction system will depart from
its minimum disspation limit and driven towards the maximum dissipation.

The Grunfest and the Lewis numbers are bearing the information of the loading con-
ditions, and are therefore the parameters that can vary in time. Having already pointed
out the role of the critical Gruntfest number GrB as a global attractor of the oscillator,
we assume here that its evolution is the most probable cause for the presence of al-
ternating oscillatory modes in the system. Following the discussion in section ?? the
time variation of the Gruntfest and associated Lewis number can be affected by short
term seismic stress perturbations in the vicinity of the subduction zone. As pointed out
in the case of Cascadia, the fast time scale of the process is approximately 2 weeks.
This means that a seismic event happens on an even faster time scale, which will pro-
voke an almost instantaneous jump in the stress applied on the shear zone boundaries.
The latter can be equated to step-like perturbations on the Gruntfest number in the
framework of the present chemical oscillator model.

From the fitting process of the GPS sequence in New Zealand (Fig. 8) it was deduced
that the oscillators comprise two modes. The first mode (mode 1 in Fig. 8) is ex-
actly identical to the one derived from the Cascadia fit. The second mode is shown as
mode 2 in Fig. 8 and has a significantly larger temperature variation of around 270◦C,
from 330◦C to approximately 600◦C. During both cycles the fluid pressure rises from
hydrostatic values (40% of the lithostatic) to about 60% of the lithostatic when the
forward reaction is the dominant mechanism. A major outcome of this fitting process
is that, similar to Cascadia, the width of the shear zone where all the mechanisms
presented operate, is calculated around 6 metres wide. In addition, as suggested in
[PVH+14], the common ocsillator is a fundamental mode (or eigenmode in a mathe-
matical context) of serpentinite deformation.

As far as material constants are concerned, these were considered to be the same for
Cascadia and Hikurangi suggesting the common serpentinite nature of the lubricating
shear zones. The only difference between the two cases is the emergence of a second
oscillator in New Zealand that was attributed to an overstress transient of the order of
60kPa in shear [PVH+14]. This derivation suggests that the elastodynamic transients
of the surrounding environment cannot be neglected in the Hikurangi trench. Since
mode 2 displays the higher amplitude oscillations it is identified as the one closer
to the global attractor (the homoclinic point) and mode 1 is interpreted as a higher
Gruntfest number mode.

This means that in Hikurangi the dynamics of the serpentinite oscillator between the
two modes depicted in (Fig. 8) are driven by evolving (in time) boundary condi-
tions. Unlike Cascadia, where constant stress boundary conditions could reproduce
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20 years of ETS activity, in New Zealand the loading stress exhibits time variations
thus not placing the subduction environment in the minimum dissipation limit. How-
ever, since the system is is not admitting damped oscillations, Hikurangi it is also
not driven at its maximum dissipation limit. It is therefore in an intermediate load-
ing regime, oscillating continuously between 2 different modes and driving both the
slow earthquake activity and the fast seismic events in the vicinity of Gisborne [?, see
also]]Poulet2014a.

7 Discussion

In this contribution we link the observed double localization patterns in fault zones
with a discussion on their possible driving energetics and timescales of formation.
We have shown that the thick fault zone is a result of a solid mechanical instabil-
ity, acting as a vessel for the ultralocalized instability. In the case of brittle failure
negligible additional energy is required as the system behaves in a near temperature-
independent, close to criticality regime. In the case of ductile failure the shear zone
is not necessarily at criticality through time but the fluid-like creep motions raise the
local dissipation to eventually trigger an energy transformation in an ultralocalized
PSZ. Under the assumption of microstructural steady state of the shear zone the latter
instability is periodic.

We have presented in Figure 6 a direct comparison of brittle and ductile/creep fractures
in shear zones. In the brittle case it is known from field and laboratory observations
that the PSZ represents an ultralocalised process zone, consisting of ultrafine parti-
cles that have usually undergone mechano-chemical degradation (gelification, decar-
bonation and dehydration reactions, melting, as thoroughly discussed in [THH+11]).
Therefore, although the mechanism of the fault zone formation is the material bi-
furcation from homogenous deformation [MV87], the formation of PSZ’s should be
considered the effect of the chemical-mechanical deformation following the onset of
the initial structure.

The ductile shear zone in Figure 6 features a chemical transition from host rock to
hanging rock and a strong grain size reduction towards the PSZ [HHp+08]. The
mechanism of localisation, although different from the brittle case, has the same style
of energetic transition where microstructural changes are captured by their latent heat
effects inside the PSZ. The main difference in terms of energetics is the time-scale of
deformation, which we have shown to be governed by the energy equation and lastly
the thermal activation.

In the brittle zone thermal activation is not considered important. However, a sim-
ilar energetic transition may be taking place. The activation process can equally be
triggered by a lowering of the critical threshold to near ambient condition through the
access of fluids interacting with the host rock. It can be argued that in the brittle case
the thermal time scale control is replaced by the mechanism of fluid transfer during
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Figure 8: Irregular ETS sequence of Gisborne, New Zealand, station GISB [NAS].
(a) The GPS data (blue dots) represent raw displacement data with its linear trend
removed. The signal is non-periodic and the suggested fit consists of 2 modes. The
first mode (red line) has higher displacement and strain rates (shown at the bottom)
per event and a period of 2 years, and the second one (black line) has a period of about
14 months. Figure until end of 2013 is as published in June 2014 [PVH+14]. (b)
Limit cycles of the two modes identified. Note that this bi-modal chaotic oscillator is
driven from the elastic surrounding, with the transition from mode 1 to mode 2 being
the natural mode of the elastic loading. The reverse transition requires additional
excitation that would relax the applied shear stress, e.g. from nearby seismic events
in the vicinity of the system. Such an event was recorded at the end of 2007, causing
the perturbation recorded by the GPS station, and shifting the sequence back to mode
1 of the oscillator.
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fault slip. These mechanisms can be low temperature pressurisation effects [Sib73,
Lac80, WS05, SJP05, Ric06] or high temperature chemical effects such as dehydra-
tion of minerals or decomposition of carbonates, theoretically studied recently [SF09,
VAV10, BSCS10, BSS11] and reported to take place in real faults [Hea07, FNB+08]
and experiments at laboratory conditions [HSH+07, FDHS10, BHS+11, PHM+11,
CVTM13]. Additional mechanisms that include dry phase transitions such as break-
age can be formulated in a similar thermodynamic framework [Ein07a, Ein07b, LBZ14b,
LBZ14a]. Therefore the above described framework illustrates an energy based for-
mulation for instabilities of solid matter with emergent length scales of localisation.

This fundamental outcome is illustrated in the present approach by two scales of local-
isation naturally emerging and corresponding to two different energy regimes. These
are the traditional Solid Mechanical localization during failure leading to a finite width
shear band that can be described by internal variables and the Fluid Dynamical post-
failure localization related to a phase change that counterintuitively leads to ultra thin
shear zones within the master Solid Mechanical containment. We identify these fun-
damental outcomes to be a plausible explanation for the two scale localization phe-
nomena described in this work.

A Poro-chemical model

At high temperatures the solid AB breaks down, producing excess B fluid, and in-
creasing the fluid pore pressure through a general fluid-release reaction of the form:

ν1ABs ⇀↽ ν2As + ν3Bf (20)

We assume the following relations for the partial molar reaction rates for the species,

rAB = −
[
ρAB
MAB

(1− φ)(1− s)
]ν1

kF exp(−QF /RT ) (21)

rA =

[
ρA
MA

(1− φ)s

]ν2
kRexp(−QR/RT )

rB =

[
∆φchem

ρB
MB

]ν3
kRexp(−QR/RT )

From the stoichiometry of the considered reaction, Eq.(20), it should hold that:

−rAB
ν1

=
rA
ν2

=
rB
ν3
. (22)
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From Eqs. (21-22), and for ν1 = ν2 = ν3 = 1 we derive the poro-chemical model

∆φchem = Aφ
1− φ0

1 + ρB
ρA

MA

MB

1
s

, (23)

s =
ωrel

1 + ωrel
, and

rrel =
ρAB
ρA

MA

MAB
Kcexp

(
∆h

RT

)
.

In Eqs. (23), Kc = kF /kR is the ratio of the pre-exponential factors of the Arrhenius
reaction rates and ∆h = QR−QF the difference of the forward and reverse activation
energies. The parameter Aφ is a coefficient that determines the amount of the inter-
connected pore-volume (porosity) created due to the reaction. We assume that all the
fluid generated contributes to the interconnected pore volume, and thus set Aφ = 1.

Following these considerations, the rates of the forward (ωF ) and reverse (ωR) first
order reactions can be calculated to be

rF = rAB =
ρAB
MAB

(1− φ)(1− s)kF e−QF /RT (24)

rR = rArB =
ρAρB
MAMB

(1− φ)s∆φchemkRe
−QR/RT . (25)

Note that, for simplicity we have assumed in Eqs. (21) that the two products are
produced with the same pre-exponential factor and activation energies. If this is not
the case the above model should be modified accordingly. The net reaction rate would
then be r = rF −rRMAB

ρAB
(the reverse reaction rate was normalized with the reference

concentration ρAB
MAB

for dimensional purposes), which however would be essentially
irreversible (rF � rR) in the case Kc = kF /kR � 1.
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Rupture in geomaterials is often preceded by a localization of the deformations within
thin bands. The strain localization is therefore an important process, which has been
studied both experimentally and theoretically. This paper summarizes the main ob-
servations on localized phenomena and proposes numerical tools to characterize lo-
calization processes. To deal with interactions occurring between the different phases
of porous media, a regularization technique based on the second gradient model has
been extended to multiphysic couplings.

1 Introduction

Since the material behaviour and rupture are of importance regarding the design of
geotechnical works for which the materials can be subjected to strong solicitations,
failure has been widely investigated in geomechanics. Experimental observations on
geomaterials clearly indicate the appearance of localised ruptures [Des84]. Theoret-
ically, the concept of rupture surface is one of the oldest case of material localised
failure and was already used in the design of works and structures few centuries ago
[Cou73]. In some cases, a diffuse mode of failure can also be observed and it corre-
sponds to homogeneous failure in laboratory tests [KGDL06]. Nowadays, it is com-
monly assumed that localised deformation and damage can appear in materials prior
to the rupture in many situations. In rock material, a stress redistribution can engen-
der damage that can firstly be diffused then localised. Once the damage threshold is
reached, microcracks initiate, then grow, accumulate, and propagate within the ma-
terial. If the microcracks coalesce, the distributed damage can further lead to strain
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localisation and to the initiation of interconnected fractures by the onset of macroc-
racks, which provokes a sudden material rupture [Die03].

The fracturing process instigates discontinuities in the material that can be represented
theoretically and numerically by various approaches. Two mains categories exist: the
continuous and discrete descriptions of fracture. The continuous description includes
material damage and strain localisation, while the discrete description explicitly repre-
sents cracks. In fracture mechanics, the different fractures can be in tensile or opening
mode (mode I), in sliding shear mode (mode II), in tearing shear mode (mode III), or
in mixed-mode (mode I-II, [JS88]). The modelling of shear strain localisation is a con-
tinuous approach that does not explicitly reproduce fractures and their discontinuities.
Nevertheless, it generally induces the appearance of shear bands and a non-uniform
strain distribution that may engender a displacement discontinuity between the mate-
rial located on the two sides of a shear band.

Furthermore, soils and rocks are porous materials, where the porous volume is filled
with one or several fluids (water, gas, oil . . . ). The general behaviour of the medium
depends not only on the skeleton response (solid phase) to a given loading path, but
also on the interactions occurring between the different phases of the medium. Cap-
illary effects, temperature variations, chemical reactions induce specific behaviours,
which have to be modelled by multiphysical constitutive laws. The numerical tools
for modelling strain localization problems have thus to be extended to this multiphysic
context, to deal with applications related, for instance, to nuclear waste disposal and
concrete behaviour under severe loading. Then, new questions arise concerning the
interactions between localization process and physical process (like liquid diffusion
for example). The answer to these new questions can only be given by experimen-
tal evidences. The section 2 of this paper summarizes the main observations on the
localization phenomenon, coming from experimental results. Section 3 describes the
regularization methods used to model properly the strain localization process. Section
4 is the description of the coupled second gradient model in saturated conditions. A
biaxial compression test is modelled in order to show the ability of the second gradient
model to represent correctly the post-peak behaviour. In section 5, the second gradient
model is extended to unsaturated conditions . The example of a gallery excavation is
proposed in section 6 to evidence the influence of hydro-mechanical couplings in satu-
rated and unsaturated conditions on the strain localization process. Some conclusions
end up the paper in section 7.

2 Experimental evidences of strain localisation

Strain localisation is frequently observed prior to material rupture. Starting from a
homogeneous deformation state, strain localisation consists in a brutal accumulation
of strain in a limited zone that can lead to cracks and failure (rupture lines). In geo-
materials like soils and rocks it is often considered as a shear strain accumulation in
band mode [Des05]. Nevertheless, the type of localisation may be of different nature
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for other materials.

Geomaterials have low tensile strength, thus tensile rupture is arduous to characterise.
On the other hand, plenty of small-scale compression laboratory tests are dedicated to
strain localisation [VGG78, HD93, FHMV96, FHMV97, ABS03] and allow to char-
acterise the compression material behaviour up to the rupture. They are generally
realised on axisymmetric triaxial or plane-strain biaxial compression apparatus and
involve special techniques, such as stereophotogrammetry [Des84, DV04], X-ray mi-
crotomography, and three dimensional digital image correlation [LBD+07], to study
the evolution of the strain localisation process. The advantage of biaxial compression
experiments is that the localisation process is clearly evidenced, whereas it can remain
hidden inside the sample in triaxial compression tests.

Under compressive regime, rupture is governed essentially by shear failure and these
experimental studies generally highlight shear strain localisation in band mode [Des05].
It is commonly accepted that the shear band establishment corresponds to a peak stress
in the stress-strain global response curve of the specimen [MD99, Des05].

The experimental localisation studies mostly analyse the behaviour of sand and only
a few are actually available on rocks [BDR00]. Analysing the formation of fractures
and strain localisation bands in rocks is quite challenging due to their high resistance
and brittle behaviour (quasi-brittle material), thence the development of appropriate
apparatus designed to test this type of material is necessary [DV04].

3 Regularisation methods

The further step is to define an appropriate and robust method that allows to properly
model strain localisation and shear banding with the finite element method, leading
finally to rupture in localised mode. Local descriptions of failure with classical finite
element methods are not efficient in the reproduction of strain localisation because
they suffer a mesh dependency (to mesh size and orientation) as indicated by [PM81],
[ZPV01b], [CLC09], and [WW10]. This pathological problem is due to the properties
of the underlying mathematical problem.

The dependence to the finite element discretisation can be solved by employing a
proper regularisation technique. Such method has to introduce an internal length scale
in the problem to model correctly the post-localisation behaviour. Two principal cate-
gories of enhanced models exist: one consists in the enrichment of the constitutive law
with for instance non-local [BBC84, PCB87, PdBB+96, GSH12] or gradient plasticity
[Aif84, dBM92, PdBBdV96], the other approaches in the enrichment of the contin-
uum kinematics with microstructure effects. For this second category the microkine-
matics are characterised at microscale in addition to the classical macrokinematics
[CC09, Tou62, Min64, Ger73]. However, enhanced models restore mesh objectivity
but not the uniqueness of the solution.
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3.1 Enrichment of the constitutive law

In this approach, an internal length scale is introduced at the level of the constitutive
model. Advanced analyses of localisation phenomena have indicated that constitu-
tive equations with internal length are one solution to model strain localised pattern
properly.

The internal length scale is introduced by developing non-local definition of internal
variables involved in the material behaviour. The non-local variable v̊ at a material
point xi can be defined as an averaging value of the local variable v in a considered
region Ω near that point [PCB87, PGdBB01], as illustrated in Fig. 1.

x1

x2

W

xi

yi

dW

Figure 1: Non-local approach on a representative material volume.

The non-local integral method gives:

v̊(xi) =
1
V

∫

Ω

Ψ v(yi) dΩ (1)

V =
∫

Ω

Ψ dΩ (2)

where xi is the coordinate vector of the material point where the non-local variable
is considered, Ω is a representative volume centred in xi, yi is the coordinate vector
of the infinitesimal volume dΩ, and Ψ is a weight function scaling v̊ to v̊ = v for
a homogeneous distribution of the variable. It is generally defined with a Gaussian
distribution:

Ψ=
1

(2π)3/2 l3
c

exp

(
−||xi− yi||2

2 l2
c

)
(3)

which depends on the distance ||xi− yi|| and on a characteristic length parameter lc.
This length parameter, or internal length scale, defines the material volume that sig-
nificantly contributes to the non-local variable and is consequently related to the mi-
crostructure.
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The regularised variable can also be defined explicitly from the local variable v(xi)
and its gradient. In his pioneering works, [Aif84] introduced such gradient in the
constitutive equations. The explicit gradient formulation is:

v̊ = v+ l
∂2v
∂xi∂xi

(4)

where the dependence of v and v̊ on the coordinate vector xi is dropped for simplic-
ity and l has the dimension of length squared so

√
l can be related to the internal

length scale lc introduced to regularise the model. Because the gradient term is a
local quantity, the spatial interaction of the material points located in the vicinity of
v̊ is infinitesimal and the explicit gradient model is therefore local. This is a main
difference with the non-local integral formulation of Eq. 1 where the interaction dis-
tance is finite and related to the weight function. Moreover, the explicit gradient for-
mulation can be derived from the non-local integral formulation by introducing the
gradient of the internal variable, expanding the local variable v(yi) into a Taylor se-
ries [BBC84, LB88, PdBBdV96], using the weight function definition of Eq. 3, and
neglecting the terms above the second order (approximation).

The definition of Eq. 4 is less suitable in the context of numerical analyses, such as the
finite element method, because of the explicit dependence of v̊ with its local (second)
gradient. This dependence leads to a continuity requirement for the internal vari-
able which has to be a continuously differentiable function (class C1 function whose
derivative is continuous). To avoid this drawback, an alternative implicit gradient for-
mulation, introducing an approximation of Eq. 1 similar to Eq. 4, can be expressed as
follows [PdBBdV96, PGdBB01]:

v̊− l
∂2v̊
∂xi∂xi

= v (5)

and enables a continuous definition of v (class C0 function). For the implicit gradient
model, the non-local internal variable is an additional unknown which is solution of
the Helmoltz differential equation 5. Solution of this equation can only be found
provided that additional boundary condition on v̊ is specified. The following condition
is usually assumed [LB88]:

∂v̊
∂xi

ni = 0 (6)

where ni is the normal unit vector to the external boundary. This condition enables
v̊ = v for homogeneous distribution. In contrast to the explicit formulation, the non-
local variable v̊ is implicitly given as the solution of Eqs. 5 and 6, and the spatial
interaction has a finite distance that implies a non-local character. The solution is
of the same form of the non-local equation 1 with Ψ = Gr and V = 1, Gr being the
Green’s function [Zau89]:

v̊(xi) =
∫

Ω

Gr v(yi) dΩ (7)
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Gr =
1

4π l ||xi− yi||
exp
(
−||xi− yi||√

l

)
(8)

The implicit gradient model is therefore a special case of the non-local model.

Non-local quantities as well as gradient of internal variables can finally be intro-
duced in constitutive models. Among other authors, Bazant, Pijaudier-Cabot, and
co-workers [BBC84, PCB87] proposed a family of constitutive models derived from
the non-local damage theory in which a non-local internal variable is used instead
of the local one. For instance, a non-local damage energy release rate obtained by
Eq. 1 is introduced in the damage loading function. Other variables such as non-local
equivalent strain are usually used in damage model [PGdBB01].

3.2 Enrichment of the kinematics

The previous approaches (enrichment of the constitutive law) introduce the effect of
microstructure with non-local or gradient terms but the microstructure itself is not
explicitly defined. To this end, the classical kinematics of a continuous medium can
be enriched with additional description of the microstructure kinematics, leading to a
microstructure continuum medium also called enriched medium.

For a classical continuous medium, a material particle of volume Ω is defined at
macroscopic scale by its (macro) displacement field ui. The classical kinematic fields
are the macro-deformation field:

Fi j =
∂ui

∂x j
(9)

corresponding to the gradient of the displacement field, the macro-strain field:

εi j =
1
2
(Fi j +Fji) (10)

corresponding to the symmetric part of Fi j, and the macro-rotation field:

ri j =
1
2
(Fi j−Fji) (11)

corresponding to the antisymmetric part of Fi j. Their rate forms are also commonly
used; the velocity gradient field:

Li j =
∂u̇i

∂x j
(12)

the strain rate field:
ε̇i j =

1
2
(Li j +L ji) (13)

and the spin rate field:

ωi j =
1
2
(Li j−L ji) (14)
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The first and most famous enhanced model was developed by the Cosserat brothers
[CC09] who introduced local rotation degrees of freedom rc

i in addition to the dis-
placements of classical continua ui (Fig. 2). The Cosserat (or micropolar) elastic con-
tinuum theory is mostly suitable for the kinematic description of granular materials.
Accordingly, additional kinematic fields are introduced [VS95]. The deformation due
to the particle rotation, also called micro-rotation (antisymmetric tensor) becomes:

x
1

x
2

u
i

r
c

3

x
i

Figure 2: Kinematic degrees of freedom of the Cosserat elastic continuum theory.

rc
i j = ei jk rc

k (15)

where ei jk is the alternating tensor, and the gradient of the particle rotation, also called
curvature:

Kc
i j =

∂rc
i

∂x j
(16)

A relative strain is deduced as the difference between macro-deformation and micro-
rotation:

εi j = Fi j− rc
i j (17)

whose symmetric part coincides with the macro-strain εi j and its antisymmetric part
with the difference between the macro and micro-rotation ri j− rc

i j. The latter charac-
terises the relative rotation of a material point with regard to the rotation of its neigh-
bourhood. A couple stress (torques) tensor associated to the rotations is thus added
introducing bending and torsion at the material point. This results in a moment equi-
librium equation involving the couple stresses that comes in addition to the classical
(local) momentum balance equation involving the stress field σi j. Moreover, supple-
mentary elastic constants are considered in the constitutive equations which consist of
internal length scale parameters related to the microstructure [VS95].

In the 1960’s, [Tou62] and [Min64] defined materials with microstructure. A macro-
volume Ω is composed of smaller microscale particles that can be represented by a
micro-volumeΩm, embedded in the material volumeΩ (Fig. 3). A micro-displacement
field um

i is defined independently of the macro-displacement ui and its gradient leads
to a micro-deformation field:

υi j =
∂um

i
∂x j

(18)
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Figure 3: Kinematics of a microstructure continuum: (a) initial configuration and (b)
configuration after external solicitation with relative displacement of the microstruc-
ture.

which is homogeneous in the micro-volume Ωm but non-homogeneous in the macro-
volume Ω.

The symmetric and antisymmetric parts of υi j correspond to the micro-strain and
micro-rotation:

εm
i j =

1
2
(υi j +υ ji) (19)

rm
i j =

1
2
(υi j−υ ji) (20)

with the micro-rotation corresponding to the rotation components of the Cosserat
model rm

i j = rc
i j (Eq. 15). Cosserat model is in fact a particular case of a microstructure

medium. Moreover, the micro second gradient is defined as:

hi jk =
∂υi j

∂xk
=

∂2um
i

∂x j∂xk
(21)

The relative deformation of the microstructure is defined as the difference between the
macro and the micro-deformation fields:

εi j = Fi j−υi j (22)

whose symmetric part coincides with the difference between the macro and the micro-
strain εi j− εm

i j and its antisymmetric part with the difference between the macro and
micro-rotation ri j − rm

i j . Similar to the Cosserat’s continuum description, additional
stresses are introduced: the microstress, an additive stress field associated to the mi-
crostructure, and the double stress.

Later, [Ger73] introduced the virtual power principle to provide a global framework
for the microstructure continuum formulation. This principle states that, by equilib-
rium, the virtual power of all forces acting on a mechanical system is null. In the
following, materials with microstructure defined by [Min64] and [Ger73] will be con-
sidered.
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A large panel of models are developed in the litterature by adding mathematical con-
straints to microstructure media. Among them, the second gradient model developed
in Grenoble [CCH98, CCM01] will be most particularly developed hereafter. Yet, the
following conclusions can be generalised to other regularisation techniques.

4 Coupled local second gradient model for microstruc-
ture saturated media

The coupled local second gradient model is developed for enriched continua includ-
ing microstructure effects [CCM01]. This model was extended from monophasic to
biphasic porous media (solid and fluid) by [CCC06] to highlight the possible inter-
actions of the fluid (liquid water) with the strain localisation process and with the
internal length introduced by the model. The developments proposed by [CCC06] are
recalled in this section. They account for a medium with incompressible solid grains,
under saturated and isothermal conditions. The solid and fluid phases are considered
as immiscible and phase changes, like evaporation and dissolution, are therefore not
taken into account.

As for a classical continuum, the material is considered as a porous medium and the
balance equations are based on mixture theories. The unknowns of the coupled prob-
lem are the macro-displacement ui, the micro-deformation field υi j (or the micro-
displacement field um

i by Eq. 18), and the pore water pressure pw. An additional
unknown field of Lagrange multipliers λi j will be added for the finite element method
implementation.

qw

P

n

W

G

Gqw

Gt

t

GT

T

Figure 4: Material system with current configuration Ω and boundary conditions for
the second gradient model.
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4.1 Balance equations for microstructure poromechanics

4.1.1 Local second gradient model for a monophasic medium

The class of virtual kinematics introduced in the virtual work principle for the classi-
cal kinematic theory can be extended in the framework of a microstructure continuum
theory, by adding a description of the microstructure kinematics to the classical dis-
placement field. According to Eq. 18, the kinematics at microscale are described by
a microkinematic gradient field υi j. With respect to classical continuum mechanics,
additional terms are added in the internal virtual work of a given body [Ger73]. The
following expression holds for any virtual quantities:

W ∗int =
∫

Ω

(
σi j F∗i j− τi j ε∗i j +Σi jk h∗i jk

)
dΩ (23)

where ε∗i j is the virtual relative deformation of the microstructure:

ε∗i j = F∗i j−υ∗i j (24)

τi j is an additional stress associated to the microstructure also called the microstress,

h∗i jk =
∂υ∗i j

∂xk
is the virtual micro second gradient, and Σi jk is the double stress dual of

h∗i jk, which needs an additional constitutive law introducing the internal length scale.
The external virtual work can be defined as follows:

W ∗ext =
∫

Ω

ρ gi u∗i dΩ+
∫

Γσ

(
t i u∗i +Pi j υ∗i j

)
dΓ (25)

where Pi j is an additional external double surface traction acting on a part ΓT of the
boundary Γ (Fig. 4) and Γσ = {Γt ∪ΓT} regroups the classical and additional external
solicitations. The virtual work principle assumes the equality between internal and
external virtual works and leads to the weak form of the momentum balance equation:
∫

Ω

(
σi j F∗i j− τi j

(
F∗i j−υ∗i j

)
+Σi jk h∗i jk

)
dΩ=

∫

Ω

ρ gi u∗i dΩ+
∫

Γσ

(
t i u∗i +Pi j υ∗i j

)
dΓ

(26)
The local equilibrium equations are formulated for the macro and the micro quantities;
the local momentum balance equations are:

∂(σi j− τi j)

∂x j
+ρ gi = 0 (27)

∂Σi jk

∂xk
− τi j = 0 (28)

256 Numerical modelling of multiphysics couplings and strain localization

ALERT Doctoral School 2016



and the boundary conditions are:

t i = (σi j− τi j)n j (29)

Pi j =Σi jk nk (30)

The boundary conditions for the mixture are also enriched with microstructure effects
which leads to non-classical boundary conditions.

In the specific case of local second gradient model used in the following, a kinematic
constraint is added in order to obtain a local second gradient continuum medium.
No relative deformation of the microstructure is assumed εi j = 0, meaning that the
microkinematic gradient is equal to the macro-deformation:

υi j = Fi j (31)

As a consequence:
υ∗i j = F∗i j (32)

for the virtual fields. Therefore, the principle of virtual work can be rewritten as
follows:

∫

Ω

(
σi j

∂u∗i
∂x j

+Σi jk
∂2u∗i
∂x j∂xk

)
dΩ=

∫

Ω

ρ gi u∗i dΩ+
∫

Γσ

(
t i u∗i +T i Du∗i

)
dΓ (33)

where T i is the additional external double force per unit area on ΓT (Fig. 4) and the
notation Da denotes the normal derivative of any quantity a:

Da =
∂a
∂xi

ni (34)

with:
Du∗i =

∂u∗i
∂x j

n j = F∗i j n j = υ∗i j n j (35)

The local momentum balance equation reads:

∂σi j

∂x j
− ∂2Σi jk

∂x j∂xk
+ρ gi = 0 (36)

and the boundary conditions are:

t i = σi j n j−nk n j DΣi jk−
DΣi jk

Dxk
n j−

DΣi jk

Dx j
nk +

Dnl

Dxl
Σi jk n j nk−

Dn j

Dxk
Σi jk (37)

T i = Pi j n j =Σi jk n j nk (38)

where Da
Dxi

is the tangential derivative of any quantity a:

Da
Dxi

=
∂a
∂xi
− ∂a
∂x j

n j ni (39)
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The local second gradient possesses the advantage that the constitutive equations re-
main local, with the stress fields σi j and Σi jk being local quantities. A second gradi-
ent extension can thenceforward be formulated for any classical continuum mechanics
constitutive law.

4.1.2 Second gradient constitutive equation

Similarly to classical media for which a constitutive equation links the stress to the
kinematic history, an additional constitutive law has to be defined between the double
stress and the microkinematics. The latter is assumed to be decoupled of the classical
first gradient part. However, only a little information is available on the relation exist-
ing between the double stress and the micro-deformation. A linear elastic mechanical
law is chosen for simplicity reasons with the purpose of introducing as few additional
parameters as possible. It consists in an isotropic linear relationship involving five
independent parameters derived by [Min65]:

Σ̃i jk = Di jklmn
∂υ̇lm

∂xn
(40)

giving the Jaumann double stress rate:

Σ̃i jk = Σ̇i jk +Σl jk ωli +Σimk ωm j +Σi jp ωpk (41)

as a function of the micro second gradient rate ḣi jk. Because the physical meaning of
the material parameters composing Di jklmn is not well established, a simplified version
introducing only one parameter has been proposed [MCC02]. For two-dimensional
problems, it reads:




Σ̃111

Σ̃112

Σ̃121

Σ̃122

Σ̃211

Σ̃212

Σ̃221

Σ̃222




= D




1 0 0 0 0 1
2

1
2 0

0 1
2

1
2 0 − 1

2 0 0 1
2

0 1
2

1
2 0 − 1

2 0 0 1
2

0 0 0 1 0 − 1
2 − 1

2 0

0 − 1
2 − 1

2 0 1 0 0 0
1
2 0 0 − 1

2 0 1
2

1
2 0

1
2 0 0 − 1

2 0 1
2

1
2 0

0 1
2

1
2 0 0 0 0 1







∂υ̇11
∂x1
∂υ̇11
∂x2
∂υ̇12
∂x1
∂υ̇12
∂x2
∂υ̇21
∂x1
∂υ̇21
∂x2
∂υ̇22
∂x1
∂υ̇22
∂x2




(42)

The constitutive elastic parameter D represents the physical microstructure and the
internal length scale relevant for the shear band width is related to this parameter
[CCH98, KCB+07, CCC09].
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4.1.3 Coupled local second gradient model

The second gradient theory was extended from monophasic to biphasic medium by
[CCC06]. As for a monophasic medium, microstructure effects have to be introduced
in the balance equations of classical poromechanics.

The linear momentum balance equation is identical to Eq. 33:

∫

Ω

(
σi j

∂u∗i
∂x j

+Σi jk
∂2u∗i
∂x j∂xk

)
dΩ=

∫

Ω

ρ gi u∗i dΩ+
∫

Γσ

(
t i u∗i +T i Du∗i

)
dΓ (43)

The water mass balance equation is written, in a weak form, in a similar way as the
momentum balance equation. A kinematically admissible virtual pore water pressure
field p∗w is considered and is involved, as well as its first derivative, in the internal and
external virtual quantities. The water mass balance equation reads:

∫

Ω

(
Ṁw p∗w− fw,i

∂p∗w
∂xi

)
dΩ=

∫

Ω

Qw p∗w dΩ−
∫

Γqw

qw p∗w dΓ (44)

where Mw is the water mass inside Ω, fw,i is the water mass flow, Qw is a sink term of
water mass, and qw is the input water mass (positive for inflow) per unit area on a part
Γqw of Γ (Fig. 4).

According to the previous assumptions, the momentum balance equation Eq. 33 re-
mains valid provided ρ and σi j are defined, knowing that the medium is a mixture of
a solid phase and one fluid.

The mixture homogenised mass density is given by:

ρ = ρs (1−Φ)+ρw Φ (45)

and the effective stress is defined according to the Terzaghi’s postulate:

σi j = σ
′
i j + pw δi j (46)

Furthermore, it is assumed that the pore fluid does not have an influence at microscale;
therefore, pore water pressure variations do not generate microkinematic gradients.
Such additional hypothesis was formulated by Ehlers [EV98] on a Cosserat model for
a biphasic medium. Second gradient effects are only assumed for the solid phase and
the water mass balance equation Eq. 44 of classical poromechanics is conserved. The
governing equations of the coupled problem are therefore Eqs. 33 and 44.

As already mentioned for the classical poromechanics, the effect of water on the to-
tal stress is defined according to the effective stress postulate (Eq. 46) while on the
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contrary the double stress Σi jk is independent of the pore water pressure. The double
stress is only related to the solid phase.

The water mass Mw inside Ω and the water mass flow fw,i are defined in the following
equations:

Mw = ρw Φ Ω (47)

fw,i =−ρw
kw

µw

(
∂pw

∂xi
+ρw gi

)
(48)

The definitions of the phase density variations and of the porosity evolution are:

ρ̇w

ρw
=

ṗw

χw
(49)

ρ̇s = 0 (50)

Φ̇= (1−Φ) Ω̇
Ω

(51)

The latter lead to the time derivative of the water mass per unit mixture volume:

Ṁw = ρw

(
ṗw

χw
Φ+

Ω̇

Ω

)
(52)

4.2 Coupled finite element formulation

4.2.1 Numerical implementation

The virtual work formulation of second gradient models can be implemented in a
finite element code. To implement the momentum balance equation of Eq. 33, the
displacement field has to be a continuously differentiable function because second
order derivatives of the displacement field are involved [ZPV01b]. To avoid the use
of C1 function, the kinematic restrictions υi j = Fi j and υ∗i j = F∗i j are introduced in the
momentum balance equation through a field of Lagrange multipliers λi j related to a
weak form of the constraint [CCH98]. The field equations of the numerical coupled
problem are:

∫

Ωt

(
σt

i j
∂u∗i
∂xt

j
+Σt

i jk
∂υ∗i j

∂xt
k

)
dΩt−

∫

Ωt

λt
i j

(
∂u∗i
∂xt

j
−υ∗i j

)
dΩt =

∫

Ωt

ρt gi u∗i dΩt +
∫

Γt
σ

(
tt
i u∗i +T t

i υ∗ik nt
k

)
dΓt

(53)
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∫

Ωt

λ∗i j

(
∂ut

i
∂xt

j
−υt

i j

)
dΩt = 0 (54)

∫

Ωt

(
Ṁt

w p∗w− f t
w,i
∂p∗w
∂xt

i

)
dΩt =

∫

Ωt

Qt
w p∗w dΩt −

∫

Γt
qw

qt
w p∗w dΓt (55)

where the notation at corresponds to the current value of any quantity a for a given
time t. For boundary conditions problems, the virtual quantities included in the above
equations depend on the boundary conditions history. Thus, the governing equations
and the constitutive equations have to hold at any time t.

4.2.2 Linearisation of the field equations

Solving the loading process of a boundary conditions problem consists in determining
the unknown fields ui, υi j, λi j, and pw for which the equilibrium equations 53, 54, and
55 are valid. Since this system of non-linear equations is a priori not verified for any
instant t, the problem is numerically solved by iterative procedure. It involves a time
discretisation over finite time steps ∆t:

τ = t +∆t (56)

and an implicit scheme of finite differences for the rate of any quantity a:

ȧτ =
aτ−at

∆t
(57)

A full Newton-Raphson method is used to find a solution for the new fields ui, υi j,
λi j, and pw at the end of each time step which is in equilibrium with the boundary
conditions.

Following the approach of [BA95], the method aims to define a linear auxiliary prob-
lem deriving from the continuum one. A first configuration Ωt in equilibrium with
the boundary conditions at a given time t is assumed to be known and another Ωτ in
equilibrium at the end of the time step τ = t +∆t has to be found. The aim of the
iterative numerical procedure is to determine this new configuration at the end of the
time step. Firstly, a configuration which is close to the solution but not at equilibrium
is guessed and denoted as Ωτ1. Both configurations at time t and τ1 are assumed to be
known and non-equilibrium forces for the three considered equations, i.e. the resid-
uals ∆τ1

1 , ∆τ1
2 , and ∆τ1

3 , are defined. The objective is to find another configuration
Ωτ2 close to Ωτ1 for which the non-equilibrium forces vanish. To obtain the linear
auxiliary problem, the field equations for Ωτ2 are subtracted from the field equations
in configuration Ωτ1, after being rewritten in configuration Ωτ1 by using the Jacobian
matrix of the transformation between the two configurations:

F i j =
∂xτ2

i

∂xτ1
j

(58)
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and its Jacobian determinant:

det(F) =

∣∣∣∣∣
∂xτ2

i

∂xτ1
j

∣∣∣∣∣ (59)

Assuming that gi, t i, qw, and Qw are independent of the different unknown fields
(displacement and pore water pressure), and that T i vanishes give:

∫

Ωτ1

∂u∗i
∂xτ1

l

(
στ2

i j
∂xτ1

l

∂xτ2
j

det(F)−στ1
il

)
+
∂υ∗i j

∂xτ1
l

(
Στ2

i jk
∂xτ1

l

∂xτ2
k

det(F)−Στ1
i jl

)
dΩτ1

−
∫

Ωτ1

∂u∗i
∂xτ1

l

(
λτ2

i j
∂xτ1

l

∂xτ2
j

det(F)−λτ1
il

)
−υ∗i j

(
λτ2

i j det(F)−λτ1
i j
)

dΩτ1

−
∫

Ωτ1

u∗i
(
ρτ2 det(F)−ρτ1)gi dΩτ1 =−∆τ1

1

(60)

∫

Ωτ1

λ∗i j

((
∂uτ2

i

∂xτ1
k

∂xτ1
k

∂xτ2
j

det(F)− ∂uτ1
i

∂xτ1
j

)
−
(
υτ2

i j det(F)−υτ1
i j
)
)

dΩτ1 =−∆τ1
2 (61)

∫

Ωτ1

p∗w
(
Ṁτ2

w det(F)− Ṁτ1
w
)
− ∂p∗w
∂xτ1

l

(
f τ2
w,i
∂xτ1

l

∂xτ2
i

det(F)− f τ1
w,l

)
dΩτ1 =−∆τ1

3 (62)

By making the two configurations tend towards each other, the variations between
them can be defined for any quantity a as:

daτ1 = aτ2−aτ1 (63)

The balance equations can be rewritten by taking into account these variations. The
complete development of the linearisation of the field equation system and of the
resulting linear auxiliary problem is exposed by [CCC06].

4.2.3 Spatial discretisation

In finite element methods, each continuum body is discretised by finite elements and
the above field equations are spatially discretised. For the second gradient model,
the discretisation is realised by two-dimensional plane-strain isoparametric finite ele-
ments. These elements are composed of eight nodes for the displacement field ui and

262 Numerical modelling of multiphysics couplings and strain localization

ALERT Doctoral School 2016



the pore water pressure pw, four nodes for the microkinematic gradient field υi j, and
one node for the Lagrange multiplier field λi j (Fig. 5). Quadratic serendipity shape
functions [ZT00] are used for the ui and pw interpolations, linear shape functions are
used for υi j, whereas λi j is assumed constant.

w

1
x

2
x

(a) (b)

k

u

2

k1

l

Figure 5: Finite element used for the spatial discretisation of the coupled local second
gradient model: (a) current quadrilateral element and (b) parent element [CCC06].

The balance equations of the coupled finite element problem (linear auxiliary problem)
have to be rewritten in matricial form to define the local stiffness matrix of an element:

∫

Ωτ1

[
U∗,τ1
(x1,x2)

]T [
Eτ1][dUτ1

(x1,x2)

]
dΩτ1 =−∆τ1

1 −∆τ1
2 −∆τ1

3 (64)

where
[
dUτ1

(x1,x2)

]
is the vector of the unknown increments of nodal variables in the

current element configuration:

[
dUτ1

(x1,x2)

]
25×1

=

[
∂duτ1

1

∂xτ1
1

∂duτ1
1

∂xτ1
2

∂duτ1
2

∂xτ1
1

∂duτ1
2

∂xτ1
2

duτ1
1 duτ1

2
∂d pτ1

w

∂xτ1
1

∂d pτ1
w

∂xτ1
2

d pτ1
w
∂dυτ1

11

∂xτ1
1

∂dυτ1
11

∂xτ2
2

∂dυτ1
12

∂xτ1
1

...
∂dυτ1

22

∂xτ1
2

dυτ1
11 dυτ1

12 dυτ1
21 dυτ1

22 dλτ1
11 dλτ1

12 dλτ1
21 dλτ1

22

]T

(65)
[
U∗,τ1
(x1,x2)

]
is a vector having the same structure with the corresponding virtual quanti-

ties:
[
U∗,τ1
(x1,x2)

]
1×25

=

[
∂u∗1
∂xτ1

1

∂u∗1
∂xτ1

2

∂u∗2
∂xτ1

1

∂u∗2
∂xτ1

2
u∗1 u∗2

∂p∗w
∂xτ1

1

∂p∗w
∂xτ1

2
p∗w

∂υ∗11

∂xτ1
1

∂υ∗11

∂xτ2
2

∂υ∗12

∂xτ1
1
...
∂υ∗22

∂xτ1
2

υ∗11 υ∗12 υ∗21 υ∗22 λ∗11 λ∗12 λ∗21 λ∗22

] (66)
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and
[
Eτ1
]

is the current element stiffness (tangent) matrix defined as follows:

[
Eτ1]

25×25 =




Eτ1
14×4

04×2 Kτ1
WM4×3

04×8 04×4 −I4×4

Gτ1
12×4

02×2 Gτ1
22×3

02×8 02×4 02×4

Kτ1
MW3×4

03×2 Kτ1
WW3×3

03×8 03×4 03×4

Eτ1
28×4

08×2 08×3 Dτ1
8×8 08×4 08×4

Eτ1
34×4

04×2 04×3 04×8 04×4 I4×4

Eτ1
44×4

04×2 04×3 04×8 −I4×4 04×4




(67)

The matrices
[
Eτ1

1

]
,
[
Eτ1

2

]
,
[
Eτ1

3

]
,
[
Eτ1

4

]
, and

[
Dτ1
]

are the same as the ones used in the
local second gradient model for monophasic medium by [CM04] (

[
Dτ1
]
= Di jklmn in

Eqs. 40 and 42).
[
Kτ1

WW
]

is the classical stiffness matrix of a flow problem,
[
Kτ1

MW
]

and[
Kτ1

WM
]

are matrices of the coupling between the flow and the mechanical problems
detailed by [CCC06]. Moreover,

[
Gτ1

1

]
and

[
Gτ1

2

]
are related to the contribution of

gravity volume force.

The finite element spatial discretisation of the linear auxiliary problem is introduced in
Eq. 64 by using transformation matrices

[
T τ1
]

and [B] that connect the current element

vector
[
dUτ1

(x1,x2)

]
to the parent element vector

[
dUτ1

(κ1,κ2)

]
and to the nodal variables

[
dUτ1

Node

]
: [

dUτ1
(x1,x2)

]
=
[
T τ1][dUτ1

(κ1,κ2)

]
=
[
T τ1] [B]

[
dUτ1

Node
]

(68)

The matrices [B] and
[
T τ1
]

contain the interpolation functions and their derivatives.

Moreover, the vector
[
U∗,τ1
(x1,x2)

]
is related to

[
U∗,τ1

Node

]
in the same manner.

The integration in Eq. 64 can be expressed for each parent element as follows:
∫

Ωτ1

[
U∗,τ1
(x1,x2)

]T [
Eτ1][dUτ1

(x1,x2)

]
dΩτ1 =

[
U∗,τ1

Node

]T [
kτ1][dUτ1

Node
]

(69)

where
[
kτ1
]

is the local element stiffness matrix:

[
kτ1]=

1∫

−1

1∫

−1

[B]T
[
T τ1]T [Eτ1][T τ1] [B]det(Jτ1) dκ1 dκ2 (70)

with det(Jτ1) the determinant of the Jacobian matrix of the transformation between
the parent (κ1,κ2) and the current (x1,x2) elements:

det(Jτ1) =

∣∣∣∣
∂xτ1

i
∂κ j

∣∣∣∣ (71)

264 Numerical modelling of multiphysics couplings and strain localization

ALERT Doctoral School 2016



The residual terms are also computed locally for each element and define the elemen-
tary out of balance force vector

[
f τ1
OB

]
:

−∆τ1
1 −∆τ1

2 −∆τ1
3 =

[
U∗,τ1

Node

]T [
f τ1
OB
]

(72)

4.2.4 Global solution

Once the elementary stiffness matrices and out of balance force vectors are computed,
they are assembled to obtain the global stiffness matrix

[
Kτ1
]

and the global out of
balance force vector

[
Fτ1

OB

]
of the whole continuum. The linear auxiliary system is

solved by computing: [
Kτ1][δUτ1

Node
]
=−

[
Fτ1

OB
]

(73)

where
[
δUτ1

Node

]
is the global correction vector of the nodal degrees of freedom. The

current configuration is actualised by adding the corrections to their respective current
values. The new current configuration is closer to the well-balanced configuration and
its equilibrium is checked, leading to a new iteration or to the end of the loading step
of the iterative procedure.

4.3 Two-dimensional specimen under compression

A finite element modelling of two-dimensional plane-strain compression tests is first
considered. These tests have been widely reproduced on small-scale specimens to
emphasise the strain localisation effects.

Among various authors, the results obtained by [CLC09] for a uniaxial compression
are principally developed hereafter. A sketch of the boundary value problem in plane-
strain state is illustrated in Fig. 6. The vertical displacement ua of the sample upper
surface (smooth and rigid boundary) is progressively increased during the test with a
constant loading strain rate to model the vertical compression. The vertical displace-
ment of the bottom surface is blocked (rigid boundary) and the displacement of the
central node is blocked in both directions to avoid rigid body displacement.

4.3.1 Classical medium

A mechanical modelling is presetned hereafter for a classical medium (without a reg-
ularization method). The (first gradient) constitutive law is an elastoplastic strain-
softening model in an associated softening plasticity framework (ϕ = ψ, F p = Gp): a
Drucker-Prager yield criterion is considered with no hardening of the friction angle,
and a cohesion softening function [CLC09].

A homogeneous response of the specimen is first studied. The global response is de-
tailed in Fig. 7 (a) where one can observe a linear elastic behaviour, then a non-linear
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Figure 6: Sketch of the plane-strain compression test.

plastic behaviour before the peak stress including cohesion softening, and finally a
plastic behaviour with decrease of the global load response. Concerning the orienta-
tion of the shear band, the Rice criterion gives the orientation of the first possible shear
band occurrence [RR75],[Ric76]. This criterion can be used for a single-mechanism
elastoplastic model such as the studied problem. The Rice criterion det(∧ jk) evolu-
tion is presented during the increasing loading history in Fig. 7 (b) as a function of
tanΘ, ∧ jk is the Acoustic tensor and Θ is the orientation of the shear band normal to
the loading vertical axis, i.e. the shear band orientation with the horizontal direction.
The criterion is positive det(∧ jk > 0) as long as the behaviour is elastic and even for
an elastoplastic loading until the first bifurcation is predicted (det(∧ jk) = 0). For a
certain load, the bifurcation criterion is met at every material point and two symmetric
(conjugate) bifurcation directions are predicted with an orientation ofΘ=±60°. This
bifurcation point corresponds to the peak stress on the global response curve and to
the start of the load response reduction in associated plasticity. A range of possible
orientations is predicted for an increasing load corresponding toa multitude of possible
solutions (det(∧ jk)<= 0).

For a perfect sample, although softening plasticity is considered, the strain localisation
is not automatically triggered and the numerical solution may remain homogeneous
even after the bifurcation criterion is met. In reality, the localisation process is gen-
erated because geomaterials exhibit heterogeneities. Different numerical procedures
are available to force the occurrence of strain localisation. The most used one is the
introduction of an imperfection, such as disturbing force, material imperfection, or
geometrical defect [CRB97, MCC02, ZSS01]. The modification of numerical param-
eters, such as time step size and sequences can also be performed [MSC14, SaHC09].
A third method that will be discussed later is a random initialisation of variables
[CCC01].

Among these procedures, [CLC09] introduced a material imperfection in the bottom
left finite element of the sample under compression. Initially the strain field in the
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Figure 7: Uniaxial compression: (a) global specimen response curves and (b) Rice
criterion at several loading steps for the homogeneous solution [CLC09].

sample is homogeneous, and once the bifurcation criterion is met, the imperfection
instigates the development of a shear band across the specimen. The strain localisa-
tion as well as its dependency to the mesh size is illustrated in Fig. 8 for a classical
medium. The localised solution is therefore non-homogeneous, with the shear band
under plastic loading and the outer material under elastic unloading. The global sam-
ple response is detailed in Fig. 7 (a) where a rapid decrease of the global reaction is
observed once the shear band establishes. The shear band appearance corresponds
therefore to the curve peak load (or peak stress) as concluded from laboratory evi-
dences in section 2. The latter also indicate that a material inclusion can act as a
strain localisation attractor, which is confirmed by the numerical results. The non-
uniqueness issue of the problem after the bifurcation point has consequently been
addressed by the imperfection inclusion which leads to one post-bifurcation solution.

(a) (b) (c)

Figure 8: Localised patterns represented by the deviatoric deformation for classical
medium: finite element meshes of (a) 50, (b) 190, and (c) 325 elements.
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4.3.2 Microstructure enhanced medium

To fix the pathological mesh sensitivity, an enhanced microstructure medium is used.
More specifically, the local second gradient medium is adopted, with the second gra-
dient constitutive law given by Eq. 42. The strain localisation pattern induced by the
imperfection is illustrated in Fig. 9 with the Gauss integration points under softening
plastic loading shown as red squares. This representation permits to measure the shear
band width and to notice that it stays constant no matter the element size, implying
that the shear strain localisation is mesh-independent. Thus, the strain localisation is
correctly regularised thanks to the internal length scale introduced by the second grade
model. This is also the case for unstructured mesh [BCC06] and for a biphasic porous
medium under saturated conditions, using the coupled local second gradient model
[CCC06].

(a) (b) (c)

Figure 9: Localised patterns represented by the plastic zone for a second gradient
medium: finite element meshes of (a) 200, (b) 450, and (c) 800 elements.

However, the regularisation of the strain localisation process is satisfactory, provided
that the second gradient elastic modulus D is calibrated properly to represent the shear
bands properly. As already mentioned, the internal length scale inherent to the sec-
ond gradient mechanical law is related to this constitutive parameter. The value of
D should be therefore evaluated based on experimental measurements of shear band
thickness for the considered material. From a modelling point of view, a better numer-
ical prediction of the post-localisation plastic behaviour within the bands is obtained
if at least three elements compose the shear band width [BCC06]. This remark is valid
for any regularisation technique including the second gradient model but also gradient
plasticity and non-local models.

4.3.3 Non-uniqueness of the solution

The non-uniqueness of the post-peak solution of an initial boundary value problem
can be studied using special numerical techniques. In fact, instead of using a material
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imperfection, localised solutions can be found for a homogeneous material using a
random initialisation of the strain rate field (nodal velocities) or of material character-
istics at the beginning of the iterative procedure. This technique has been mainly pro-
posed by Chambon and co-workers [CCC01] who developed an algorithm to search
several possible localised solutions by random initialisation. This algorithm has been
adapted to the second-gradient models by [CM04].

Numerical modelling of compression tests performed with the second gradient model
illustrates the non-uniqueness of localised solutions of the same initial boundary value
problem [BCC06]. The random initialisation is adopted for the increment of nodal
quantities

[
dUτ1

Node

]
(Eq. 68) related to the values obtained at the end of the preceding

time step. The obtained non-homogeneous solutions are detailed in Fig. 10 (a) where
the different solutions exhibit one to three bands with a possible reflection on the top
and bottom faces of the sample because of the imposed vertical displacement. The
results indicate that the band thickness is reproducible even if the localisation pattern
is different in terms of bands position and number.

As before, the strain localisation occurring at the bifurcation point is due to the strain
softening behaviour and possible elastic unloading. Fig. 10 (b) illustrates the global
response curves that are different of those in Fig. 7 because a different first gradient
law is used. These curves are grouped in packages characterised by the number of
deformation bands. It is evident that the higher the band number, the closer the curves
are to the homogeneous plastic case. A similar conclusion was drawn from the bar in
traction studied by [CCH98], [JKC14].

4.3.4 Bifurcation criterion for the second gradient model

A bifurcation analysis applied to the second gradient model is proposed by [BCC06].
The authors indicate that the bifurcation criterion of the second gradient model is, as
for a classical medium, a necessary but not sufficient condition for the localisation
onset and that it is met after the bifurcation criterion of the classical medium is veri-
fied. Thus, the bifurcation analysis reduces to an analysis on the classical part of the
constitutive model.

5 Coupled local second gradient model for an unsatu-
rated medium

The procedure to extend the local second gradient model in saturated conditions to
other multiphysical contexts is more or less the same: additional balance equations
have to be considered to model the other processes. The main issue is not a numerical
one but rather a physical one. What are the possible interactions between the second
gradient model and the thermal diffusion, the suction or the chemical reaction? These
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(a)

(b)

Figure 10: Example of localised solutions for a compression test obtained after a
random initialisation: (a) plastic zone and (b) global response curve [BCC06].

questions should be first addressed by experimental campaigns. Concerning the in-
ternal length introduced by the second gradient model, it comes as the ratio of two
constitutive moduli: the one related to the second gradient constitutive law and the
one related to the classical law [CCH98]. Considering that the classical constitutive
moduli are influenced by the different processes (chemical, thermal, suction . . . ), the
conclusions should be that the internal length scale should be modified by these lat-
ter processes (under the condition that second gradient law is not influenced by the
processes). This should be again confirmed by some experimental evidences!
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The coupled local second gradient model developed by [CCC06] for a biphasic porous
medium can be extended to unsaturated materials with compressible solid grains.
Hereafter, the unsaturated conditions are taken into account and the compressibility
of the solid grains is introduced through the Biot’s coefficient. Additionally, the per-
meability anisotropy is incorporated in the model to better represent the water flows,
even if the mechanical behaviour remains isotropic.

5.1 Partial saturation conditions

For unsaturated conditions the water mass inside a porous material volume Ω corre-
sponds to:

Mw = ρw Φ Sr,w Ω (74)

and its time derivative corresponds to:

Ṁw = ρ̇w Φ Sr,w Ω+ρw Φ̇ Sr,w Ω+ρw Φ Ṡr,w Ω+ρw Φ Sr,w Ω̇ (75)

This amount of water, which depends on the degree of water saturation Sr,w, leads to
the following mixture homogenised mass density:

ρ = ρs (1−Φ)+Sr,w ρw Φ (76)

and the water advective flow for anisotropic hydraulic permeability is given by Darcy’s
law:

fw,i =−ρw
kw,i j kr,w

µw

(
∂pw

∂x j
+ρw g j

)
(77)

where kr,w is the water relative permeability.

The fluid mass and fluid flows are mostly governed by the water retention property
of the material and by its hydraulic permeability. Both of them are related to the
partial water saturation and a relative permeability coefficient is introduced in the
generalised Darcy’s law. Among various possible analytical expressions, the water
retention and relative permeability curves are given by van Genuchten’s and Mualem’s
models [Mua76, vG80]:

Sr,w = Sres +(Smax−Sres)

(
1+
(

pc

Pr

) 1
1−M

)−M

(78)

kr,w =
√

Sr,w

(
1−
(

1−Sr,w.
1

M
)M
)2

(79)

where Pr is the air entry pressure, Smax and Sres are the maximum and residual water
degrees of saturation, M is a model coefficient, and pc is the capillary pressure.
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5.2 Anisotropy of the intrinsic permeability

The advective flow of water (Eq. 77) depends on the anisotropic characteristics of the
material through the anisotropic intrinsic permeability. For anisotropic materials and
by symmetry of the tensor, the intrinsic permeability tensor kw,i j requires six com-
ponents to describe the flow characteristics. However, materials commonly exhibit
limited forms of anisotropy and stratified geomaterials require only two parameters
for the description of the water flow. For horizontal layering in the plane (x1,x3),
the intrinsic hydraulic permeability tensor is defined with the horizontal and vertical
permeabilities, kw,h and kw,v, as follows:

kw,i j =




kw,h 0 0
0 kw,v 0
0 0 kw,h


 (80)

5.3 Compressibility of the solid grains

The material compressibility is defined within the scope of poroelasticity [DC93] and
is based on the different compressibilities of a porous material. Those are: the com-
pressibility of the bulk material C (solid skeleton), the compressibility of the pores Cp,
and the compressibility of the solid phase Cs (rock matrix) with Cs < C. The differ-
ent types of compressibility induce different behaviours of the rock matrix and of the
porous material. They can deform differently and the porous material may enter plas-
tic state while the solid grains remain elastic. In the general Biot framework [Bio41],
the Biot’s coefficient is expressed by:

b =
ΦCp

C
= 1− K

Ks
(81)

as a function of the drained bulk modulus of the material K and the bulk modulus
of the solid phase Ks. This coefficient represents the relative deformability of the
solid grains with regard to the solid skeleton [Bio41, BW57, Ske60]. Biot proposed
for the effective stress definition to use b as a scaling factor that reduces the effect
of pw on σi j due to a reduction of pore compressibility. The Biot’s stress definition
can be formulated under unsaturated conditions presuming that the assumptions on
compressibility hold under these conditions [NL08]:

σi j = σ
′
i j−b Sr,w pw δi j (82)

The latter expression includes the effect of partial saturation on the effective stress
field (tensile stress is positive).

For the solid phase behaviour, the isotropic solid density variation is linked to the
variations of pore water pressure and mean effective stress by [DC93, Cou04]:

ρ̇s

ρs
=

(b−Φ)Sr,w ṗw− σ̇′

(1−Φ) Ks
(83)
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The time derivative of the porosity is obtained by solid mass conservation Ṁs = 0 and
reads:

Φ̇= (1−Φ)
(

ρ̇s

ρs
+
Ω̇

Ω

)
= (1−Φ)

(
(b−Φ)Sr,w ṗw− σ̇′

(1−Φ) Ks
+
Ω̇

Ω

)
(84)

Furthermore, the time derivative of the water mass in Eq. 75 becomes by including
the fluid compressibility, the porosity variation, and by considering a unit mixture
volume:

Ṁw = ρw

(
ṗw

χw
Φ Sr,w +

ṗw

Ks
(b−Φ) S2

r,w +

(
Ω̇

Ω
− σ̇′

Ks

)
Sr,w +Φ Ṡr,w

)
(85)

The above expressions can be rewritten under poroelastic assumption:

σ̇
′
= K ε̇v = K

Ω̇

Ω
(86)

and using the Biot’s coefficient expression of Eq. 81. The equations become:

ρ̇s

ρs
=

(b−Φ)Sr,w ṗw−K
Ω̇

Ω
(1−Φ) Ks

(87)

Φ̇= (b−Φ)
(

Sr,w

Ks
ṗw +

Ω̇

Ω

)
(88)

Ṁw = ρw

(
ṗw

χw
Φ Sr,w +

ṗw

Ks
(b−Φ) S2

r,w +b
Ω̇

Ω
Sr,w +Φ Ṡr,w

)
(89)

Biot’s theory and the equations of poroelasticity are valid only for an elastic behaviour.
Extending these equations to poroplasticity [Cou95] with permanent changes in fluid
mass content and in porosity requires to include the plastic material behaviour, which
is complex to implement and is not included in this chapter.

According to the previous assumptions, the momentum balance equation Eq. 33 and
the water mass balance equation Eq.44 remain valid provided that the different vari-
ables included in these two equations are adapted to unsaturated conditions (ρ, σi j,
Ṁw ...).

6 Modelling of a gallery excavation

The processes of underground drilling and induced shear strain localisation are inves-
tigated at large scale. [PV92] were the first to present a numerical analysis of progres-
sive localisation around an excavated cavity in rock with a Cosserat microstructure. In
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the following, a gallery excavation is considered in a clayey rock. In the rock mass, the
fractured structure around the galleries develops preferentially in the horizontal or ver-
tical direction depending on the anisotropy of both stress state and material properties
[ALN+14]. As a first large-scale approach including strain localisation, an isotropic
mechanical model is used with the objective of analysing if the appearance of fractures
during the drilling of galleries is governed by the anisotropy of the in situ stress state
[PLC15]. So far, the numerical modelling of gallery drilling with the second gradi-
ent model has highlighted strain localisation but was essentially limited to mechanical
analyses with isotropic initial stress state [Fer09, SaHC09].

Moreover, during the operational phases of underground openings, an air ventilation
is performed inside the galleries to control the air relative humidity and temperature.
This ventilation induces fluid transfers and a desaturation of the rock that must be
taken into account in the coupled second gradient model.

Many studies have been performed with two-dimensional isotropic mechanical mod-
els. Our purpose is to investigate if this type of model can reproduce the in situ
observations and measurements by incorporating the fracture modelling with strain
localisation. The zone that develops around the gallery is called excavation fractured
zone, and it is related to the irreversible hydro-mechanical property changes.

It should be pointed out that regularisation techniques have already been used for this
type of problem. They generate results that are mesh-independent but these theories do
not restore the uniqueness of the solution for the gallery excavation problem [Fer09,
SaHC09]. These remarks are valid for all regularisation methods.

6.1 Numerical model

A hydro-mechanical modelling of a gallery excavation is performed in two-dimensional
plane strain state. The modelled gallery corresponds to the GED gallery of the An-
dra’s URL oriented parallel to the minor horizontal principal total stress σh and having
a radius of 2.3 m. The initial pore water pressure and anisotropic stress state are:

σx,0 = σH = 1.3 σh = 15.6 MPa

σy,0 = σv = 12 MPa

σz,0 = σh = 12 MPa

pw,0 = 4.5 MPa

A schematic representation of the models, the meshes, and the boundary conditions
is detailed in Fig. 11. Two meshes are used: a full gallery and a quarter of a gallery.
The mesh extension of the full gallery is 120 m, both horizontally and vertically, and
the spatial discretisation is performed with a total of 29040 nodes and 7440 elements.
Assuming symmetry along the x and y-axes, only one quarter of the gallery can be
discretised. In this case, the mesh extension is 60 m, both horizontally and vertically,
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and the discretisation is performed with a total of 9801 nodes and 2480 elements. For
both meshes, the initial stresses and pore water pressure are imposed at the mesh ex-
ternal boundary (drained boundary) and the meshes have a more refined discretisation
close to the gallery. To establish the symmetry, the normal displacements and the nor-
mal water flows are blocked to a value of zero along the symmetry axes, which are
therefore impervious. Nonetheless, as mentioned by [ZPV01a], a special care must
be brought to the kinematic boundary conditions required to establish the symmetry.
Due to the existence of gradient terms in the equilibrium equations, higher order con-
straints have to be characterised in addition to the classical boundary condition on the
normal displacements. This second kinematic condition requires that the radial dis-
placement ur must be symmetric on both sides of the symmetry axes. This implies
that the normal derivative of ur, with respect to the tangential (orthoradial) direction
θ, has to cancel:

∂ur

∂θ
= 0 (90)

which is equivalent to:

x−axis :
∂ux

∂y
= 0 (91)

y−axis :
∂uy

∂x
= 0 (92)

Furthermore, natural boundary conditions for the double forces, T i = 0, are assumed
on the different boundaries and gravity is not taken into account.

The gallery excavation can now be considered. It is modelled by decreasing during 5
days the total stresses and the pore water pressure at the gallery wall from their initial
values to the atmospheric pressure of 100 kPa. After the excavation, the calculation
is extended to 1000 days under constant total radial stress, to highlight possible long-
term effects (Fig. 12). This stress imposition is representative of unsupported galleries.

To model the air ventilation inside the gallery, a classical flow boundary condition is
assumed and imposes the suction corresponding to the relative humidity of the cavity
air at the tunnel wall. Two cases are considered for the air inside the gallery (Fig. 12).
In the first case, there is no ventilation inside the gallery; thus, the air is saturated
with water vapour and this maximum concentration corresponds to RH = 100 %. Ac-
cording to Kelvin’s law, the corresponding pore water pressure at the gallery wall is
the atmospheric pressure pw = 100 kPa. The pore water pressure is then maintained
constant after the end of the excavation and the rock mass remains almost saturated.
In the second case, air ventilation is taken into account, since ventilation is usually re-
alised in the galleries composing underground structures. It may drain the water from
the rock, desaturate it, and modify the structure, the fracturing pattern, as well as the
size of the fractured zone. Air ventilation can thus be modelled in order to observe its
effects on the rock material. A theoretical ventilation, with constant air relative hu-
midity, is envisaged to obtain a first outlook of the ventilation effect on shear banding.
The air which is injected in the gallery is dryer than previously and a lower relative
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Figure 11: Schematic representation of the models used for the modelling of a gallery
excavation: (a) full gallery and (b) quarter of a gallery.

humidity of 80 % with a temperature of 25 °C (T = 298.15 K) are considered. Follow-
ing Kelvin’s law, this humidity corresponds to a pore water pressure at gallery wall of
pw = −30.7 MPa. To reach this value, the decrease of pw is performed in two steps:
firstly, it decreases from its initial value to the atmospheric pressure during the exca-
vation (5 days), and then an initiation phase of ventilation is considered (5 days) to
reach the final value. After this initiation phase, a constant ventilation is maintained.

The imposed boundary conditions at gallery wall, for total stresses and pore water
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pressure evolutions, are presented in Fig. 12 for the two considered cases. It is worth
mentioning that the ventilation effect on the shear banding is therefore represented
by the hydro-mechanical model. In fact, the ventilation influences the pore water
pressures and the effective stresses, which then influence the shear strain localisation
structure and behaviour.
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Figure 12: Imposed total stresses and pore water pressure at the gallery wall for the
modelling of a gallery excavation with and without air ventilation.

The main purpose of this numerical modelling is to represent the fractures with shear
strain localisation and to reproduce, as well as possible, the in situ measurements and
observations with an isotropic mechanical model.

6.2 Influence of in situ stress and permeability anisotropies

Creation and evolution of the fractured zone can be observed through the evolution of
shear strain localisation. The latter is not a priori assured to be symmetric around the
gallery and many solutions could emerge [SaHC09]. To avoid any early symmetry as-
sumption, the excavation of a full gallery is firstly modelled with incompressible solid
grains b = 1 and no ventilation. With a circular gallery and an isotropic state, it is not
possible to trigger the shear strain localisation and the deformation remains diffuse.
Strain localisation can be triggered through the introduction of an imperfection in the
material.

However, in case of anisotropic stress state of the rock with σx,0 = 15.6 MPa and
σy,0 = σz,0 = 12 MPa, the shear strain localisation appears without adding an imper-
fection in the rock. Fig. 13 illustrates the evolution of the strain localisation around
the gallery, during and after drilling. The numerical results presented are the total de-
viatoric strain, the plastic zone, and the deviatoric strain increment which represents
the band activity:
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Figure 13: Evolution of strain localisation during and after the gallery excavation (5
days of excavation), for a full gallery and for a rock having anisotropic hydraulic
permeability and anisotropic stress state.
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ε̂eq =

√
2
3

ε̂i j ε̂i j (93)

where ε̂i j is the deviatoric total strain field calculated from the total strain tensor εi j:

ε̂i j = εi j−
εkk

3
δi j (94)

κeq =
˙̂εeq dt
∫ ˙̂εeq dt

(95)

The modelling exhibits a symmetric chevron fracture pattern around the gallery sim-
ilar to in situ observations for galleries parallel to σh. The chevron fractures appear
during the excavation and are mainly concentrated above the gallery because of the
material anisotropic stress state. On the contrary, introducing only the anisotropy of
the intrinsic water permeability with kw,h = 4×10−20 m2 and kw,v = 1.33×10−20 m2

does not lead to strain localisation unless an imperfection is introduced. It means
that the appearance and shape of the strain localisation are mainly due to mechan-
ical effects linked to the anisotropic stress state. The shear banding zone develops
preferentially in the direction of the minor principal stress in the gallery section.

6.3 Influence of second gradient boundary condition

The previous modelling highlights that the anisotropic stress state is at the origin of a
symmetry in the localisation pattern around the gallery. Then, it would be convenient,
in the following, to consider only a quarter of a gallery. However, in the context of
second gradient theory, a boundary condition of higher order should be considered in
addition to the classical boundary condition of constrained displacement perpendic-
ular to the boundary [ZPV01a]. This second kinematic condition specifies that the
normal derivative of the radial displacement has to cancel on the symmetry axes.

To illustrate the necessity of this second gradient boundary condition, the strain local-
isation pattern of Fig. 13 is compared to the pattern obtained on a quarter of a gallery.
The modelling on a quarter of a gallery is computed with the specific second gradient
boundary condition, and with b = 1 and no ventilation as previously. In Fig. 14, one
can observe that using the second gradient boundary condition produces a shear strain
localisation pattern that is similar to the full-gallery results. Thus, it is confirmed that,
for calculation simplicity and symmetry reasons, a quarter of a gallery can be adopted
for future modelling, provided that the specific second gradient boundary condition is
used.

6.4 Influence of Biot’s coefficient

Even if strain localisation seems to be mainly controlled by mechanical effects, hy-
draulic conditions can also impact the shear banding pattern. Here, the focus is on the
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(a) (b) 

Figure 14: Comparison of the strain localisation pattern at the end of the calculation
for the modelling of: (a) a full gallery and (b) a quarter of a gallery with the second
gradient boundary condition.

influence of Biot’s coefficient for the case without ventilation. In the first calculation,
it is assumed that the solid grains are incompressible, which implies b = 1 (Fig. 15).
In the second calculation, a value of b = 0.6 is used (Fig. 16). Comparison of Figs. 15
and 16 indicates that the Biot’s coefficient significantly influences the shear band pat-
tern. With a value of 0.6, less bands appear and the shear strain localisation is delayed.
In fact, the strain remains diffuse until the fourth day of the excavation; nonetheless,
the localisation appears before the end of the excavation. This can be explained by
examining the stresses close to the gallery. At the gallery wall, the total stresses and
the pore water pressure are imposed. Consequently, following the Biot’s effective
stress definition for unsaturated materials of Eq. 82, the lower the Biot’s coefficient,
the higher the effective compressive stress at the gallery wall. This implies that the
rock close to the gallery wall is more resistant and that the shear strain localisation
appears later.

6.5 Influence of gallery ventilation

The modelling presented hereafter includes the initial anisotropies, a Biot’s coefficient
value of 0.6, and the gallery ventilation. The drilling phase is not influenced by the
ventilation, and the same results as in Fig. 16 are obtained until 5 days of computation.
The results obtained after the excavation, displayed in Fig. 17, indicate that the suction
imposed at the wall strongly influences the results. Following the effective stress
definition, the higher the suction, the higher the effective stress (Fig. 20). As noted
before, this involves that the material is more resistant, and in this case, becomes
elastic again close to the gallery. This inhibits the shear strain localisation around the
gallery.
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Figure 15: Evolution of strain localisation during and after gallery excavation (5 days
of excavation), without gallery ventilation and for a Biot’s coefficient value of 1.
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Figure 16: Evolution of strain localisation during and after gallery excavation (5 days
of excavation), without gallery ventilation and for a Biot’s coefficient value of 0.6.
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Figure 17: Evolution of strain localisation after gallery excavation, with gallery venti-
lation and for a Biot’s coefficient value of 0.6.

Various numerical results, coming from the gallery wall and the rock mass, are inter-
preted hereafter in order to emphasize the influence of the gallery air ventilation. The
results come from the selected cross-sections and observation points on gallery wall
that are presented in Fig. 18. The vertical cross-section goes through the shear bands
and the results along it highlights the effects of strain localisation, which is not the
case for the horizontal cross-section. Furthermore, the results are compared for the
cases considering (RH = 80 %) or not (RH = 100 %) the ventilation.
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Figure 18: Positions of cross-sections and gallery wall observation points.

The evolution of pore water pressure for the vertical and horizontal cross-sections is
detailed in Fig. 19. In the rock mass, an increase of pressure is observed in the vertical
direction and a decrease in the horizontal direction up to a radial distance of about 30
m. These overpressures are related to the hydro-mechanical coupling induced by the
anisotropy of the initial stress state. The influence of the strain localisation bands is
visible vertically but not horizontally. It is illustrated by the fluctuations of the pore
water pressure in limited zones, with a decrease in the shear band. The influence of
the shear band can be mostly observed during the first 50 days of calculation then it
tends to vanish. This is due to the strain increment inside the bands (band activity)
and the hydro-mechanical coupling. As expected, the influence of the ventilation is
marked close to the gallery wall, but tends to disappear deeper in the rock.

The stress paths at the gallery wall are detailed in Fig. 20 where q is the deviatoric
stress:

q =
√

3 IIσ̂′ (96)

and p
′

is the mean effective stress. As mentioned before, in the case of ventilation,
the effective stresses are much higher due to suction. This explains the difference
between the stress paths of the modelling with and without ventilation, after the end
of the drilling phase.

All these results are evidences that noticeable differences exist whether ventilation is
applied or not. For the modelling with ventilation, pw remains negative close to the
gallery (Fig. 19), the effective stresses increase after the excavation (Fig. 20) and the
material becomes elastic again. Consequently, the desaturation of the rock close to the
gallery inhibits the shear strain localisation (Fig. 17), which has the effect of restricting
further deformation. On the contrary, without ventilation, pw close to the gallery wall
increases after the excavation (Fig. 19), the effective stresses reduce (Fig. 20) and
the material remains partly plastic close to the gallery (Fig. 16). This increases the
deformation and the gallery convergence.

If the problem is studied with an isotropic model, without considering strain locali-
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Figure 19: Evolution of pore water pressure along (a) vertical and (b) horizontal cross-
sections, after gallery excavation.
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Figure 20: Stress paths at the gallery wall, during and after gallery excavation.

sation but modelling the gallery ventilation, then the horizontal and vertical conver-
gences are more or less equal. Only the fracturing and strain localisation processes
permit to produce the convergence anisotropy. In fact, neither the fracturing pattern
nor the gallery convergence can be well reproduced with classical approach [PC16].
The creation of fractures, globally above the gallery due to the material anisotropic
stress state, increases both the vertical and the horizontal convergences. In that latter
direction, the proximity of the shear bands induces excessive deformations. In the
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long term, the delayed deformations that are observed in saturated conditions are ex-
plained by consolidation. In contrast to this, when gallery ventilation is reproduced,
the material close to the gallery wall becomes elastic again which restricts the plastic
deformation and convergence in the long term. The performed numerical modelling
highlights the effect of gallery ventilation on the hydraulic transfer and progressive
drainage of the surrounding rock. However, the considered air ventilation is theo-
retical and a real ventilation could be considered [CCP+13], [PTC16]. Moreover,
the water transfer and its kinetics close to the gallery are mainly conditioned by the
hydro-mechanical property changes inside the excavation damaged zone. In fact, the
damaged zone developing around galleries due to the drilling processis composed of
fractures having a significant irreversible impact on flow and transport characteristics
[TBD05]. For a shear banding approach, the impact of fracturing on the transport
properties can be addressed by associating the intrinsic permeability increase with
mechanical deformation [PTC16], which is amplified in the strain localisation discon-
tinuities. Such dependence permits to reproduce a significant permeability increase of
several orders of magnitude in the excavation damaged zone [PTC16], in agreement
with available experimental measurements [ALN+14].

7 Conclusions

Rupture in geomaterials is often preceded by a localization of the deformations within
thin bands. The strain localization is thus an important process, which has been stud-
ied both experimentally and theoretically. The developments of geomechanics in the
field of coupled multiphysic processes impose the study of strain localization to these
new conditions. Interactions between the different processes can indeed occur. Fur-
thermore, the numerical modelling of shear bands with classical finite element suffers
of a mesh dependency problem. An internal length scale has to be introduced in the
model. Among the different regularization techniques, we propose a second gradient
coupled model for an application to gallery excavation. It has been shown that the
model regularizes the solution but does not restore its uniqueness. The extension of
such theories to other multiphysic context is more an experimental problem than a nu-
merical one. Experiments still have to exhibit the influence of temperature, suction or
chemical concentration on the occurrence and the thickness of the strain localization!
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