The Alliance of Laboratories in Europe for
Education, Research and Technology

ALERT Doctoral School 2018

Energetical Methods in Geomechanics

Editors:
Itai Einav

Eleni Gerolymatou






Editorial

The ALERT Doctoral School 2018 on “Energetical Methods in Geomechanics” will
take place as usual in Aussois, from October 4th to 6th, 2018. The School has been
organized by Prof. Itai Einav (University of Sydney) and Prof. Eleni Gerolymatou
(Chalmers University of Technology). I sincerely thank the organizers and all the
authors of the contributions to this book for their effort!

If it is clear that energy is requested to deform soils and rocks, it exists under many
forms and can transform from one to another. All these phenomena may respect the
laws of thermodynamics, that constrain the development of constitutive models. Often
seen as a limitation to the imagination of engineers, thermodynamic constraints can
actually help avoiding flaws in the methodology. I am therefore convinced that this
school will be beneficial to the ALERT community.

Lectures will include topics ranging from basic concepts of energetical methods (Ther-
modynamics, Principle of virtual power), to specific examples and applications that
illustrate how energetical methods lead development of constitutive models for soil
and rock mechanics. Practical sessions will be organized on the last day of the school,
in order to evidence the effect of constitutive choices on the energetics.

As usual, the pdf file of the book can be downloaded for free from the website of
ALERT Geomaterials — http://alertgeomaterials.eu/.

On behalf of the ALERT Board of Directors I wish all participants a successful ALERT
Doctoral School 2018!

Frédéric Collin
Director of ALERT Geomaterials
University of Liege
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Foreword 1

Energetical Methods in Geomechanics:
Foreword

What is energy? Some say coffee, others say the sun. People connect many different
ideas to energy, so maybe there is something unifying behind that word, energy. Why
do we get sleepless from a cup of coffee? Coffee gets us going, activating both our
mind and body, a motion which turns into a finer motion, of jiggling atoms that warm
up our faces and fingertips. Energy flows and transforms, so to speak. These seem-
ingly simple observations have been ingeniously encapsulated by the laws of thermo-
dynamics, which frame mathematically the conservation and transformation of energy
from one form to another. This may not be exciting for the layman, but engineers and
scientists have benefitted from satisfying such universal laws tremendously, as these
limit their otherwise unbounded freedom to make mistakes.

How do we understand energy and what are the benefits of energetical methods in
geomechanics? The purpose of this book is to address these questions, by assembling
contributions from eminent researchers who have been working actively in this field.
The various chapters deal with different energetical aspects in geomechanics, from the
very theoretical background to specific examples and applications.

The first chapter "Thermodynamics and constitutive modeling” layouts the hydro-
dynamic procedure of thermodynamics with which it is possible to mathematically
formulate the constitutive relationships of any continua, as shown for Newtonian flu-
ids, elasticity, and granular media. The derivation initiates from local conservation
laws, with global conservations automatically being satisfied through integration.

The second chapter a ”Hierarchical guide for constructing thermodynamically ad-
missible constitutive models” continues with the hydrodynamic procedure of thermo-
dynamics. Specifically, it lists the generic constraints thermodynamics put on the
structure of famous constitutive frameworks in geomechanics, from elasticity to hy-
perplasticity, from hypoplasticity to h’plasticity, and rate dependent models.

The third chapter explores the ”Energetics in Discrete Element Modelling” (DEM).
Taking the well-known DEM as a physically simulated granular medium, coarse grained
averaging is then developed to investigate the particle-scale origins of continuum en-
ergetic properties in such media. In this way, the relative abstractness of hydrody-
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2 Foreword

namic concepts is grounded down.
The next four chapters focus on establishing hands on examples and applications.

The fourth chapter ” Definition and uses of the principle of virtual power” describes a
principle consistent with hydrodynamics that is typically more familiar for engineers.
In this approach the general derivation begins from global balance of virtual powers,
Jfrom which local relationships could be retrieved through localization of information,
as demonstrated for constructing micromorphic models and finite elements.

The fifth chapter gives an ”Energetical background of common approaches in geome-
chanics”, looking further into well-established methods and applications of thermo-
dynamics in the field. Further topics include the meaning of properties such as stress,
the notion of energy based upscaling, minimum potential energy, maximum plastic
work and second order work.

The next chapter provides "An energy based constitutive framework for multiphysics
geomechanics”. Whereas the previous chapters focused on processes where the ma-
terial dependence on the temperature could be mostly ignored, this chapter explores
the thermodynamics of geomaterials under extreme conditions, involving both large
shear deformation and high pressures, as applicable for fault mechanics.

The final chapter looks into the ”Energetics of crushable granular materials: from
particle fracture to breakage mechanics”. By connecting those processes through
the eyes of thermodynamics, this chapter demonstrates the role of energetics on the
development of surface-creations at very different length scales, as they govern the
development of various coupled mechanical and environmental phenomena.

Finally, we would like to thank the outstanding contribution from all the authors of

this volume. We thoroughly enjoyed reading their chapters, and hope the readers will
also find them engaging, inspiring and useful for their own work in the field.

I. Einav
E. Gerolymatou
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Mario Liu 3

Thermodynamics and Constitutive Modeling

Mario Liu

Institute of Theoretical Physics

Universitdt Tiibingen
72076 Tiibingen, Germany

Abstract:  Setting up any continuum mechanical theory, especially a constitutive
model for systems as complex as granular media, it is useful to ensure explicit com-
pliance with all constraints provided by general principles of physics, such as energy
conservation and the second law of thermodynamics. A formalism that systematizes
this endeavor — developed by Landau and Khalatnikov in the context of superfluid he-
lium and referred to as the “hydrodynamic procedure” — is presented, explained and
applied to polymers and granular media in this lecture.

Starting with the familiar example of Newtonian fluids, questions such as what en-
tropy and energy are, and how their consideration limit the “freedom” of constitutive
modeling, are answered. Remarkably, these insights suffice for a cogent derivation of
the hydrodynamic theory for Newtonian fluids, ie. the Navier-Stokes equation. Next,
by including the displacement as an additional state variable, this hydrodynamic the-
ory is generalized to account for elastic media. Then, following the same procedure
and introducing the concept of “transient elasticity,” two hydrodynamic theories are
derived, for polymers and granular media, respectively accounting for a wide range
of typical experiments. This agreement, to a large part, is the consequence of compli-
ance with conservation laws and thermodynamics, as detailed experimental data are
not part of the theory’s input.

The lecture is divided into two parts. Part I contains thermodynamics (section 1) and
the derivation of the equations for Newtonian fluids (section 2). In Part II, the elas-
ticity theory is first derived (section 3), then modified to suit the cases of polymers
(section 4) and granular media (section 5). For polymers, one simply make the elas-
ticity transient. For granular media, which are also transiently elastic, one needs in
addition a state variable that quantifies granular jiggling. As we shall see, it is to be
treated in close analogy to the temperature, by suitably extending the second law of
thermodynamics.
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4 Thermodynamics and Constitutive Modeling

1 Thermodynamics

1.1 Conventional constitutive models

It is useful to have mathematical formulas for a concise account of material behavior.
These are referred to as constitutive models. To set up such a model, one typically
starts from the mass and momentum conservation,

Op+Vigi =0, gi=puv, ()
0:9i + Vjoi; = —pGZ;, )

where 0,a = 0a/0t for any quantity, p is the density, v; the velocity, g; the momentum
density, G the gravitational constant, and Z a unit vector pointing upwards. One then
proposes an expression for the stress tensor o;; — usually taken as a function of the
density p, the temperature 7', and shear rate D;; — such that the observed data are
rendered as realistically as possible. If this fails to work, one looks for a differential
equation for o;; in time. The best-known constitutive model is the Navier-Stokes
stress,

Oij = PTéij + pUV; — 77142} - CDkk5ija (3)
where  D;; = £(V,v; 4+ V,v;), 4

Pr is the pressure, and * denoting the traceless part of any tensor. Clearly, realism
is the main advantage of this empirically driven approach. Fundamental understand-
ing is somewhat lacking: The Navier-Stokes stress holds, to great accuracy, for any
Newtonian fluid — which is a material circularly defined as one for which this expres-
sion holds. It would certainly be more satisfying to understand when and why this
expression holds, and to derive equation (3) from some general considerations.

This is where thermodynamics comes in. It includes the explicit consideration of
energy conservation and provides many useful constraints, strongly reducing the arbi-
trariness of constitutive modeling. And it always yields an explicit expression for the
stress, there is never the need to resort to a differential equation. Because a constitutive
model necessarily contains unphysical structure if it violates thermodynamics, and be-
cause that structure will wreck havoc somewhere in its predictions, even if it seems
innocuous in the context under focus, a model derived from thermodynamics stands
a much better chance of providing formulas that remain valid for the whole range of
observation — rather than, as usual, being confined to the types of experiments that the
empirical data are drawn from to set up the model.

1.2 Energy and entropy

The basic ideas of thermodynamics is easily stated. First is the fact that the total energy
W of a closed system is a conserved quantity. Second, that W may be divided into a

ALERT Doctoral School 2018



Mario Liu 5

macroscopic part WM and a microscopic one, H, called heat. Neither is conserved,
but one can only convert WM into H, never backwards,

SW =4 WM+ H) =0, )
d d
dwM <o, 4H>0. 6)

This is the essence of the second law of thermodynamics. Clearly, with W dimin-
ishing and H increasing continually in a closed system, we will eventually arrive at
the minimum of W and the maximum of H, where the system will stop changing,
and equilibrium reigns. This is the case of a pendulum hanging down, motionless,
with all its kinetic and potential energy (W) converted into heat.

Now we refine these ideas, making them more precise and useful. First, we divide all
degrees of freedom into two categories, macroscopic and microscopic. Typical macro-
scopic degrees are the conserved densities of mass p(7,¢) and momentum g, (7, ¢),
coarse-grained over many particles. An example for microscopic ones is the fluctuat-
ing momentum of an atom around the average value g; (7, t) of many atoms.

In a macroscopic theory (such as the Navier-Stokes equation), there is no need to
track every microscopic degree of freedom, hence we lump all microscopic ones into
a single state variable, the entropy density s, by considering only their coarse-grained
energy contributions. But we attribute a state variable to every macroscopic degree,
each with its own characteristic energy contribution. (We shall return to the concept
of entropy later. For now, it suffices to know that it quantifies the energy of all micro-
scopic degrees.) As the state variables may all have a distribution in space 7, and an
evolution with time ¢, we write the energy density as a function of all state variables,

w(r, ) :w[p(f', t),9i(7,t), -+, s(7, t)], (7

and introduce the chemical potential y, velocity v; and temperature 7" as

dw = pdp + v;dg; + --- +Tds, where ®)
_ Ow _ Ow _ Ow
— 87pv Vi = aigia ) = 88 . (9)

Summarily referred to as conjugate variables, these are useful quantities for making
general considerations independent of w’s explicit form (which is a constitutive input).

If there are no more state variables, and we may drop the dots in equation (7), the
equations for energy conservation and entropy balance,

8,511) + VZQz = O7 atS + szz = R/T 2 0, (10)

in addition to mass and momentum conservation equations (1, 2), are a complete the-
ory. They form a closed set of equations independent of the function w if the fluxes
0ij, Qi fi and the source R are given in terms of the variables and conjugate vari-
ables. As we shall see, this will turn out to be the hydrodynamic theory of Newtonian
fluids.
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6 Thermodynamics and Constitutive Modeling

To obtain the expressions for o;;, Q;, f;, R, we shall note that since the energy is a
dependent quantity, Oyw = udyp +v;0rg; + - - - + Ty s, see equation (8), the fact that
it is conserved puts a strong constraint on the possible form for the unknown fluxes.

The second law of thermodynamics, precisely and locally formulated, is:
R = 0 in equilibrium, and R > O off equilibrium.

The reason is the following: Consider a volume with no entropy flux f; = 0. We then
have ;H = [ d3r(T9;s) = [ d3r R. Since the heat always increases, 9, H > 0, and
the volume being integrated over is arbitrary, we also have R > 0, and may identify R
as the local quantity doing the conversion from macro- to microscopic energy, usually
referred to as the entropy production. Turning on the entropy flux does not change
this identification, because the flux f; only transfers the entropy from point to point, to
equalize the temperature. In equilibrium, S = f d3r s is maximal, same as the heat,
and R necessarily vanishes. Even though dissipation may sometimes be negligibly
small, the reverse is strictly speaking also true, R = 0 implies equilibrium.

1.3 Global and local equilibrium

The following three chapters: 1.3, 1.4, 1.5, deal with some basic thermodynamic
concepts of continuum mechanical modeling. The approach may appear unfamiliar,
even outlandish, and difficult at times, but the results are very useful, and easy to
remember. Aim to grasp the gist of the arguments, possibly skipping the footnotes, at
first read.

Elementary thermodynamics considers equilibrium states, in which the entropy, S =
[ sd®r is maximal for given energy [wd®r, mass [ pd®r and momentum [ g;d3r.
Varying S' by changing the distribution of w, p, g;, we shall soon find (in section 2)
that S is maximal for w, s, p, g; = uniform. This is global equilibrium. If they do
vary, S is not maximal, and the distribution not “optimal.” The system may still be
in equilibrium, but only point for point, with neighboring points in slightly different
equilibria. This is referred to as local equilibrium. All thermodynamic relations re-
main unchanged — though the state variables vary in space and time, as depicted in
equation (7). They dissipate, to maximize S and to approach uniformity. !

It is crucial to realize that local equilibrium is quickly reached: After a perturbation,
all degrees are off equilibrium — a chaos the account of which needs a theory for all
1023 degrees of freedom f; in a macroscopic body. Yet most relax quickly to their
equilibrium values given by the locally conserved variables,

fi(Fv t) = fieq[w(Fv t),p(f’, t)vgi(F’t) o ] (1)

IThe equilibrium distribution of w, s, p, g; is uniform only if gravitation is neglected and the system
does not possess an angular momentum, executing a solid-body rotation in equilibrium. Including either,
we shall find nonuniform equilibrium distributions. Clearly, local equilibrium is then given by the state
variables deviating from this distribution, see section 2.
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Mario Liu 7

The evolution of w(7,t), p(,t), g;(¥, t) are much slower. To arrive at a uniform dis-
tribution, because w, p, g; are conserved and cannot be locally produced, transport
over macroscopic distances, of the order of the system size, is necessary.

One of the numerous f; is the entropy density, the energy contribution of the micro-
scopic degrees of freedom. And the relation s(7, t) = s°?[w(7, t), p(7,t), gi (¥, t) - - -]
holds only after local equilibrium is reached. It is the inverse of equation (7), which
has the same range of validity. Therefore, the knowledge of w(7,t) and s°4(7, t) are
equivalent. We may use either w, p, g; or s, p, g; as the independent set of variables
for thermodynamics (if there are no more state variables).

Neglecting the brief time span between total chaos and local equilibrium, we may take
equation (11), or (7), to hold instantaneously. Then we only need a theory accounting
for the evolution of the state variables p(7, ), g;(7,t),- - - , (7, ), instead of all 10?3
degrees. The price is an upper bound in the theory for the frequency w, and wave
vector q:

wrKl1l, ¢g<xl. (12)

The first equation, with 7 being the largest of all relaxation times for f;, states that the
frequency has to be small enough for local equilibrium to always hold. The second
equation states that the smallest spatial resolution, the pixel of the theory, needs to be
macroscopic enough for thermodynamics to be valid. >

Occasionally, the locally conserved quantities are by themselves insufficient to char-
acterize local equilibrium. One also need eg. the displacement vector for solids,
polymers and granular media, and the director for nematic liquid crystals. 3

Then there is the frequent case of slowly relaxing state variables. If a few relaxation
times are much larger than all the others,

T1 > T2 >>7-k7a k:3347 (13)

the range of validity for the hydrodynamic theory, wm; < 1, is unnecessarily small. To
amend this, one includes the associated variables f7, f> as additional state variables,
in effect expanding the concept of local equilibrium, with

w(r,t) = wp(F,t), g:(F, 1), s(7, t), f1(F, 1), f2(F, 1)]. (14)

The range of validity is then restored to equation (12), with 7 being the largest of 7.
These slowly relaxing state variables are important for both polymers and granular
media.

Local equilibrium is the appropriate scenario for constitutive modeling. All models
assume local equilibrium (though some do it implicitly) and account for how global
equilibrium is established. If a constitutive model is derived employing the hydrody-
namic procedure, it is referred to as a hydrodynamic theory.

%In fact, the pixel is typically larger, because in the time span 7 to establish local equilibrium, some
transport of the conserved quantities, over the distance &(7), has occurred. If that transport is diffusive,
|w| = Dg?, the inequality wr < 1 implies g¢(7) < 1 with £ = v/ Dr.

3These are symmetry variables, and they are also slow if the associated continuous symmetries are
spontaneously broken.
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8 Thermodynamics and Constitutive Modeling

1.4 Statistical mechanics

Let us turn to the question: “what exactly is entropy?” The concise answer, with p;
the probability of the system being in the state ¢, and () being the average over all g
states, is

g g
S=—(lnp;) = —Zm In p;, Zpi =1 (15)
=1 =1

As defined, S is in essence some “objective ignorance” about the system: First, note
that the information is maximal and ignorance minimal if the system is with certainty
instatei = 1. Or p; = 1, and p; = 0 for ¢ # 1. The entropy S = —(1ln1) =0
is also minimal then. Next, the information is minimal and ignorance maximal if the
system has equal probability in any of the g state, or p; = 1/g. Then the entropy

S=Ing

is also maximal. * The last formula is usually referred to as the entropy of a micro-
canonical ensemble. Between those two limits, ignorance grows with the entropy.

If the system is initially in one state, with n particles evolving according to the Schrédinger
or Newtonian equation, we have S = 0. (This is exactly what being in a “state”
means.) Any small perturbation will have the system transit to a different state. A
sufficient rate of perturbations — never avoidable, however the insulation — will ren-
der the transitions so frequent, that the system is practically in a number of states
simultaneously, implying an increase of the entropy. S is maximal and the system in
equilibrium, if it has equal probability being in any state — all characterized by the
same energy, mass and other conserved quantities. The Schrédinger or Newtonian
equation (with potential energy and reversible forces) do not account for these transi-
tions and the increase of the entropy. Constitutive modeling does, and hydrodynamic
theories do it explicitly.

In local equilibrium, S' = In g holds, with the number of accessible states g a function
of the local values of w, p, g;. Since all states, being in equilibrium with one another,
have the same energy, g and In g are measures of the heat in that pixel. Finally, note
that the entropy is, same as the energy, additive: If we have two subsystems, 1 and 2,
in different equilibria and with g1, g2 accessible states, the total number is g = g; X g2,
and the total entropy is S = Ing = In g1 + In go = S7 + S2. Or more generally,

S:lng:lani :Zlngi :ZSi —)/S(F7t)d31".

“4To see that, realize that varying the entropy S for constant >~ p; = 1, or

the Euler-Lagrange condition is In p; + 1 + A1 = 0 for V 4, or p; = const. Since there are g states the
system may be in, we have p; = 1/gand S =1Ing.
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Mario Liu 9

1.5 Energy and angular momentum

Next, we address the question: “what exactly is energy?” noting that, same as time,
energy is a basic concept hard to define concisely. There are a few steps involved.
First, we define a locally conserved quantity a as one that satisfies the continuity
equation, d;a + V; A, = 0, implying a cannot be created or destroyed locally. To
change its local value, it must be transported from, or to, the neighboring volume
element, 9; [ad3® = — § A;ds,. (Note that only the value of the flux A; at the
volume’s surface is relevant.) The equation for the entropy, 9;s + V, f; = R/T > 0,
on the other hand, possesses the source term R/7" that accounts for the local creation
of heat.

Then there is the fact that, in a closed system of particles with a known interaction
(ie. with a given Hamiltonian H), a quantity calculable from H that we call energy
is locally conserved — if the interaction does not depend on the absolute time, given
(say) by an externally ticking clock. But this we believe to be generally true for
any physically meaningful interaction: Time is uniform, and no interaction, however
complex, may depend on the absolute time. Hence there is always a locally conserved
quantity called energy w — irrespective whether we have any idea about the interaction
and the Hamiltonian H.

Generally speaking, w depends on all degrees of freedom, though we subsume all mi-
croscopic ones into the entropy s. The functional form of w, since unknown, needs
to be appropriately postulated to fit experiments. These are the thoughts behind equa-
tion (7).

However, the dependence of the energy w on the momentum density g; is universal,
and must not be postulated. It is simply the kinetic energy that is added to any rest-
frame energy wy, when it is being moved en bloc, whatever its interaction is. (In
fact, the system may stay at rest, with the observer walking past it. Then he will also
register an increase of the system’s energy by gZ/2p.) We therefore write

w(s, p,g:) = wo(s, p) + g7 /(2p),  with (16)
dwo(s, p) = To(s, p)ds + po(s, p)dp. (17)
It is wo, depending on one less variable, which may, and needs to, be postulated.

As aresult, the conjugate variables satisfy the following relations that will prove useful
later on:

v,zgw:&7 Tz% :% = Ty, (18)
gi P 51pg 5 1p
ow 0 2 v?
uz—<wo—g’) = 1o — - (19)
P Op 20/ g, 2

That time’s uniformity leads to energy conservation in a close system is a special
case of a general principle: The invariance of the interaction (ie. of the Hamiltonian
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10 Thermodynamics and Constitutive Modeling

H) under any continuous symmetry of time ad space always gives rise to a locally
conserved quantity.

Space is uniform and isotropic. Therefore, interaction must not depend on an absolute
point in space (translation) or an absolute direction (rotation). It may and does depend
on particle coordinates in relation to one another.) The first gives rise to the conserva-
tion of the momentum density § = p%, the second to the conservation of the angular
momentum density (=7x g. Note that in contrast to the energy, these two do have a
definite form. (The source term —pGZ; in equation (18) is present, because no system
of particles on earth forms a close system, even when it is isolated from other systems,
as all particles interact gravitationally with the earth’s mass.)

Finally, there is Galilean invariance, or the fact that empty space does not possess a
preferred absolute velocity: There is no ether, and no way to determine the absolute
velocity of any physical object. This gives rise to the conservation of the booster,
b= pi” — gt. The discussion of the booster is usually confined to relativistic physics,
but as we see below, it is more generally relevant. 3

Starting from O,p 4+ V;j; = 0 and 9;g; + V;o;; = 0, the local conservation of mass
and momentum, and requiring the local conservation of ¢ and b, we find

Ol = (7' X 0tG)m = €mkiTh0:Gi = —€mkiTkVj0ij = —Vjil€mriTh0ij] + €mriCik,
Oib; = Opri — Oygit — gi = —1iV;j; + tVj0i — gi = V(toi; — rijj) + ji — gi,

and conclude that €,,,4;7;% and j; — g; must vanish. This means that — independent of
the system’s interaction — the stress tensor is always symmetric, and the mass current
is always equal to the momentum flux g; = pv;, cf. equations (1,2),

Oij = 0jiy, Ji = Gi = PUi- (20)
As £ and b are not independent from g and p, we do not need their values for fixing the

local equilibrium. And as long as equations (20) are satisfied, they are also conserved.
6

1.6 Hydrodynamic theories

In this lecture on how to capture thermodynamic insights in constitutive modeling, we
shall derive the hydrodynamic theory for four systems: Newtonian fluids, elastic me-
dia, polymers, and granular media, using the first two cases to illustrate the approach,

S5Note £ and b are closely related: b is the zeroth component of the 4-angular momentum, the con-

servation of which is a result of the Lorentz invariance: ¢*F = x(’gﬁ — xﬁg"‘, ¢ = (et,7),

g% = (¢/c = pe,§). Since angular momentum conservation holds independent of the inertial system,
the zeroth component (that mixes with the other three under a Lorentz transformation) has to be conserved
as well. In other words, taking the booster to be non-conserved is similarly illogical as saying that one
component of the angular momentum (that mixes with the other two under a rotation) were non-conserved.

The above proof depends on the explicit form of the angular momentum 7=7x g, and the booster,

b= pT — gt. Deviations are conceivable, see [Ko98] for the associated considerations.
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and showing that only a few easy steps are involved to generalize the results to the
next two cases. Starting from a set of state variables, we shall always first consider
the consequences of S = max in equilibrium, and what happens when the system
deviates from it. Then these results are combined with the energy conservation to
setup the complete theory. We shall not apply the derived hydrodynamic theories to
any experiments here, because of the lack of time and space, and because this is well
rendered in the cited references.

An important advantage of the hydrodynamic approach is its clear separation between
general principles and constitutive assumptions. The basic starting point is a set of
state variables that defines the class of systems being described. General principles
are then used to derive the evolution equations for these state variables (which are
referred to as the structure of the theory). Constitutive assumptions are then needed to
specify the functional dependence for the energy and the transport coefficients.

For Newtonian fluids, we have p, g;, s as the state variables. The resulting Navier-
Stokes equations are completely cogent and do not involve any constitutive assump-
tions. Adding the strain as an additional state variable, we arrive at both the elasticity
theory for solids and the polymeric hydrodynamics — depending on whether the strain
may remain finite in equilibrium, or vanishes (transient elasticity). As we shall see,
this is equivalent to whether the system allows a plastic strain rate. Granular media
is also transiently elastic, but requires the additional state variable of s,, the granular
entropy density.

In constitutive modeling, some researchers tend to postulate additional variables, for
the purpose of improving the agreement with some data. Frequently, specific micro-
scopic mechanisms are inferred to support this introduction (though the respective
energy contribution is rarely specified). This is unwise. Introducing a new variable,
changing the descriptive class, is a most consequential step. Without overseeing the
many implications such a step entails, it is frivolous to go down this path, for the sole
purpose of fitting a few experiments. The costs are untrue, possibly even grotesque,
predictions elsewhere. Instead, one should rather alter the expressions for the energy
and transport coefficients.

Finally, some words on history and literature. The hydrodynamic procedure was pi-
oneered by Landau [LL87] and Khalatnikov [Kha65] in the context of superfluid he-
lium, and introduced to complex fluids, specifically liquid crystals, by de Gennes [DePG93].
(Most physicists take hydrodynamics to mean the long-wave-length continuum the-

ory of any condensed system, while engineers typically use it as a synonym for the
Navier-Stokes equations.) Hydrodynamic theories [DeM84] have been derived for,

and successfully applied to, many condensed systems, including

liquid crystals [MPP72,Lub72,Liu79,Liu94,1iu94b, PBo6],

superfluid 3He [Gra74,GP75,Liu75,L.C78,LC79,Liu79],
superconductors [Liu98,JL01, Liu02],

macroscopic electromagnetism [HL93, Liu93,Liu95, JL.96,1.S09, SL15],
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12 Thermodynamics and Constitutive Modeling

e ferrofluids [Liu95, Liu98, Liu99, ML01, ML02, MHL06, MILO0S],
e polymers [TPLB0OO, TPLBO1, PLB04, Mul06, MLPH16, MLPH16b],

e granular media [JLO7,JL09, KV09,JL14, GJL11,JLO03, JL04, JLO7, KPBJLO6,
BPKMIL06,JL08,JL09, ML12,KML12,JZPFSSML12,ZL.HJL.12,JL13,JL13,
JL15,JL16b,JL17].
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2 Newtonian Fluids

In this section, we derive the full set of evolution equations for the Newtonian fluid,
including energy conservation and the balance equation for the entropy. The pur-
pose is to demonstrate the cogency of the hydrodynamic procedure: Given the set of
state variables, s, p, g;, the hydrodynamic theory, including especially the form for
the stress o, is a derived result. Clearly, the definition of a Newtonian fluid is that
s, p, g; are a complete set of state variables, which fixes the local equilibrium state
unambiguously.

2.1 Equilibrium conditions

We start with Eqs(8,9), but without the dots,
dw =Tds + udp + v;dg;, 21

because these are the complete set of state variables for Newtonian fluids. First, we
derive the equilibrium conditions by maximizing the entropy [ sd>r, for constant en-
ergy [wd>®r, mass [ pd®r and momentum [ g;d3r. This is equivalent to minimizing
the energy for constant entropy S = [ sd®r (and mass, momentum), similar to the
fact that a circle is either the figure of largest area for given circumference, or one of
the smallest circumference for given area. Varying the energy in a closed system at
rest, of given volume V = [ d3r, entropy S = [ sd3r, and mass [ pd>r, employing
T, o1, as constant Lagrange parameters, we have

(5/(w0 —Tps —ppp) d®r =0, (22)
or / [T6s + podp — Tros — purdp) d>r

= [0 = Ti) s+ (o = ) 6] @ =0,

Because ds and dp vary independently, both brackets must vanish. And because
Ty, pur, are constant, 7', 149 also need to be. So the equilibrium conditions are

ViT = 0, Viuo = 0. (23)

Since T', iy are functions of s, p, see equation (17), the latter are also constant, and
with them the energy w.

Rewriting equation (17) as d(Wo/V') = pod(M/V') + Td(S/V'), and keeping the
volume V' constant, we arrive at dWy = podM + T'dS. Keeping instead the mass
M constant, we obtain the more familiar form, with Pr denoting the thermodynamic
pressure,

dWy =TdS — PpdV, Pr = pop+ T's — wy. (24)
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14 Thermodynamics and Constitutive Modeling

Because V,;wg = TV ;s + poV;p, we also have the relation,
ViPT = SviT + pV,»,uO. (25)

Further, we note that Pr is a Galilean-invariant quantity: With pop + T's — wg =

(o —v%/2)p+vig; — (wo + pv?/2) = up +v;g; — w, see equations (16,19), we may
also write

Pr=pp+Ts+vigi —w, (26)

ViPr = sV, T + pV;u+ g;V;v;. 27

2.1.1 gravitation

Including the gravitational energy p¢, the conserved energy is wy = wq + p¢. Varying
f wod3r as in the last section , keeping in addition ¢ = const, we obtain

ViT =0, Vifig = 0, with fig(p) = 0wo/Ip = po + ¢. (28)

With T, g functions of s, p, these conditions imply nonuniform s, p being the optimal
distributions that minimize the energy, or maximize the entropy. Taking ¢ = Gh (h
being the height) for the earth surface, we have, with equation (25) and Z; pointing up,

Viko(p) = —Vip = =G, (29)
oP
ViPr = TT Vip = pVipo = —pVio. (30)
P T
The equation V; Pr = —pV,;¢ is usually taken as an expression of force equilibrium,

though we now realize that it expresses equilibrium and maximal entropy.

If OPr/0p|T is a constant, we have

Pr_p ¢
Lo P exp 31)
Py po OPr/0p
For ¢ = pGh and in an ideal ideal gas, OPr/0p = kT /m, this is the barometric
formula.

2.1.2 macroscopic motion

Now we include macroscopic motion, but for simplicity neglect gravitation. We shall
deduce the fact that the only motion permitted in equilibrium is a solid body rota-
tion, or equivalently, that D;; = %(Vﬂ)j + V;v;) = 0 holds. In addition, Vit = 0 is
altered to 0,v; +V,; ;o = 0, which is very close to the Navier-stokes equation in equilib-
rium. The consideration involves three additional conserved quantities: momentum,
angular momentum, and booster. More details may be found in reference [Ko98], see
also [LL8O].
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Now, we minimize the energy [ wd3r for given entropy S = [ sd®r, mass M =
[ pd3r, momentum G = [ Gd3r, angular momentum L = [ (7 x §)dr, and booster
B = [ (p7 — gt)d3r, employing 11 constant Lagrange parameters (all with the sub-
script 1),

5l wd3r—TL/sd3r — ,uL/pd?’r — Uy - /ﬁdsr (32)
G, / (7 x G)dPr + Ky - / (o7 — G)d*r] = 0,
or /[(T—TL)68+(M+KL - —pr)op (33)
+(T—Up —Qp x7—Apt)- 67
+(App—GxQp)- 07— Ky - Got}d®r = 0.
As ds,0p, g, 67 = const, it = const all vary independently, we conclude
MA,=Gx GOy, A,-G=0, T=Ty, (34)
p=pr—Ap -7, 7=Up + 9y XF+KLta
where T'(7, t), u(7, t), U(7, t) are the fields, M, G the conserved quantities, and Tz, i1, U, O, AL
the constant Lagrange parameters. (We note that the condition AL-G=0 may be
obtained by multiplying the first with G.) A temporal derivative of the last condition

yields .
A = 0,7 (35)

Spatial derivatives then yield the equilibrium conditions,
VI =0, Vu+d7=0, Dy =2i(Vv;+V;u)=0. (36)

To understand equilibrium motion better, we consider a steady motion of the center of
mass, R = Ry + t0; R, in addition to a solid-body rotation

T=0R+ Ox(7F— R) = (37)

(0,R — O x Ry) + O x 7+ (0, R x Q)t,
finding U, = 9,R — O x Ry, (38)
O=0;, A,=08RxQ. (39)

For 6#?”@, or 8&% =0, or 2 = 0, we have OU = KL = 0. Otherwise, the coordinate
7 moves with respect to the center of mass R, implying ;¢ # 0, and rendering the
chemical potential nonuniform. With M R = f prd3r, we have

G- / pirdPr — / PlOF+ G x (7F— ) d*r = MO, R, (40)

EZ/(pf—ﬁt)d3r=Mﬁ—ét=M(é—atﬁt) = MR,. (41)
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16 Thermodynamics and Constitutive Modeling

That the booster is given by B=M Ro, an initial condition, is not odd. The momen-
tum is also given by its initial value, G = Gy. There are many initial conditions, but
only a few locally conserved densities.

Choosing an inertial frame for which ]%, R = 0, employing equation (25) and
Vip = Vi(po — v?/2) = 0, we obtain

ViPr = pViuo = pvi’UQ/Q = pv- Vl(ﬁ X 7) = p(¥ x ﬁ) 42)

Clearly, this time the expression of maximal S yields the centrifugal force. And the
associated density distribution, same as in equation (44), is given by
Pr p v?/2

= — =exp

— — = 43
Py Lo 3PT/3P (“43)

if OPr/0p may be approximated as constant.

Combining macroscopic motion with gravitation, we need to have G 1 zand QH?}
to preserve translational and rotational symmetry, and the conservation of momentum
and angular momentum. Then V i+ 9,4 = 0 holds in equilibrium (with !), implying

Vi + 00 = —pG3, (44)
see equations (29, 30).

2.1.3 thermodynamics in astronomy

It is worth noting that the reason for us earthlings being able to see only one side of
the moon is because the moon’s spin w and its orbital rotational velocity around the
earth  are equal, w = €, an expression of a solid-body rotation. This means that the
spinning of moon is already in equilibrium with its orbital rotation, while the earth’s
spinning, with a much larger kinetic energy, is not yet in equilibrium. To account
for this dynamics, a dissipative force in the Newtonian equations ~ w — 2 would be
necessary.

2.2 The entropy production R > 0

Since the vanishing of V;T, D;; and 0,v; + V1 is necessary and sufficient for equi-
librium to hold, and since the same is true for R, we take R as a function of these three
fields. (They are usually referred to as thermodynamic forces.) Expanding R in them,
the lowest order terms are of second order: A constant term would imply R # 0 in
equilibrium, while linear terms are not positive definite. However, as we shall see in
the next section, given V;T', D;; = 0, the vanishing of d;v; + V;u follows from the
structure of the Navier-Stokes equations, or more generally, from that of momentum
conservation. It is not independent. Therefore, we take R given as

R = k(VT)? + nAj; A} + (DF,, (45)
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where Dy, is the trace of D;;, and A}‘j = D;; — %D,@,@(Sij its traceless part. Given
the isotropy of Newtonian fluids in equilibrium, these are all possible quadratic terms.
There are no others. Equation45 is therefore the most general form.

The expansion coefficients x, 7, ( will be identified as transport (or Onsager) coeffi-
cients in the next section. They are functions of the state variables, or equivalently,
the conjugate variables. Because of the expansion, they must not depend on the ther-
modynamic forces, especially not on D;; (a frequent error). Moreover, because the
entropy S = Ing is Galilean-invariant and cannot depend on the inertial frame, so
must its source term 2 be. Since the thermodynamic forces: VT, D;; are also
Galilean-invariant, so must x, 77, ¢ be. Therefore, they only depend on s, p, or T, Pr,
not v;, g;. These three functions, in addition to that for the energy, are the only consti-
tutive choices one can make for any Newtonian Fluid — though its structure (as derived
in the next section) holds independent of these choices.

2.3 The evolution equations

Neglecting gravitation, the evolution equations of the state variables have the form of
continuity equations, except s that also possesses a source term,

Op+Viji =0, Os+V,fi= R/T >0, 46)
Ow +V;Q; =0, 0tgi + Vi oy = 0.
We already know that j; = g; = pv; and o, = oy, cf equation (20).

Next, we determine the the fluxes: f;, Q; and ;. We do this in two steps, first what
these fluxes are in equilibrium, then how they get modified off equilibrium.

In a macroscopic motion permitted in equilibrium, the fields p, s, of each mass point
moving with v;, remains unchanged in time, 0;p + v;V;p = 0 and 0;s + v;V;s = 0.
Since the last of equation (36) implies Vv, = 0, we may also write

3tp+Vi(pv,;) =0, 8t5+Vi(sv7;) =0.
Next, starting from p(V;p + 9yv;) = 0, and adding v;[0;p + V;(pv;)] = 0, we find
drgi + pVi(po — v2/2) + v;V;(pv;) = 0, or equivalently,
Owgi + V;(Pr + pvivj) =0,

because V; Pr = pV 1o, equation (25), and with V;v;+Vjv; = 0, also —pVi(w?/2) =
—pv;Viv; = pv;Vjv;. As aresult, we conclude that the fluxes in equilibrium are
Jit=pui, it =svi, 0 = Proi; + puiv;. 47

(3

Including gravitation, all fluxes remain the same, though because of equation (44),
momentum conservation is modified to

Agi + V;(Pr + pvivj) = —pGZ;.
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18 Thermodynamics and Constitutive Modeling

Off equilibrium, we denote the (dissipative) modifications of the fluxes with a super-
script P (for dissipative),

fi=FY=fP, o= -0l (48)
noting that j” = j; — j;* = g; — pv; = 0. To obtain £, o/}, and Q;, we differentiate
equation (21),

Oyw = TOs + p0rp + vi0rgi = —V;Q;, (49)

and require this equality to hold generally, independent of how w depends on s, p.
Next, inserting the expressions from Eqs(46,47,48), employing equation (27), and
noting o Vivp, = %(oikvivk + 01 Vivg) = oy Dk, equation (20), we rewrite
ViQ; as

ViQi = Vi(uji + Tfi +vroix) (50)

=R+ fPVT + 0] Dij — (ji — pvi) Vipu.

This is a unique expression, because one needs to rewrite all terms such that they are
either part of a divergence, or vanish in equilibrium. (For instance, we write T'0;s =

—TVifi+--- as ;V;T —V;(Tf;), and deduce that first term belongs to R, and the
second to ();.) Therefore, we conclude

Qi = pji + Tfi + vkoir, (5D
R= fPVT + 0] D;;. (52)

Finally, comparing equation (52) to equation (45), we obtain
P =kViT, o) =nD}; + (8i;Des. (53)

Note that, for V;T', D;; = 0, the Navier-Stokes equations, 0;g; + Vi 03, = —pG2;
automatically reduces to d;v; + V;u = —pGZ;: Given the former, we are left with
the equilibrium fluxes, and we know that 9,g; + Vi 0, = —pGZ; and Oyv; + Vi =
—pGZ; are then equivalent.

This concludes the derivation of the full hydrodynamic theory for Newtonian fluids.
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3 Elastic Media

3.1 Small deformations

Elasticity of small deformations is simpler and facilitates an easy grasp of its essence.
We therefore consider it first, by introducing the displacement vector u;, its evolution
equation,

Oyu; = v —y, (54)

and the elastic strain, on which the energy depends,

gé, = —%(Viuj + Vjui). (55)

¥

Note there are different sign notations in elasticity, for both the stress and the strain.
We use the convention of Soil Mechanics, given by equation (55) above, implying

& =—Dyj = —1(Viv; + V), (56)
des; = —Dij + 5(ViyP + VjyP), (57)
=¢;; — &b (58)

. . .ol . l ! .
We write €;;, sf J instead of 0.5, c%sf J because s,’i’ J does not usually exist, and g;; =

Efj exists only if es'f Jl = 0. It is preferable to call efj, as defined, the elastic strain,
because the elastic energy depends on it. Besides, the plastic rate is clearly non-zero.

The stress sign remains the same as given above, see equation (2). This is the same
sign notation as in [EL18], but differ from all other references on polymeric dynamics
and GSH by a minus sign with respect to the elastic strain fields, referred to as u;; =
—¢&;; there.

Terms of second order in V;u;, and convective terms such as v,V u; are neglected
in this section, because we focus on small deformations here.

In the evolution equation (54), the equilibrium flux is given by v;: Moving a solid with
a constant velocity v;, the displacement changes as v;t. The dissipative contribution
yiD , to be determined below, will turn out to be one that aims to render the stress uni-
form (in one dimension). The quantity y? is frequently small, and typically neglected.
But it is nonzero generally, and useful for understanding plastic strain rates.

Since the energy w now depends on £f;, we add a term to equation (21),
dw = Tds + pdp + vidg; + mijdeg;. (59)
Because 7;; = aw/asfj is symmetric, 7;; = 7;;, we may also write

dw = Tds + pdp + v;dg; — m;dV ju;. (60)
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20 Thermodynamics and Constitutive Modeling

Minimizing this energy, same as we did in equation (22), 6 [ (w — Tps — prp) dV =
0, with the additional constraint that du; vanish at the surface, f mijou; dA; = 0, we
find

/ [Tds + pop—m;j0Vu; — Tr0s — prop) dV =

/ [(T — TL) 0s + (/L - ,LLL) 5,0 + (ij-j) 5“1] dv = 0.

Since ds, 0p and du; vary independently, we have the same equilibrium conditions as
in equation (23) — or in equations (28, 36, 44), and in addition

ij-j =0. (61)

The entropy production I is now a quadratic function of three fields, V;T', D;; and
V;mi;. Neglecting possible mix terms for simplicity (but see below), the quadratic
form is

R= HijviTVjT + nijle;:ij;:l + ngg + §iij7rika7rjm. (62)
Next, we look for the equilibrium form of the stress tensor, adding tentatively the term
m;; to the expression in equations (47), with Pr still defined as in equation (26),

eq __

013

mij + Prdi; + pvivj. (63)

Because V;m;; = 0 in equilibrium, momentum conservation d,g; + V;o;; = 0 re-
duces, as before, to 0;v; + V; 11 = 0. (Note that the pressure gradient now has an extra
term, V; Pr = --- + m;V;€;, because the energy also does, cf. equation (59). This
term may be neglected for small deformations.)

Next, starting from equations (46,54), differentiating the energy, equation (60),
Oyw = T0ss 4 p0ip + v;049; — iV j0su; = —V;Q;. (64)

concentrating on the equilibrium fluxes, and inserting the expressions from equations
(46,47) as before, and now also equation (54), with yiD = 0, we find that, indeed, only
with 7;; in o7 is energy conserved,

Oyw = vié)tgi — m—jvjatui 4+ = —Uivj‘ﬂ'ij — Wijvj"l)i + o= —Vj(vmij) +--
Also, we see that there is an additional term in the energy flux, Q; = v;my; +---.

To obtain the dissipative, off-equilibrium terms, we also insert the expressions from
equations (48), including yf’ = (, and employ equation (27), note 0,5 Vv = 0 Dik
[cf. equation (20)], to arrive at

ViQ;i = Viluji + Tfi + vkoi — mi5y7 ], (65)
— R+ fPViT + 0[] Dij + yPVmi;
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and conclude

Qi = pji + Tfi + vkoir — Ty, (66)
R= fiDViT + UgDij + yivaﬂ-ij~ (67)

Because of equation (62), the fluxes: f2, 05 , yD are linear functions of forces: V, T, Dy, Vg,
and we conclude

fi = ki; VT, 05 =i Dr, Y- = € Vimin, (68)

with k5, 75k, €i; being transport coefficients, functions of the state variables. The
thermodynamic force V;m;; redistributes strain and stress, toward the equilibrium
condition of V;m;; = 0. As long as this condition is not satisfied, we have yiD # 0,
and neither does the plastic strain rate vanish.

More generally, cross coupling are allowed and given by the Onsager matrix,

P Kik bi.  Cikl VT
yP | = bw ek hia || Vim | - (69)
ol —Citi —hrii Mgkl Du

Note the time-inversion properties of the forces: V;T', V ;;; are positive, D;; is nega-
tive. Hence by; is symmetric, while ¢;x;, h;x; are antisymmetric. The non-negativeness
of R is ensured by the following procedure: First, taking both 05 and Dy, as a six-
tuple vector, and writing 7;ji; as a 6x6 matrix, 74,3 (o, 8 going from 1 to 6), we re-
quire it to have only positive Eigenvalues. Next, taking (f;, yiD )and (V. T,V mg) as
two six-tuple vectors, we again require the 6x6 matrix of coefficients connecting them
to have positive Eigenvalues. Note that the antisymmetric coefficients, cx;; and by ,

do not contribute to R, there are no constraints for them. For details see [DeM84].

In the above treatment, we took the density p as a variable independent from the
elastic strain &f;. This is the general case. But if one neglects the effect of mass
defects [MPP72], smallish in solids, the density is a dependent quantity, the variation
of which is given by

dp/p = de, (70)

Eliminating p as a variable implies Pr = 0, especially in equation (63). To see that,
take the rest-frame expression of equation (59), dwo = T'ds + podp + m;;des;, and
rewrite it as

d(wo/p) = Td(s/p) + (Pr/p*)dp + (mi;/p)de;. (71)

Since Pr/p? is a density derivative taken at constant £;;» and constant s / p, it vanishes.
(The chemical potential 1 vanishes at constant £7; and constant s. Eq,(70), if taken as
without any specification of what is being held constant, is not well defined.)
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3.2 Large deformations

Generally speaking, the description of an elastic body relies on two coordinates: the
actual spatial coordinate r;, specifying a point in an elastic body, and the initial co-
ordinate a;, see [TPLB0O0], also [TPLBO1, PLB04]. Starting from a stress-free elastic
body, we consider a point with the coordinate a;. As the body is translated, rotated,
compressed and sheared, a; is displaced to r;. In general, r; may be quite remote
from a; — especially in soft matter or a metal sheet. The function 7;(a;) is unique and
invertible to a;(r;). The first is the Lagrangian description, the second the Eulerian
one. Their difference is relevant only for large deformations. We shall refer to r; as
the real space, and a; as the initial space, and both 0r;/Ja; and V;a; = Ja;/0r; as
the deformation tensor (since only one of either is employed in any description).

As discussed in most books on elasticity theory, see eg [LL86], the elastic energy
depends on the change in distance between two neighboring points, from da? to dr?.
Defining the displacement vector as u;(a;) = r;(a;) — a;, and the strain tensor as

ek = —2[0ui/dar, + Oui/Da; + (Ou;/da;) - (Quj/day)], (72)
we have dr?(a,,) — da? = —2¢5 da;day. The elastic energy is a function of €& . Tt

is, to lowest order, simply w = 5 Kijme ek,

The special point here is that both the strain tensor and the energy density are functions
of the initial coordinate a; — hence the superscript in €%, for Lagrangian. Contrast this
with the energy density of an isotropic liquid in its rest frame, a function of the mass
and entropy density, w(p, s) — or equivalently, dw = T'ds+udp. All variables, includ-
ing the conjugate ones, temperature 7' and chemical potential p, are here functions of
the real coordinate r,,, see equation (7). This is the Euler notation, the basic advan-
tage of which is that physics, which we insist must be local, is also expressed in local
terms, accounted for by quantities at the real coordinates r,,. Consider for instance
the diffusive heat current, which is given by the local gradient of the temperature,
~ 0T (r,)/Ory, only in the Eulerian description.

Returning to elastic media, we have two choices: First, take all variables including
especially the temperature and chemical potential as functions of a,,, and employ
them with the strain tensor 5. This would be consistent, but highly inconvenient.
For instance, the heat current ~ 97 '(r,,,) /Or; at the real space point 7,,, now presumes
the knowledge (not usually available) of the global transformation, r,, <> a,,, as
0T (ry,)/0r; = [0T (am)/0ar](Oay /Or;). Similarly, with g the momentum density,
the angular momentum density is r(a,,) X g(a,), not a x g(a,,). (If the system is
only weakly deformed, with u; = r; — a; small, the above differences between r; and
a; may be neglected to linear order, as we did in the last section. )

The second, and the only actually viable, choice is to take all variables including the
strain tensor in the local, Eulerian notation, as functions of r,,,. We therefore employ
the Eulerian strain tensor [CL95], introduced via dr? — da?(r,,,) = 2¢%, (1, )dr;dry,
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where the superscript also stands for elastic, u;(r,,) = r; — a;(rm), and

5 (rm) = —%[aui/ark + Ouy /Or; — (Ou;/0r;)(Ou; /Ory)]. (73)

There is a second point, essential yet somewhat subtle: We need to eliminate the
displacement field u;, to deal exclusively with the initial coordinate a;(r) and the
elastic strain €¢,. This is possible because starting again from dr? — da?(r,,) =
2e¢, (7, )dr;dry, we find

€5 = —%[511@ — (0aqa /0ry)(0ay/0r;)], (74)

with no need whatever for a detour via w;. This is necessary because the introduction
of u; destroys an inbuilt symmetry and represents an ad hoc choice. As discussed, a;
and r; are vectors of different spaces, and they transform as vectors, under rotations
in initial and real space, respectively. The introduction of the displacement fixes both
spaces with respect to each other, and prohibits the rotation of either space alone. No
physical field depends on the orientation of the initial space, the fictitious unstressed
body. Given any relation a,, <> 7,,, we are still free to take a global but arbitrary
rotation of all a;, to rotate the initial space with respect to the real space. Therefore,
we must treat a, and r; as vectors of two different spaces, and a quantity such as
Viao = Oa,/Or; is a bi-vector, not a second rank tensor. We use Latin indices to
denote the components (x,y,z) in real space, and and Greek indices for (1,2,3) in initial
space. Clearly, this renders the fact that the displacement r; —a,, is an oxymoron rather
obvious. The equation of motion for a,, is

%aa = %aa + ’UkaCLa = 335, (75)

because in equilibrium, with the dissipative contribution 72 vanishing, this equation
states the simple fact that the initial coordinate a, of a mass point does not change
when one moves with it. The energy density is now

dw =Tds + udp + v;dg;, +1¥a:dV;a,, (76)

with the equilibrium condition [obtained with essentially identical algebra as for equa-
tion (61)]
Vithai = 0. (17

Entropy production 2 is now a quadratic function of V;T', D;; and V;1)4;. The pres-
sure, still Pr = pup 4+ T's + v;9; — w, equation (27), has the gradient

ViPr =sV;T+ pV,u+ ngZ-vj — Yok ViViag. (78)
The equilibrium part of the stress tensor is given as
aff = Ya;Viaa + Pro;; + pvivj, (79)

because V;(¥a;Viaa) + -+ = ¥a;V;Viaq + --- cancels the last term in equa-
tion (78), again reducing &;g; + Vjaqu = 0to V;u + Oyv; = 0. We also note that
a; Viaq reduces to m;; for small deformations, see equation (85).

ALERT Doctoral School 2018



24  Thermodynamics and Constitutive Modeling

The new term (¢o;Va,) is symmetric: The energy w, a scalar, is invariant un-
der a real space rotation of the angle df;, but V;a,, a vector, is not, dV;a, =
€ii Vjaqd0s, where €5, is the total antisymmetric, Levi-Civita tensor. Since 0 =
dw = 1YaidViaa = Yai€iji Vjaqdly, we have the rotation identity,

(VaiVjaa) = (i < j). (80)

The hydrodynamic procedure, just as in the last section, delivers the energy flux and
the dissipative contributions [as given in equations (48, 75)],

Qi = nji + Tfi + voir + ialll, (81)
R = fPVZT + O'gDij + ggvzﬂ}(m (82)

For an isotropic medium, without any cross couplings, this implies [cf. equation (68)]
fP=wViT, o =0Dj; — (6ijDee, G = eVithas. (83)

Again, the thermodynamic force V ;1) redistributes the strain and stress, toward the
equilibrium condition of V;1),; = 0. More generally, one needs to reconsider the
Onsager matrix, as in equation (69).

Confining to isotropic elastic media (such as glass or polymers) that do not depend on
the orientation, and are equally compliant being compressed along oo = 1,2 or 3, al-
lows us to rewrite the large-deformation elasticity theory in terms of the more familiar
m;; and 5%. This is what we shall do next. [We note that the bi-vector V;a,,, with nine
components, not only contains the information about the strain £f; (six components),
but also that about the local orientation, ie. the rotation matrix R,; that rotates real
space to initial space (three components). Neglecting the dependence of the energy on
the latter, we may, by comparing equation (59) to (76), write —mjdsfj = Y4idV;aq,
or

Voi = —Trm (0€5,,/ 0V iaq).
Employing equation (74), we deduce
VYai = TijVjta;, VaiVjta = Tij — 2Tk, (84)
O’fjg =T + 27Tik€ij + PTéij + pv;v;. (85)
The rotation identity, 0 = dw = m;;def; = wij(eimksf;%jdé‘k + €jmres,, A0 ), again
shows that the stress is symmetric,

minghy = (i > 5). (86)
Because of mjdafj = 14;dV;a,, the pressure gradient is, see equation (78),

ViPr = sV, T+ pViu+ g;Vv; — ﬂ'kjvieizj. (87)
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In equilibrium and in the rest frame, we have Vjo'ie;-l = 0. With equation (78), it
delivers the correction terms to V;m;; = 0, the equilibrium condition for small defor-
mations. The condition for large deformations in isotropic elastic media is

Ve (0ir + 2e5;) — T (Vie§, — 2V e5,) = 0. (88)
Differentiating equation (74),
2018, = ViaoVi0ian + (i < k),
2V e = VieaoViVinaa + (i & k),
and inserting these into equation (75), we find,
Del 4+ Dik — (3ViaaVigl) — (i ¢ k) = 0, (89)
where
Dt = (0 + vim Vi) + €50 Vit + €5 Vitm (90)
is the — derived and hence only permissible — objective time derivative, including all

convective derivatives. This result is especially useful for polymeric hydrodynamics.

In transiently elastic media, ie. polymeric fluids and granular media, however, there is
a subtle, constructive choice that one needs to be aware of. Taking

Qij = %(Vﬂ)j - Vjvi), Dij = %(Vﬂ)]‘ + Vj’l)i) on
we may rewrite the last two terms of equation (90)as
€6 Vitm + €5 Vivm = €5 Qe + €5 im + (€5, Diem + €5 Dim.)»

with o = 1. Yet the value of « is in fact a constructive choice. By changing h;;y; in
equation (115), we may choose any value for «, especially a = 0, implying

%E?k = (at + Umvm)gfk + 6fmﬂkm + EzQOk (92)
= (at + Umvm)Efk + 5§mﬂkm — kaafnk'

Due to the counter term —h; j1; in equation (115), this also simplifies the Cauchy stress
as,

O'iejq = Tij + PTéij + PUV;. (93)
More specifically, equations (85, 90) were successfully used for polymeric fluids.
Though in exploring large rotational velocities in granular media (not yet done), we

believe one should first try the simpler expressions of equations (92, 93).

Note that the same freedom does not exist for elastic media. A change of h;;; in equa-
tion (69) cannot possibly compensate D;,, in equation (90), because of the gradient
in front of y7, see equation (57).

The equilibrium condition (88) is fairly complicated to solve. Also, the dissipative
contribution ($V;aaVi9%) + (i +> m) in equation (89) cannot easily be given in
terms of 7;; and £7; alone. Fortunately, neither will be needed for polymers or granular
media, because there is a stronger, dominating dissipative mechanism, given by the
equilibrium condition m;; = 0, or equivalently, ¥,; = 0.
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26 Thermodynamics and Constitutive Modeling

4 Transient Elasticity: Polymeric Fluids

The hydrodynamic method is, as discussed above, a powerful top-down approach to
obtain constitutive relations. In this section , we use it to derive the hydrodynamic
theory for polymeric fluids, a set of equations that we shall refer to as polymeric
hydrodynamics.

Our understanding of polymers’ basic physics has two points: First that there is elas-
ticity in polymeric fluids, because the polymeric strands may be elastically extended.
This leads to reversible energy storage, an elastic strain and an elastic stress. But they
vanish o