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Editorial

The ALERT Doctoral School 2018 on “Energetical Methods in Geomechanics” will
take place as usual in Aussois, from October 4th to 6th, 2018. The School has been
organized by Prof. Itai Einav (University of Sydney) and Prof. Eleni Gerolymatou
(Chalmers University of Technology). I sincerely thank the organizers and all the
authors of the contributions to this book for their effort!

If it is clear that energy is requested to deform soils and rocks, it exists under many
forms and can transform from one to another. All these phenomena may respect the
laws of thermodynamics, that constrain the development of constitutive models. Often
seen as a limitation to the imagination of engineers, thermodynamic constraints can
actually help avoiding flaws in the methodology. I am therefore convinced that this
school will be beneficial to the ALERT community.

Lectures will include topics ranging from basic concepts of energetical methods (Ther-
modynamics, Principle of virtual power), to specific examples and applications that
illustrate how energetical methods lead development of constitutive models for soil
and rock mechanics. Practical sessions will be organized on the last day of the school,
in order to evidence the effect of constitutive choices on the energetics.

As usual, the pdf file of the book can be downloaded for free from the website of
ALERT Geomaterials – http://alertgeomaterials.eu/.

On behalf of the ALERT Board of Directors I wish all participants a successful ALERT
Doctoral School 2018!

Frédéric Collin
Director of ALERT Geomaterials
University of Liege
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Energetical Methods in Geomechanics:
Foreword

What is energy? Some say coffee, others say the sun. People connect many different
ideas to energy, so maybe there is something unifying behind that word, energy. Why
do we get sleepless from a cup of coffee? Coffee gets us going, activating both our
mind and body, a motion which turns into a finer motion, of jiggling atoms that warm
up our faces and fingertips. Energy flows and transforms, so to speak. These seem-
ingly simple observations have been ingeniously encapsulated by the laws of thermo-
dynamics, which frame mathematically the conservation and transformation of energy
from one form to another. This may not be exciting for the layman, but engineers and
scientists have benefitted from satisfying such universal laws tremendously, as these
limit their otherwise unbounded freedom to make mistakes.

How do we understand energy and what are the benefits of energetical methods in
geomechanics? The purpose of this book is to address these questions, by assembling
contributions from eminent researchers who have been working actively in this field.
The various chapters deal with different energetical aspects in geomechanics, from the
very theoretical background to specific examples and applications.

The first chapter ”Thermodynamics and constitutive modeling” layouts the hydro-
dynamic procedure of thermodynamics with which it is possible to mathematically
formulate the constitutive relationships of any continua, as shown for Newtonian flu-
ids, elasticity, and granular media. The derivation initiates from local conservation
laws, with global conservations automatically being satisfied through integration.

The second chapter a ”Hierarchical guide for constructing thermodynamically ad-
missible constitutive models” continues with the hydrodynamic procedure of thermo-
dynamics. Specifically, it lists the generic constraints thermodynamics put on the
structure of famous constitutive frameworks in geomechanics, from elasticity to hy-
perplasticity, from hypoplasticity to h2plasticity, and rate dependent models.

The third chapter explores the ”Energetics in Discrete Element Modelling” (DEM).
Taking the well-known DEM as a physically simulated granular medium, coarse grained
averaging is then developed to investigate the particle-scale origins of continuum en-
ergetic properties in such media. In this way, the relative abstractness of hydrody-
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namic concepts is grounded down.

The next four chapters focus on establishing hands on examples and applications.

The fourth chapter ”Definition and uses of the principle of virtual power” describes a
principle consistent with hydrodynamics that is typically more familiar for engineers.
In this approach the general derivation begins from global balance of virtual powers,
from which local relationships could be retrieved through localization of information,
as demonstrated for constructing micromorphic models and finite elements.

The fifth chapter gives an ”Energetical background of common approaches in geome-
chanics”, looking further into well-established methods and applications of thermo-
dynamics in the field. Further topics include the meaning of properties such as stress,
the notion of energy based upscaling, minimum potential energy, maximum plastic
work and second order work.

The next chapter provides ”An energy based constitutive framework for multiphysics
geomechanics”. Whereas the previous chapters focused on processes where the ma-
terial dependence on the temperature could be mostly ignored, this chapter explores
the thermodynamics of geomaterials under extreme conditions, involving both large
shear deformation and high pressures, as applicable for fault mechanics.

The final chapter looks into the ”Energetics of crushable granular materials: from
particle fracture to breakage mechanics”. By connecting those processes through
the eyes of thermodynamics, this chapter demonstrates the role of energetics on the
development of surface-creations at very different length scales, as they govern the
development of various coupled mechanical and environmental phenomena.

Finally, we would like to thank the outstanding contribution from all the authors of
this volume. We thoroughly enjoyed reading their chapters, and hope the readers will
also find them engaging, inspiring and useful for their own work in the field.

I. Einav
E. Gerolymatou
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Thermodynamics and Constitutive Modeling

Mario Liu

Institute of Theoretical Physics
Universität Tübingen
72076 Tübingen, Germany

Abstract: Setting up any continuum mechanical theory, especially a constitutive
model for systems as complex as granular media, it is useful to ensure explicit com-
pliance with all constraints provided by general principles of physics, such as energy
conservation and the second law of thermodynamics. A formalism that systematizes
this endeavor – developed by Landau and Khalatnikov in the context of superfluid he-
lium and referred to as the “hydrodynamic procedure” – is presented, explained and
applied to polymers and granular media in this lecture.

Starting with the familiar example of Newtonian fluids, questions such as what en-
tropy and energy are, and how their consideration limit the “freedom” of constitutive
modeling, are answered. Remarkably, these insights suffice for a cogent derivation of
the hydrodynamic theory for Newtonian fluids, ie. the Navier-Stokes equation. Next,
by including the displacement as an additional state variable, this hydrodynamic the-
ory is generalized to account for elastic media. Then, following the same procedure
and introducing the concept of “transient elasticity,” two hydrodynamic theories are
derived, for polymers and granular media, respectively accounting for a wide range
of typical experiments. This agreement, to a large part, is the consequence of compli-
ance with conservation laws and thermodynamics, as detailed experimental data are
not part of the theory’s input.

The lecture is divided into two parts. Part I contains thermodynamics (section 1) and
the derivation of the equations for Newtonian fluids (section 2). In Part II, the elas-
ticity theory is first derived (section 3), then modified to suit the cases of polymers
(section 4) and granular media (section 5). For polymers, one simply make the elas-
ticity transient. For granular media, which are also transiently elastic, one needs in
addition a state variable that quantifies granular jiggling. As we shall see, it is to be
treated in close analogy to the temperature, by suitably extending the second law of
thermodynamics.
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1 Thermodynamics

1.1 Conventional constitutive models

It is useful to have mathematical formulas for a concise account of material behavior.
These are referred to as constitutive models. To set up such a model, one typically
starts from the mass and momentum conservation,

∂tρ+∇jgj = 0, gi = ρvi, (1)
∂tgi +∇jσij = −ρGẑi, (2)

where ∂ta ≡ ∂a/∂t for any quantity, ρ is the density, vi the velocity, gi the momentum
density, G the gravitational constant, and ẑ a unit vector pointing upwards. One then
proposes an expression for the stress tensor σij – usually taken as a function of the
density ρ, the temperature T , and shear rate Dij – such that the observed data are
rendered as realistically as possible. If this fails to work, one looks for a differential
equation for σij in time. The best-known constitutive model is the Navier-Stokes
stress,

σij = PT δij + ρvivj − ηA∗
ij − ζDkkδij , (3)

where Dij ≡ 1
2 (∇ivj +∇jvi), (4)

PT is the pressure, and ∗ denoting the traceless part of any tensor. Clearly, realism
is the main advantage of this empirically driven approach. Fundamental understand-
ing is somewhat lacking: The Navier-Stokes stress holds, to great accuracy, for any
Newtonian fluid – which is a material circularly defined as one for which this expres-
sion holds. It would certainly be more satisfying to understand when and why this
expression holds, and to derive equation (3) from some general considerations.

This is where thermodynamics comes in. It includes the explicit consideration of
energy conservation and provides many useful constraints, strongly reducing the arbi-
trariness of constitutive modeling. And it always yields an explicit expression for the
stress, there is never the need to resort to a differential equation. Because a constitutive
model necessarily contains unphysical structure if it violates thermodynamics, and be-
cause that structure will wreck havoc somewhere in its predictions, even if it seems
innocuous in the context under focus, a model derived from thermodynamics stands
a much better chance of providing formulas that remain valid for the whole range of
observation – rather than, as usual, being confined to the types of experiments that the
empirical data are drawn from to set up the model.

1.2 Energy and entropy

The basic ideas of thermodynamics is easily stated. First is the fact that the total energy
W of a closed system is a conserved quantity. Second, that W may be divided into a
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macroscopic part WM and a microscopic one, H , called heat. Neither is conserved,
but one can only convert WM into H , never backwards,

d
dtW = d

dt (W
M +H) = 0, (5)

d
dtW

M 6 0, d
dtH > 0. (6)

This is the essence of the second law of thermodynamics. Clearly, with WM dimin-
ishing and H increasing continually in a closed system, we will eventually arrive at
the minimum of WM and the maximum of H , where the system will stop changing,
and equilibrium reigns. This is the case of a pendulum hanging down, motionless,
with all its kinetic and potential energy (WM ) converted into heat.

Now we refine these ideas, making them more precise and useful. First, we divide all
degrees of freedom into two categories, macroscopic and microscopic. Typical macro-
scopic degrees are the conserved densities of mass ρ(~r, t) and momentum gi(~r, t),
coarse-grained over many particles. An example for microscopic ones is the fluctuat-
ing momentum of an atom around the average value gi(~r, t) of many atoms.

In a macroscopic theory (such as the Navier-Stokes equation), there is no need to
track every microscopic degree of freedom, hence we lump all microscopic ones into
a single state variable, the entropy density s, by considering only their coarse-grained
energy contributions. But we attribute a state variable to every macroscopic degree,
each with its own characteristic energy contribution. (We shall return to the concept
of entropy later. For now, it suffices to know that it quantifies the energy of all micro-
scopic degrees.) As the state variables may all have a distribution in space ~r, and an
evolution with time t, we write the energy density as a function of all state variables,

w(~r, t) =w[ρ(~r, t), gi(~r, t), · · · , s(~r, t)], (7)

and introduce the chemical potential µ, velocity vi and temperature T as

dw = µdρ+ vidgi + · · ·+ Tds, where (8)

µ ≡ ∂w

∂ρ
, vi ≡

∂w

∂gi
, · · · , T ≡ ∂w

∂s
. (9)

Summarily referred to as conjugate variables, these are useful quantities for making
general considerations independent ofw’s explicit form (which is a constitutive input).

If there are no more state variables, and we may drop the dots in equation (7), the
equations for energy conservation and entropy balance,

∂tw +∇iQi = 0, ∂ts+∇ifi = R/T > 0, (10)

in addition to mass and momentum conservation equations (1, 2), are a complete the-
ory. They form a closed set of equations independent of the function w if the fluxes
σij , Qi, fi and the source R are given in terms of the variables and conjugate vari-
ables. As we shall see, this will turn out to be the hydrodynamic theory of Newtonian
fluids.
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To obtain the expressions for σij , Qi, fi, R, we shall note that since the energy is a
dependent quantity, ∂tw = µ∂tρ+ vi∂tgi + · · ·+T∂ts, see equation (8), the fact that
it is conserved puts a strong constraint on the possible form for the unknown fluxes.

The second law of thermodynamics, precisely and locally formulated, is:

R = 0 in equilibrium, and R > 0 off equilibrium.

The reason is the following: Consider a volume with no entropy flux fi ≡ 0. We then
have ∂tH =

∫
d3r(T∂ts) =

∫
d3r R. Since the heat always increases, ∂tH > 0, and

the volume being integrated over is arbitrary, we also have R > 0, and may identify R
as the local quantity doing the conversion from macro- to microscopic energy, usually
referred to as the entropy production. Turning on the entropy flux does not change
this identification, because the flux fi only transfers the entropy from point to point, to
equalize the temperature. In equilibrium, S =

∫
d3r s is maximal, same as the heat,

and R necessarily vanishes. Even though dissipation may sometimes be negligibly
small, the reverse is strictly speaking also true, R = 0 implies equilibrium.

1.3 Global and local equilibrium

The following three chapters: 1.3, 1.4, 1.5, deal with some basic thermodynamic
concepts of continuum mechanical modeling. The approach may appear unfamiliar,
even outlandish, and difficult at times, but the results are very useful, and easy to
remember. Aim to grasp the gist of the arguments, possibly skipping the footnotes, at
first read.

Elementary thermodynamics considers equilibrium states, in which the entropy, S =∫
sd3r is maximal for given energy

∫
wd3r, mass

∫
ρd3r and momentum

∫
gid

3r.
Varying S by changing the distribution of w, ρ, gi, we shall soon find (in section 2)
that S is maximal for w, s, ρ, gi = uniform. This is global equilibrium. If they do
vary, S is not maximal, and the distribution not “optimal.” The system may still be
in equilibrium, but only point for point, with neighboring points in slightly different
equilibria. This is referred to as local equilibrium. All thermodynamic relations re-
main unchanged – though the state variables vary in space and time, as depicted in
equation (7). They dissipate, to maximize S and to approach uniformity. 1

It is crucial to realize that local equilibrium is quickly reached: After a perturbation,
all degrees are off equilibrium – a chaos the account of which needs a theory for all
1023 degrees of freedom fi in a macroscopic body. Yet most relax quickly to their
equilibrium values given by the locally conserved variables,

fi(~r, t) = feqi [w(~r, t), ρ(~r, t), gi(~r, t) · · · ]. (11)

1The equilibrium distribution of w, s, ρ, gi is uniform only if gravitation is neglected and the system
does not possess an angular momentum, executing a solid-body rotation in equilibrium. Including either,
we shall find nonuniform equilibrium distributions. Clearly, local equilibrium is then given by the state
variables deviating from this distribution, see section 2.
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The evolution of w(~r, t), ρ(~r, t), gi(~r, t) are much slower. To arrive at a uniform dis-
tribution, because w, ρ, gi are conserved and cannot be locally produced, transport
over macroscopic distances, of the order of the system size, is necessary.

One of the numerous fi is the entropy density, the energy contribution of the micro-
scopic degrees of freedom. And the relation s(~r, t) = seq[w(~r, t), ρ(~r, t), gi(~r, t) · · · ]
holds only after local equilibrium is reached. It is the inverse of equation (7), which
has the same range of validity. Therefore, the knowledge of w(~r, t) and seq(~r, t) are
equivalent. We may use either w, ρ, gi or seq, ρ, gi as the independent set of variables
for thermodynamics (if there are no more state variables).

Neglecting the brief time span between total chaos and local equilibrium, we may take
equation (11), or (7), to hold instantaneously. Then we only need a theory accounting
for the evolution of the state variables ρ(~r, t), gi(~r, t), · · · , s(~r, t), instead of all 1023

degrees. The price is an upper bound in the theory for the frequency ω, and wave
vector q:

ωτ � 1, qξ � 1. (12)

The first equation, with τ being the largest of all relaxation times for fi, states that the
frequency has to be small enough for local equilibrium to always hold. The second
equation states that the smallest spatial resolution, the pixel of the theory, needs to be
macroscopic enough for thermodynamics to be valid. 2

Occasionally, the locally conserved quantities are by themselves insufficient to char-
acterize local equilibrium. One also need eg. the displacement vector for solids,
polymers and granular media, and the director for nematic liquid crystals. 3

Then there is the frequent case of slowly relaxing state variables. If a few relaxation
times are much larger than all the others,

τ1 > τ2 � τk, k = 3, 4, · · · (13)

the range of validity for the hydrodynamic theory, ωτ1 � 1, is unnecessarily small. To
amend this, one includes the associated variables f1, f2 as additional state variables,
in effect expanding the concept of local equilibrium, with

w(~r, t) = w[ρ(~r, t), gi(~r, t), s(~r, t), f1(~r, t), f2(~r, t)]. (14)

The range of validity is then restored to equation (12), with τ being the largest of τk.
These slowly relaxing state variables are important for both polymers and granular
media.

Local equilibrium is the appropriate scenario for constitutive modeling. All models
assume local equilibrium (though some do it implicitly) and account for how global
equilibrium is established. If a constitutive model is derived employing the hydrody-
namic procedure, it is referred to as a hydrodynamic theory.

2In fact, the pixel is typically larger, because in the time span τ to establish local equilibrium, some
transport of the conserved quantities, over the distance ξ(τ), has occurred. If that transport is diffusive,
|ω| = Dq2, the inequality ωτ � 1 implies qξ(τ)� 1 with ξ =

√
Dτ .

3These are symmetry variables, and they are also slow if the associated continuous symmetries are
spontaneously broken.
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1.4 Statistical mechanics

Let us turn to the question: “what exactly is entropy?” The concise answer, with ρi
the probability of the system being in the state i, and 〈〉 being the average over all g
states, is

S = −〈ln ρi〉 ≡ −
g∑

i=1

ρi ln ρi,

g∑

i=1

ρi = 1. (15)

As defined, S is in essence some “objective ignorance” about the system: First, note
that the information is maximal and ignorance minimal if the system is with certainty
in state i = 1. Or ρ1 = 1, and ρi = 0 for i 6= 1. The entropy S = −(1 ln 1) = 0
is also minimal then. Next, the information is minimal and ignorance maximal if the
system has equal probability in any of the g state, or ρi = 1/g. Then the entropy

S = ln g

is also maximal. 4 The last formula is usually referred to as the entropy of a micro-
canonical ensemble. Between those two limits, ignorance grows with the entropy.

If the system is initially in one state, with n particles evolving according to the Schrödinger
or Newtonian equation, we have S = 0. (This is exactly what being in a “state”
means.) Any small perturbation will have the system transit to a different state. A
sufficient rate of perturbations – never avoidable, however the insulation – will ren-
der the transitions so frequent, that the system is practically in a number of states
simultaneously, implying an increase of the entropy. S is maximal and the system in
equilibrium, if it has equal probability being in any state – all characterized by the
same energy, mass and other conserved quantities. The Schrödinger or Newtonian
equation (with potential energy and reversible forces) do not account for these transi-
tions and the increase of the entropy. Constitutive modeling does, and hydrodynamic
theories do it explicitly.

In local equilibrium, S = ln g holds, with the number of accessible states g a function
of the local values of w, ρ, gi. Since all states, being in equilibrium with one another,
have the same energy, g and ln g are measures of the heat in that pixel. Finally, note
that the entropy is, same as the energy, additive: If we have two subsystems, 1 and 2,
in different equilibria and with g1, g2 accessible states, the total number is g = g1×g2,
and the total entropy is S = ln g = ln g1 + ln g2 = S1 + S2. Or more generally,

S = ln g = ln
∏

i

gi =
∑

i

ln gi =
∑

i

Si −→
∫
s(~r, t)d3r.

4To see that, realize that varying the entropy S for constant
∑
ρi = 1, or

δ(S − λ1
∑

ρi) = 0,

the Euler-Lagrange condition is ln ρi + 1 + λ1 = 0 for ∀ i, or ρi = const. Since there are g states the
system may be in, we have ρi = 1/g and S = ln g.
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1.5 Energy and angular momentum

Next, we address the question: “what exactly is energy?” noting that, same as time,
energy is a basic concept hard to define concisely. There are a few steps involved.
First, we define a locally conserved quantity a as one that satisfies the continuity
equation, ∂ta + ∇iAi = 0, implying a cannot be created or destroyed locally. To
change its local value, it must be transported from, or to, the neighboring volume
element, ∂t

∫
a d3r = −

∮
Ai dsi. (Note that only the value of the flux Ai at the

volume’s surface is relevant.) The equation for the entropy, ∂ts +∇ifi = R/T > 0,
on the other hand, possesses the source term R/T that accounts for the local creation
of heat.

Then there is the fact that, in a closed system of particles with a known interaction
(ie. with a given Hamiltonian Ĥ), a quantity calculable from Ĥ that we call energy
is locally conserved – if the interaction does not depend on the absolute time, given
(say) by an externally ticking clock. But this we believe to be generally true for
any physically meaningful interaction: Time is uniform, and no interaction, however
complex, may depend on the absolute time. Hence there is always a locally conserved
quantity called energy w – irrespective whether we have any idea about the interaction
and the Hamiltonian Ĥ .

Generally speaking, w depends on all degrees of freedom, though we subsume all mi-
croscopic ones into the entropy s. The functional form of w, since unknown, needs
to be appropriately postulated to fit experiments. These are the thoughts behind equa-
tion (7).

However, the dependence of the energy w on the momentum density gi is universal,
and must not be postulated. It is simply the kinetic energy that is added to any rest-
frame energy w0, when it is being moved en bloc, whatever its interaction is. (In
fact, the system may stay at rest, with the observer walking past it. Then he will also
register an increase of the system’s energy by g2i /2ρ.) We therefore write

w(s, ρ, gi) = w0(s, ρ) + g2i /(2ρ), with (16)
dw0(s, ρ) = T0(s, ρ)ds+ µ0(s, ρ)dρ. (17)

It is w0, depending on one less variable, which may, and needs to, be postulated.

As a result, the conjugate variables satisfy the following relations that will prove useful
later on:

vi ≡
∂w

∂gi
=
gi
ρ
, T ≡ ∂w

∂s

∣∣∣∣
ρ,gi

=
∂w0

∂s

∣∣∣∣
ρ

≡ T0, (18)

µ ≡ ∂w

∂ρ
=

∂

∂ρ

(
w0 −

g2i
2ρ

)∣∣∣∣
ρ,gi

= µ0 −
v2

2
. (19)

That time’s uniformity leads to energy conservation in a close system is a special
case of a general principle: The invariance of the interaction (ie. of the Hamiltonian
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Ĥ) under any continuous symmetry of time ad space always gives rise to a locally
conserved quantity.

Space is uniform and isotropic. Therefore, interaction must not depend on an absolute
point in space (translation) or an absolute direction (rotation). It may and does depend
on particle coordinates in relation to one another.) The first gives rise to the conserva-
tion of the momentum density ~g = ρ~v, the second to the conservation of the angular
momentum density ~̀= ~r×~g. Note that in contrast to the energy, these two do have a
definite form. (The source term−ρGẑi in equation (18) is present, because no system
of particles on earth forms a close system, even when it is isolated from other systems,
as all particles interact gravitationally with the earth’s mass.)

Finally, there is Galilean invariance, or the fact that empty space does not possess a
preferred absolute velocity: There is no ether, and no way to determine the absolute
velocity of any physical object. This gives rise to the conservation of the booster,
~b = ρ~r − ~gt. The discussion of the booster is usually confined to relativistic physics,
but as we see below, it is more generally relevant. 5

Starting from ∂tρ+∇jjj = 0 and ∂tgi +∇jσij = 0, the local conservation of mass
and momentum, and requiring the local conservation of ~̀ and~b, we find

∂t`m = (~r × ∂t~g)m = εmkirk∂tgi = −εmkirk∇jσij = −∇j [εmkirkσij ] + εmkiσik,

∂tbi = ∂tρri − ∂tgit− gi = −ri∇jjj + t∇jσij − gi = ∇j(tσij − rijj) + ji − gi,

and conclude that εmkiπik and ji − gi must vanish. This means that – independent of
the system’s interaction – the stress tensor is always symmetric, and the mass current
is always equal to the momentum flux gi = ρvi, cf. equations (1,2),

σij = σji, ji = gi = ρvi. (20)

As ~̀ and~b are not independent from ~g and ρ, we do not need their values for fixing the
local equilibrium. And as long as equations (20) are satisfied, they are also conserved.
6

1.6 Hydrodynamic theories

In this lecture on how to capture thermodynamic insights in constitutive modeling, we
shall derive the hydrodynamic theory for four systems: Newtonian fluids, elastic me-
dia, polymers, and granular media, using the first two cases to illustrate the approach,

5Note ~̀ and ~b are closely related: ~b is the zeroth component of the 4-angular momentum, the con-
servation of which is a result of the Lorentz invariance: `α,β = xαgβ − xβgα, xα = (ct, ~r),
gα = (ε/c ≈ ρc,~g). Since angular momentum conservation holds independent of the inertial system,
the zeroth component (that mixes with the other three under a Lorentz transformation) has to be conserved
as well. In other words, taking the booster to be non-conserved is similarly illogical as saying that one
component of the angular momentum (that mixes with the other two under a rotation) were non-conserved.

6The above proof depends on the explicit form of the angular momentum ~̀ = ~r × ~g, and the booster,
~b = ρ~r − ~gt. Deviations are conceivable, see [Ko98] for the associated considerations.
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and showing that only a few easy steps are involved to generalize the results to the
next two cases. Starting from a set of state variables, we shall always first consider
the consequences of S = max in equilibrium, and what happens when the system
deviates from it. Then these results are combined with the energy conservation to
setup the complete theory. We shall not apply the derived hydrodynamic theories to
any experiments here, because of the lack of time and space, and because this is well
rendered in the cited references.

An important advantage of the hydrodynamic approach is its clear separation between
general principles and constitutive assumptions. The basic starting point is a set of
state variables that defines the class of systems being described. General principles
are then used to derive the evolution equations for these state variables (which are
referred to as the structure of the theory). Constitutive assumptions are then needed to
specify the functional dependence for the energy and the transport coefficients.

For Newtonian fluids, we have ρ, gi, s as the state variables. The resulting Navier-
Stokes equations are completely cogent and do not involve any constitutive assump-
tions. Adding the strain as an additional state variable, we arrive at both the elasticity
theory for solids and the polymeric hydrodynamics – depending on whether the strain
may remain finite in equilibrium, or vanishes (transient elasticity). As we shall see,
this is equivalent to whether the system allows a plastic strain rate. Granular media
is also transiently elastic, but requires the additional state variable of sg , the granular
entropy density.

In constitutive modeling, some researchers tend to postulate additional variables, for
the purpose of improving the agreement with some data. Frequently, specific micro-
scopic mechanisms are inferred to support this introduction (though the respective
energy contribution is rarely specified). This is unwise. Introducing a new variable,
changing the descriptive class, is a most consequential step. Without overseeing the
many implications such a step entails, it is frivolous to go down this path, for the sole
purpose of fitting a few experiments. The costs are untrue, possibly even grotesque,
predictions elsewhere. Instead, one should rather alter the expressions for the energy
and transport coefficients.

Finally, some words on history and literature. The hydrodynamic procedure was pi-
oneered by Landau [LL87] and Khalatnikov [Kha65] in the context of superfluid he-
lium, and introduced to complex fluids, specifically liquid crystals, by de Gennes [DePG93].
(Most physicists take hydrodynamics to mean the long-wave-length continuum the-
ory of any condensed system, while engineers typically use it as a synonym for the
Navier-Stokes equations.) Hydrodynamic theories [DeM84] have been derived for,
and successfully applied to, many condensed systems, including

• liquid crystals [MPP72, Lub72, Liu79, Liu94, liu94b, PB96],

• superfluid 3He [Gra74, GP75, Liu75, LC78, LC79, Liu79],

• superconductors [Liu98, JL01, Liu02],

• macroscopic electromagnetism [HL93, Liu93, Liu95, JL96, LS09, SL15],
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• ferrofluids [Liu95, Liu98, Liu99, ML01, ML02, MHL06, MIL08],

• polymers [TPLB00, TPLB01, PLB04, Mul06, MLPH16, MLPH16b],

• granular media [JL07, JL09, KV09, JL14, GJL11, JL03, JL04, JL07, KPBJL06,
BPKMJL06, JL08, JL09, ML12, KML12, JZPFSSML12, ZLHJL12, JL13, JL13,
JL15, JL16b, JL17].
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2 Newtonian Fluids

In this section, we derive the full set of evolution equations for the Newtonian fluid,
including energy conservation and the balance equation for the entropy. The pur-
pose is to demonstrate the cogency of the hydrodynamic procedure: Given the set of
state variables, s, ρ, gi, the hydrodynamic theory, including especially the form for
the stress σij , is a derived result. Clearly, the definition of a Newtonian fluid is that
s, ρ, gi are a complete set of state variables, which fixes the local equilibrium state
unambiguously.

2.1 Equilibrium conditions

We start with Eqs(8,9), but without the dots,

dw = Tds+ µdρ+ vidgi, (21)

because these are the complete set of state variables for Newtonian fluids. First, we
derive the equilibrium conditions by maximizing the entropy

∫
sd3r, for constant en-

ergy
∫
wd3r, mass

∫
ρd3r and momentum

∫
gid

3r. This is equivalent to minimizing
the energy for constant entropy S =

∫
sd3r (and mass, momentum), similar to the

fact that a circle is either the figure of largest area for given circumference, or one of
the smallest circumference for given area. Varying the energy in a closed system at
rest, of given volume V =

∫
d3r, entropy S =

∫
sd3r, and mass

∫
ρd3r, employing

TL, µL as constant Lagrange parameters, we have

δ

∫
(w0 − TLs− µLρ) d3r = 0, (22)

or
∫

[Tδs+ µ0δρ− TLδs− µLδρ] d3r

=

∫
[(T − TL) δs+ (µ0 − µL) δρ] d3r = 0.

Because δs and δρ vary independently, both brackets must vanish. And because
TL, µL are constant, T, µ0 also need to be. So the equilibrium conditions are

∇iT = 0, ∇iµ0 = 0. (23)

Since T, µ0 are functions of s, ρ, see equation (17), the latter are also constant, and
with them the energy w.

Rewriting equation (17) as d(W0/V ) = µ0d(M/V ) + Td(S/V ), and keeping the
volume V constant, we arrive at dW0 = µ0dM + TdS. Keeping instead the mass
M constant, we obtain the more familiar form, with PT denoting the thermodynamic
pressure,

dW0 = TdS − PTdV, PT ≡ µ0ρ+ Ts− w0. (24)
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Because ∇iw0 = T∇is+ µ0∇iρ, we also have the relation,

∇iPT = s∇iT + ρ∇iµ0. (25)

Further, we note that PT is a Galilean-invariant quantity: With µ0ρ + Ts − w0 =
(µ0−v2/2)ρ+vigi− (w0 +ρv2/2) = µρ+vigi−w, see equations (16,19), we may
also write

PT = µρ+ Ts+ vigi − w, (26)
∇iPT = s∇iT + ρ∇iµ+ gj∇ivj . (27)

2.1.1 gravitation

Including the gravitational energy ρφ, the conserved energy is w̄0 = w0+ρφ. Varying∫
w̄0d3r as in the last section , keeping in addition φ = const, we obtain

∇iT = 0, ∇iµ̄0 = 0, with µ̄0(ρ) ≡ ∂w̄0/∂ρ = µ0 + φ. (28)

With T, µ0 functions of s, ρ, these conditions imply nonuniform s, ρ being the optimal
distributions that minimize the energy, or maximize the entropy. Taking φ = Gh (h
being the height) for the earth surface, we have, with equation (25) and ẑi pointing up,

∇iµ0(ρ) = −∇iφ = −Gẑi, (29)

∇iPT =
∂PT
∂ρ

∣∣∣∣
T

∇iρ = ρ∇iµ0 = −ρ∇iφ. (30)

The equation ∇iPT = −ρ∇iφ is usually taken as an expression of force equilibrium,
though we now realize that it expresses equilibrium and maximal entropy.

If ∂PT /∂ρ|T is a constant, we have

PT
P0

=
ρ

ρ0
= exp

φ

∂PT /∂ρ
. (31)

For φ = ρGh and in an ideal ideal gas, ∂PT /∂ρ = kT/m, this is the barometric
formula.

2.1.2 macroscopic motion

Now we include macroscopic motion, but for simplicity neglect gravitation. We shall
deduce the fact that the only motion permitted in equilibrium is a solid body rota-
tion, or equivalently, that Dij ≡ 1

2 (∇ivj +∇jvi) = 0 holds. In addition, ∇iµ = 0 is
altered to ∂tvi+∇iµ = 0, which is very close to the Navier-stokes equation in equilib-
rium. The consideration involves three additional conserved quantities: momentum,
angular momentum, and booster. More details may be found in reference [Ko98], see
also [LL80].
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Now, we minimize the energy
∫
wd3r for given entropy S =

∫
sd3r, mass M =∫

ρd3r, momentum ~G =
∫
~gd3r, angular momentum ~L =

∫
(~r × ~g)d3r, and booster

~B =
∫

(ρ~r − ~gt)d3r, employing 11 constant Lagrange parameters (all with the sub-
script L),

δ[
∫
wd3r−TL

∫
sd3r − µL

∫
ρd3r − ~UL ·

∫
~gd3r (32)

−~ΩL·
∫

(~r × ~g)d3r + ~ΛL ·
∫

(ρ~r − ~gt)d3r] = 0,

or
∫

[(T − TL)δs+ (µ+ ~ΛL · ~r − µL)δρ (33)

+ (~v − ~UL − ~ΩL × ~r − ~ΛLt) · δ~g
+(~ΛLρ− ~g × ~ΩL) · δ~r − ~ΛL · ~g δt]d3r = 0.

As δs, δρ, δ~g, δ~r = const, δt = const all vary independently, we conclude

M~ΛL = ~G× ~ΩL, ~ΛL · ~G = 0, T = TL, (34)

µ = µL − ~ΛL · ~r, ~v = ~UL + ~ΩL × ~r + ~ΛLt,

where T (~r, t), µ(~r, t), ~v(~r, t) are the fields,M, ~G the conserved quantities, and TL, µL, ~UL, ~ΩL, ~ΛL
the constant Lagrange parameters. (We note that the condition ~ΛL · ~G = 0 may be
obtained by multiplying the first with ~G.) A temporal derivative of the last condition
yields

~ΛL = ∂t~v. (35)

Spatial derivatives then yield the equilibrium conditions,

~∇T = 0, ~∇µ+ ∂t~v = 0, Dij ≡ 1
2 (∇ivj +∇jvi) = 0. (36)

To understand equilibrium motion better, we consider a steady motion of the center of
mass, ~R = ~R0 + t∂t ~R, in addition to a solid-body rotation

~v = ∂t ~R+ ~Ω×(~r − ~R) = (37)

(∂t ~R− ~Ω× ~R0) + ~Ω× ~r + (∂t ~R× ~Ω)t,

finding ~UL = ∂t ~R− ~Ω× ~R0, (38)
~Ω = ~ΩL, ~ΛL = ∂t ~R× ~Ω. (39)

For ∂t ~R‖~Ω, or ∂t ~R = 0, or ~Ω = 0, we have ∂t~v = ~ΛL = 0. Otherwise, the coordinate
~r moves with respect to the center of mass ~R, implying ∂t~v 6= 0, and rendering the
chemical potential nonuniform. With M ~R =

∫
ρ~rd3r, we have

~G =

∫
ρ~v d3r =

∫
ρ[∂t ~R+ ~Ω× (~r − ~R)] d3r = M∂t ~R, (40)

~B =

∫
(ρ~r − ~gt) d3r = M ~R− ~Gt = M(~R− ∂t ~Rt) = M ~R0. (41)
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That the booster is given by ~B = M ~R0, an initial condition, is not odd. The momen-
tum is also given by its initial value, ~G = ~G0. There are many initial conditions, but
only a few locally conserved densities.

Choosing an inertial frame for which ~R, ∂t ~R = 0, employing equation (25) and
∇iµ = ∇i(µ0 − v2/2) = 0, we obtain

∇iPT = ρ∇iµ0 = ρ∇iv2/2 = ρ~v · ∇i(~Ω× ~r) = ρ(~v × ~Ω). (42)

Clearly, this time the expression of maximal S yields the centrifugal force. And the
associated density distribution, same as in equation (44), is given by

PT
P0

=
ρ

ρ0
= exp

v2/2

∂PT /∂ρ
, (43)

if ∂PT /∂ρ may be approximated as constant.

Combining macroscopic motion with gravitation, we need to have ~G ⊥ ẑ and ~Ω‖ẑ
to preserve translational and rotational symmetry, and the conservation of momentum
and angular momentum. Then ~∇µ̄+∂t~v = 0 holds in equilibrium (with µ̄!), implying

~∇µ+ ∂t~v = −ρGẑ, (44)

see equations (29, 30).

2.1.3 thermodynamics in astronomy

It is worth noting that the reason for us earthlings being able to see only one side of
the moon is because the moon’s spin ωωω and its orbital rotational velocity around the
earth ΩΩΩ are equal, ωωω = ΩΩΩ, an expression of a solid-body rotation. This means that the
spinning of moon is already in equilibrium with its orbital rotation, while the earth’s
spinning, with a much larger kinetic energy, is not yet in equilibrium. To account
for this dynamics, a dissipative force in the Newtonian equations ∼ ωωω −ΩΩΩ would be
necessary.

2.2 The entropy production R > 0R > 0R > 0

Since the vanishing of ∇iT,Dij and ∂tvi +∇iµ is necessary and sufficient for equi-
librium to hold, and since the same is true forR, we takeR as a function of these three
fields. (They are usually referred to as thermodynamic forces.) Expanding R in them,
the lowest order terms are of second order: A constant term would imply R 6= 0 in
equilibrium, while linear terms are not positive definite. However, as we shall see in
the next section, given ∇iT,Dij = 0, the vanishing of ∂tvi +∇iµ follows from the
structure of the Navier-Stokes equations, or more generally, from that of momentum
conservation. It is not independent. Therefore, we take R given as

R = κ(∇iT )2 + ηA∗
ijA

∗
ij + ζD2

``, (45)
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where D`` is the trace of Dij , and A∗
ij = Dij − 1

3D``δij its traceless part. Given
the isotropy of Newtonian fluids in equilibrium, these are all possible quadratic terms.
There are no others. Equation45 is therefore the most general form.

The expansion coefficients κ, η, ζ will be identified as transport (or Onsager) coeffi-
cients in the next section. They are functions of the state variables, or equivalently,
the conjugate variables. Because of the expansion, they must not depend on the ther-
modynamic forces, especially not on Dij (a frequent error). Moreover, because the
entropy S = ln g is Galilean-invariant and cannot depend on the inertial frame, so
must its source term R be. Since the thermodynamic forces: ∇iT,Dij are also
Galilean-invariant, so must κ, η, ζ be. Therefore, they only depend on s, ρ, or T, PT ,
not vi, gi. These three functions, in addition to that for the energy, are the only consti-
tutive choices one can make for any Newtonian Fluid – though its structure (as derived
in the next section) holds independent of these choices.

2.3 The evolution equations

Neglecting gravitation, the evolution equations of the state variables have the form of
continuity equations, except s that also possesses a source term,

∂tρ+∇iji = 0, ∂ts+∇ifi = R/T > 0, (46)
∂tw +∇iQi = 0, ∂tgi +∇k σik = 0.

We already know that ji = gi = ρvi and σik = σki, cf equation (20).

Next, we determine the the fluxes: fi, Qi and σik. We do this in two steps, first what
these fluxes are in equilibrium, then how they get modified off equilibrium.

In a macroscopic motion permitted in equilibrium, the fields ρ, s, of each mass point
moving with vi, remains unchanged in time, ∂tρ+ vi∇iρ = 0 and ∂ts+ vi∇is = 0.
Since the last of equation (36) implies∇kvk = 0, we may also write

∂tρ+∇i(ρvi) = 0, ∂ts+∇i(svi) = 0.

Next, starting from ρ(∇iµ + ∂tvi) = 0, and adding vi[∂tρ +∇j(ρvj)] = 0, we find
∂tgi + ρ∇i(µ0 − v2/2) + vi∇j(ρvj) = 0, or equivalently,

∂tgi +∇j(PT + ρvivj) = 0,

because∇iPT = ρ∇iµ0, equation (25), and with∇ivj+∇jvi = 0, also−ρ∇i(v2j /2) =
−ρvj∇ivj = ρvj∇jvi. As a result, we conclude that the fluxes in equilibrium are

jeqi = ρvi, f eqi = svi, σeq
ij = PT δij + ρvivj . (47)

Including gravitation, all fluxes remain the same, though because of equation (44),
momentum conservation is modified to

∂tgi +∇j(PT + ρvivj) = −ρGẑi.
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Off equilibrium, we denote the (dissipative) modifications of the fluxes with a super-
script D (for dissipative),

fi = f eqi − fDi , σij = σeq
ij − σDij , (48)

noting that jDi = ji− jeqi = gi−ρvi = 0. To obtain fDi , σDij , and Qi, we differentiate
equation (21),

∂tw = T∂ts+ µ∂tρ+ vi∂tgi = −∇iQi, (49)

and require this equality to hold generally, independent of how w depends on s, ρ.
Next, inserting the expressions from Eqs(46,47,48), employing equation (27), and
noting σik∇ivk = 1

2 (σik∇ivk + σki∇ivk) = σikDik, equation (20), we rewrite
∇iQi as

∇iQi = ∇i(µji + Tfi + vkσik) (50)

−R+ fDi ∇iT + σDijDij − (ji − ρvi)∇iµ.

This is a unique expression, because one needs to rewrite all terms such that they are
either part of a divergence, or vanish in equilibrium. (For instance, we write T∂ts =
−T∇ifi + · · · as fi∇iT −∇i(Tfi), and deduce that first term belongs to R, and the
second to Qi.) Therefore, we conclude

Qi = µji + Tfi + vkσik, (51)

R = fDi ∇iT + σDijDij . (52)

Finally, comparing equation (52) to equation (45), we obtain

fDi = κ∇iT, σDij = ηD∗
ij + ζδijD``. (53)

Note that, for ∇iT,Dij = 0, the Navier-Stokes equations, ∂tgi + ∇k σik = −ρGẑi
automatically reduces to ∂tvi + ∇iµ = −ρGẑi: Given the former, we are left with
the equilibrium fluxes, and we know that ∂tgi +∇k σik = −ρGẑi and ∂tvi +∇iµ =
−ρGẑi are then equivalent.

This concludes the derivation of the full hydrodynamic theory for Newtonian fluids.
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3 Elastic Media

3.1 Small deformations

Elasticity of small deformations is simpler and facilitates an easy grasp of its essence.
We therefore consider it first, by introducing the displacement vector ui, its evolution
equation,

∂tui = vi − yDi , (54)

and the elastic strain, on which the energy depends,

εeij = − 1
2 (∇iuj +∇jui). (55)

Note there are different sign notations in elasticity, for both the stress and the strain.
We use the convention of Soil Mechanics, given by equation (55) above, implying

ε̇ij ≡ −Dij = − 1
2 (∇ivj +∇jvi), (56)

∂tε
e
ij = −Dij + 1

2 (∇iyDj +∇jyDi ), (57)

≡ ε̇ij − ε̇plij (58)

We write ε̇ij , ε̇
pl
ij instead of ∂tεij , ∂tε

pl
ij because εplij does not usually exist, and εij =

εeij exists only if ε̇plij ≡ 0. It is preferable to call εeij , as defined, the elastic strain,
because the elastic energy depends on it. Besides, the plastic rate is clearly non-zero.

The stress sign remains the same as given above, see equation (2). This is the same
sign notation as in [EL18], but differ from all other references on polymeric dynamics
and GSH by a minus sign with respect to the elastic strain fields, referred to as uij =
−εeij there.

Terms of second order in ∇iuj , and convective terms such as vk∇kui are neglected
in this section, because we focus on small deformations here.

In the evolution equation (54), the equilibrium flux is given by vi: Moving a solid with
a constant velocity vi, the displacement changes as vit. The dissipative contribution
yDi , to be determined below, will turn out to be one that aims to render the stress uni-
form (in one dimension). The quantity yDi is frequently small, and typically neglected.
But it is nonzero generally, and useful for understanding plastic strain rates.

Since the energy w now depends on εeij , we add a term to equation (21),

dw = Tds+ µdρ+ vidgi + πijdε
e
ij . (59)

Because πij ≡ ∂w/∂εeij is symmetric, πij = πji, we may also write

dw = Tds+ µdρ+ vidgi − πijd∇jui. (60)
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Minimizing this energy, same as we did in equation (22), δ
∫

(w − TLs− µLρ) dV =
0, with the additional constraint that δui vanish at the surface,

∮
πijδui dAi = 0, we

find ∫
[Tδs+ µδρ−πijδ∇jui − TLδs− µLδρ] dV =

∫
[(T − TL) δs+ (µ− µL) δρ+ (∇jπij) δui] dV = 0.

Since δs, δρ and δuj vary independently, we have the same equilibrium conditions as
in equation (23) – or in equations (28, 36, 44), and in addition

∇jπij = 0. (61)

The entropy production R is now a quadratic function of three fields, ∇iT,Dij and
∇jπij . Neglecting possible mix terms for simplicity (but see below), the quadratic
form is

R = κij∇iT∇jT + ηijklD
∗
ijD

∗
kl + ζD2

`` + ξij∇kπik∇mπjm. (62)

Next, we look for the equilibrium form of the stress tensor, adding tentatively the term
πij to the expression in equations (47), with PT still defined as in equation (26),

σeq
ij = πij + PT δij + ρvivj . (63)

Because ∇jπij = 0 in equilibrium, momentum conservation ∂tgi + ∇jσij = 0 re-
duces, as before, to ∂tvi+∇iµ = 0. (Note that the pressure gradient now has an extra
term, ∇iPT = · · ·+ πkj∇iεkj , because the energy also does, cf. equation (59). This
term may be neglected for small deformations.)

Next, starting from equations (46,54), differentiating the energy, equation (60),

∂tw = T∂ts+ µ∂tρ+ vi∂tgi − πij∇j∂tui = −∇iQi. (64)

concentrating on the equilibrium fluxes, and inserting the expressions from equations
(46,47) as before, and now also equation (54), with yDi = 0, we find that, indeed, only
with πij in σeq

ij is energy conserved,

∂tw = vi∂tgi − πij∇j∂tui + · · · = −vi∇jπij − πij∇jvi + · · · = −∇j(viπij) + · · ·

Also, we see that there is an additional term in the energy flux, Qi = viπij + · · · .
To obtain the dissipative, off-equilibrium terms, we also insert the expressions from
equations (48), including yDi 6= 0, and employ equation (27), note σik∇ivk = σikDik

[cf. equation (20)], to arrive at

∇iQi = ∇i[µji + Tfi + vkσik − πijyDi ], (65)

−R+ fDi ∇iT + σDijDij + yDi ∇jπij
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and conclude

Qi = µji + Tfi + vkσik − πijyDi , (66)

R = fDi ∇iT + σDijDij + yDi ∇jπij . (67)

Because of equation (62), the fluxes: fDi , σ
D
ij , y

D
i are linear functions of forces: ∇iT,Dij ,∇jπij ,

and we conclude

fi = κij∇jT, σDij = ηijklDkl, yDi = eij∇kπjk, (68)

with κij , ηijkl, eij being transport coefficients, functions of the state variables. The
thermodynamic force ∇jπij redistributes strain and stress, toward the equilibrium
condition of ∇jπij = 0. As long as this condition is not satisfied, we have yDi 6= 0,
and neither does the plastic strain rate vanish.

More generally, cross coupling are allowed and given by the Onsager matrix,


fDi
yDi
σDij


 =




κik bik cikl
bki eik hikl
−ckli −hkli ηijkl


 ·



∇kT
∇lπkl
Dkl


 . (69)

Note the time-inversion properties of the forces: ∇iT,∇jπij are positive,Dij is nega-
tive. Hence bki is symmetric, while cikl, hikl are antisymmetric. The non-negativeness
of R is ensured by the following procedure: First, taking both σDij and Dkl as a six-
tuple vector, and writing ηijkl as a 6x6 matrix, ηα,β (α, β going from 1 to 6), we re-
quire it to have only positive Eigenvalues. Next, taking (fi, yDi ) and (∇kT,∇lπkl) as
two six-tuple vectors, we again require the 6x6 matrix of coefficients connecting them
to have positive Eigenvalues. Note that the antisymmetric coefficients, ckli and hklij ,
do not contribute to R, there are no constraints for them. For details see [DeM84].

In the above treatment, we took the density ρ as a variable independent from the
elastic strain εeij . This is the general case. But if one neglects the effect of mass
defects [MPP72], smallish in solids, the density is a dependent quantity, the variation
of which is given by

dρ/ρ = dεe``, (70)

Eliminating ρ as a variable implies PT ≡ 0, especially in equation (63). To see that,
take the rest-frame expression of equation (59), dw0 = Tds + µ0dρ + πijdε

e
ij , and

rewrite it as
d(w0/ρ) = Td(s/ρ) + (PT /ρ

2)dρ+ (πij/ρ)dεeij . (71)

Since PT /ρ2 is a density derivative taken at constant εeij , and constant s/ρ, it vanishes.
(The chemical potential µ vanishes at constant εeij and constant s. Eq,(70), if taken as
without any specification of what is being held constant, is not well defined.)
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3.2 Large deformations

Generally speaking, the description of an elastic body relies on two coordinates: the
actual spatial coordinate ri, specifying a point in an elastic body, and the initial co-
ordinate ai, see [TPLB00], also [TPLB01, PLB04]. Starting from a stress-free elastic
body, we consider a point with the coordinate ai. As the body is translated, rotated,
compressed and sheared, ai is displaced to ri. In general, ri may be quite remote
from ai – especially in soft matter or a metal sheet. The function ri(aj) is unique and
invertible to aj(ri). The first is the Lagrangian description, the second the Eulerian
one. Their difference is relevant only for large deformations. We shall refer to ri as
the real space, and ai as the initial space, and both ∂rj/∂ai and ∇iaj ≡ ∂aj/∂ri as
the deformation tensor (since only one of either is employed in any description).

As discussed in most books on elasticity theory, see eg [LL86], the elastic energy
depends on the change in distance between two neighboring points, from da2i to dr2i .
Defining the displacement vector as ui(aj) = ri(aj)− ai, and the strain tensor as

εLik = − 1
2 [∂ui/∂ak + ∂uk/∂ai + (∂uj/∂ai) · (∂uj/∂ak)], (72)

we have dr2i (am) − da2i = −2εLikdaidak. The elastic energy is a function of εLik. It
is, to lowest order, simply w = 1

2Kikjmε
L
ikε

L
jm.

The special point here is that both the strain tensor and the energy density are functions
of the initial coordinate aj – hence the superscript in εLik, for Lagrangian. Contrast this
with the energy density of an isotropic liquid in its rest frame, a function of the mass
and entropy density,w(ρ, s) – or equivalently, dw = Tds+µdρ. All variables, includ-
ing the conjugate ones, temperature T and chemical potential µ, are here functions of
the real coordinate rm, see equation (7). This is the Euler notation, the basic advan-
tage of which is that physics, which we insist must be local, is also expressed in local
terms, accounted for by quantities at the real coordinates rm. Consider for instance
the diffusive heat current, which is given by the local gradient of the temperature,
∼ ∂T (rm)/∂rk, only in the Eulerian description.

Returning to elastic media, we have two choices: First, take all variables including
especially the temperature and chemical potential as functions of am, and employ
them with the strain tensor εLik. This would be consistent, but highly inconvenient.
For instance, the heat current∼ ∂T (rm)/∂ri at the real space point rm now presumes
the knowledge (not usually available) of the global transformation, rm ↔ am, as
∂T (rm)/∂ri = [∂T (am)/∂ak](∂ak/∂ri). Similarly, with g the momentum density,
the angular momentum density is r(am) × g(am), not a × g(am). (If the system is
only weakly deformed, with ui = ri− ai small, the above differences between ri and
ai may be neglected to linear order, as we did in the last section. )

The second, and the only actually viable, choice is to take all variables including the
strain tensor in the local, Eulerian notation, as functions of rm. We therefore employ
the Eulerian strain tensor [CL95], introduced via dr2i − da2i (rm) = 2εeik(rm)dridrk,
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where the superscript also stands for elastic, ui(rm) = ri − ai(rm), and

εeik(rm) = − 1
2 [∂ui/∂rk + ∂uk/∂ri − (∂uj/∂ri)(∂uj/∂rk)]. (73)

There is a second point, essential yet somewhat subtle: We need to eliminate the
displacement field ui, to deal exclusively with the initial coordinate ai(r) and the
elastic strain εeik. This is possible because starting again from dr2i − da2i (rm) =
2εeik(rm)dridrk, we find

εeik = − 1
2 [δik − (∂aα/∂rk)(∂aα/∂ri)], (74)

with no need whatever for a detour via ui. This is necessary because the introduction
of ui destroys an inbuilt symmetry and represents an ad hoc choice. As discussed, ai
and ri are vectors of different spaces, and they transform as vectors, under rotations
in initial and real space, respectively. The introduction of the displacement fixes both
spaces with respect to each other, and prohibits the rotation of either space alone. No
physical field depends on the orientation of the initial space, the fictitious unstressed
body. Given any relation am ↔ rm, we are still free to take a global but arbitrary
rotation of all ai, to rotate the initial space with respect to the real space. Therefore,
we must treat aα and ri as vectors of two different spaces, and a quantity such as
∇kaα ≡ ∂aα/∂ri is a bi-vector, not a second rank tensor. We use Latin indices to
denote the components (x,y,z) in real space, and and Greek indices for (1,2,3) in initial
space. Clearly, this renders the fact that the displacement ri−aα is an oxymoron rather
obvious. The equation of motion for aα is

d
dtaα ≡ ∂

∂taα + vk∇kaα = ŷDα , (75)

because in equilibrium, with the dissipative contribution ŷDα vanishing, this equation
states the simple fact that the initial coordinate aα of a mass point does not change
when one moves with it. The energy density is now

dw = Tds+ µdρ+ vidgi,+ψαid∇iaα, (76)

with the equilibrium condition [obtained with essentially identical algebra as for equa-
tion (61)]

∇iψαi = 0. (77)

Entropy production R is now a quadratic function of ∇iT,Dij and ∇iψαi. The pres-
sure, still PT = µρ+ Ts+ vigi − w, equation (27), has the gradient

∇iPT = s∇iT + ρ∇iµ+ gj∇ivj − ψαk∇i∇kaα. (78)

The equilibrium part of the stress tensor is given as

σeqij = ψαj∇iaα + PT δij + ρvivj , (79)

because ∇j(ψαj∇iaα) + · · · = ψαj∇j∇iaα + · · · cancels the last term in equa-
tion (78), again reducing ∂tgi + ∇jσeqij = 0 to ∇iµ + ∂tvi = 0. We also note that
ψαj∇iaα reduces to πij for small deformations, see equation (85).
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The new term (ψαi∇jaα) is symmetric: The energy w, a scalar, is invariant un-
der a real space rotation of the angle dθi, but ∇iaα, a vector, is not, d∇iaα =
εijk∇jaαdθk, where εijk is the total antisymmetric, Levi-Civita tensor. Since 0 =
dw = ψαid∇iaα = ψαiεijk∇jaαdθk, we have the rotation identity,

(ψαi∇jaα) = (i↔ j). (80)

The hydrodynamic procedure, just as in the last section, delivers the energy flux and
the dissipative contributions [as given in equations (48, 75)],

Qi = µji + Tfi + vkσik + ψiαŷ
D
α , (81)

R = fDi ∇iT + σDijDij + ŷDα∇iψαi. (82)

For an isotropic medium, without any cross couplings, this implies [cf. equation (68)]

fDi = κ∇iT, σDij = ηD∗
ij − ζδijD``, ŷDα = ê∇iψαi. (83)

Again, the thermodynamic force ∇iψαi redistributes the strain and stress, toward the
equilibrium condition of ∇iψαi = 0. More generally, one needs to reconsider the
Onsager matrix, as in equation (69).

Confining to isotropic elastic media (such as glass or polymers) that do not depend on
the orientation, and are equally compliant being compressed along α = 1, 2 or 3, al-
lows us to rewrite the large-deformation elasticity theory in terms of the more familiar
πij and εeij . This is what we shall do next. [We note that the bi-vector∇iaα, with nine
components, not only contains the information about the strain εeij (six components),
but also that about the local orientation, ie. the rotation matrix Rαi that rotates real
space to initial space (three components). Neglecting the dependence of the energy on
the latter, we may, by comparing equation (59) to (76), write −πijdεeij = ψαid∇iaα,
or

ψαi = −πkm(∂εekm/∂∇iaα).

Employing equation (74), we deduce

ψαi = πij∇jaα, ψαi∇jaα = πij − 2πikε
e
kj , (84)

σeqij = πij + 2πikε
e
kj + PT δij + ρvivj . (85)

The rotation identity, 0 = dw = πijdε
e
ij = πij(εimkε

e
mjdθk + εjmkε

e
imdθk), again

shows that the stress is symmetric,

πikε
e
kj = (i↔ j). (86)

Because of πijdεeij = ψαid∇iaα, the pressure gradient is, see equation (78),

∇iPT = s∇iT + ρ∇iµ+ gj∇ivj − πkj∇iεekj . (87)
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In equilibrium and in the rest frame, we have ∇jσeqij = 0. With equation (78), it
delivers the correction terms to∇jπij = 0, the equilibrium condition for small defor-
mations. The condition for large deformations in isotropic elastic media is

∇jπkj(δik + 2εeik)− πjk(∇iεejk − 2∇jεeik) = 0. (88)

Differentiating equation (74),

2∂tε
e
ik = ∇kaα∇i∂taα + (i↔ k),

2∇mεeik = ∇kaα∇i∇maα + (i↔ k),

and inserting these into equation (75), we find,
D
Dtε

e
ik +Dik − ( 1

2∇iaα∇kŷDα )− (i↔ k) = 0, (89)

where
D
Dtε

e
ik ≡ (∂t + vm∇m)εeik + εeim∇kvm + εekm∇ivm (90)

is the – derived and hence only permissible – objective time derivative, including all
convective derivatives. This result is especially useful for polymeric hydrodynamics.

In transiently elastic media, ie. polymeric fluids and granular media, however, there is
a subtle, constructive choice that one needs to be aware of. Taking

Ωij ≡ 1
2 (∇ivj −∇jvi), Dij ≡ 1

2 (∇ivj +∇jvi) (91)

we may rewrite the last two terms of equation (90)as

εeim∇kvm + εekm∇ivm = εeimΩkm + εekmΩim + α(εeimDkm + εekmDim),

with α = 1. Yet the value of α is in fact a constructive choice. By changing hijkl in
equation (115), we may choose any value for α, especially α = 0, implying

D
Dtε

e
ik ≡ (∂t + vm∇m)εeik + εeimΩkm + εekmΩmk (92)

= (∂t + vm∇m)εeik + εeimΩkm − Ωkmε
e
mk.

Due to the counter term−hijkl in equation (115), this also simplifies the Cauchy stress
as,

σeqij = πij + PT δij + ρvivj . (93)

More specifically, equations (85, 90) were successfully used for polymeric fluids.
Though in exploring large rotational velocities in granular media (not yet done), we
believe one should first try the simpler expressions of equations (92, 93).

Note that the same freedom does not exist for elastic media. A change of hijkl in equa-
tion (69) cannot possibly compensate Dim in equation (90), because of the gradient
in front of yDk , see equation (57).

The equilibrium condition (88) is fairly complicated to solve. Also, the dissipative
contribution ( 1

2∇iaα∇kŷDα ) + (i ↔ m) in equation (89) cannot easily be given in
terms of πij and εeij alone. Fortunately, neither will be needed for polymers or granular
media, because there is a stronger, dominating dissipative mechanism, given by the
equilibrium condition πij = 0, or equivalently, ψαi = 0.
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4 Transient Elasticity: Polymeric Fluids

The hydrodynamic method is, as discussed above, a powerful top-down approach to
obtain constitutive relations. In this section , we use it to derive the hydrodynamic
theory for polymeric fluids, a set of equations that we shall refer to as polymeric
hydrodynamics.

Our understanding of polymers’ basic physics has two points: First that there is elas-
ticity in polymeric fluids, because the polymeric strands may be elastically extended.
This leads to reversible energy storage, an elastic strain and an elastic stress. But they
vanish over time, irreversibly and dissipatively, as the strands untangle. This is the
second point. We therefore call these systems transiently elastic (TE), and we make
use of the elasticity theory as derived in the last section , with the modification that
the elastic stress πij is allowed to relax to zero. In solids, the equilibrium condition
∇jπij = 0 is satisfied by a uniform stress, which may persist for ever. In polymers,
this is replaced by πij = 0.

The hydrodynamic theory derived with this prejudice reproduces a large number of
polymeric phenomena, in shear and elongational flows, including stationary, oscilla-
tory and transient ones, and the Weissenberg effect [MLPH16,MLPH16b]. Therefore,
taking TE to be the basic physics of polymeric solutions is clearly justified. In fact,
polymeric hydrodynamics is simply viscoelasticity consistently implemented to com-
ply with thermodynamics – including especially the objective time derivative obtained
in equation (90). (We call it TE, because people tend to have rather definite ideas of
what viscoelasticity is, leading to mostly fruitless controversies over vocabulary.)

The rheological behavior of polymeric fluids is typically characterized as non-Newtonian,
which stresses the difference to Newtonian behavior, but does not provide an expla-
nation for the differences. Non-Newtonian effects include linear viscoelasticity, shear
thinning, elongational hardening, rod-climbing (Weissenberg effect), yield stress, vis-
coplasticity, and thixotropy. There are many textbook models to account for them, in-
cluding Maxwell, Jeffrey, Oldroyd, Giesekus, Leonov and the intricate KBKZ [BAH77,
Lar88, Str97, Tan00]. All are designed bottom-up, with the non-Newtonian effects in
mind, by skillfully combining fluid dynamic insights, elasticity theory, and the frame-
indifference principle. Starting from momentum conservation, these models provide
constitutive relations that specify ∂tσij as functions of Dk` and σk`. No model is
encompassing, or generally accepted as authoritative. In recent years, the approach
of constitutive relations has been supplemented by mesoscopic models of local and
transient substructures, such as the tube model for polymer melts [GLMc03]. Conse-
quently, rather more complicated equations have been employed that, although better
at reproducing even the slightest details of an experiment, frequently require sepa-
rate descriptions for every new experiment. For instance, the description of shear
flow [DE86] is different from that of elongational ones [WYT03], and branched poly-
mers require a treatment distinct from linear ones [McL98].
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4.1 Elastic strain field

We introduce a state variable that quantifies the (coarse-grained) elastic deformation
of the medium, which we again call the elastic strain εeij . We also note that the plastic
strain rate is rather more important in polymers. With ε̇plij = − 1

2 (∇iyDj + ∇jyDi ),
equation (57), and yDi ∼ ∇kπjk, equation (68), the plastic strain rate vanishes for
uniform stress,∇kπjk = 0. It is therefore only a small correction for non-uniform sit-
uations such as in wave propagation. As we see below, this is not the case in polymeric
hydrodynamics, in which the plastic rate may remain non-zero in uniform situations
and frequently dominates.

The elastic energy is, by definition, a function of the elastic strain, w = w(εeij), and
the elastic stress remains

πij(ε
e
kl) ≡ ∂w/∂εeij . (94)

This is a result of the derivation in the last section , but it is also readily understandable:
Differentiating an energy with respect to the geometric quantity that leads to its storage
(distance, strain, elastic strain), one always obtains the restoring force or the stress.
One example is a car driving up a slippery slope. The rotation of the wheels has a
gripping portion θg , and a slipping portion θs. The force on the car is ∂wg/∂`, with
wg the gravitational energy and ` the distance traveled, and the torque on the wheels
is ∂wg/∂θg . Clearly, θg is, in this case, the “elastic potion.”

The equilibrium condition is altered, it now reads

πeqij (εekl) = 0, equivalently εeij = 0, (95)

implying that dissipative processes forces stress and strain to relax, not only to equal-
ize. Since a stable energy is convex, πij is a monotonically increasing function of εeij ,
hence a monotonic relaxation of one implies that of the other. Therefore, we rewrite
equation (57), for small deformations, as

∂tε
e
ij − ε̇ij = −ε̇plij = −εeij/τ.

Note three points. First, the plastic strain rate, the part of the total strain rate that
neither changes the energy nor the stress, is proportional to the elastic strain. Second,
it is always present and influences the dynamics strongly, but it is a dependent quantity,
and must not be taken as an independent state state variable. Third, writing it as ε̇plij ,
we do not imply that a plastic strain εplij exists. It does not. There is only an elastic
strain field εeij .

For large deformations, and allowing for two different relaxation times, τ1 and τ , for
the trace and the traceless part of the strain, we rewrite the evolution equation as

D
Dtε

e
ij +Dij = −(ε∗eij /τ + εe``δij/3τ1) = −ε̇plij . (96)

see equation (90).
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A TE-system accounted for by this relaxation equation, is elastic for time spans t� τ ,
much smaller than the relaxation time τ , and behaves as a Newtonian fluid for time
spans much larger t � τ . (One may also write ωτ � 1 or ωτ � 1, respectively,
for the frequency ω of the external perturbation.) Because there is a regime of elastic
behavior, we have to copy the objective time derivative D/Dt from equation (90).
Polymeric fluids are soft elastic media, with typically large deformations. The objec-
tive derivative is therefore almost always relevant. For t � τ , εeij = 0, the elastic
stress vanishes, and the system naturally reverts to fluid behavior. Under a steady
shear or an elongational flow, for t → ∞ (ie. ω → 0), equation (96) is in its steady
state, with a steady state value for εeij and πij . These are the quantities that control the
complex rheological behavior of polymeric fluids.

The dissipative contribution ∼ ŷDi may typically be neglected, because it is of order
∇2
i smaller than εeij/τ , a small correction for non-uniform stresses.

4.2 Polymeric hydrodynamics

Given equation (96), and setting ŷDi = 0, the rest of the equations from section 3
remain unchanged, aside from one contribution in R that results naturally from the
hydrodynamic procedure. We summarize the polymeric hydrodynamic equations.

First, all equilibrium fluxes remain unchanged, especially the equilibrium stress σeqij ,
which is still given by equations (85,86,87),

σeqij = πij + 2πikε
e
kj + PT δij + ρvivj , πikε

e
kj = πjkε

e
ki, (97)

∇iPT = s∇iT + ρ∇iµ+ gj∇ivj − πkj∇iεekj

Note since true equilibrium requires πij = 0, this expression is not, strictly speaking,
an equilibrium one. Still, in the sense discussed around equation (13), we have a
generalized equilibrium, in which εeij is included as a slowly relaxing state variable.
For this generalized equilibrium, εeij and πij can have any values.

Employing the hydrodynamic procedure as above, we see that only R has one term
changed, yDi ∇jπij → πij ε̇

pl
ij . This is because from ∂tw = T∂ts · · · + πij∂tε

e
ij =

R · · · + πij(Dij − ε̇plij), we quickly deduce R = · · · + πij ε̇
pl
ij . The equations are

therefore:

D
Dtε

e
ij = −Dij − ε̇plij = ε̇ij − ε̇plij , (98)

∂tρ+∇i(ρvi) = 0, ∂ts+∇i(svi − fDi ) = R/T > 0,

∂tw +∇iQi = 0, ∂tgi +∇k(σeqik − σDik) = 0, gi = ρvi

Qi = µρvi + T (svi − fDi ) + vk(σeqik − σDik), fDi = κ∇iT,
R = fDi ∇iT + σDijDij + πij ε̇

pl
ij . σDij = ηD∗

ij + ζδijD``, (99)
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with the only new terms (again assuming isotropy and absence of off-diagonal On-
sager coefficients) given as

ε̇pl`` = β1π``, ε̇pl∗ij = βπ∗
ij . (100)

Given any appropriate energy expression w – along with its conjugate variables, µ ≡
∂w/∂ρ, T ≡ ∂w/∂s, and πij ≡ ∂w/∂εeij – and the Onsager coefficients κ, η, ζ, β, β1
as functions of the state variables, these equations are closed and may be solved.

However, for calculational convenience, one would prefer the form of equation (96):
For stationary cases, ∂tεeij = 0, equation (96) yields a general and typically analytic
relation between εeij and∇kvm, independent of the energy, which is an input that one
would have to find by trial and error. Therefore, we assume the energy is such that
π∗
ij/|π∗

ij | = ε∗eij /|ε∗eij | holds (where |B∗
ij | ≡

√
B∗
ijB

∗
ij for any matrix B∗

ij), such that
we may write

ε̇pl`` = β1π`` = β1(π``/ε
e
``)ε

e
``

!
= τ1ε

e
``, (101)

ε̇pl∗ij = βπ∗
ij = β(|π∗

ij |/|ε∗eij |)ε∗eij
!
= τε∗eij ,

assuming the dependence of β, β1 on εeij is such that τ, τ1 > 0 are constant.

4.3 Applications

Application of these equations to experimentally relevant circumstances is well ren-
dered in [MLPH16, MLPH16b], we shall not repeat it here. The calculation is exe-
cuted assuming the polymeric fluid is incompressible and isothermal: T, ρ = const,
with D`` = 0 and (1 − 2ε1)(1 − 2ε2)(1 − 2ε3) = 1, where εi is the eigenvalue of
εeij . (The last relation reduces to εe`` = 0 for linear elasticity.) We found these equa-
tions well capable of accounting for characteristic polymeric effects, including shear
thinning, normal stress differences, and the Weissenberg effect. Hereby, the convec-
tive derivatives contained in D

Dtε
e
ij are especially important, even for the first paper,

treating small to moderate deformations.

Starting from a general fourth-order expansion of the elastic energy, the first pa-
per [MLPH16] considers shear and elongational flow, both stationary and oscillat-
ing, also their relaxation and onset, including the elongation rate dependence of the
Trouton viscosity. And it considers surface effects including the Weissenberg effect
and the surface curvature for the flow down a slightly tilted channel. The second pa-
per [MLPH16b] starts from a postulated energy expression that we take to be valid to
any order of the elastic strain. We employ it to consider viscosity overshoot near the
onset of shear flow, the onset of elongational flows in situations for which there is no
stationary solution, as well as shear thinning and normal stress differences for a large
range of shear rates. In addition, we find that the presented equations satisfy empirical
relations including the Cox-Merz rule, the Yamamoto relation and Gleissle’s mirror
relations – in several cases quantitatively.
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5 Granular Media, GSH

5.1 Two-stage irreversibility

Two notions govern the basic physics of granular media: two-stage irreversibility and
variable transient elasticity. The first is related to the system’s three spatial scales:
(a) macroscopic, (b) granular or mesoscopic, and (c) microscopic. Dividing all de-
grees of freedom into these three categories, we account for the energy of (b) and (c)
with two temperatures, the true temperature T and the granular temperature Tg , each
with an associated entropy. The first is the temperature one measures with a ther-
mometer, and Tg the one quantifying the average energy of a jiggling grain. Both (a)
and (b) consist of kinetic and elastic contributions, with the difference that the former
is coarse-grained over many particles, the latter the fluctuating leftover. The conserved
energyW is divided intoWM andH , as in equation (5), and in addition, into granular
heat Hg ,

d
dtW = d

dt (W
M +Hg +H) = 0. (102)

The second law of thermodynamics is modified to: One can convert WM into Hg or
H , and convert Hg into H , but never backwards, implying

d
dtW

M 6 0, d
dtH = T d

dtS > 0, d
dtHg = Tg

d
dtSg, (103)

where the third quantity does not have a definite sign. However, sinceWM diminishes
continually in a closed system, we will eventually arrive at the minimum of WM .
Because then d

dtHg = Tg
d
dtSg < 0 is negative, we will soon arrive at the minimum of

Hg , and simultaneously the maximum of H , or S = max, implying equilibrium, see
figure 1.

R>0

R
g
>0

Sg

Sg

I>0

S

dissipative processes

Figure 1: Two-stage irreversibility: Macroscopic energy either decays directly into
heat, or in a two-step process, first decays into granular heat (jiggling of the grains),
then into true heat (random atomic motion).
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5.2 Variable transient elasticity

Variable transient elasticity is the second notion. First of all, grains are transiently
elastic – they may be elastically deformed, but their elastic stress are transient when
the grains jiggle. Everything we learned in the context of polymers apply here as well:
The elastic strain εeij is a state variable, with the evolution equation (96), and with the
equilibrium stress as given in equation (97).

The qualifier “variable” addresses the following fact: The stable free surface of a
granular system at rest may be tilted, and this will, unperturbed, stay forever. When
perturbed, when the vessel is being tapped and the grains jiggle, ie. when Tg 6= 0,
the tilted surface will move toward the horizontal, same as polymeric fluids. The
stronger the grains jiggle, the faster this process is. This is indicative of a system
that is elastic for Tg = 0, transiently elastic for Tg 6= 0, with a stress relaxation
rate that grows with Tg . We take it to be ∝ Tg , because granular media are then, as
observed, rate-independent in certain regimes. Note that this aspect only changes a
Onsager coefficient, the stress relaxation rate. It does not at all change the structure of
the hydrodynamics. Therefore, except for the additional state variable of the granular
temperature Tg , the hydrodynamic theory for polymeric fluids and granular media are
very similar.

We call the hydrodynamic theory derived starting from these two notions: GSH, for
“granular solid hydrodynamics.” We take a detailed look at GSH below.

5.3 The two temperatures

We separate granular, mesoscopic from microscopic degrees, instead of lumping them
into one group and one temperature, not only because of the difference in length scales.
Equally important is the fact that Tg is a quantity, on which the dynamics critically
depends: The elastic stress relaxes when the grains jiggle, when Tg 6= 0, while it is
(within limits) independent of T . Lumping both into one temperature would obscure
this crucial difference.

On the other hand, introducing a third temperature would be frivolous. Extending the
set of state variables quickly complicates the hydrodynamic theory, it must never be
done without compelling reasons. For instance, it is not useful to introduce a temper-
ature for the degrees characterizing the surface roughness of grains, though the length
scale is distinctly smaller, because no qualitative aspect of macroscopic granular dy-
namics depends on an associated temperature. Besides, surface roughness is given,
and does not change with the state. It may influence the energy and the transport co-
efficients, but it is not a state variable. Similarly, it is futile to separate Tg into two
temperatures, one for the kinetic and the other the elastic part. In every collision, the
two energy contributions are quickly converted into each other. If it were not for dis-
sipation into true heat, their sum would be constant. Separating both does not serve
any conceivable purpose.
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A division into three scales with two temperatures (as was done above for GSH)
works, when the scales are well separated – though this is a problem of accuracy,
not viability. Scale separation [between (a) and (b)] is well satisfied in large-scaled,
engineering-type experiments, less so in small-scaled ones. Using glass or steel beads
(typically larger) aggravates the problem. Nevertheless, when the system is too small
for spatial averaging, one may still average over the time and over runs, to rid the data
of fluctuations.

Both Tg and T are genuine temperatures, as each characterizes the energy of a group
of degrees of freedom. Taking the energy density as a function of the two entropy
densities, w = w(s, sg), we write

dw = Tds+ Tgdsg = Tdstot + (Tg − T )dsg, (104)
T ≡ ∂w/∂s, Tg ≡ ∂w/∂sg, stot = s+ sg. (105)

While Tds and Tgdsg in the first expression of equation (104) are equivalent, the two
terms in the second one are not: One may identify Tdstot, the equilibrium energy
change for changes of the total entropy, as equivalent to Tds in Newtonian fluids.
It possesses a contribution to the energy that is minimal for ∇iT = 0. T does not
vanish in equilibrium. The second one, (Tg − T )dsg , is the non-equilibrium energy
for Tg 6= T , which reflects the non-optimal energy distribution between the granular
and microscopic degrees of freedom. Its energy contribution is w ∝ (Tg − T )2 if
expanded, and has a minimum at Tg = T . Tg − T relaxes until it vanishes.

Yet since s� sg , and any granular jiggling at all occurs at Tg � T , we have Tg−T ≈
Tg , stot ≈ s, and the two expressions of equation (104) are very similar. So there is
in fact a practical difference between both temperatures. In equilibrium, T is uniform,
but the granular temperature Tg ≈ Tg − T vanishes.

The pair of entropy densities obey similar equations,

∂ts+∇i(svi − κ∇iT ) = R/T > 0, (106)

∂tsg+∇i(sgvi − κg∇iTg) = (Rg − γT 2
g )/Tg, (107)

each with a convective, diffusive, and source term, where

R = fDi ∇iT + σDijDij + πij ε̇
pl
ij + γT 2

g (108)

= κ(∇iT )2 + ηD∗
ijD

∗
ij + ζD2

``

+ β(π∗
ij)

2 + β1π
2
`` + γT 2

g .

Rg = fgDi ∇iT + σgDij Dij (109)

= κg(∇iTg)2 + ηgD
∗
ijD

∗
ij + ζgD

2
``.

Compare R to the polymeric R, equations (99), the only difference is the term γT 2
g .

It i equal to the counter term in equation (107), which accounts for the Tg-relaxation,
converting granular heat to true heat. They are the same because energy has to be
conserved: ∂tw = T∂ts + Tg∂tsg + · · · = γT 2

g − γT 2
g = 0. Granular entropy
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production Rg – with fgDi , σgDij denoting the granular dissipative contributions – is
again similar. There is no granular plastic contribution, no term∼ ε̇g,plij inRg , because
otherwise the elastic stress relaxes even for Tg = 0. Also, because η � ηg , ζ � ζg
in dry sand, they are usually neglected in applications. (These are all constitutive
choices, see [JL09] for more detailed reasoning.)

5.4 Granular equilibrium conditions

The state variables of any granular media are the density ρ, the momentum density
ρvi, the two entropy densities s, sg , and the elastic strain εeij . Denoting the energy
density in the rest frame (vi = 0) as w0 = w0(s, sg, ρ, ε

e
ij), we have

dw0 = Tds+ Tgdsg + µdρ+ πijdε
e
ij . (110)

A further useful conjugate variable is the pressure PT , cf. equation (24), where

PT ≡ −w0 + sT + sgTg + µ0ρ = − ∂(wV )

∂V

∣∣∣∣
M

= −∂(w/ρ)

∂(1/ρ)
. (111)

Equilibrium conditions are obtained by requiring
∫
w d3r = minimum, for given en-

tropy
∫
sd3r and mass

∫
ρd3r, with Tg allowed to relax (cf. section 5.3). We first

obtain
∇iT = 0, Tg = 0. (112)

Usually Tg vanishes quickly. After this has happened, dρ and du`` = −dρ/ρ no
longer vary independently. They therefore share a solid-like equilibrium condition,

∇i(πij + PT δij) = −ρGẑi, (113)

rather than separately, ∇iπij = 0 and ∇iPT = ρ∇µ0 = −ρGẑi, cf.Section 2.1.1. If
Tg is kept finite, say by continual tapping, the system may further decrease its energy
(or increase its entropy) by independently varying ρ and εeij . It then arrives at two
fluid-like equilibrium conditions,

πij = 0, ∇iPT = ρ∇iµ0 = −ρGẑi, (114)

the first of which requires the shear stress to vanish, and a free surface to be horizontal.

5.5 The evolution equations

Aside from the addition of the evolution equation for sg , equation (107), GSH has
the same structure as polymeric hydrodynamics, see the discussion in section 5.2.
However, some off-diagonal Onsager coefficients are needed, and the strain relaxation
rate are ∝ Tg . These are what we concentrate on in this section.
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Denoting, for granular media, D
Dtε

e
ij = ε̇ij − ε̇plij [cf. equation (98)], we revisit the

Onsager matrix, as given in equation (69). Starting from equation (108), the entropy
production R, we write



fDi
ε̇plij
σDij


 =




κik bikl cikl
bkli βijkl hijkl
−ckli −hklij ηijkl


 ·



∇kT
πkl
Dkl


 , (115)

with the constitutive choices (that was referred to as the “minimalist GSH,” [JL17]):

κik = κδik, ηijkl = ηδikδjl + (ζ − η/3)δijδkl, (116)
bikl, cikl = 0, βijkl = βδikδjl + (β1 − β/3)δijδkl, (117)

hijkl = α1δijε
∗e
kl/3. (118)

(The two forces πkl and Dkl have different time reversal property, hence hijkl =
−hklij , and there is no contribution to R, cf. [DeM84].) We assume, in addition,
relaxation rates linear in Tg ,

ε̇pl`` = β1π``=τ1ε
e
`` = λTgε

e
``, (119)

ε̇∗plij = βπ∗
ij = τε∗eij = λ1Tgε

∗e
ij , (120)

see equations (101) and the discussion in section 5.2 on variable transient elasticity.
Together, we have, denoting ∆ ≡ εe`` and taking the expressions from equations (92,
93)

D
Dtε

∗e
ij +D∗

ij = −λTgε∗eij , (121)
D
Dt∆ +D`` + α1ε

∗e
ijD

∗
ij = −λ1Tg∆. (122)

σij = πij + PT δij + ρvivj + α1ε
∗e
ij π``/3 (123)

− (η + ηg)D
∗
ij − (ζ + ζg)D``δij .

For small deformations, these equations reduce to

∂tε
∗e
ij +D∗

ij = −λTgε∗eij , (124)

∂t∆+D`` + α1ε
∗e
ijD

∗
ij = −λ1Tg∆. (125)

σij = πij + PT δij + ρvivj − (η + ηg)D
∗
ij − (ζ + ζg)D``δij . (126)

We note that in contrast to polymeric fluids, most granular phenomena do not have
large elastic strain fields. Exceptions are cases with a rotating sand pile, such as in
a tumbler. The term preceded by α1 in equation (125) is formerly of the same order
as the eliminated ones. but it accounts for dilatancy and contractancy, is qualitatively
important and must not be neglected. Without it, the steady state solution under shear
flow D`` = 0 is ∆ = 0, and there cannot be any density or pressure change in the
approach to the critical state. Besides, α1 turns out to be fairly large, of the order of
30. The counter term in the stress, also preceded by α1, changes the zeroth order term
πij slightly, it is not as qualitatively important.
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Finally, we note that the elastic strain cannot be obtained by coarse-graining its meso-
scopic counterpart, εeij 6= 〈εmesij 〉. The reason is, both the energy and stress are given
by averaging: w = 〈wmes〉, πij = 〈πmesij 〉. Since

dw = 〈dwmes〉 = 〈πmesij dεmesij 〉 = πijdε
e
ij = 〈πmesij 〉dεeij

and since w is always a nonlinear expression,

dw = 〈πmesij dεmesij 〉 6= 〈πmesij 〉d〈εmesij 〉,

we have dεeij 6= d〈εmesij 〉.

5.6 Applications

The minimalist GSH (cf. [JL17]) consists of:

• the continuity equation: ∂tρ+∇i(ρvi) = 0,

• momentum conservation: ∂t(ρvi) +∇jσij = −ρGẑi, with σij given in equa-
tion (126),

• balance equation for sg , equation (107),

• the evolution equation for the elastic strain, equations (124,125).

The balance equation for the entropy s is not included, as effects such as thermal
expansion or diffusion of true temperature are not at present of primary concern.

A more complete version with more off-diagonal Onsager coefficients and a more
complicated energy w has also been employed to yield a more quantitative study of
granular phenomena, see [JL15]. The basic structure of both versions are identical.

Given an expression for the energy w and the transport coefficients [not discussed
here, see [JL15, JL17]], these equations are closed and enable calculation of many
granular phenomena, grouped as followed:

• Tg = 0: static stress distribution, velocity and damping of elastic waves, clog-
ging;

• moderate Tg , elasto-plastic motion: loading and unloading, approach to the
critical state, angle of stability and repose;

• elevated Tg , rapid dense flow: the µ-rheology, Bagnold scaling and shear band;

• compaction (both reversible and irreversible branch, memory effect), wide and
narrow shear band, shear jamming, visco-elastic behavior and nonlocal fluidiza-
tion.

Only in the second of the four regimes are grains rate-independent (see next section ).

It is useful to realize that two qualitatively different types of yield surface are encoded
in GSH. The first is in the convexity transition of the energy w. Usually, the elastic
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energy is convex, and the 6x6 matrix of its second derivatives (with respect to the
6-tuple vector of elastic strain) has only positive eigenvalues. Elastic solutions are
then stable. When, however, one of the eigenvalues turns negative, there are no stable
elastic solutions. In GSH, the elastic energy needs to have yield surfaces at which this
convexity transition takes place, to account for the fact that elastic solutions may be
maintained only below a critical density, or that a steep slope will crumble.

The second is given by the stationary solution of equations (124,125), or the so-called
critical state, for which the elastic strain (hence also the stress) is finite at non-zero
total strain rate, Dij 6= 0. Although this is also referred to as yield surface, there is no
instability involved.

With all these phenomena ordered, related, explained and accounted for, though as yet
frequently qualitatively, we believe that GSH may be taken as a unifying framework,
providing the appropriate macroscopic vocabulary and mindset that help one coming
to terms with the breadth of granular physics.

5.7 Rate-independence

Granular phenomena are frequently rate-independent: The observed stress remains the
same, however fast the experiment is executed. This has led to the wide-spread believe
that rate-independence (RI) is a basic granular feature of granular media. Construct-
ing constitutive relations, one therefore needs to start from it. Such approaches are
efficient, but they prevent an understanding of why RI holds, and where it does (ie.,
to what range RI is limited). Moreover, such approaches preclude the construction of
constitutive relations that remain valid outside the RI regime, in phenomena such as
chute flows.

To get a better understanding of RI, it is useful to first recognize the difference in RI
between that of elasticity and hypoplasticity. They are different because the first is a
static property, and the second a dynamic one. In elasticity, the strain εij is a state
variable,7 and both the elastic energy w and the stress πij ≡ −∂w/∂εij are unique
functions of it (if, as discussed above, mass defects are neglected). This is the reason
the stress remains the same for a given strain, πij = πij(εkl), however fast εij is built
up, ie., whatever the shear rateDij is. Dynamics does not enter this consideration. (Of
course, since the Cauchy stress always has a viscous contribution, σij = πij − ηDij ,
it is not rate-independent if this term becomes significant at larger shear rates.)

Hypoplasticity is a constitutive model, defined as

∂tσij = Hijklε̇kl + Λij
√
ε̇klε̇kl, (127)

with the two tensors Hijkl,Λij functions of σij and ρ. (For the simplicity of display,
here and below, we always set ε̇kk = −Dkk ≡ 0.) As a result, the stress σij remains

7Neglecting yDi in equation (54), we have εeij = εij .
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the same for any given path
∫
ε̇kl(t)dt, whatever the rate ε̇kl(t) is. 8 So RI is a result

of the postulated dynamics, of the structure of the evolution equation for σij .

Mathematically speaking, equation (127) is invariant under a transformation rescaling
the time,

t→ t/A, (128)

because all three terms of equation (127) get multiplied by the same constant factor
A. Therefore, the solution for the stress also needs to be scale invariant and cannot
depend on ε̇kl alone, but may depend on

∫
ε̇kl(t)dt.

More generally, the dynamics of neither elasticity nor hypoplasticity is scale invariant.
Consider for instance momentum conservation, ∂t(ρvi)+∇j(πij +PT +ρvivj) = 0,
in which ∂t(ρvi) and ∇j(ρvivj) scale as A2, and ∇jπij as A0. Therefore, wave
phenomena are never rate-independent. And when one speaks of RI in the context of
resonance column experiments, one needs to carefully spell out what is implied.

Next, we discuss when and why GSH is rate-independent, or more precisely, scale
invariant. GSH reduces to hypoplasticity, equation (127), for constant (or slowly
varying) slow shear rates [JL16b]. GSH is trivially rate-independent then, because
hypoplasticity is. If the shear rate oscillates, such as in cyclic loading, GSH is more
complicated than hypoplasticity, as more terms appear. But as we shall see, it is then
less plastic but remains rate-independent. Moreover, the gradient term accounting for
shear bands is also scale-invariant and maintains RI.

A minimalist version of the GSH equations is collected here, to facilitate the dis-
cussion. (The complete version renders the description of granular phenomena more
realistic. Yet it suffices to consider the former, since all conclusions on RI drawn be-
low remain valid for the latter.) The state variables of any granular system are the
density ρ, the momentum density ρvi, the granular entropy density sg and the elastic
strain εeij . (The entropy s does not play a role and is neglected here.) Their close set
of equations is

∂tρ+∇i(ρvi) = 0, (129)
∂t(ρvi) +∇iσij = −ρGẑi, (130)
σij = πij + PT δij − η1TgDij + ρvivj , (131)
πij(ε

e
ij) ≡ ∂w/∂εeij , PT ≡ −∂(w/ρ)/∂(1/ρ), (132)

∂tTg = −RT [Tg(1− ξ2T∇2
i )Tg − f2DijDij ], (133)

∂tε
∗e
ij +Dij = −λTgε∗eij , ∂tε

e
kk + α1ε

∗e
ijDij = −λ1Tgεekk, (134)

where ε∗eij is the traceless part of the elastic strain, and ε̇kk = 0 is again assumed.
Equation (129) is the continuity equation, equation (130) the momentum balance, with
the Cauchy stress σij explicitly given if the free energy w = w(%, Tg, ε

e
ij) is known.

(As the specific form of the free energy we employ is irrelevant to the discussion about
RI, it is not reproduced here.)

8We note equation (127) is not of the most general form, because terms such as
√
ε̇ik ε̇kj or

3
√
ε̇ik ε̇klε̇lj would retain RI.
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Equation (133) is the balance of the granular entropy, and equations (134) are the
evolution equations for the elastic strain. The seven scalar coefficients: λ, λ1, α1,
RT , ξT , f, η1 are functions of the density alone, providing the only leeway GSH has
for fitting experimental data.

For ε̇kk = 0, equation (129) is redundant. Excluding acceleration, ∂t(ρvi) = 0, and
wave propagation leaves the dynamics given by equations (133,134) alone, which are,
as we shall see, invariant under the scale transformation of equation (128).

Note first that in the stationary limit, ∂tTg = 0, and for uniform samples, ξ2T∇2
iTg =

0, we have
Tg = f

√
ε̇ij ε̇ij . (135)

Inserted into equations (134), this expression yields two equations of hypoplastic
structure, implying RI of the elastic strain.

Next, we go an important step further. Equation (135) implies that Tg scales with A,
same as ε̇ij . Then, clearly, under the scale transformation of equation (128), every
single term of equation (133) scales with A2, and every one of equation (134) with
A. This leaves both equations scale invariant. As above, we again conclude that no
solution for the elastic strain εeij may depend on ε̇ij or Tg alone, though

∫
ε̇kl(t)dt or∫

Tgdt are fine.

In the Cauchy stress of equation (131), both the viscous contribution and the pressure
PT ∼ T 2

g are not scale invariant. However, they are important only at higher shear
rates, such as in chute flows or the µ(I)-rheology. At lower shear rates, they may be
neglected, rendering the Cauchy stress a function of the elastic strain alone, σij =
πij(ε

e
kl), scale invariant and rate-independent.

In cyclic loading, both Tg and ε̇ij = −Dij vary with time. If the amplitude is too small
for Tg to reach the stationary limit, the term ∂tTg = 0 becomes important, typically
rendering Tg smaller than given by equation (135). This reduces the plasticity that is
accounted for by the terms ∼ Tg in equations (134), and is how GSH accounts for
cyclic loading rate-independently. Similarly, the term Tgξ

2
T∇2

iTg in equation (133)
accounts for shear bands with no rate-dependence.
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[Ko98] P. Kostädt and M. Liu, Three ignored Densities, Frame-independent Ther-
modynamics, and Broken Galilean Symmetry,, Phys. Rev. E 58, 5535,
(1998).

[LL87] L. D. Landau and E. M. Lifshitz. Fluid Mechanics. Butterworth-
Heinemann, 1987.

[Kha65] I. M. Khalatnikov. Introduction to the Theory of Superfluidity. Benjamin,
New York, 1965.

38 Thermodynamics and Constitutive Modeling

ALERT Doctoral School 2018



[DePG93] P.G. de Gennes and J. Prost. The Physics of Liquid Crystals. Clarendon
Press, Oxford, 1993.

[DeM84] S. R. de Groot and P. Masur, Non-Equilibrium Thermodynamics, (Dover,
New York 1984).

[MPP72] P.C. Martin, O. Parodi, and P.S. Pershan, Unified Hydrodynamic Theory for
Crystals, Liquid Crystals, and Normal Fluids, Phys. Rev. A 6, 2401 (1972).

[Lub72] T.C. Lubensky, Hydrodynamics of Cholesteric Liquid Crystals, Phys. Rev.
A 6, 452 (1972).

[Liu79] M. Liu, Hydrodynamic Theory near the Nematic Smectic-A Transition,
Phys. Rev. A 19, 2090 (1979);

[Liu94] M. Liu, Hydrodynamic theory of biaxial nematics, Phys. Rev. A 24, 2720
(1981).

[liu94b] M. Liu, Maxwell equations in nematic liquid crystals, Phys. Rev. E 50,
2925, (1994).

[PB96] H. Pleiner and H.R. Brand, in Pattern Formation in Liquid Crystals, edited
by A. Buka and L. Kramer (Springer, New York, 1996).

[Gra74] R. Graham, Hydrodynamics of 3He in Anisotropic A Phase, Phys. Rev. Lett.
33, 1431 (1974).

[GP75] R. Graham and H. Pleiner, Spin Hydrodynamics of 3He in the Anisotropic
A Phase, Phys. Rev. Lett. 34, 792 (1975).

[Liu75] M. Liu, Hydrodynamics of 3He near the A-Transition, Phys. Rev. Lett. 35,
1577 (1975).

[LC78] M. Liu and M.C. Cross, Broken Spin-Orbit Symmetry in Superfluid 3He and
the B-Phase Dynamics, Phys. Rev. Lett. 41, 250 (1978).

[LC79] M. Liu and M.C. Cross, Gauge Wheel of Superfluid 3He, Phys. Rev. Lett.
43, 296 (1979).

[Liu79] M. Liu, Relative Broken Symmetry and the Dynamics of the A1-Phase,
Phys. Rev. Lett. 43, 1740 (1979).

[Liu98] M. Liu, Rotating Superconductors and the Frame-independent London
Equations, Phys. Rev. Lett. 81, 3223, (1998).

[JL01] Jiang Y.M. and M. Liu, Rotating Superconductors and the London Moment:
Thermodynamics versus Microscopics, Phys. Rev. B 6, 184506, (2001).

[Liu02] M. Liu, Superconducting Hydrodynamics and the Higgs Analogy, J. Low
Temp. Phys. 126, 911, (2002)

[HL93] K. Henjes and M. Liu, Hydrodynamics of Polarizable Liquids, Ann. Phys.
223, 243 (1993).

Mario Liu 39

ALERT Doctoral School 2018



[Liu93] M. Liu, Hydrodynamic Theory of Electromagnetic Fields in Continuous
Media, Phys. Rev. Lett. 70, 3580 (1993).

[Liu95] Mario Liu replies, Phys. Rev. Lett. 74, 1884, (1995).

[JL96] Y.M. Jiang and M. Liu, Dynamics of Dispersive and Nonlinear Media,
Phys. Rev. Lett. 77, 1043, (1996).

[LS09] M. Liu and K. Stierstadt, Thermodynamics, Electrodynamics and Ferrofluid
Dynamics, in: Colloidal Magnetic Fluids, edited by S. Odenbach, Lect.
Notes Phys. Vol. 763 (Berlin, Heidelberg, 2009), pp. 83–156.

[SL15] Klaus Stierstadt and Mario Liu, Maxwell’s stress tensor and the forces in
magnetic liquids. Z. Angew. Math. Mech. 95, No. 1, 4 – 37 (2015)

[Liu95] M. Liu, Fluiddynamics of Colloidal Magnetic and Electric Liquid, Phys.
Rev. Lett. 74, 4535 (1995).

[Liu98] M. Liu, Off-Equilibrium, Static Fields in Dielectric Ferrofluids, Phys. Rev.
Lett. 80, 2937, (1998).

[Liu99] M. Liu, Electromagnetic Fields in Ferrofluids, Phys. Rev. E 59, 3669,
(1999).

[ML01] H.W. Müller and M. Liu, Structure of Ferro-Fluiddynamics, Phys. Rev. E
64, 061405 (2001).

[ML02] H.W. Müller and M. Liu, Shear Excited Sound in Magnetic Fluid, Phys.
Rev. Lett. 89, 67201, (2002).

[MHL06] O. Müller, D. Hahn and M. Liu, Non-Newtonian behaviour in ferrofluids
and magnetization relaxation, J. Phys.: Condens. Matter 18, 2623, (2006).

[MIL08] S. Mahle, P. Ilg and M. Liu, Hydrodynamic theory of polydisperse chain-
forming ferrofluids, Phys. Rev. E 77, 016305 (2008).

[TPLB00] H. Temmen, H. Pleiner, M. Liu and H.R. Brand, Convective Nonlinearity
in Non-Newtonian Fluids, Phys. Rev. Lett. 84, 3228 (2000).

[TPLB01] H. Temmen, H. Pleiner, M. Liu and H.R. Brand,Temmen et al. reply, Phys.
Rev. Lett. 86, 745 (2001).

[PLB04] H. Pleiner, M. Liu and H.R. Brand, Nonlinear Fluid Dynamics Description
of non-Newtonian Fluids, Rheologica Acta 43, 502 (2004).

[Mul06] O. Müller, Die Hydrodynamische Theorie Polymerer Fluide, PhD Thesis
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Definition and Uses of the Principle of Virtual
Power

Ioannis Stefanou

Laboratoire Navier, UMR 8205, Ecole des Ponts ParisTech, IFSTTAR,
CNRS, Champs-sur-Marne, France

The Principle of Virtual Power (PVP) offers a systematic approach for studying the
equilibrium of complex systems. This chapter aims at showing the importance of the
principle and its use in discrete and continuum systems. Simple examples are given
throughout the chapter for helping understanding. The general theory of micromor-
phic continua is also derived using the principle of virtual power. Finally, PVP being
global rather than local, is directly amenable to numerical schemes such as the Fi-
nite Element Method (FEM). An example is given using the open-source FEM library
FEniCS.

1 Introduction

The Principle of Virtual Power (PVP) offers a systematic approach for studying the
equilibrium of complex systems following an energy- and velocity-based approach.
PVP shows an important advantage compared to the conventional approach of force
equilibrium equations as it is simpler to apply in complex systems. Moreover, forces
play a secondary role in PVP as they appear only as conjugate in energy quantities to
velocities, which are in principle measurable.

After studying this chapter, the reader will be able to understand the importance of
the principle of virtual power, its use in problems of discrete systems and continuum
mechanics and its application to the Finite Element Method (FEM). Simple examples
are given throughout the chapter for helping understanding.

The current chapter has the following structure. In the beginning of section 2 the
statement of the principle is given, accompanied by a brief historical note, in order to
clarify the fundamental ideas of the principle and its connection with the equilibrium
equations. Examples are then given for showing the application of PVP to simple
problems involving discrete systems of one and several degrees of freedom. In section
3, the principle is extended to continuum mechanics, where the equivalence between
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the strong form of the differential equilibrium equations and the weak/variational form
of the problem is shown. Further, in section 4, the principle is used for deriving more
advanced continuum theories, i.e. the micromorphic continuum theory. The equations
of micromorphic continua are presented in a general form and the hierarchical struc-
ture of the theory is illustrated. Cosserat and strain gradient theories are presented as
special cases. Applications are also presented for showing the advantages of micro-
morphic continua and the use of PVP in upscaling. Finally, the use of the principle in
the Finite Element Method is shown and the example of shearing of an infinite layer
modeled as a Cauchy and a Cosserat continuum is presented, using the FEniCS open
source FEM library.

2 The Principle of Virtual Power

2.1 Statement
There is no doubt that the intuition for the Principle of Virtual Power (PVP) existed
from ancient times. However, the principle is used in a more systematic time in the
18th century. It is difficult to say who is the father of the principle, maybe Galileo
Galilei, René Descartes, Jean-Baptiste le Rond d’Alembert or Johann Bernoulli. The
first, clear, general and direct statement of the principle seems to be by Joseph-Louis
Lagrange in 1788 in his seminal work. The principle reads [Lag88; p.10-11]:

“Si un système quelconque de tant de corps ou points que l’on veut tirés, cha-
cun des puissances quelconques, est en équilibre et qu’on donne à ce système
un petit mouvement quelconque, en vertu duquel point parcoure un espace in-
finiment petit qui exprimera sa vitesse virtuelle ; la somme des puissances,
multipliées chacune par l’espace que le point où elle est appliquée, parcourt
suivant la direction de cette même puissance, sera toujours égale à zéro, en
regardant comme positifs les petits espaces parcourus dans le sens des puis-
sances, et comme négatifs les espaces parcourus dans le sens opposé.”1

It is worth noting that Lagrange uses the term “puissance” (power in English) instead
of the term “force”, which is commonly used today. The word “puissance” comes
from the old French verb “povoir”, which means “be able to”. In this sense a force is
a quantity that enables motion, the cause.

Another central notion in the above principle is the notion of virtual velocities. Ac-
cording to Lagrange [Lag88]:

“On doit entendre par vitesse virtuelle, celle qu’un corps en équilibre est dis-
posé à recevoir, en cas que l’équilibre vient d’être rompu ; c’est-à-dire la

1Translation in English by G.A. Maugin [Mau14]: If any system of bodies or points as we want, is acted
upon by any system of powers, is in equilibrium, and we give to this system any small motion, then by virtue
of the fact that each point travels an infinitesimally small space that expresses its virtual velocity, the sum
over powers each multiplied by the space that the point where it is applied travels along the direction of the
same power, will always be equal to zero, regarding as positive the small distances followed in the direction
of the powers and as negative those travelled in the opposite direction.
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vitesse que le corps prendroit réellement dans le premier instant de son mou-
vement2

Virtual velocities are “virtual” and not “real”, in the sense that they are possible ve-
locities that could be developed, if the equilibrium is not anymore satisfied. Virtual
velocities should be thought as variations from the reference/equilibrium state.

It is worth mentioning that the principles of virtual power (velocities) and virtual work
(displacements) are practically the same. However, there is a small difference. The
principle of virtual power has the advantage to be applied without considering in-
finitesimal displacements and rotations.

2.2 PVP applied on a single body
In the case of only one body, the principle says that the body will be in equilibrium if,
and only if, the power generated by the forces acting on it is null under any possible
(virtual) velocity of the body. The power is said to be “virtual”, because there is no
need for the particle to actually move to apply the principle. It only needs to be in
equilibrium (steady state), either moving, or at rest.

Figure 1: A rigid body under the action of three forces and virtual velocities.

Take for example the undeformable solid of Figure 1, where three forces are applied.
The body will be in equilibrium if, and only if, the total power of the applied forces
F (i) is zero for any kinematically admissible virtual velocity ṽ(i), i.e.:

∑

i

P̃(i) =
∑

i

F (i) · ṽ(i) = 0, ∀ṽ(i). (1)

2Translation in English: We mean with virtual velocity, the velocity that a body in equilibrium will
develop if its equilibrium is broken, i.e. the velocity that the body will really have in the first instance of its
movement”
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The fact that the solid is not deformable imposes the following constraint to the virtual
velocities:

ṽ(i) = ṽO + ω̃O × r(O,i), (2)
where ṽO and ω̃O represent, respectively, virtual translational and rotational velocities
with respect to an arbitrary point O and r(O,i) is the position vector of the application
point of force i with respect to O. The virtual velocities, ṽ(i), have to respect equa-
tion (2) or any other restrictions (e.g. boundary conditions), i.e. to be kinematically
admissible. Using equation (2), equation (1) becomes:

(∑

i

F (i)

)
· ṽO +

(∑

i

r(O,i) × F (i)

)
· ω̃O = 0, ∀ṽO, ω̃O. (3)

As this equation is valid for any virtual displacement and rotation, we can derive
(deduce) the standard force and moment equilibrium equations:

∑

i

F (i) = 0

∑

i

M (O,i) = 0
(4)

where M (O,i) = r(O,i) × F (i) is the moment of force i w.r.t. point O.

Notice that the reverse procedure is also possible. Starting from the equilibrium equa-
tions, equations (4), multiplying each one by arbitrary quantities ṽO and ω̃O, adding
them and using equation (2) we retrieve equation (1). This shows the equivalence
between the principle of virtual power and the equilibrium equations.

2.3 Generalized forces
The notion of power in the PVP allows the consideration of generalized forces such as
moments (also called double forces, dipoles, couples) or even more general quantities
(e.g. triple forces, tripoles, see section 4), which are conjugate in energy with gener-
alized velocities. For instance, in the case of a moment, M , the generalized velocity
is an angular velocity ω. In the case of a system with j external forces and k external
moments, equation (1) becomes (i = j + k):

∑

i

P̃(i) =
∑

j

F (j) · ṽ(j) +
∑

k

M (k) · ω̃(k) = 0, ∀ṽ(j), ω̃(k). (5)

Following the same procedure as the previous paragraph, the standard equilibirum
equations are retrieved:

∑

j

F (j) = 0

∑

j

M (O,j) +
∑

k

M (k) = 0
(6)

where M (O,j) = r(O,j) × F (j) is the moment of the external force j, F (j), w.r.t.
point O, while M (k) is a concentrated external moment.
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2.4 PVP applied on a system of bodies
Consider now a system of several bodies that interact one with another through a
system of internal forces F (int,i). These internal forces oppose the relative movement
of the bodies (think of a spring for example that connects two bodies). Consequently,
according to the PVP, their virtual power has to be considered with a negative sign.
On the same system of bodies, we apply also external forces, F (ext,i). PVP says that
the system will be in equilibrium if, and only if, the power of (all) the forces acting on
it (both external and internal) is zero, under any virtual velocity:

∑

i

P̃(i) =
∑

j

P̃(ext,j) −
∑

k

P̃(int,k) = 0, ∀ṽ(i). (7)

Example: Consider the beam of length, L, presented in figure 2. Both the horizontal
and vertical displacements are fixed at point A, while only the vertical displacement
is fixed at point B. The system is statically determinate. A vertical external force is
applied in the middle of the beam as shown in figure 2. For calculating the internal
moment at point D, we remove the kinematical constraint that assures the continu-
ity of the system at that point and we replace it with a system of internal moments
M int,left
D = M int,right

D = M int
D . The PVP (equation (7)) yields:

F δ̃C −
(
M int,left
D α̃+M int,right

D β̃
)

= 0 ∀δ̃C , α̃, β̃. (8)

From geometrical compatibility we obtain (see figure 2):

δ̃D = α̃
L

4
= β̃

3L

4
and δ̃C = β̃

L

2
. (9)

Replacing equation (9) to equation (8) we finally obtain that M int
D = FL

8 .

Figure 2: Calculation of internal moment at point D with the principle of virtual power.

3 The principle of virtual power in continuum mechan-
ics

The above concepts are extended in continuum mechanics, provided that the various
kinematic and stress fields show a certain mathematical regularity [Fré02, GFA10].
The first step is to define the internal and external virtual powers.
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Consider a solid of volume V , with boundary S, as shown in figure 3. At Sv velocities
are prescribed, vi = vSv

i , while at Sp tractions are imposed, ti = t
Sp

i . S = Sv ∪ Sp
and Sv ∩ Sp = Ø. Body forces, fi, are applied everywhere on the solid. In the rest of
this manuscript, indicial notation is followed using Einstein’s notation, i.e. repeated
indices denote summation. In three dimensions i = 1, 2, 3.

Figure 3: Calculation of internal moment at point D with the principle of virtual power.

Assuming the following forms for the internal and external virtual power densities:

p̃(int) = σij ε̃ij

p̃(ext,t) = tiṽi

p̃(ext,f) = fiṽi,

(10)

where ε̃ij = 1
2 (ṽi,j + ṽj,i) and σij = σji, according to equation (7) and paragraph

2.1, the principle of virtual power says that any part of the system will be in equilib-
rium, if and only if for any sub-volume, D, of V with boundary, ∂D, the following
equality is satisfied:

∫

D

σij ε̃ijdV −
∫

D

fiṽidV −
∫

∂D

tiṽidS = 0, (11)

for any kinematically admissible virtual velocity field vi, i.e. ∀vi with vi = vSv
i on

Sv .

Applying the divergence theorem and after some algebra, we obtain:
∫

D

(σij,j + fi) ṽidV +

∫

∂D

(ti − σijnj) ṽidS = 0, (12)
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where ni is the normal vector to S.

The above equation holds for any volume D ⊂ V and ∀vi and therefore it has to hold:

σij,j + fi = 0 and ti = σijnj . (13)

The above equations form the standard equilibrium equations and stress boundary
conditions in the classical, Cauchy continuum. As in the simpler case of discrete
forces, the reverse procedure is possible, showing the full equivalence of the principle
of virtual power (weak form) with the differential equilibrium equations (strong form).
We say that equation (12) is the weak formulation of the strong form, equations (13),
of the problem. The weak form of a Partial Differential Equation (PDE) is called also
variational form and it is the starting point for obtaining numerical solutions with the
Finite Element method. For an introduction to variational calculus and applications
we refer to [Fun65]. Nowadays, several Finite Element codes exist that allow the
user to automatically and efficiently solve PDE’s in parallel by directly entering in
symbolic, mathematical form the variational form of the problem (e.g. Fenics project
[ABH+15], GetDP [GDL98], FreeFEM++ [Hec12], among others). An example is
given in section 5.

Applying one more time the divergence theorem on the whole solid of volume V , we
obtain: ∫

∂V

tidS +

∫

V

fidV = 0. (14)

Multiplying equations (13) with εijkxk, where εijk is the Levi-Civita symbol, and
using once more the divergence theorem, we obtain the following equation:

∫

∂V

εijktjxkdS +

∫

V

εijkfjxkdV = 0, (15)

which represents a cross product (moment). Equations (14) and (15) are called, re-
spectively, linear and angular momentum balance equations. They are the analogue of
equations (4) in continuum mechanics.

4 Micromorphic continua and the method of virtual
power in continuum mechanics

In the classical continuum theory, the material point is characterized by its position and
velocity. This description is abandoned in non-Newtonian, quantum physics, where it
is described by a single quantity, the wave function. Staying in the Newtonian context
there are various situations where one might need to assign more than translational
degrees of freedom to the material point, seen now as a particle.

A more general continuum theory that, by construction, can indeed account for an
arbitrary number of degrees of freedom assigned at the material point is the Micro-
morphic theory. This theory is general enough to represent various heterogeneous sys-
tems with microstructure of non-negligible size and take into account various length
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and time scales (internal lengths) that the classical Cauchy continuum fails to repre-
sent. The various features of the Micromorphic continuum theory were studied by
many researchers in the past, showing several advantages compared to the classical
continuum approach. Intrinsic wave dispersion, regularization in strain localization
problems, non-singular fields in fracture mechanics, interesting properties related to
the design of metamaterials, are some of the applications that emerge from the deep
study of these continua.

According to Germain [Ger73], in the classical description, a continuum is a continu-
ous distribution of particles, each of them being represented geometrically by a point
and characterized kinematically by a velocity Vi. In a theory that takes microstructure
into account, from the macroscopic point of view (which is the point of view of a
continuum theory), each particle is still represented by a point M , but its kinematical
properties are defined in a more detailed way.

At the microscopic level of observation, a particle appears itself as a continuum P (M)
of small extent. Let M be the center of mass of the particle P (M), M ′ a point
of P (M), Vi the displacement of M , x′i the coordinates of M ′ in a Cartesian frame
parallel to the given, global frame andM its origin, V ′i the velocity ofM ′ with respect
to the given frame and xi the coordinates of M in the given frame (see figure 4). D
denotes the control volume. As P (M) is of small extent, it is natural to look at the
asymptotic expansion of V ′i with respect to x′i:

V ′i = Vi + χijx
′
j + χijkx

′
jx
′
k + χijklx

′
jx
′
kx
′
l + . . . , (16)

where χij is a micro-deformation rate tensor, which expresses the gradient of the
relative velocities V ′i and χij...m are higher order micro-deformation rate tensors. In
three dimensions: i, j, . . . ,m = 1, 2, 3. The tensors χij...m are assumed to be fully
symmetric with respect to the indices j, . . . ,m.

The virtual power density of the internal forces for a micromorphic continuum of order
n is given as follows by [Ger73]:

p̃int = τij Ṽi,j − (sijχ̃ij + sijkχ̃ijk + . . .) + (νijkκ̃ijk + νijklκ̃ijkl . . . ) , (17)

with τij ≡ σij + sij , where τij is the stress tensor, σij is the intrinsic stress tensor
(symmetric due to objectivity requirement), sij is the intrinsic microstress tensor, νijk
is the intrinsic second microstress tensor and sij...m, νij...ml are higher order stress
tensors that are conjugate in energy to χij...m and κij...ml = χij...m,l, respectively.
(.),i denotes derivation in terms of xi (macro-coordinate). The virtual power density
of the external forces for a micromorphic continuum of order n is given as follows
[Ger73]:

p̃(ext,t) = tiṽi + µijχ̃ij + µijkχ̃ijk + . . .

p̃(ext,f) = fiṽi + ψijχ̃ij + ψijkχ̃ijk + . . . ,
(18)

where fi, ψij...l represent volumic (body) generalized forces and ti, µij...l generalized
tractions. In particular, ti is the surface traction, µij is the double surface traction
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Figure 4: Continuum with microstructure.

(dipole, e.g. a concentrated moment density) and µij...n is the generalized surface
traction of order n defined on the boundary ∂V . Similarly, fi represent long-range
volumic forces, ψij double long-range volumic forces (e.g. due to an electromagnetic
field) and ψij...n higher order generalized volumic forces of order n defined on V .

Applying the principle of virtual power and using the divergence theorem, we obtain
[Ger73]:

τij,j + fi = 0, ti = τijnj

νijk,k + sij + ψij = 0, µij = νijknk

νijkl,l + sijk + ψijk = 0, µijk = νijklnl

. . . ,

(19)

where, again, ni is the outward pointing unit normal vector field of the boundary. The
above system of equations represents the equilibrium equations of a micromorphic
continuum of order n (strong form).

It is worth emphasizing that the above equations are derived systematically without
any particular hypotheses besides the postulates of the internal and external power
densities. No assumption was also made regarding the constitutive behavior of the
system, i.e. the relation of the generalized stresses with the generalized deformations.
The above approach can be easily generalized to take into account inertial effects
[Ger73]. In this case, the additional degrees of freedom of micromorphic continua in-
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troduce microinertia terms, whose presence leads to interesting wave dispersion prop-
erties, especially at short wavelengths (optic branch) [SSV10] and finite Lyapunov
exponents in localization problems [SSV11].

Without doubt that micromorphic theory is rich enough to fit various physical situa-
tions. This is a strong point of the theory, but it is also its weak point. The discovery
of the practical significance of some of the concepts which have been introduced (e.g.
of the higher order terms), the design of a general method for exhibiting their physical
validity (if any!) and their measurement in some specific physical situations is not
obvious [Ger73] and remains an open research topic. The situation, though, becomes
more tractable in some special cases of 1st order micromorphic continua, where ap-
plications exist in various disciplines.

4.1 Special cases of micromorphic continua
In figure 6 we outline the various higher order (micromorphic) continuum theories
and their special cases. Besides the classical continuum and the Cosserat continuum
(called also micropolar continuum, see [Var09]), a special case of micromorphic con-
tinuum is also the second gradient and the indeterminate couple stress theory (called
also restrained Cosserat medium).

Figure 5: Higher order continuum theories according to Germain’s terminology
[Ger73]; see also [Min64, Eri99].
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Retrieving the classical, Boltzmann continua, is straightforward by setting χij and the
higher order microdeformation rate tensors null. In this case, sij = 0 and τij = σij ,
i.e. equal to the Cauchy stress tensor, which is symmetric.

In the case that the particle P (M) is deformable and its microdeformation coincides
with the deformation of the (macro-)continuum, i.e. χij = Vi,j , we obtain the so-
called second gradient continuum theory. As in this case the microdeformation rate
tensor is no more an independent generalized virtual velocity, one has to start from the
very beginning and apply the principle of virtual power for deriving the strong form of
the equilibrium equations and the appropriate boundary conditions. For more details
we refer to [Ger73] and for some interesting applications of the theory to [DSMP93,
CCE98, ZPV01, CCC06, KABC08, PZ16, DAD+17], among others.

4.2 The Cosserat continuum
The derivation of the Cosserat continuum is more direct than the second gradient. The
basic assumption is that the particle P (M) behaves as a rigid body and so it can not
only translate, but also rotate. In this case the microdeformation rate tensor has to be
anti-symmetric and the rest higher-order microdeformation tensors zero.

The Cosserat continuum is easily retrieved by setting (hypothesis of rigid particle)
χij = −εijkωck, kij = ωci,j , sij = − 1

2εijksk, µij = − 1
2εijkµk, νijk = − 1

2εijlmlk,
ψij = − 1

2εijkψk and using τij ≡ σij + sij (see equation (17)) and the property
εijpεijk = 2δpk, where δij is the Kronecker delta, equations (17) and (18) become:

p̃int = τij γ̃ij +mij k̃ij

p̃(ext,t) = tiṽi + µiω̃
c
i

p̃(ext,f) = fiṽi + ψiω̃
c
i

(20)

where γij = ui,j + εijkω
c
k.

The equilibrium equations (equations (19)) take the following form:

τij,j + fi = 0, ti = τijnj

mij,j − εijkτjk + ψi = 0, µi = mijnj
(21)

This is the strong form of the Cosserat continuum equations. In figure 6 the stresses
and couple-stresses (moments) of a Cosserat continuum are illustrated. It is worth
emphasizing that the derivation is based on the principle of virtual power and not
on the linear and angular momentum balance equations. These momentum balance
equations can be deduced by integrating equation (21) over the volume V and by
applying the divergence theorem, as in the case of the classical Cauchy continuum
presented in section 3. Consequently, the method of PVP enables us to derive in a safe
and systematic way complex, higher-order balance equations, that physical intuition
can hardly bring us to.
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Figure 6: Stresses and couple-stresses (moments) of Cosserat continuum.

4.3 PVP and upscaling for deriving constitutive laws
The above continua cannot be used unless appropriate constitutive laws are used
for solving engineering problems. Of particular interest are heterogeneous systems,
where the higher-order continuum theories show several advantages (e.g. physically-
based regularization in strain localization problems and wave dispersion). Constitutive
models can be derived either experimentally, by trial and error, or by explicitly con-
sidering the microstructure using upscaling techniques.

Upscaling (or homogenization) is a class of methods that aim at deriving an equiva-
lent continuum theory that describes the macroscopic behavior of heterogeneous sys-
tems. (Asymptotic) Homogenization is a mathematically rigorous, well established
theory for performing this task [BP89, SP86, SP80, PdCOTD09, Cha10, CN84, TC97,
ABG09]. This method is based on the asymptotic expansion of the various state fields
(displacements, deformations, stresses) in terms of a small quantity ε, which repre-
sents the ratio of the characteristic size of the elementary volume over the overall
size of the structure, and provides an equivalent to the heterogeneous system homo-
geneous continuum for ε → 0. Besides the rigorous mathematical formulation of
this approach, its main advantage is the ability to determine error estimators of the
derived continuum for finite values of ε. However, when it comes to generalized con-
tinua, such as the Cosserat continuum, that possess internal lengths, the asymptotic
limit ε → 0 looses interest as it cancels out the internal lengths [FS98, FPS01]. In
other words, by this pass to the limit, asymptotic homogenization erases any inter-
nal lengths related to the material’s micro-structure, which higher order continuum
theories, such as Cosserat are in principle able to capture. The separation of scales,
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intrinsic in asymptotic homogenization theory, does not hold anymore.

To overcome this problem several alternative schemes have been proposed for upscal-
ing heterogeneous systems (see for example [AL94, FS98, BV01, SSV08, SSV10,
BG12, GSSS16, RC16], among others). The majority of these schemes is based upon
the “homogeneous equivalent continuum” concept [Cha10], in the sense that the de-
rived higher order continuum shares a) the same power (internal) and b) the same
kinematics with the heterogeneous medium for any generalized virtual velocity field.
This approach reminds us the PVP, applied on a reduced space of kinematics and
averaging. The classical asymptotic homogenization expansion Ansatz that leads to
a Cauchy continuum as the ratio of the size of the unit cell over the overall structure
tends to zero is not followed in this case. Therefore, these heuristic approaches remain
applicable even when the size of the microstructure is not infinitesimal as compared to
the overall size of the system, or in other words, when scale-separation is no satisfied.

A typical example for applying and testing these upscaling methods are masonry-like
structures. Masonry can be seen as a geomaterial whose building blocks are often
quasi-periodically arranged in space. Moreover, the building blocks are at the hu-
man scale, which makes them an ideal toy-model, contrary to granular media whose
microstructure is small, shows topological complexity and has to be statistically de-
scribed. When the upscaling scheme is correctly formulated, it is possible to capture
the wave dispersion behavior of a heterogeneous system, even when the wave length
is comparable to the block size. Notice that in this case, the classical, Cauchy contin-
uum approach fails as it is not a dispersive medium. In figure 7 we present the modal
frequencies of a masonry panel that was upscaled with Cosserat continuum versus
the number of its building blocks. Even when the number of the building blocks
is small, the Cosserat homogenized continuum model succeeds in representing the
dynamics of the discrete heterogeneous structure. In figure 8 we present the out-of-
plane-displacement contours of the first three flexural modal shapes of a homogenized
masonry panel and the comparison with the flexural modal shapes provided by the Dis-
crete Element Method (DEM) [GSSS14]. It is worth mentioning that DEM provides
very satisfactory results compared to well controlled experimental tests and, therefore,
it can be used as reference [GSS17]. The upscaled Cosserat continuum behaves very
well, even for non-linear material behavior (see figure 9).

Nonlinear behavior, accompanied by strain softening is inherent in granular materi-
als [Var09]. In figure 10 we show the response of a granular layer under shearing
studied with the Discrete Element Method. Upscaling granular media and transferring
adequate information at the macroscale (e.g. internal lengths) is a challenging topic
[BV01, RC16, GSSS16] and can provide valuable information on strain localization
and energy dissipation in the absence of detailed experimental data, which is often the
case for fault gouges due to their complex thermo-hydro-chemo-mechanical behavior
(see Figure 12, [SSV11, VSS13, SS16, RSS18a, RSS+18b]). However, Cosserat con-
tinuum is effective under shearing. In the case of pronounced extension or compaction,
Cosserat kinematics have no effect and at least a complete first order micromorphic
continuum has to be used or, alternatively, a second gradient model (restrained 1st
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Figure 7: Modal frequencies of a masonry panel versus the number of building blocks:
comparison between the results extracted by the Discrete Element Method and by the
use of the Cosserat continuum [SSV08, GSSS15].

Figure 8: Out-of-plane-displacement contours of the first three flexural modal shapes.
Left: Discrete Elements solution. Right: Cosserat Finite Element solution [GSSS14].
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Figure 9: Numerical simulation of a confined masonry panel undergoing shear defor-
mation. Above: tested configuration (left) and normalized force-displacement curves
from DEM and Cosserat FEM analyses (right); Below: Comparison between the pat-
tern of plastic deformation obtained from the discrete (left) and Cosserat Finite Ele-
ment (right) models [GSSS16].
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order micromorphic).

Figure 10: Example of DEM simulation of a granular layer under shearing with con-
stant velocity and shear stress-strain response (courtesy: Efthymios Papachristos).
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Figure 11: Apparent rate dependency of an infinite layer of a fault gouge under shear-
ing

(
u1

h

)
, modeled as a Cosserat continuum. h is the gouge thickness, often of the

order of some µm. The slip rate has a direct impact on the shear stress-strain response,
even in the ideal case of perfect plasticity (zero hardening) [RSS18a, RSS+18b].

5 Finite elements

The principle of virtual power, being global rather than local, is directly amenable to
numerical schemes such as the Finite Element Method (FEM). Moreover, it is inde-
pendent of constitutive laws, providing high degree of generality and abstraction. In
this paragraph, we give two simple examples showing its direct use with the Finite El-
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ement library FEniCS3 [ABH+15]. We don’t get into the details of the finite element
method. For a consistent presentation of the method, the interested reader is referred
to classical textbooks such as those of [ZT13, Hug00, Bat07].

The problem solved is that of the infinite layer of height h subjected to shearing, as
shown in figure 12. Half of the layer is modeled. Both a Cauchy and a Cosserat con-
tinuum is used. Small deformations and linear elasticity is considered. The problems
have analytical solutions, but their derivation and the comparison with the numeri-
cal solution is left to the reader (hint: a mesh convergence analysis should always be
performed).

x1, u1(x2,t)

x2, u2(x2,t)

h
τ12
τ21

σ22

σ11

m32

m31
ω3

c(x2,t) 

τ

σn

Figure 12: Infinite layer under shearing.

5.1 Simple shear with Cauchy continuum
Considering the invariance of the problem in x1 and x3 directions (infinite layer) and
the symmetry of the stress tensor, σ12 = σ21, equations (10) become:

p̃(int) = σ22ṽ2,2 + σ12ṽ1,2

p̃(ext,t) = tαṽα,
(22)

with α = 1, 2 (repeated indices denote summation). The stresses are equal to:

σ22 = Mu2,2

σ12 = Gu1,2,
(23)

where ν is the Poisson ratio, E the Young’s modulus, G = E
2(1+ν) the shear modulus,

M = E(1−ν)
(1−2ν)(1+ν) the P-wave modulus and uα the displacements (unknowns of the

problem).

3Installing FEniCS is straightforward in all operating systems: https://fenicsproject.org. In Windows we
suggest installing the Windows subsystem for Linux: https://docs.microsoft.com/en-us/windows/wsl/about.
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The principle of virtual power (i.e. the variational/weak form of the problem) together
with the above constitutive law and the boundary conditions are directly written in
Python in symbolic/mathematical form and the library FEniCS takes on for formulat-
ing the finite element problem and solving the linear system of equations, automati-
cally! The Python code is given below, annotated. The numerical results of this simple
problem are given in figure 13.

1 # I mp or t FEniCS l i b r a r y
2 from d o l f i n i m p o r t ∗
3 # P a r a m e t e r s
4 h =2 . # h e i g h t o f t h e l a y e r
5 s 1 2 b c = .5 # a p p l i e d s h e a r s t r e s s a t boundary
6 s 2 2 b c = .25 # a p p l i e d normal s t r e s s a t boundary
7 E e l =1000 . #Young modulus
8 n u e l =0 . # P o i s s o n c o e f f i c i e n t
9 ny=3 # number o f e l e m e n t s − FE d i s c r e t i z a t i o n

10 G el = E e l / ( 2 . ∗ ( 1 + n u e l ) )
11 M el= E e l ∗(1.− n u e l ) / ( ( 1 . −2 .∗ n u e l ) ∗ ( 1 . + n u e l ) )
12

13 # G e n e r a t e mesh
14 mesh= I n t e r v a l M e s h ( ny , 0 . , h / 2 . )
15 # De f i ne e l e m e n t t o p o l o g y (1D)
16 c e l l = i n t e r v a l
17 # D e f i n e s a L a g r a n g i a n FE of d e g r e e 1 and two unknowns i n each node (

v e c t o r )
18 e l e m e n t = Vec to rE lemen t ( ” Lagrange ” , c e l l , d e g r e e =1 , dim =2)
19 # Ass ign t h e e l e m e n t t o t h e mesh
20 V= F u n c t i o n S p a c e ( mesh , e l e m e n t )
21

22 # De f i ne t e s t f u n c t i o n ( v i r t u a l v e l o c i t i e s )
23 v= T e s t F u n c t i o n (V)
24 # De f i ne t r i a l ( unknown ) f u n c t i o n
25 u= T r i a l F u n c t i o n (V)
26 # S t o r e t h e s o l u t i o n t o s o l
27 s o l = F u n c t i o n (V)
28

29 # De f i ne boundary c o n d i t i o n s
30 d e f midd le ( x , on bounda ry ) :
31 r e t u r n on bounda ry and n e a r ( x [ 0 ] , 0 . )
32 bc= D i r i c h l e t B C (V , ( 0 . , 0 . ) , midd le )
33 # De f i ne t r a c t i o n v e c t o r
34 t i = C o n s t a n t ( ( s22 bc , s 1 2 b c ) )
35

36 # De f i ne i n t e r n a l v i r t u a l power
37 P i n t =(
38 M el∗Dx ( u [ 0 ] , 0 ) ∗Dx ( v [ 0 ] , 0 ) + # s igma 22∗v 2 , 2
39 G el∗Dx ( u [ 1 ] , 0 ) ∗Dx ( v [ 1 ] , 0 ) # s igma 12∗v 1 , 2
40 ) ∗dx
41 # De f i ne e x t e r n a l v i r t u a l power
42 Pex t = d o t ( t i , v ) ∗ds
43

44 # So lve t h e problem ( does t h e FE f o r m u l a t i o n , m a t r i x as sembly and
l i n e a r s o l v e )

45 s o l v e ( P i n t == Pext , s o l , bc )
46

47 # P l o t s o l u t i o n
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48 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
49 p l o t ( s o l [ 0 ] , l a b e l = ’ $u 2$ ’ )
50 p l o t ( s o l [ 1 ] , l a b e l = ’ $u 1$ ’ )
51 p l t . x l a b e l ( ” $x 2$ ” )
52 p l t . l e g e n d ( l o c = ’ uppe r l e f t ’ )
53 p l t . y l im ( 0 , . 0 0 1 )
54 f o n t = { ’ s i z e ’ : 18}
55 p l t . r c ( ’ f o n t ’ , ∗∗ f o n t )
56 p l t . show ( )

Listing 1: FEniCS Python code for Cauchy shearing.

Figure 13: Calculated displacements of the sheared layer using Cauchy continuum.

5.2 Simple shear with Cosserat theory
Considering, again, the invariance of the problem in x1 and x3 directions equations
(20) become:

p̃int = τ22γ̃22 + τ12γ̃12 + τ21γ̃21 +m32k̃32

p̃(ext,t) = tαṽα + µ3ω̃
c
3

(24)

As far as it concerns the constitutive law, the symmetric part of τij is equal to the
Cauchy stress tensor, i.e. τ(ij) = σij , and therefore equations (23) can be used. The
antisymmetric part of τij is equal to τ[ij] = 2Gcγ[ij], where Gc = η1G; see [Var09].
Regarding the couple stresses, m32 = Mck32, where Mc = 2η3Gl

2. η1 and η3 are
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material parameters and l is the Cosserat internal length. Therefore, we have:

τ22 = σ22 = Mu2,2

τ12 = (G+Gc)u1,2 + 2Gcω
c
3

τ21 = (G−Gc)u1,2 − 2Gcω
c
3

m32 = Mcω
c
3,2

(25)

Similarly to the previous paragraph, the principle of virtual power (i.e. the variation-
al/weak form of the problem) together with the above constitutive law and the bound-
ary conditions are directly written in Python in symbolic/mathematical form and the
library FEniCS takes on the rest. Quadratic interpolation was chosen for the displace-
ment and linear for the Cosserat rotation field. The Python code is given below and
the numerical results in figure 14.

1 # I mp or t FEniCS l i b r a r y
2 from d o l f i n i m p o r t ∗
3 # P a r a m e t e r s
4 h =2 . # h e i g h t o f t h e l a y e r
5 s 1 2 b c = .5 # a p p l i e d s h e a r s t r e s s a t boundary
6 s 2 2 b c = .25 # a p p l i e d normal s t r e s s a t boundary
7 m3 bc = .0 # a p p l i e d C o s s e r a t moment a t boundary
8 E e l =1000 . #Young modulus
9 n u e l =0 . # P o i s s o n r a t i o

10 e t a 1 = .8 # C o s s e r a t c o e f f i c i e n t f o r Gc
11 e t a 3 = 5 . / 2 . # C o s s e r a t c o e f f i c i e n t f o r Mc
12 l c =h / 3 . # C o s s e r a t l e n g t h
13

14 ny=10 # number o f e l e m e n t s − FE d i s c r e t i z a t i o n
15

16 G el = E e l / ( 2 . ∗ ( 1 + n u e l ) )
17 M el= E e l ∗(1.− n u e l ) / ( ( 1 . −2 .∗ n u e l ) ∗ ( 1 . + n u e l ) )
18 Gc e l = e t a 1 ∗G el
19 Mc el =2∗ e t a 3 ∗G el∗ l c ∗∗2
20

21 # G e n e r a t e mesh
22 mesh= I n t e r v a l M e s h ( ny , 0 . , h / 2 . )
23 # De f i ne e l e m e n t t o p o l o g y (1D)
24 c e l l = i n t e r v a l
25 # D e f i n e s a L a g r a n g i a n FE of d e g r e e 2 f o r t h e d i s p l a c e m e n t s
26 e l e m e n t d i s p = Vec to rE l emen t ( ” Lagrange ” , c e l l , d e g r e e =2 , dim =2)
27 # D e f i n e s a L a g r a n g i a n FE of d e g r e e 1 f o r t h e r o t a t i o n s
28 e l e m e n t r o t = F i n i t e E l e m e n t ( ” Lagrange ” , c e l l , d e g r e e =1)
29 # C r e a t e s a mixed e l e m e n t
30 e l e m e n t = e l e m e n t d i s p ∗ e l e m e n t r o t
31 # Ass ign t h e e l e m e n t t o t h e mesh
32 V= F u n c t i o n S p a c e ( mesh , e l e m e n t )
33 # De f i ne t e s t f u n c t i o n s ( v i r t u a l v e l o c i t i e s )
34 v= T e s t F u n c t i o n (V)
35 # De f i ne t r i a l f u n c t i o n s ( unknown d i s p l a c e m e n t s and Cos . r o t a t i o n )
36 u= T r i a l F u n c t i o n (V)
37

38 # S t o r e t h e s o l u t i o n t o s o l
39 s o l = F u n c t i o n (V)
40
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41 # De f i ne boundary c o n d i t i o n s
42 d e f midd le ( x , on bounda ry ) :
43 r e t u r n on bounda ry and n e a r ( x [ 0 ] , 0 . )
44 bc= D i r i c h l e t B C (V , ( 0 . , 0 . , 0 . ) , midd le )
45 # De f i ne t r a c t i o n v e c t o r
46 t i m u i = C o n s t a n t ( ( s22 bc , s12 bc , m3 bc ) )
47

48 # De f i ne i n t e r n a l v i r t u a l power
49 P i n t =(
50 M el∗Dx ( u [ 0 ] , 0 ) ∗Dx ( v [ 0 ] , 0 ) + #

t a u 2 2 ∗gamma 22
51 ( ( G e l + Gc e l ) ∗Dx ( u [ 1 ] , 0 ) +2∗G c e l ∗u [ 2 ] ) ∗ (Dx ( v [ 1 ] , 0 ) +v [ 2 ] ) + #

t a u 1 2 ∗gamma 12
52 ( ( G el−Gc e l ) ∗Dx ( u [ 1 ] , 0 )−2∗G c e l ∗u [ 2 ] ) ∗(−v [ 2 ] ) + #

t a u 2 1 ∗gamma 21
53 Mc el∗Dx ( u [ 2 ] , 0 ) ∗Dx ( v [ 2 ] , 0 ) #

m 32∗k 32
54 ) ∗dx
55 # De f i ne e x t e r n a l v i r t u a l power
56 Pex t = d o t ( t i m u i , v ) ∗ds
57

58

59

60 # So lve t h e problem ( does t h e FE f o r m u l a t i o n , m a t r i x as sembly and
l i n e a r s o l v e )

61 s o l v e ( P i n t == Pext , s o l , bc )
62

63 # P l o t s o l u t i o n
64 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
65 p l o t ( s o l [ 0 ] , l a b e l = ’ $u 2$ ’ )
66 p l o t ( s o l [ 1 ] , l a b e l = ’ $u 1$ ’ )
67 p l o t (− s o l [ 2 ] , l a b e l = ’$−\omega 3$ ’ )
68 p l t . x l a b e l ( ” $x 2$ ” )
69 p l t . l e g e n d ( l o c = ’ uppe r l e f t ’ )
70 p l t . y l im ( 0 , . 0 0 1 )
71 f o n t = { ’ s i z e ’ : 18}
72 p l t . r c ( ’ f o n t ’ , ∗∗ f o n t )
73 p l t . show ( )

Listing 2: FEniCS Python code for Cosserat shearing.

6 Summary

The target of the present chapter was to give the basic ideas and intuition behind the
principle of virtual power. A short historical review was made, aiming at clarifying
the fundamental ideas of the principle and its connection with the equilibrium equa-
tions. After providing the statement of the principle, several examples were presented
for showing its application to simple problems involving discrete systems of one and
several degrees of freedom. The equivalence of the principle with the equilibrium
equations was shown.

Focus was placed then on continuum systems and the generalization of the principle
for deriving the differential equilibrium equations of the Cauchy continuum. The
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Figure 14: Calculated displacements of the sheared layer using Cosserat continuum.

principle of the virtual power provides a systematic and rigorous way for going further
and deriving the equations of more advanced continuum theories as well, i.e. the
micromorphic continuum theory. The equations of the micromorphic theory were
presented in a general form and the hierarchical structure of the theory was illustrated.
It was shown that Cosserat and strain gradient theories are special cases of this more
general framework. Some applications were also given for showing the advantages of
these continuum theories and the use of the principle of virtual power for upscaling.

The principle of virtual power, being global rather than local, is directly amenable to
numerical schemes such as the Finite Element Method. The application of the method
provides directly the weak/variational form of the equilibrium equations, which is the
starting point in any finite element formulation. Nowadays, several codes exist that al-
low the user performing FEM analyses by simply entering the variational form of the
mathematical problem that (s)he wants to solve. One of these is FEniCS open source
FEM library. The example of shearing of an infinite layer modeled as a Cauchy and a
Cosserat continuum was presented for showing the FEniCS finite element implemen-
tation and the use of the principle of virtual power.
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Energetics in Discrete Element Modelling

François Guillard

School of Civil Engineering, The University of Sydney

Discrete Element Modelling (DEM) is a widely used simulation method that provides
direct insight into the behavior and internal properties of particulate materials, by
simulating individual particles interacting through a chosen contact model. Here we
discuss the use of DEM to investigate the energy transfers occuring in a granular ma-
terial. A multiscale approach will be followed, where the energy balance of the entire
system is first studied, before describing the grain-level mechanisms that are able to
store or dissipate energy. Finally, the coarse-graining method, allowing mesoscopic
local measurements of the granular properties, will be presented. The continuum
fields extracted in this way could be directly compared with model predictions. The
relevance of the various results will be illustrated with DEM simulations of a granular
medium undergoing simple shear.

1 Introduction

Discrete Element Modelling (DEM) is ubiquitous to study numerically the behavior of
particulate materials, by simulating the displacement of every individual particle of a
medium. This method has been widely used in the industry owing to the omnipresence
of granular materials, for example to simulate hopper flows [GE05], mixing of phar-
maceuticals [KaEH09], and fluidised beds [TKT93]. DEM is also used to investigate
the properties of geological and geotechnical systems such as rockfalls [NCM01], and
soil anchors [VC04].

The versatility and wide applicability of DEM has led to its use in most research and
industrial fields dealing with particulate materials, and beyond [LP91, KH93]. How-
ever, several limitations remain that should not be overlooked. DEM relies heavily on
computing power, and therefore is limited to the simulation of small systems, for short
physical time, and typically with softer particles than in reality. More fundamentally,
the modelling assumptions for the contact laws between the particles are controlling
the dynamics of the system, and therefore have to be chosen very carefully.
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Figure 1: Energy transfer from the macroscopic to the microscopic scale in granular
materials, with reference to the relevent sections in this chapter.

The continuum modelling of materials allows to overcome these limitations, by pro-
viding constitutive laws that apply to the material seen as a continuum, and which
do not require the knowledge of the microscopic details at grain level. Such mod-
els have been very successful to explain and predict the behavior of granular media
[JFP06, HK13] or soils [MD97, Ein07] for example, while providing a local contin-
uum description of the material and insights into its behavior. However, the physical
foundations of some assumptions can sometimes be questioned, and the upscaling
from the particle level to the continuum level is not straightforward. The comparison
of continuum models with experimental results and simulation outcomes is therefore
crucial to assess the relevance of the proposed laws, and DEM provides invaluable
information at grain level that are challenging to obtain experimentally.

As models develop toward a deeper understanding of the thermodynamics of granular
material [JL09, JEL17], following the success at the atom scale of statistical physics
and classical thermodynamics, it seems appropriate to investigate the energetic proper-
ties of granular media in DEM. This should provide a better understanding of the exact
assumptions made when a DEM simulation is performed, and develop the appropri-
ate tools to allow comparison of discrete numerical results with continuum modelling
predictions.

Figure 1 provides a graphical summary of the content of this chapter. Section 2 will be
dedicated to the energy balance at the global scale for a granular system, and the trans-
fer of energy to heat. Section 3 will delve into the microscopic properties of grains
in DEM, and the energy storage, transfer and dissipation in such system. Finally,
section 4 will bridge the scales and provide the tools to extract continuum mechani-
cal and energetic fields representing the material at an intermediate scale between the
grain size and the full system, suitable for comparison with constitutive models.

72 Energetics in Discrete Element Modelling

ALERT Doctoral School 2018



2 Macroscopic energy balance

2.1 Energy input

Granular materials are frictional materials, which means that a large part of their
macroscopic behaviour is governed by the fact that the interaction between the in-
dividual grains is frictional. Consequently, they are dissipative materials and cannot
sustain motion without constant energy input. Figure 1 shows that energy is first in-
jected to the granular system by the boundaries or by external forces such as gravity,
and, if the power provided is large enough, the grains move and reorganise. The en-
ergy of the motion is then dissipated in heat through the friction between the grains,
which transforms the grain kinetic energy to thermal energy, effectively increasing the
temperature of the material.

In some situations it is quite straightforward to estimate the energy injected to a gran-
ular material. Two examples are given below.

Simple shear In this situation a granular material of thickness H and depth and
width L, is subjected to shearing by a top plate moving at velocity V , applying a
pressure P , without gravity, a configuration similar to the one discussed in section
3.5. The power injected by the top plate to the grains is P = FV dt with F the
horizontal force applied by the top plate. To reach a steady state, this power has to
be dissipated by the material. Let us assume a simple Coulomb friction law, with the
a local viscosity equal to µP with µ the friction coefficient and P the pressure. The
total power dissipated in the material isPg = L2

∫H
0
µP ∂v

∂zdzdt = µPL2 V
H assuming

a linear velocity profile through the material (simple shear), leading to F = µPL2.
Therefore, by applying a given F and P to a granular material, the only way to reach a
steady state is for the material to adapt its internal friction to dissipate enough energy.

Flow down an inclined plane A granular material flows down a plane inclined with
an angle θ from the horizontal. In that case, energy is injected to the material from
the change in gravitational potential: P = mg 〈v〉 sin θdt where 〈v〉 is the average
velocity of the material across the depth, m the mass of material on a certain slice of
width dx and height h, g the acceleration of gravity. The dissipation can be calculated
asPg =

∫ h
0
dxµ(z)P (z)∂v∂z dtdz. Assuming a constant friction coefficient µ across the

depth and a hydrostatic pressure profile gives Pg = dxµρg cos θdt 〈v〉h. By equating
the injected and dissipated energy, µ = tan θ.

Since experimentally the friction coefficient is bounded by µs < µ < µ2 for the
dense flow regime[MiD04], with µs the static friction coefficient, and µ2 the maxi-
mum friction at high shear rate, there is a limited range of energy injection rates, ie.
angle, where granular material can sustain steady flow down an incline [AFP13]. If
the power is lower than the minimum power, the medium will dissipate all the energy
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through elastic wave absorption or localisation of deformation in shear bands. If the
rate of energy input is too high, the flow accelerate and eventually enters a different
regime of behavior, eg. collisional or gaseous.

2.2 Heat

The energy dissipated by the friction does not disappear but is converted in thermal
energy, which increases the temperature of the material. Most of the time, in experi-
ment and in DEM, the temperature increase is not considered. However, if the power
provided to the system is high enough, the temperature increase cannot be ignored,
as the material properties of the grains change, and may even lead to the partial melt-
ing of the grains if the temperature reached is too high [VVDT07, ERMS18]. The
internal motion of the grains, and the diffusion of heat between grains and through the
contacts, can generate additional spatial inhomogeneities in the material properties,
whose relevance should be assessed.

2.3 Neglecting thermal fluctuations

Although the increase of thermal energy due to the friction can modify the mechan-
ical properties of the grains, direct conversion of thermal energy in kinetic energy is
never considered, as it is always negligible in granular materials (ie. granular me-
dia are athermal). To demonstrate that, we can calculate the kinetic energy of the
grains due to their temperature using the Boltzman equation. Each degree of free-
dom contributes with a factor 1

2kBT to the kinetic energy, with T the temperature and
kB = 1.410−23 J.K−1 the Boltzman’s constant. This leads to 1

2m
ivi 2 = 3

2kBT for a
grain i of mass mi and velocity vi, which translates to a velocity of 3.5 · 10−8 m.s−1

for 1 mm glass grains. Consequently, for grains larger than a few microns in diameter,
the grain motion due to their temperature is completely negligible.

Note that this temperature effect is the motion of the grains due to thermal temperature
T , which is negligible. This is very different to the concept of granular temperature
Tg , which is the kinetic energy of the fluctuating motion of the grains from the bulk
flow, and is in general far from being negligible. There are different ways to define
the granular temperature [JS83, JL09, BP10], but the simplest one is to use the kinetic
theory of granular gases, Tg =

〈
ṽi 2
〉

where ṽi is the velocity fluctuation of particle i
with respect to the bulk flow, and 〈〉 is the average over all particles.
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Figure 2: (a) Example of normal and tangential contact law used in DEM. (b) Defini-
tion and notation of the particle kinematic properties and contact properties. The red
line is the path followed by the contact point since the initiation of the contact (red
square). (c) Simple shear flow DEM configuration. The purple grains at the bottom
are fixed, the green grains at the top move as rigid body with a horizontal velocity
V , and apply a constant pressure P . The grains are coloured by their instantaneous
velocity.

3 Grain-level energy balance

3.1 Particulate description in DEM

DEM is based on the simulation of every individual particle. At each time-step, the
forces on the particles are computed, and the equations of motion for the momen-
tum and angular momentum are integrated in time, for example using a Verlet al-
gorithm. The forces on a particle have two sources. The first contribution comes
from the external forces such as gravity or fluid drag force. The second contribution
emerges from the contacts between particles, which are solved based on a particular
contact law. The choice of the contact law determines the type of material that is
simulated, since DEM is used to simulate atoms as well as granular materials. We
are focussing on the simulation of particulate media with frictional interaction in the
following [Lud08, SEG+01]. The contact law is used to relate the positions of two
particles in contact at a given time to the force that these particles apply on each other
(Figure 2b).

Here we are considering a normal contact force between two grains idealised as the
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sum of a spring contribution, representing the contribution of the elastic deformation
of the grain material, and a damper to account of all the dissipation mechanisms dur-
ing a collision (figure 2a). The normal force follows a Hertz law in three dimension
[Her82, CS79], and a Hooke law (linear spring) in two dimensions1, leading to a de-
pendency on the normal interpenetration δn with a power 3/2 for the former and 1 for
the latter.

The normal force Fn is therefore given by:

Fn = knδ
3/2
n + γnvn for Hertz contacts, (1)

Fn = knδn + γnvn for Hooke contacts, (2)

where vn is the relative normal velocity between the particles in contact (cf. equa-
tion 3), and kn and γn expressed from the material properties are given in table 1 for
identical particles in contact. The relative velocity between two particles i and j, with
ri and rj the vector between their respective center and the contact point, velocities
vi and vj , and angular velocities ωi and ωj (figure 2b) is given by:

vrel = vi + ri × ωi − vj − rj × ωj (3)

with× the vector cross product. This allows to define vn = vrel ·n the normal relative
velocity, with n the vector normal to the contact; and vt = vtt = vrel − vnn the
tangential relative velocity.

A large part of the richness and complexity of granular materials emerge from the
frictional forces between the particles, that create local rotations of the grains. Nor-
mal forces between grains only affect the translational motion, while tangential forces
modify both the translation and rotation of the grains via the torques that they gen-
erate. The tangential contact law is usually modelled by a spring-dashpot-slider law
(figure 2a). The tangential force Ft increases with the tangential interpenetration –
the tangential displacement since the beginning of the contact (figure 2b) – and dissi-
pates energy from the tangential viscosity, until the force reaches the Coulomb friction
threshold which caps it to µgFn, where µg is the friction coefficient.

Ft = ktδt + γtvt if |Ft| < µg|Fn|
= µg|Fn| otherwise.

(4)

The coefficients kt, γt and µg are given in table 1.

The normal and tangential contact laws covered above are the basis of almost every
DEM simulation in the context of granular materials. Obviously, more advanced laws
can be implemented to better describe the interactions between the particles [BM14].
For example, an additional short range attractive force can be added to simulate cohe-
sive particles, or long range interactions can be integrated to take into account electro-
static effects. Common extensions of the contact law include the addition of rolling
or twisting friction, which are torque-only contributions arising from the difference in
relative rotational velocity between the particles in contact.

1Note that for performance purposes the Hooke law can also be used in 3D, with little effect on the
qualitative behaviour of the system
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Figure 3: Conserved energies and transfers at the microscopic scale.

3.2 Conserved energies

Figure 3 gives a schematic view of the energy balance at the microscopic level in a
granular material as described in DEM simulations. The energy in the material is
stored in four different ways.

Kinetic energy The translational motion of the particles stores the kinetic energy of
the system. For a given particle i of mass mi and velocity vi, the kinetic energy Eik is
classically given by EiK = 1

2m
i|vi|2.

Rotational energy The rotation of every particle also stores energy in the motion.
Although this form of energy is not very often thought as a means of storage, it makes
a non negligible contribution to the total energy stored in the granular system. The
expression for this energy is very similar to the definition of the kinetic energy, where
the mass is replaced by the moment of inertia of the particle, and the translational
velocity by the rotational velocity. For a spherical particle2 with a moment of inertia
Ii and a rotational velocity ωi, the rotational energy EiR is EiR = 1

2I
i|ωi|2.

Elastic energy The spring components of the contact forces are also able to store
and release energy. The normal and tangential springs have quite different properties

2Non spherical particles have a moment of inertia which is a second order tensor, I. For such particles,
the rotational energy is given by Ei

R = 1
2
ωi · Ii · ωi
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Table 1: Coefficient of Hertzian and Hookean contact law expressed from the material
properties of two identical particles in contact, and values used for the simulations
section 3.5 (units are SI). E the Young’s modulus, ν the Poisson’s ration, m the mass,

e restitution coefficient, v the characteristic velocity, β = ln(e)/
√

ln2(e) + π2.

Hertz Hooke Simulations:
Hooke

Fn knδ
3/2
n + γnvn knδn + γnvn

Ft, |Ft|<µg|Fn| ktδt + γtvt ktδt + γtvt

kn
E

3(1−ν2)

√
d

(
4E
√
d

15(1−ν2)

) 4
5

(mv)
1
5 8 · 105

kt
E

(2−ν)(1+ν)
√
d 2.2 · 105

γn −β
√

5Em
6(1−ν2)

4
√
dδn β

√
2mkn 50

γt −β
√

20E
6(2−ν)(1+ν)

4
√
dδn 50

µg 0.5

though, as the tangential elastic component is non-conservative and is able to dissipate
energy, unlike idealised springs. This effect will be discussed in detail in section 3.4.
On the other hand, the normal spring component is a regular conservative force, albeit
non-linear in the case of Hertzian contact. A force is conservative when the work
it produces does not depends on the path of the displacement. Such a force derives
from a potential, ie. there is φ, a scalar function of space, such that Fn = ∇φ, with
∇ the spatial gradient. If one expresses the gradient function attached to the contact,
the potential function of the normal force is therefore 1

2knδ
2
n for the linear hookean

spring contact, and 2
5knδ

5/2
n for an Hertzian spring. Therefore, both cases of a linear

or non-linear normal contact spring lead to the ability to store and release energy in
the contact.

The case of the tangential spring energy storage is more intricate and will be discussed
in detail in section 3.4. For the purpose of simplifying the discussion of the energy
balance at grain level we will consider linear tangential springs that store an energy
Eijst = 1

2ktδ
2
t for the contact between particles i and j. To be coherent we also limit

ourselves to Hookean normal contact storing an energy Eijsn = 1
2knδ

2
n.

Since the energy is extensive, it is straightforward to go from a single particle or a
single contact energy to the energy stored in the full system for a given conserved
energy type, by summing over the particles or the contacts:

EK =

N∑

i=1

EiK ; ER =

N∑

i=1

EiR ; Esn =

N∑

i=1

N∑

j>i

Eijsn ; Est =

N∑

i=1

N∑

j>i

Eijst (5)
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3.3 Energy transfers

The contact forces transfer conserved energy between the different types (kinetic, po-
tential elastic etc.). The workW of a contact force f over a certain displacement l is
given byW =

∫
l
f · dl, which can also be expressed in terms of the time T needed to

achieve the displacement at velocity v(τ): W =
∫
T
f · vdτ .

As shown in figure 3, the normal forces only affect the translational motion of the
particles, and therefore only modify the balance between the kinetic energy and the
normal elastic potential energy. The spring and damper components of the normal
force can directly be separated, leading to a change in normal elastic energy δEsn and
a dissipated energyWndiss during a time δτ :

δEsn =Wkn = knδn vnδτ (6)

Wndiss = −γnv2nδτ < 0 (7)

The work of the tangential forces converts energy between the translational and rota-
tional kinetic energy in the tangential potential elastic energy. However, the dissipative
and non-dissipative parts of the work cannot be distinguished as easily as in the case
of the normal forces, but the dissipation Wdiss can still be evaluated from the total
work of the tangential forceWt and the change in tangential elastic energy δEst:

δEst =Wt −Wtdiss = Ftvtδτ −Wtdiss (8)

Finally, at the macroscopic scale, the energyWin > 0 supplied over a time δt to the
system is related to the change in energy between the conserved energy types and to
the dissipated energy:

Win = δEK + δER + δEsn + δEst −Wndiss −Wtdiss (9)

Note that in steady state, on average, the quantity of each type of conserved energy
is constant, so all the terms in δE in the equation 9 are zero, leading to the expected
expression that the energy supplied to the system is equal to the energy dissipated.

3.4 Tangential dissipative mechanisms

As mentioned earlier, the energy dissipation mechanism of the tangential contact can
be quite intricate. First of all, in the case of a Hertz contact, the law mentioned in
table 1 gives rise to a tangential elastic component proportional to δ1/2n δt. This ex-
pression mixes the normal and tangential interpenetration at the contact, and cannot
be integrated to extract a potential that would also be compatible with the normal elas-
tic potential. Using the previous law therefore leads to a non-conservative tangential
elastic force.
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Figure 4: Complex one-dimensional loading and unloading path, and related work,
for a block in elastic-frictional contact with a surface.

Moreover, even in the case of a Hooke tangential contact law, where the tangential
springs are linear and independent of the normal interpenetration, the energy stored
in the elastic contact is not necessarily released to the system when the contact opens,
effectively leading to the dissipation of this energy in heat. This effect is better under-
stood with the thought experiment of a block in frictional contact with a plane, with
only one direction of motion, as shown in figure 4 (circled numbers in the following
refer to the numbers in that figure).

At the beginning of the contact, the block is pressed against the plane, with a normal
force Fn. There is no tangential force yet, as the block has not moved horizontally.
As this motion starts À, the tangential force increases (according to kt), and energy is
stored. When the block reaches the Coulomb friction criterion Á, that is Ft = µgFn,
the force stops growing and all the work of the tangential force is dissipated. If at this
point the normal force is increased Â, the block re-enters the elastic regime and the
stored energy grows again until the friction criterion is met once again Ã. The unload-
ing part of the path is were the complexity arises, because multiple different paths can
be followed from Ä. One unloading path (path 1) is simply to move back the block
horizontally while maintaining the normal force constant. In that case all the energy
that was stored in the tangential spring during the loading phase is released. On the
other hand, if the normal force is decreases while the block is kept static horizontally
(path 2), no work is performed by the tangential forces until the contact is broken,
effectively corresponding to the full dissipation of the energy that was stored in the
tangential spring. An even more extreme situation happens if the block keeps moving
horizontally in the same direction as the normal force is reduced (path 3): not only is
the stored energy fully lost, but additional dissipation occurs from the frictional forces.
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Figure 5: Conserved energies in DEM. (a) Various shearing velocity V and constant
pressure P = 73 kPa. (b) Various pressure P and constant velocity V = 0.5 m.s−1.

Consequently, depending on the unloading path of the contact, the energy stored in the
tangential spring can be recovered in full, partially or not at all. The energy stored in
the tangential spring is only an upper bound of the energy that can actually be released
during the unloading phase.

3.5 Example: DEM of three dimensional simple shear

To illustrate the previous discussion we perform some DEM simulations of simple
shear using LIGGGHTS [KGH+12]. The simulated configuration, shown in figure 2c,
is a collection of N = 1300 grains of diameter d = 0.0015 mm and density ρg =
2500 kg·m−3. The simulation is periodic in the horizontal directions x and y. The
grains are sheared from the top by a rough plate moving at constant horizontal veloc-
ity V , which is free to move vertically to apply a constant confining pressure P . The
contact between the particles is following a Hooke contact law, with the parameters
given in table 1. The simulations are performed dimensionally to simplify the com-
parison with physical systems, but could be non-dimensionalised by using d as a unit
length, ρg/(πd3/6) as unit mass, and d/V as unit time. The time-step used is 10−6 s.
The inertial number of the system is quite low, I = γ̇d/

√
P/ρg ' 1.2 · 10−2 with γ̇

the shear rate, leading to a constant friction coefficient µ ∼ 0.35 [MiD04].

Figure 5 shows the different types of energy stored in the system at steady state. As
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expected, the kinetic energy is proportional to the velocity squared. In simple shear,
the velocity is directly related to the shear rate (the symmetric part of the velocity gra-
dient), which is equal to the vorticity (the antisymmetric part of the velocity gradient).
Therefore the rotational energy follows the same trend as the kinetic energy, but is
quite smaller. The normal elastic energy is related to the pressure applied to the grains
and is therefore essentially constant when the pressure is kept constant (figure 5a)
but increases with increasing pressure (figure 5b), as the interpenetration between the
particles increases to accommodate the higher confining pressure.

4 Energetic Coarse-Graining

The previous microscopic energy balance can be used to understand exactly the mech-
anisms of energy transfer at grain level, or to study the full particulate system. How-
ever, the microscopic information is usually not that useful, as the knowledge of every
particle energetic properties should not be necessary to describe a granular material
made of millions of grains. On the other hand, the summation of the grain contribution
to perform the energy balance at the level of the whole system is now too coarse, as all
the spatial inhomogeneities and temporal transients have been erased. In the follow-
ing, we will develop the necessary tools to extract continuum fields from the discrete
grain and contact information obtained from DEM. These fields will give important
insights into the material response and could be compared to experimental results and
continuum modelling outcome.

The process of extracting continuum fields from the particle locations, masses, ve-
locities etc. and from the contact forces is called coarse-graining. It corresponds to
the spatial and temporal averaging of the grain and contact properties. However, this
procedure is not as straightforward as one might expect, and should be examined in
detail. First of all, it is clear that the size of the averaging window will have to be
chosen carefully, to average enough grains to obtain a smooth field, while being local
enough to reflect the spatial and temporal variations in the system. Secondly, and more
subtly, the continuum fields obtained must themselves verify conservation equations
to be useful. Since the energy balance involves all the properties of the grains and of
the contacts as we have seen in the previous section, the mass, momentum and angu-
lar momentum conservation laws will have to be verified by the computed continuum
fields as well as the energy balance.

4.1 Generalities on the coarse-graining procedure

We first consider the spatial coarse-graining of the grain properties. The coarse-
graining procedure typically treats the particles properties as point-like values located
at the center of mass of the grain. To get the value of a certain continuum field at a
given point x in space, all the particle properties are weighted according to their dis-
tance from x using a suitable window function w. For example, the density ρ at point
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(
r
c

)2
).

Lucy window: w(r) = 105
16πc3

(
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)
.

x is computed from all the masses mi of the grains at location xi, with i ∈ {1 . . . N},
by:

ρ(x) =

N∑

i=1

wimi with wi ≡ w(|xi − x|) (10)

The choice of the averaging window function w(r), which depends only on the dis-
tance r ≡ |xi − x| from a given grain to the point where the continuum field is esti-
mated, is very important. This function has to be normalised, ie. its volume integral
over the entire space must be equal to one, to ensure that the average of a constant field
is the value of the field. The window function must also be monotonically decreasing
with the distance to the averaging point, and preferably go to zero at a finite distance
for computing efficiency. Some examples of window functions are given in figure 6.

However, the most crucial parameter for the choice of the averaging window is not the
function itself, but its width. The width of the window in space will determine how
many grains are averaged at each location. If the window is too small, sub-grain details
will be visible on the computed continuum field, which is usually not desirable. On
the other hand, if the window is too large, the field will be less sensitive to the medium
scale inhomogeneities in the material, and may be affected by the boundaries of the
system. Consequently it is important to try different sizes of averaging window to
ensure the measurements are accurate. From previous studies [WHTL13, GAC+06],

François Guillard 83

ALERT Doctoral School 2018



a window size c & d seems a reasonable choice.

When coarse-graining of the contact information is required, for example to compute
the stress, a similar procedure will be followed. However, the contacts themselves are
not physical entities, therefore the weighting coefficient that will have to be applied
to the contact information will incorporate the locations of the two particles i and j in
contact. Depending on the precise field of interest, the weighting coefficient will be
either w̆ij the integral of the window function along the contact vector rij ≡ xj −xi;
or w̄ij the average of the window at the two particles in contact.

w̆ij =

∫ 1

0

w(|xi + srij − x|)ds (11)

w̄ij =
w(|xi − x|) + w(|xj − x|)

2
(12)

Note that for wide coarse-graining windows, w̆ij ' w̄ij , which is the form we will
use for simplicity in the implementation section 4.3.

Finally, the continuum field obtained at a particular time-step is usually averaged over
time to provide smoother information. A process similar to the one followed for the
spatial average can be implemented, with an averaging window in the temporal space.
However, it is usually sufficient to use a rectangular window in that case, correspond-
ing to a moving window temporal average. Once again, the size of the time window
should be chosen carefully, in particular for the study the transient behaviours of the
system.

4.2 Balance laws

The balance equations for the coarse-grained field have been derived multiple times for
the mass and momentum conservation [GG01, WTLB12], angular momentum conser-
vation [Bab97], and energy conservation [Bab97, AR15]. We will not reproduce these
derivation here, but only describe the saliant results and important conclusions on the
matter. Most of the following results have been derived by [Bab97].

The general form form of the balance equation for a conserved quantity Ψ is:

∂Ψ

∂t
+

advection︷ ︸︸ ︷
∇(v̄Ψ)

︸ ︷︷ ︸
material derivative

= ∇ · q
︸ ︷︷ ︸

fluxes

+ S
︸ ︷︷ ︸
sources

− s
︸ ︷︷ ︸

sinks

(13)

where ∇ is the gradient operator and ∇· the divergence operator. All the balance
equations have the same form. The left term describes the material derivative of the
conserved quantity, which includes a contribution from the change of the quantity in
the considered infinitesimal volume, and another contribution from the advection of
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the quantity due to the flow. The terms on the right handside of the balance equation
include the fluxes from the surrounding material, as well as sources and sinks from
external contributions.

Note that the advective term depends on the mass weighted average velocity v̄. It can
be computed from the particle velocities using

ρv̄ =

N∑

i=1

wimivi (14)

where ρ is given by equation 10.

The mass and momentum balance therefore read respectively:

∂ρ

∂t
+∇(ρv̄) = 0 (15)

∂ρv̄

∂t
+∇(ρv̄v̄) = ∇ · (σC + σK) + ρg (16)

with g the gravitational acceleration. As is clear in equation 16, the stress tensor
has two distinct contributions, respectively σC the contact stress, and σK the kinetic
stress, defined from the contact force f ij and contact vector rij = xi − xj between
particles i and j, with ⊗ the tensor product:

σC =

N∑

i=1

N∑

j>i

w̆ijrij ⊗ f ij (17)

σK =

N∑

i=1

wimiṽi ⊗ ṽi (18)

The kinetic stress is related to the velocity fluctuations of the grains ṽi = vi − v̄: the
more the grains fluctuate around the average bulk velocity, the more internal pressure
will be created. However, defining what is actually the fluctuating velocity can be
subtle [AR15]. In particular, choices must be made on where and when the bulk
velocity v̄ should be measured (at the coarse graining point or at the particle location,
averaged in time or not etc.).

The balance equation for the angular momentum is given below, and leads to the
definition of the couple stress tensor µC + µK and the rate of supply of internal spin
from the contacts µcc:

∂ρIω̄

∂t
+∇(ρv̄Iω̄) = ∇ · (µC + µK) + µcc (19)
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with

ω̃i = ωi − ω̄; ρI =

N∑

i=1

wimiIi; ρω̄ =

N∑

i=1

wimiωi (20)

µK =

N∑

i=1

wimiIiω̃i ⊗ ω̃i; µC =

N∑

i=1

N∑

j>i

w̆ijrij ⊗ (mij −mji) (21)

µcc =

N∑

i=1

N∑

j>i

w̄ijrij × f ij (22)

Note that µC vanishes if particles i and j have the same radius, since in that case
the torque mij created by i over j is equal to mji the torque of j on i. Finally
µcc =

∑N
i=1

∑N
j>i w̄

ijrij × f ij . We will not go into more details on the balance of
rotational energy, except to mention that it is at the center of Cosserat theories, which
explicitly describe the elastic property alterations due to the couple stress tensor and
the grain micro-rotation [Lak95, SSV08].

We now turn our attention to the energy balance equation. We will consider separately
the balance law for the kinetic (translational) energy, the rotational energy and the
thermal energy, as these are the ones giving the most insight into the system. The
global energy balance law could be recovered simply by summing those 3 equations.
The thermal energy acts as an energy sink, since there is no mechanism to convert
back the thermal energy into mechanical energy (cf. section 2.3). Moreover we do
not consider any feedback of the (thermal) temperature on the mechanical properties
of the grains, which would require to use the thermal energy balance to compute the
temperature. Therefore we will not consider the thermal energy balance here, although
the law can be found in [Bab97].

The translational kinetic energy and the rotational kinetic energy balance laws are the
following:

∂ρ(ĒK + ẼK)

∂t
+∇(ρ(ĒK + ẼK)) = ∇ ·

(
(σC + σK)v̄ + qCK + qKK

)
− sK + ρgv̄

(23)

∂ρ(ĒR + ẼR)

∂t
+∇(ρ(ĒR + ẼR)) = ∇ ·

(
(µC + µK)ω̄ + qCR + qKR

)
− sR

(24)

In the same way that we have split translational and rotational velocities in their av-
erage values and fluctuating parts, the energy density EK = ĒK + ẼK and ER =
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ĒR + ẼR are split such as:

ĒK =
1

2
v̄v̄; ρẼK =

1

2

N∑

i=0

wimiṽiṽi (25)

ĒR =
1

2
Iω̄ω̄; ρẼR =

1

2

N∑

i=0

wimiIiω̃iω̃i (26)

The fluxes of energy involve the work produced by the stress and moment stress tensor
on the displacement due to the average velocity, as well as some additional contribu-
tions from the fluctuating velocities defined as:

qCK =
1

2

N∑

i=1

N∑

j>i

w̆ijrijf ij · (ṽi + ṽj); qKK = −1

2

N∑

i=1

wimiIiṽi · ṽiṽi

(27)

qCR =
1

2

N∑

i=1

N∑

j>i

w̆ijrij(mij · ω̃i −mji · ω̃j); qKR = −1

2

N∑

i=1

wimiIiω̃i · ω̃iṽi

(28)

Finally, as discussed before, some of the energy is dissipated in thermal energy, through
the terms sK and sR:

sK = −
N∑

i=1

N∑

j>i

w̄ijf ij · (vi − vj) (29)

sR = −
N∑

i=1

N∑

j>i

w̄ij(mij · ωi + mji · ωj) (30)

4.3 Example: Coarse-graining in simple shear

To give an example on how the coarse graining procedure can be implemented and
to verify the validity of the previous equations, we are computing the coarse-grained
field from the simulations detailed in section 3.5. The coarse graining is performed
using a Lucy function of width c = 2d, and all the time-steps are averaged together
since the material is supposed to be in steady state. Note that no care is taken to handle
the boundaries of the system, therefore the fields will be incorrect near the base, free
surface and periodic boundaries of the system. A proper treatment of coarse-graining
near boundaries is available in [WTLB12]. For simplicity we will only focus on the
balance of the translational kinetic energy, as the rotational part is quite small in this
system.
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Figure 7: Vertical coarse-grained profile at the center of the simulation box of various
quantities related to translational energy conservation. V = 0.5 m·s−1, P = 73 kPa.
(a) density, (b) horizontal velocity, (c) kinetic energy of the mean translational veloc-
ity, (d) kinetic energy of the fluctuating velocity, (e) contact stress tensor components,
(f) kinetic stress tensor components, (g) contact and kinetic flux component of the
kinetic energy, (h) translational kinetic energy density converted into thermal energy.
Only non-negligible components are displayed. The legend in (f) also applies to (e).
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Figure 7 shows the non-negligible terms entering equation 23. The density profile fig-
ure 7a is essentially constant, as expected at such a low inertial number, corresponding
to a grain volume fraction of about ρ

ρg
' 0.58. The velocity profile figure 7b shows

a linear profile with slight inflections near the wall, coherent with the simulated con-
figuration [MRME13]. The kinetic energy of the mean translational flow figure 7c
increases with the square of the depth as expected from the velocity profile, and is co-
herent with the total kinetic energy shown in figure 3a when scaled by the total mass
of the system Nmg . The fluctuating translational energy figure 7d is two orders of
magnitude smaller than ĒK but is expected to play an important role as it is closely
related to the granular temperature concept [JL09].

Figure 7e-f show respectively the contact stress and the kinetic stress components.
By symmetry, only the diagonal components (normal stresses) and the σxz tangen-
tial stress component are non-zero. The contact stress is several orders of magnitude
higher than the kinetic stress, which means that the confining pressure is dominating
over the pressure due to the fluctuations of the particles. The contact stress also shows
that there is little difference in the normal stress components (σxx ' σyy ' σzz).
The shear stress is in agreement with a friction coefficient of about 0.35, once again
a reasonable value. The flux terms shown in figure 7g also show a much smaller
contribution from the velocity fluctuations than from the contact, and are essentially
constant in space, except near the boundaries. Finally figure 7h shows the energy dis-
sipated by volume and by second. One can check that the value of sK is reasonable
by comparing it to the energy provided by the moving top wall. The former dissi-
pates a total energy in the system of

∫∫∫
sK ∼ 2.5 J.s−1 while the plate provides a

power of
∫∫

σxzV ∼ 3 J.s−1, which is a rough agreement considering the inaccu-
racy in the measurement of σxz near the boundary with the currently implemented
coarse-graining method.

The steady state simple shear configuration implies that equation 23 can be simplified
quite extensively. In particular, the material derivative is 0, leaving only the flux and
source terms in the equation. Moreover, the system is invariant by translation along
x and y thanks to the periodic boundary conditions, therefore any derivatives along
these directions are zero (∂x = ∂y = 0). Finally, the velocity is non-zero only along
x and there is no shear stress along the direction y. Eq. 23 can therefore be simplified
to:

∂(σxzvx + qz)

∂z
= sK (31)

Figure 8 shows that equation 31 is well verified for two different pressures in our
system, despite the inaccuracy of the coarse-graining near the boundary and the spa-
tial gradients that lead to a quite staggered flux term. Equation 31 seems therefore
reasonably verified using the developed coarse-graining method in this simple shear
system.
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Figure 8: Comparison of the translational energy flux with the dissipated translational
energy, for 2 confining pressure. V = 0.5 m.s−1.

5 Conclusions

DEM provides the information necessary to verify the viability of proposed continuum
mechanical models for granular materials. In particular, the development of constitu-
tive relationship provides expressions for the stress tensors and dissipation. Following
the coarse-graining procedure developed in section 4, it is then possible to compare
the continuum fields extracted from DEM to the fields hypothesised as constitutive
laws in continuum modelling. The closure provided by the constitutive laws then al-
lows to describe the full dynamic of the system using the balance equations, and opens
the opportunity for continuum modeling of the material to overcome the limitations of
DEM.

The use of DEM gives access to informations at grain level, that can be coarse-grained
to obtain mesoscopic fields. However, it is important to remember that both represen-
tations carry important assumptions. At the grain level, the contact law models the
grain collisions is a idealised way, which can be far from the actual physics of the
contact between grains in the material. At the mesoscopic level, the definition of a
coarse-grained field can be challenging. In particular, the length-scale of the spatial
inhomogeneities in the system must be large enough to be able to even define a con-
tinuum. Moreover, identifying some quantities such as the fluctuating velocity and the
granular temperature relies on strong hypothesis that should be questioned and tested.

Finally, DEM simulations can be extended to account for other mechanisms, such as
cohesion between grains, grain breakage [RE13], or interactions with fluid [GMBE13].
The choice of how such processes are implemented will modify how the energy is

90 Energetics in Discrete Element Modelling

ALERT Doctoral School 2018



dissipated in the material, and therefore has to be considered carefully to describe
numerically the physical processes in a reasonable manner.
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Hierarchical guide for constructing
thermodynamically admissible constitutive
models

Itai Einav

School of Civil Engineering, The University of Sydney 2006, NSW,
Australia

The number of ways one can employ for constructing constitutive models is stagger-
ingly boundless, but the response of a given material does not care about this sub-
jective freedom – it will behave as it wants. Therefore, constraints must be placed for
guiding the process of constitutive modelling, with the laws of thermodynamics joining
mass and momentum conservation laws as the most prominent and universal exam-
ples. Considering those laws, the freedom in modelling is greatly reduced, but not
entirely. Therefore, what could further be done (as shown in this chapter) is to classify
the mathematical conditions thermodynamics place on well-known mathematical ex-
amples of classes of models, building up hierarchically rate-independent models from
elasticity to hypo-plasticity, hyper-plasticity and h2plasticity. In parallel we discuss
issues related to rate-dependency.

1 Introduction

Mass, momentum and energy conservation laws, in addition to entropy balance and
the non-negativeness of entropy productions constitute the set of Hydrodynamic Equa-
tions that any material must satisfy as it moves and deforms. Let it be solid, fluid, gas
or their mixture, granular material, copper or water, those equations universally ap-
ply. The complete Hydrodynamic Procedure, which was described by many scholars
in physics ([LL80],[LL87],[Kha65],[dGP93],[JL09]), and also so described in Mario
Liu’s book chapter, represents all those equations at the material level, and thus au-
tomatically satisfies Rational Mechanics’s form of macroscopic balance laws, so de-
scribed in Ioannis Stefanou’s book chapter. In this chapter we first briefly review the
strict connection of those two formulations through the property of work input. Next,
we summarise the general mathematical restrictions on constitutive models imposed
by the Hydrodynamic Equations. Knowing how the internal energy explicitly de-
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pends on internal variables, it is possible to study those restrictions further. Therefore,
in the second part of this chapter we demonstrate how to construct several examples
for the mathematical structure of thermodynamically admissible models in a hierar-
chical way. We start from simple viscous fluid and elasticity, and gradually build up
to construct rate independent and rate-dependent hypoplasticity, hyperplasticity and
h2plasticity.

2 Rational Mechanics approach

In Rational Mechanics, the work input is identified by localizing a global energy bal-
ance into a local form (see Gurtin et al. [GFA10] and the Ioannis Stefanou’s chapter in
this book). Accordingly, the global energy balance for regular solid continua belong-
ing to spatial region P convecting with the body is (here P is used for Pt in [GFA10]):

dtE(P) + dtK(P) = Q(P) +W(P), dt ≡ ∂t + vk∇k, (1)

where E denotes the global net internal energy of P; K the kinetic energy of P; Q
the rate of heat flow transferred to P through its surface ∂P; andW the conventional
external power in the moving frame (here W is used for W0 in [GFA10])); also, dt
is the material derivative and ∇kvk the gradient of the barycentric velocity vector vk.
The four energetic terms above are specified as follows

E(P) =

∫

P
%edV, W(P) =

∫

P
bividV +

∫

∂P
Tijnivjda. (2)

K(P) =

∫

P

1

2
ρvkvkdV, Q(P) = −

∫

∂P
qknkda, (3)

while any scalar heat supply, for instance through radiation, is excluded fromQ(P) for
simplicity of exposition. In the above, dV and da are the volume and area increments
of P and ∂P , respectively; % is the material density; e the internal energy per mass;
bi the body force with a classical example being due to gravity (here bi denotes the b0i
term in [GFA10])); ni the unit vector; qk the dissipative heat flux; and Tij the Cauchy
stress tensor that is positive during tension. However, in Soil Mechanics, it is more
customary to define the Cauchy stress tensor to be positive in compression

σij = −Tij . (4)

Similarly, whereas the stretching rate tensor Dij is used as the symmetric component
of the velocity gradient Lij = ∇ivj , which is being positive under tension, in Soil
Mechanics it is more common to adopt the symmetric strain rate tensor ε̇ij that is
positive under compression:

ε̇ij = −Dij , Dij ≡
1

2
(∇ivj +∇jvi). (5)
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In addition, the anti-symmetric part of the velocity gradient can be identified as

Ωij ≡ 1
2 (∇ivj −∇jvi), (6)

such that Lij = Dij + Ωij .

2.1 Work input in Rational Mechanics

Since the region P convects with the body such that its volume remains constant, and
in light of the divergence theorem, the local balance of linear momentum, and the
symmetry of stress, equation (2) can be rewritten as [GFA10]:

dtE(P) =

∫

P
%dtedV, W(P) =

∫

P
σij ε̇ijdV + dtK(P), (7)

where TijDij = σij ε̇ij was used thanks to equations (4,5). By inserting equations
(3,7) into equation (1), we obtain the global form of the energy conservation:

∫

P
(%dte− σij ε̇ij +∇kqk) dV = 0, (8)

which upon localization gives the local energy balance for a unit volume of the me-
dia [GFA10]:

w ≡ %dte+∇kqk, with w = σij ε̇ij . (9)

Extensions for multi-component continua, such as saturated and partially saturated
soils are discussed in [GFA10, EL18].

3 Hydrodynamics approach

The purpose of the following section is to arrive at an exposition that shows the
full consistency between the Hydrodynamics and Rational Mechanics formulations
adopted in this ALERT book chapters by Mario Liu and Ioannis Stefanou, respec-
tively. A more complete demonstration could be found in [EL18]. For that purpose,
we describe the building steps of the Hydrodynamic Procedure, which begins with the
first law of thermodynamics (conservation of energy) as:

∂tU +∇iEi = %viGi, (10)

where U = U(..., vi) and u = u(...) = %e are the conserved energy densities in
the moving and rest (vi = 0) frames, respectively, with vi being the velocity (u also
known as the internal energy density); %Gi is the gravitational force density; and Ei
is the energy flux, whose form will be determined below. We note that the conserved
and internal free energy densities are linked through the kinetic energy k = g2

i /2%
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using U = u + k, with gi = %vi being the momentum and % the density. In other
words, that U = u+ g2

i /2% and ∂tU = ∂tu+ vi∂tgi − v2
i ∂t%/2.

Also note the second law of thermodynamics (entropy balance):

∂ts+∇i (svi − fi) = R/T ≥ 0, (11)

with svi and fi as the convective and dissipative entropy currents, respectively; where
T is the temperature, and R is the total rate of dissipation, whose form will be deter-
mined below.

In addition, any material must also satisfy the conservation laws of mass and momen-
tum1,

∂t%+∇i(%vi) = 0, (12)

∂tgi +∇j(givj + σij) = %Gi, (13)

It is also possible to identify a conserved elastic strain εeij for all materials, even for
conventional fluids where it vanishes. For that purpose, we have to describe an ad-
dition conservation equation for the elastic strain, whose rate is most generally given
as2

(∂t + vk∇k) εeij + Ωikε
e
kj − εeikΩkj = ε̇ij − ε̇pij , (14)

where the term Ωikε
e
kj − εeikΩkj above accounts for solid body rotation of the elastic

strain εeij , while ε̇ij accounts for the actual deformation. Also, the dissipative contri-
bution to the above equation ε̇pij is called the plastic strain rate. See further discussion
on the above equation in [EL18].

We summarise that irrespective of their structure all materials carry their conserved en-
ergy, entropy, density, momentum and elastic strain (U , s, %, gi and εeij), each receiv-
ing their own equation (equations 10-14). More generally, the conserved energy de-
scribes a scalar quantity that links all those state variables withU = U(s, %, gi, ε

e
ij , ...),

with ... denoting the possibility of having additional internal variables. For now, we
ignore the possibility of additional internal variables, although soils certainly depends
on other state variables such as granular temperature and grainsize distribution / break-
age (see Mario Liu’s, as well as Yida Zhang & Giuseppe Buscarnera’s book chapters).
Therefore, this chapter restricts attention to materials whose conserved energy is fully
described by U = U(s, %, gi, ε

e
ij).

We now have all that is required to do some mathematical manipulations and retrieve
a more explicit set of constraints for our rather limited U = U(s, %, gi, ε

e
ij) material.

1The plus sign ahead of σij in equation (13) is consistent with Soil Mechanics sign convention of
positive stresses under compression. For positive stresses under tension one should use the negative sign
instead.

2This equation is specified to be consistent with Soil Mechanics sign convention with positive symmetric
strain rate ε̇ij and elastic strain εeij tensors under compression. For positive symmetric strain rate under
tension Dij , the terms ε̇ij and ε̇pij should correspondingly be replaced by Dij and Dp

ij , in which case εeij
will also be positive under tension.
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Given the general dependence of the conserved energy on four internal variables, four
conjugate variables (temperature, chemical potential, velocity and elastic stress) can
be defined as:

T ≡ ∂U

∂s
, µ ≡ ∂U

∂%
, vi ≡

∂U

∂gi
, πij ≡

∂U

∂εeij
. (15)

Skipping some details that could be found in [EL18], it is also possible to identify the
thermodynamic pressure from the differentiation of the internal energy per unit mass
(u/%) by the inverse of density

PT = − ∂(u/%)

∂(1/%)

∣∣∣∣
s/ρ, εeij

= Ts+ µ0%− u = µ0%− ψ, (16)

which could be seen as the Legendre conjugate of the Helmholtz free energy ψ =
ψ(%, ...), replacing the density % with the chemical potential in the rest system µ0 =
µ− v2

i /2.

It is also convenient to define the following stress measure,

σDij ≡ −σij + πij + PT δij , (17)

whose meaning as the viscous stress will be discussed below. Here, δij denotes the
Kronecker delta, returning 0 when i 6= j and 1 when i = j.

In the absence of viscous stress (realistic close to equilibrium), the above becomes a
generalised version of Terzaghi’s equation for effective stress [Ter43] σeffij ≡ σij −
PT δij , with the elastic stress taking the role of the effective stress σeffij ≡ πij and PT
dependent on the media. This idea has been developed in depth by Jiang et al. [JEL17],
with specific expressions resolved for PT in fully and partially saturated soils.

The fact that the energy does not change under rigid body rotation can be expressed
in terms of the rotation identity,

πjiε
e
ik − πkiεeij = 0. (18)

After a slightly subtle derivation using all of the above Hydrodynamic Equations
above, one can find (see [EL18])

∇iEi = ∇i([U + PT ]vi − fiT + [πij − σDij ]vj)−R+ fi∇iT − σDij ε̇ij + πij ε̇
p
ij .

The energy flux Ei is then identified with all terms appearing within the gradient,
while the total dissipation R with the other terms:

Ei = (U + PT )vi + (πij − σDij )vj − Tfj , (19)

R = fi∇iT + πij ε̇
p
ij − σDij ε̇ij ≥ 0. (20)
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The first term in R represents thermal dissipation; the second represents dissipation
through plasticity, or irreversible straining; and the last term is viscous dissipation
most familiar in fluids. In soils it is generally negligible for small strain rates, and
thus coming back to equation (17), Terzaghi’s equation could be explained. How-
ever, under very high rates, it should not be forgotten, and then represents a physical
correction to Terzaghi’s principle.

Generally speaking, for materials with internal free energy dependent on other internal
variables than just the primary ones (s, εeij and %), the total rate of dissipation may
depend on further dissipative contributions to R. For example, in breakage mechanics
(eg., see Zhang & Buscarnera’s ALERT book chapter) an additional term will involve
the product of the breakage energy by the rate of breakage.

3.1 Work input in Hydrodynamics

It is possible to show that according to the Hydrodynamic Equations above, one can
find exactly the same explicit expression for the work input equation (9b) as found by
Rational Mechanics.

Considering the definition of the work input in equation (9a), it is possible to redefine
it using the original Hydrodynamic equations (10-13):

w = dtu− Tdts+R− fk∇kT + ψ∇kvk. (21)

Since du = Tds+ µ0d%+ πijdε
e
ij and given R in equation (20), the above becomes

w = µ0dt%+ πij(dtε
e
ij + ε̇pij)− σDij ε̇ij + ψ∇kvk. (22)

Then, by employing the mass conservation in equation (12) with the balance law for
the elastic strain in equation (14), the consequence of the rotation identity in equa-
tion (18), the Soil Mechanics convention of strain rate in equation (5), and the relation
between the thermodynamic potential and Helmholtz free energy in equation (16) we
obtain:

w = (πij − σDij )ε̇ij − (µ0%− ψ)∇kvk
= (πij − σDij + PT δij)ε̇ij

= σij ε̇ij , (23)

which is fully consistent with the result in Rational Mechanics by localizing the global
energy balance (see equation (9b)).

Note that taking the energy to depend on both the density and elastic strain is more
general than specific cases of solids independent on density (where σDij = PT δij = 0
and σij = πij ) or fluids independent on elastic strain (where πij = 0 and σij =
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−σDij + PT δij). Also, till now we have established the consistency of the Hydrody-
namic Procedure and Rational Mechanics, by showing the consistency in their quantity
of work input. The demonstration was done for materials with u = u(s, %, εeij), yet
could be easily established for more general materials with more internal variables.

4 Summary of the thermodynamic constraints

Here, we summarise the constitutive restrictions any constitutive model with u =
u(s, %, εeij) should obey based on the above derivation. Considering the Legendre
transformation of the internal free energy u = ψ + Ts, and since the temperature T
is often the measured quantity rather than the entropy s, it is often more convenient to
represent materials using the Helmholtz free energy:

ψ = ψ(T, %, εeij).

Using equation (15) we therefore find the following relationships between all the state
variables:

s(T, %, εeij) ≡ −
∂ψ

∂T
, µ(T, %, εeij) ≡

∂ψ

∂%
, πij(T, %, ε

e
ij) ≡

∂ψ

∂εeij
. (24)

In addition, it is also important to recall the general constraint on the total dissipation
rate in equation (20):

R = fi∇iT + ε̇pijπij − σDij ε̇ij ≥ 0. (25)

In summary, from the viewpoint of thermodynamics, a fully admissible constitutive
model of an ψ = ψ(T, %, εeij) type should therefore satisfy the two equations above.
Then, using the definitions of the viscous stress σDij in equation (17) and the thermo-
dynamic pressure PT in equation (16) we can work out the total Cauchy stress σij .
What we need in order to complete the construction of a new model is to assume:

1. an equation for ψ = ψ(T, %, εeij) from which we can find the entropy s, chemi-
cal potential µ and elastic stress πij , as well as

2. equations for the dissipative entropy current fi, the plastic strain rate εpij and
viscous stress σDij that ensure R ≥ 0 for any conceivable loading path.

Starting with an explicit expression for ψ = ψ(T, %, εeij), Step 1 above is normally not
too difficult to respect, although the choice of ψ should represent the material at hand.
The more difficult challenge and freedom is normally embedded in establishing Step
2 above. A few ways from the literature are discussed below.
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4.1 Ways to satisfy the dissipation inequality R≥0

There are many ways to chose fi, ε
p
ij and σDij that will ensure R ≥ 0. A most general

way is based on Onsager‘s reciprocal principle [Ons31] that allows for cross couplings
between the R terms [DGM13] (see also Mario Liu’s chapter in this ALERT book),



fi
ε̇pij
σDij


 =




κik bikl cikl
bkli eijkl hijkl
−ckli −hklij ηijkl


 ·



∇kT
πkl
−ε̇kl


 , (26)

where the non-negativeness of R is ensured provided the following conditions are
satisfied: First, taking both σDij and ε̇kl as a six-tuple vector, and writing ηijkl as a 6x6
matrix, ηα,β (α, β going from 1 to 6), we require it to have only positive Eigenvalues.
Next, taking (fi, ε̇

p
ij) and (∇kT, πkl) as two nine-tuple vectors, we again require the

9x9 matrix of coefficients connecting them to have positive Eigenvalues. Note that
ckli and hklij are reactive coefficients that do not contribute to R, and thus there are
no constraints for them.

Please note that the various coefficients in the matrix above are often taken as func-
tion of the different state variables. For example, using κik ≡ κik(T, %, εeij), bikl ≡
bikl(T, %, ε

e
ij), etc. It is also often convenient to think of these coefficients in terms of

the elastic stress rather than the elastic strain (κik ≡ κik(T, %, πeij), bikl ≡ bikl(T, %, πeij),
etc), as we note that transformations between those forms is possible thanks to equa-
tion (24).

A very limited subset of the above setup, which satisfies the non-negativeness of R, is
often followed by ignoring all the off-diagonal terms in equation (26), such that:

fi = κij∇jT, ε̇pij = eijklπkl, σDij = −ηijklε̇kl. (27)

However, the equations above are often too limiting because they set up all the various
additive terms in R of equation (20) to be non-negative, which goes beyond what is
actually required from equation (20). In fact, based on equation (20) R may still be
possible even if one/two of the three additive terms is/are not actually positive, as the
other two/one terms may be, whose sum should have a larger absolute value. This
situation of permitting one or two negative terms in equation (20) is enabled through
the use of the Onsager relationships in equation (26).

A comment – there are other ways of satisfying the non-negativeness of R. For exam-
ple, in (hyper)elastoplasticity to be discussed later, it is common to introduce a ‘plastic
flow potential’ function g that is not a thermodynamic potential, but a function from
which the unknown variables fi, ε

p
ij and σDij could be found through its derivation.

For example, it is possible to use the following relationships:

fi = κ∗ij
∂g

∂∇jT
, ε̇pij = e∗ijkl

∂g

∂πkl
, σDij = −η∗ijkl

∂g

∂ε̇kl
, (28)
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with certain convexity restrictions on the function g, to be discussed later in this chap-
ter under subsection (hyper)elastoplasticity.

5 Setting up your model – Hierarchical development

5.1 Viscous fluid

In conventional compressible fluids we ignore the dependence of the free energy on
the elastic strains, and consider only its dependence on density ψ = ψ(%). In this case
we find:

πij = 0, σij = σDij + PT δij , (29)

so the remaining assumptions require one to define PT and σDij .

The relationship between the thermodynamic pressure PT and density % comes from
the density dependence of the free energy ψ, and is known in fluid mechanics as the
equation of state.

On the other hand, the expression for σDij comes from the restriction on R, as most
generally represented by the Onsager relationships (26). A rather simple choice is
ignoring all the coefficients in the corresponding big matrix, apart from the values of
the ηijkl coefficients, in which case R = ηijklε̇ij ε̇kl ≥ 0. Further demanding the
fluid to be isotropic with only one viscosity coefficient η one would typically employ
σDij = −ηε̇ij with R = ηε̇ij ε̇ij ≥ 0.

5.2 (Hyper)elasticity

As a second example, consider the case of non-dissipative (R = 0) materials whose
free energy depends only on the elastic strain ψ = ψ(εeij). In other words, a thermo-
dynamically admissible elastic material (known as a hyper-elastic material) is fully
defined by specifying an explicit form for ψ = ψ(εe).

Given R = 0, the viscous stress is zero by definition (σDij = 0), and given the density
independence of the free energy, thus the thermodynamic pressure as well (PT = 0).
Therefore, in this case, in the absence of plastic strain rate, we have:

σij = πij ≡
∂ψ(εeij)

∂εeij
. (30)

We can then retrieve the general rate equation for the stress in elastic media:

σ̇ij = Eijklε̇
e
kl, with Eijkl =

∂2ψ

∂εeij∂ε
e
kl

, (31)
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where the general stiffness coefficient may depend on the (elastic) strain Eijkl =
Eijkl(ε

e
kl), or thanks to equation (24) on the (elastic) stress Eijkl = Eijkl(σkl).

The term ‘hyperelastic’ is often used to designate such materials, as to highlight that
they are fully consistent with thermodynamics, and in this case deducible from energy
potentials (such as the Helmholtz free energy, ψ).

5.2.1 Linear (hyper)elasticity

In the case of linear elasticity, the stiffness coefficients in Eijkl are all constants and
independent on the (elastic) stress (or the (elastic) strain). A famous example for
an explicit form of the energy potential is given for linear elastic, homogeneous and
isotropic materials:

ψ(εeij) =
1

2
K(εev)

2 +Gε′eijε
′e
ij , (32)

where K and G are the bulk and shear moduli, respectively; ε′eij = εeij − 1
3δijε

e
v is

the deviator of the strain tensor; and the volumetric strain εev = εeii is taken positive in
compression. Using equation (31) we find the final relations between the total Cauchy
stress and strain, and between their rates, in such idealised linear elastic materials:

σij = Kεevδij + 2Gε′eij . (33)

σ̇ij =

[(
K − 2

3
G

)
δijδkl + 2Gδikδjl

]
ε̇eij . (34)

There is of course, nothing new in the above linear elastic equation, which was pro-
posed well before the laws of thermodynamics were well articulated. However, in
showing that the final equation could be derived from the thermodynamic potential,
the obtained result can also be called hyperelastic.

5.2.2 Nonlinear (hyper)elasticity

In this case, the stiffness coefficients Eijkl are no longer independent of the stress,
and in general Eijkl = Eijkl(σkl). For simplicity, a simple useful example is demon-
strated in the following by considering only two out of three invariants of the elastic
strains, the volumetric and shear parts εev and εes, as the conjugates of the mean and
shear stresses p and q, respectively.

Consider the Hertz contact between two spherical grains of diameter d, whose deflec-
tion at the contact is δ. According to Hertz’s theory, the typical stress by the contact
force Fn scales as

Fn
d2
∝
(
δ

d

)3/2

.
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Next assume that this typical mean stress scales linearly with the pressure p ∝ Fn and
that the volumetric elastic strain scales as εev ∝ δ/d. Accordingly, from Hertz’s theory
we may expect p ∝ (εev)

3/2. As the bulk stiffnessK scales asK ∝ ∂p/∂εev , and since
the same considerations may follow for the shear part, according to Hertz’s theory it
is reasonable to expect the bulk and shear moduli with:

K ∝ (εev)
1/2 ∝ p1/3, and G ∝ K.

Alternatively, following Goddard [God90], one may consider the interaction problem
between a sphere of diameter d and a cone, for the same deflection δ at the contact we
find in this case

Fn
d2
∝
(
δ

d

)2

,

that is, p ∝ (εev)
2 and thus

K ∝ εev ∝ p1/2, and G ∝ K.

This solution should be arguably more realistic for natural sand with asperities, in
which case contacts are most frequently between a flat curved surface and a cone
reflective of one asperity.

Therefore, a more general model can be specified with

K ∝ (εev)
n ∝ pn/(n+1), and G ∝ K, (35)

with n = 1/2 and n = 1 representative of the sphere-to-sphere and cone-to-sphere
contact problems, respectively.

Note– the above scaling laws were derived without any thermodynamic considera-
tions. For example, inputting the above relations into K and G in equation (34) is
thermodynamically wrong, with many people taking this step while ignoring the in-
consistencies. Take for example the scaling G ∝ (εev)

n. Integrating G = 3∂q/∂εes
to get q is not simple, since its value depends on the integration path. Assuming
constant εes we may expect q = 3Ḡεes(ε

e
v)
n and ψs = 3

2 Ḡ(εes)
2(εev)

n + F1(εev) for
the shear part. Similarly, integrating K = ∂p/∂εev under constant εes would give
ψv = K̄

(n+1)(n+2) (εev)
n+2 + F2(εes). Comparing ψs with ψv , one can consider the

following energy potential:

ψ ≡ ψ(εev, ε
e
s) =

K̄

(n+ 1)(n+ 2)
(εev)

n+2 +
3

2
Ḡ(εes)

2(εev)
n. (36)

Now that we have a Helmholtz free energy, we can get the explicit relationships (be-
yond just scaling rules). Starting with the shear stress, we have

q ≡ ∂ψ

∂εes
= 3Ḡεes(ε

e
v)
n, (37)
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which precisely matches the expected scaling above. However, compared with the
initially assumed scaling, the mean stress is slightly more complicated:

p ≡ ∂ψ

∂εev
=

K̄

(n+ 1)
(εev)

n+1 +
3n

2
Ḡ(εes)

2(εev)
n−1. (38)

While the first term matches the expected scaling, the second one is new, and reflects
the elastic cross-coupling of the volumetric deformations with the shear deformations.
The rate equation for the stress becomes:

(
ṗ
q̇

)
=


 K̄(εev)

n + 3nḠ(εes)
2(εev)

n−1 3nḠ(εes)(ε
e
v)
n−1

3nḠ(εes)(ε
e
v)
n−1 3Ḡ(εev)

n


 ·

(
ε̇ev
ε̇es

)
, (39)

where the boxed terms reflect the initial scalings based on which this law was de-
veloped, while the other terms are correction terms required by thermodynamics (the
existence of energy potential ψ).

Similar derivations and conclusions on the implications of the pressure dependence of
the shear modulus on the full elastic constitutive law for granular/sand media can be
found in [JL03, HAR05, NE09], as well as discussion on the elastic stability of such
equations. The terms not highlighted by a box in the stiffness matrix above represents
the dependence of the volumetric response on the shear stress as the latter increases,
and may represent the reorientation of force chains upon shear.

5.2.3 Density dependent nonlinear elasticity

Next, we discuss the case of a non-dissipative elastic medium whose energy potential
does not only depend on the elastic strain, but also on the density ψ = ψ(εeij). Let us
also limit the discussion to functions satisfying the multiplicity in the form

ψ = fψ(%)ψe(ε
e
ij). (40)

Given R = 0, the viscous stress σDij is zero by definition. Therefore, from equa-
tion (17) we find

σij = fψ(%)
∂ψe
∂εeij

− ψe(εeij)
∂(fe/%)

∂(1/%)
δij . (41)

This equation is rather involved. One can continue by carrying all the terms, yet for
the sake of clarity, it is useful to consider the following approximation under small
elastic deformation. Under such a condition, since ψ ∝ (εev)

m with 3 ≥ m ≥ 2 and
ψ ∝ (εes)

2 (see the subsection on nonlinear elasticity) one finds ψe � ∂ψe

∂εeij
, such that

we can neglect the last term (similar to taking PT → 0):

σij ≈ fψ(%)
∂ψe
∂εeij

. (42)
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5.2.4 Viscoelasticity of Kelvin-Voigt type

For simplicity, we return to the limited discussion on idealised density independent
materials with PT = 0. To capture scenarios with non-negligible viscous stress σDij ,
we find from equation (17) that for density independent materials with PT → 0

σij = πij − σDij , πij =
∂ψ(εeij)

∂εeij
, σDij = −ηijklε̇kl, (43)

where the elastic stress πij is defined from the energy potential ψ using equation (31)
and the evolution law for the viscous stress σDij is chosen to ensure R ≥ 0 using
equation (27). In such a way, the model automatically satisfies thermodynamics. Fur-
thermore, we note that in this model the total Cauchy stress σij is the sum of the elastic
and viscous stresses, the celebrated model known as the Kelvin-Voigt viscoelasticity.
The model is often schematically represented as a viscous damper and elastic spring
connected in parallel.

5.3 Thermodynamically admissible hypoplastic media

Hypoplastic models are models that are developed without regard to thermodynamic
considerations and are specified directly in an incrementally non-linear irreversible
form. Such models are often written to take the following structure [Kol91, CDHC94]:

σ̇ij = Eijkl (ε̇kl − ε̇pkl) , (44)

with
ε̇pkl = Bkl||ε̇′||, ||ε̇′|| =

√
ε̇′mnε̇′mn,

Eijkl ≡ Eijkl(σij), and Bkl ≡ Bkl(σij).

Surprisingly, however, unlike the intention behind the adjective ”hypo”, it is quite sim-
ple to construct a thermodynamically admissible hypoplastic constitutive law, proba-
bly more than a hyperplastic law (whose adjective ”hyper” came to highlight thermo-
dynamic consistency).

Firstly, following from equation (31), and assuming for simplicity a close to equi-
librium system with σDij = 0 and a density independent energy potential (meaning
PT = 0 and πij = σij), we find:

Eijkl(σij) =
∂2ψ

∂εeij∂ε
e
kl

. (45)

Secondly, using equation (14) (ignoring for simplicity the rotational parts) we may
identify the plastic strain rate in hypoplasticity with ε̇pkl = Bkl(σij)||ε̇′mn||. For this
case, it follows from the thermodynamic dissipation inequality in equation (20) that
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such models should be constrained by ε̇pijπij ≥ 0. Since ||ε̇′mn|| is positive by defini-
tion, and in this case πij = σij , thermodynamics further require:

Bijσij ≥ 0. (46)

To summarise, a hypoplastic constitutive law of the general form of equation (44) is
thermodynamically admissible as long as the Eijkl can be derived from an energy
potential ψ and that the structure of Bkl is taken to satisfy the inequality above given
any state of stress σij . Where the issue of finding explicit Eijkl from ψ has already
been discussed in the context of hyperelasticity, the remaining challenge is to motivate
a structure for Bkl ≡ Bkl(σij) that works well against physical experiments. At the
moment, although constrained by equation (46) above, there is no systematic method
for determining this function.

In summary, a thermodynamically admissible hypoplastic constitutive relationships
may take the following form:

σ̇ij =
∂2ψ

∂εeij∂ε
e
kl

(ε̇kl −Bkl||ε̇′||) , with Bijσij ≥ 0. (47)

Note – the above relation is rate-independent given the property σ̇ij(ε̇ijdt) ≡ σ̇ij(εij)dt
for any arbitrary positive increment of time dt.

5.3.1 Thermodynamically admissible rate-dependent hypoplasticity

There are several ways to construct a rate-dependent hypoplastic model that is ad-
missible from the viewpoint of thermodynamics. One way is to simply combine the
above model with the Kelvin-Voigt type of viscoelasticity. First, recall that the rela-
tion in equation (47) so-written for σ̇ij is actually representing π̇ij . Therefore, using
this relation to update πij in addition to the last relation in equation (43) for σDij pro-
vides the ingredients to calculate the rate-dependent equation for σij using the first
relation in equation (43). This model can be schematically represented as a viscous
damper element and hypoplastic element connected in parallel. The rate dependency
is driven from the last term of R in equation (25), that is bringing rate-dependency
while requiring σDij ε̇ij ≥ 0.

Another way to construct a rate-dependent hypoplastic model can be made in light of
the second term ofR in equation (25), that is bringing rate-dependency while requiring
πij ε̇

p
ij ≥ 0. Recalling that in the model above ε̇pij = Bij ||ε̇||, one may simply intro-

duce rate dependency into Bij = Bij(ε̇ij), while still demanding that Bijσij ≥ 0.
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5.4 (Hyper)elastoplastic media

A more complicated mathematical structure of an inelastic constitutive law is given
by the elastoplastic model:

σ̇ij = Eijkl (ε̇kl − ε̇pkl) , (48)

with
ε̇pkl = λCkl(σij), λ(σij , ε̇ij) ≥ 0, y(σij) ≤ 0.

The value of the multiplier λ is defined as zero as long as y < 0, and when ‘yielding’,
ie., y = 0, it is defined so that the yield function y never becomes positive. This
condition sets λ upon yield by demanding ẏ = ∂y

∂σij
σ̇ij = 0, from which:

λ =

( ∂y
∂σij

Eijkl
∂y
∂σij

EijklCkl

)
ε̇kl. (49)

Considering all of the conditions above, it is possible to rewrite the elastoplastic model
using a single equation:

σ̇ij = Eijkl (ε̇kl − 〈λ〉CijI(y)) , (50)

where we introduced two functions. The function I(y) is defined as 0 for y < 0 and 1
for y = 0. The function 〈x〉 is x for x ≥ 0 and 0 for x < 0.

One can introduce additional internal variables into the function y, in which case the
solution for λ will change, but the logic of the derivation above will remain.

Next, we ask the question – which conditions should the various functions (Eijkl, y,
Cij , and λ) follows such that the model will satisfy the laws of thermodynamics?

Firstly, we require that the stiffness tensor Eijkl will follow the logic of hyperelastic-
ity, by requiring it to be derivable from the energy potential.

Eijkl(σij) =
∂2ψ

∂εeij∂ε
e
kl

. (51)

Secondly, using equation (14) (ignoring for simplicity the rotational parts) we may
identify the plastic strain rate in hypoplasticity with ε̇pij = 〈λ〉CijI(y). For this
case, since 〈λ〉 and I(y) are positive by definition, it follows from the thermodynamic
dissipation inequality in equation (20) that such models should be constrained by:

Cijσij ≥ 0. (52)

Conveniently, this could be satisfied by considering Cij = ∂y
∂σij

through the derivative
of the yield surface y with respect to the stress σij , and then demanding y to be a
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convex function containing the origin in the stress space. A more general way, is to
define a different function, a so-called ‘plastic potential’ g(σij), which must also be
defined as a convex function that contains the origin in the stress space, with Cij =
∂g
∂σij

, and

Cij =
∂g

∂σij
, and

∂g

∂σij
σij ≥ 0. (53)

Setting g to be different than y defines a so-called non-associated flow rule. It is also
possible to satisfy g = 0 in the limit y = 0, and g < 0 for y < 0. This choice of g does
not necessarily satisfy g = y under g < 0, yet it satisfies I(y) = I(g). Therefore,
under those setups, one can define a structure of (hyper)elastoplastic constitutive laws
that follows:

σ̇ij = Eijkl

(
ε̇kl − 〈λ〉

∂g

∂σij
I(g)

)
, λ =

( ∂y
∂σij

Eijkl
∂y
∂σij

Eijkl
∂g
∂σkl

)
ε̇kl. (54)

Note – it is easy to produce an exact connection between the above formulation and
the hyperplastic formulation explored in [Zie77, CH97, HP07]. In either of these
hyperplastic formulations, the adjective ‘hyper’ comes to reflect the fact that such
relations satisfy the thermodynamic laws. However, as we mentioned in the previ-
ous subsection, hypoplastic models may too be structured in such a way that satisfies
thermodynamics laws, which motivates the construction of the more encompassing
h2plasticity formulation discussed in the following.

Also note – the above relation is rate-independent given the property σ̇ij(ε̇ijdt) ≡
σ̇ij(εij)dt for any arbitrary positive increment of time dt.

5.4.1 Thermodynamically admissible rate-dependent hyperplasticity

There are several ways to construct a rate-dependent hyperplastic model. One way
is to simply combine the above model with the Kelvin-Voigt type of viscoelasticity,
directly as was demonstrated earlier for obtaining a rate-dependent hypoplastic model
of the same type.

Another way to construct a rate-dependent hypoplastic model can be made in light
of the second term of R in equation (25), that is bringing rate-dependency while re-
quiring πij ε̇

p
ij ≥ 0. Recalling that in the model above ε̇pij = 〈λ〉 ∂g

∂σij
I(g), one way

to introduce rate dependency is to simply replace the linearity in time embedded in λ
with a nonlinear function in time. One way is commonly followed through Perzyna’s
formulation [Per63] that replaces the role of λ ≥ 0 with 〈y〉 /τ ≥ 0, with τ desig-
nating a typical relaxation time as a function of the overshooting of yield. As 〈y〉
gets bigger the relaxation is stronger, and given a smaller typical time τ the relaxation
happens faster to satisfy y = 0, in which case capturing rate-independency as alter-
native to what has been done before through the solution for λ. Interested readers are
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invited to review other ideas in Sari et al.’s book chapter, where the relaxation is also
temperature dependent.

5.5 H2plastic media

The only difference between the hyperplastic and the thermodynamically admissi-
ble hypoplastic formulations above could be seen to be in the choice of the plastic
strain rate. Unlike the hypoplastic formulation, the behaviour of those models experi-
ences step changes in stiffness due to the presence of the functions 〈〉 and I(y) above,
which do not exist in the hypoplastic relationships in the previous section. This is
a behavioural advantage of hypoplasticity over hyperplasticity. However, as we also
highlighted above, unlike hyperplasticity, the choice of Bij in the plastic strain rate
of hypoplasticity is not very structured. Therefore, in the current example we simply
combine the corresponding advantages of hyper- and hypo- plasticity to establish a
unifying formulation, the so-called h2plasticity (see [Ein12]).

σ̇ij = Eijkl (ε̇kl − ε̇pkl) , (55)

where

Eijkl(σij) =
∂2ψ

∂εeij∂ε
e
kl

, and ε̇pij = 〈λ〉 ∂A(g)

∂σij
=
∂A(g)

∂g

∂g

∂σij
,

with
∂A(g)

∂g
≥ 0 and

∂g

∂σij
σij ≥ 0.

Accordingly, here too the rate of plastic dissipation is guaranteed to be non-negative,
since

σij ε̇
p
ij = 〈λ〉 ∂A(g)

∂g

∂g

∂σij
σij ≥ 0. (56)

With λ taking from (hyper)elastoplasticity, the h2plastic relationship for the stress rate
becomes

σ̇ij = Eijkl

(
ε̇kl − 〈λ〉

∂g

∂σij

∂A(g)

∂g

)
, λ =

( ∂y
∂σij

Eijkl
∂y
∂σij

Eijkl
∂g
∂σkl

)
ε̇kl. (57)

Compare the above equation with equation (54) of (hyper)elastoplasticity, the two
formulations are identical only for a choice of A such that its derivative with respect
to g satisfies ∂A(g)

∂g = I(g). Take for example the following function:

A(g) =
1

s+ 1
(1 + g)s+1, (58)
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with s > 0 and −1 ≤ g ≤ 0 with g = 0 when y = 0. In this case, equation (57)
becomes

σ̇ij = Eijkl

(
ε̇kl − 〈λ〉

∂g

∂σij
(1 + g)s

)
, λ =

( ∂y
∂σij

Eijkl
∂y
∂σij

Eijkl
∂g
∂σkl

)
ε̇kl.

Note that in the limit of s → ∞ the above model identically becomes that of hyper-
plasticity, since at this limit the function (1 + g)s becomes I(g). Also note, where in
hyperplasticity there is a switch in the tangent stiffness from a state with y = g = 0
to a state with y < 0 (and g < 0), this is not the case in h2plasticity. However, in
the limit of g = y = 0, the equation above reduces identically to the hyperplastic
relation in equation (54). In this way, the structure of hyperplasticity to recover phe-
nomenological yielding and approach to critical state is preserved in h2plasticity, but
the yielding in h2plasticity is gradual since (1 + g)s is not zero for g < 0. There
is still however a certain switch in the loading direction given by the positiveness of
λ contained within 〈λ〉. This switch can be eliminated by replacing 〈λ〉 with ||λ||.
The choice between these two options, or any linear combination is constitutive (for
further details see [Ein12]).

6 Conclusions

This Chapter provided a guide for the construction of thermodynamically admissible
constitutive models. We first reviewed the general conditions imposed by the thermo-
dynamic laws through the eyes of both Rational Mechanics and the Hydrodynamic
Procedure. We demonstrated that the end implications of these two formulations are
actually identical, which should not be surprising, given that they both came to rep-
resent the same physical reality. We continued with the Hydrodynamic Procedure as
a concise way to study materials at the scale of a representative volume element, and
established a few examples for various classes of constitutive models. The demon-
stration of the constitutive models was presented in a hierarchical way, starting from
simple viscous fluid, then moving on to study rate-independent and rate-dependent
elasticity and elastoplasticity (or hyperelasticity and hyperplasticity, respectively, by
virtue of satisfying thermodynamics). Next, we discussed the structure of hypoplastic
models. Finally, by comparing the mathematical structure of the thermodynamically
admissible hypoplasticity and hyperplasticity, we were able to construct a unification
called h2plasticity formulation that captures the advantages of both models.
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2005.

[HP07] G.T. Houlsby and A.M. Puzrin. Principles of Hyperplasticity: An
Approach to Plasticity Theory Based on Thermodynamic Principles.
Springer London, 2007.

[JEL17] Y. Jiang, I. Einav, and M. Liu. A thermodynamic treatment of partially
saturated soils revealing the structure of effective stress. Journal of the
Mechanics and Physics of Solids, 100:131–146, 2017.

[JL03] Yimin Jiang and Mario Liu. Granular elasticity without the coulomb con-
dition. Physical review letters, 91(14):144301, 2003.

[JL09] Y. Jiang and M. Liu. Granular solid hydrodynamics. Granular Matter,
11:139, 2009.

[Kha65] I.M. Khalatnikov. Introduction to the Theory of Superfluidity. Benjamin,
New York, 1965.

[Kol91] Dimitrios Kolymbas. An outline of hypoplasticity. Archive of applied
mechanics, 61(3):143–151, 1991.

Itai Einav 113

ALERT Doctoral School 2018



[LL80] L.D. Landau and E.M. Lifshitz. Statistical Physics. Butterworth-
Heinemann, 1980.

[LL87] L.D. Landau and E.M. Lifshitz. Fluid Mechanics. Butterworth-
Heinemann, 1987.

[NE09] Giang D Nguyen and Itai Einav. The energetics of cataclasis based on
breakage mechanics. Pure and applied geophysics, 166(10-11):1693–
1724, 2009.

[Ons31] L. Onsager. Reciprocal relations in irreversible processes. i. Physical
review, 37(4):405, 1931.

[Per63] Piotr Perzyna. The constitutive equations for rate sensitive plastic mate-
rials. Quarterly of applied mathematics, 20(4):321–332, 1963.

[Ter43] K. Terzaghi. Theory of consolidation. Wiley Online Library, 1943.

[Zie77] H. Ziegler. An introduction to thermomechanics. North-Holland series in
applied mathematics and mechanics. North-Holland Pub. Co., 1977.

114 Hierarchical guide for constructing thermodynamically admissible c. models

ALERT Doctoral School 2018



Energetical background of common
approaches in geomechanics

Eleni Gerolymatou

Chalmers University of Technology

As is well known, mechanics in general is based on three basic conservation laws,
those of mass, momentum and energy. Of those, the first two can be derived from
the last, when one considers the objectivity with respect to the observer as a prereq-
uisite. A further energy related concept significant for modeling is the second law
of thermodynamics. This chapter discusses several common methods and concepts
used in geomechanics, with respect to their relationship to the first and second law of
thermodynamics. The aim is to provide the reader with a better understanding of the
underlying assumptions of these approaches. The various methodologies presented
are subdivided into two categories, principles based on the concept of energy con-
servation and variational principles. In the first category the derivation of the mass,
momentum etc. balance equations from the energy balance by means of assuming a
change of observer and the derivation of the micromechanical formulation of stress
measures are discussed, as well as a brief discussion on energy based upscaling. In
the category of variational principles, the minimum potential energy, the maximum
plastic work and the second order work are outlined. The virtual work method is
omitted, as it has been discussed in more detail elsewhere in this book.

1 Introduction

Though the concept of energy is a rather new one for humanity, the idea that Nature
has some goal appeared a long time ago. Aristoteles claimed in Physics that Nature
follows the easiest path or, equivalently, the one requiring the smallest amount of
effort in all its manifestations. The idea may be even older, since Euler [Eul53] in
turn claims that Aristoteles most likely borrowed this dogma from his predecessors,
rather than developed it independently. The same principle today remains at the basis
of variational principles [Ber09]. The notion of a quantity that is eternally conserved
was first introduced apparently by Heraclitus in the 6th century B.C., who denoted
this quantity as fire [Sch68], though not in the literal sense. Several centuries later,
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Leonardo da Vinci [Mac41] and Girolamo Cardano [Car51] both remarked on the fact
that it is impossible in terrestrial phenomena to get something for nothing, implying
again the idea of a quantity that must be conserved.

Which quantity is conserved has not always been obvious. René Descartes, on the
basis of his experiments on the impacts of bodies, formulated what he called the con-
servation of the quantity of motion, known today as momentum conservation [Lag88].
Leibniz [Lei86] disagreed with him and expressed the view that the quantity conserved
is the product of the mass and the second power of the velocity, a quantity he denoted
as vis viva, or living force. To account for slowing due to friction, Leibniz claimed that
heat consisted of the random motion of the constituent parts of matter. A controversy
was sparked that lasted more than a century. By many the controversy is thought to
have been resolved by Lagrange [Lag88], who endeavored to express mechanics in a
mathematical manner analogous to a geometry of four dimensions, the time and the
three space coordinates. He derived the conservation of the vis viva from the laws of
Newton.

The term ‘energy’ was first introduced by Thomas Young [You07], who defined in
1807 the energy of a body as the product of its mass into the square of its velocity.
Gustav-Gaspard Coriolis introduced the term ’kinetic energy’ in 1829, while William
Rankine introduced ’potential energy’ as a concept in 1853. The laws of thermody-
namics were finally formulated by William Thomson, Lord Kelvin, in 1851 [Tho51],
who claimed that there is an entity (energy) which is conserved, and a different one
(motivity -concentration of energy) which is lost. This is the great generalization ex-
pressed as the ‘universal tendency in nature to the dissipation of energy’and led to the
mathematical formulation of the concept of energy by Rudolf Clausius. The interested
reader may find more details on the history of the concept of energy in [Lin71].

Even in our days, with the conservation of energy firmly established, the concept
remains hazy. Richard Feynman stated [Fey64]

That is a most abstract idea, it is not a description of a mechanism, or
anything concrete; it is just a strange fact that we can calculate some
number and when we finish watching nature go through her tricks and
calculate the number again, it is the same.

In fact, both the first and the second law of thermodynamics can be classified as em-
pirical, as they are based on observations. Even so, no exceptions to their validity are
known and they form the basis for a wide range of concepts and methods in a wide
variety of fields, among which mechanics are also to be found.
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2 Conservation principles

2.1 Derivation of balance equations

The notion of using the energy rate invariance as a tool to extract the basic principles
of mechanics dates back to 1959 and was first introduced by W. Noll [Nol59], though
Lagrange [Lag88] showed already in 1788 that the opposite was also possible. The
idea was later used also by other authors, see [GR64, PG97]. The scope here is to
apply the energy rate invariance to the domain of granular assemblies, in order to ex-
tract the basic balance equations in a natural way. Note that it is the energy rate that
is invariant to non-inertial changes of observer, rather than the energy. The deriva-
tion of the basic conservation laws of mechanics from the energy rate balance is here
illustrated using the simple example of a single grain.

The power balance equation in its general form reads

Ė = ẆF + ẆC + Ẇq − Ėkin − Ėel − Q̇−D = 0 (1)

where WF is the work of the forces, WC is the work of the couples, Wq is the amount
of heat inflow to the system, Ekin is the kinetic energy of the grain, Eel is the stored
in it elastic energy, Q is the heat of it and D is the rate of energy dissipation. In the
present work heat will be neglected. As a result the above can be rewritten as

Ė = ẆF + ẆC − Ėkin − Ėel −D = 0 (2)

Note that, as observed in [Nol59], the kinetic energy rate corresponds to the work rate
originating in inertial forces, which can be viewed as the result of the interaction of
our system with the rest of the bodies in the universe. In that sense, the above repre-
sentation of the energy rate is not the only one admissible. This point is extensively
discussed in [PG97], where the form of each of the energy terms is also discussed.

The energy rate that should be maintained between observers is

˙̃E = ẆF + ẆC − Ėkin (3)

When considering a single grain, this is characterized by its mass, a scalar measurem,
the position of its center of mass x, its linear velocity v, its rotational velocity w and
its tensor of angular inertia θ. Since rigid grains are discussed, there is a single force
and a single couple to which all forces and couples acting on the single grain can be
reduced, with their center of mass as a reference point. Therefore

ẆF + ẆC = f · v + m ·w (4)

For the kinetic energy rate, on the other hand, the following holds

Ėkin =
1

2
ṁv · v +mv · v̇ +

1

2
wT θ̇w + wTθẇ (5)

Two changes of observer are considered. The first moves at a constant linear velocity
with respect to the initial system, while the second moves at a constant rotational
velocity with respect to the initial system.
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2.1.1 Galilean change of observer

An observer moving at velocity a with respect to the initial system is considered. The
rotational velocity and the rotational inertia observed by the second observer are the
same as those observed by the first one. The same holds for the moments:

θ′ = θ & w′ = w & m′ = m (6)

The transformation rule for the force remains unknown, while that of the velocity
reads

v′ = v − a (7)

Then the invariance requirement yields

f · v + m ·w − f ′ · v′ −m ·w =
1

2
ṁv · v +mv · v̇ +

+
1

2
wT θ̇w + wTθẇ − 1

2
ṁv′ · v′ −mv′ · v̇′ − 1

2
wT θ̇w −wTθẇ⇒

f · v − f ′ · v′ =
1

2
ṁv · v +mv · v̇ − 1

2
ṁv′ · v′ −mv′ · v̇′ ⇒

f · v − f ′ · v + f ′ · a =
1

2
ṁv · v +mv · v̇ +

− 1

2
ṁ (v − a) · (v − a) +

− m (v − a) · (v̇ − a)⇒

f ′ · a = (f ′ − f) · v +

+ ṁa · v +ma · v̇ − 1

2
ṁa · a

Since a is arbitrarily selected, the above equation can be decomposed as follows:

f ′ = f (8)

f = ṁv +mv̇ (9)

ṁ = 0 (10)

yielding from top to bottom the force balance, the momentum balance and the mass
balance.

2.1.2 Leibniz change of observer

The Leibniz change of observer refers to an observer moving at constant rotational
speed and zero translational speed with respect to the first one. An observer moving at
rotational speed b with respect to the initial system is now considered. Then, at given
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time t, the axes of the second system will be rotated with respect to those of the initial
one by a rotation O(t), to be signified from now on as O for simplicity.

The rate of change in rotation will be

Ȯ = lim
dt→0

O(t+ dt)−O(t)

dt
⇒

Ȯ = lim
dt→0

dO− I

dt
O⇒

Ȯ = W O⇒
W = Ȯ OT

where in the specific case W is a rotational velocity tensor such that

WR = b×R

for any vector R. Note that between W and b the following property holds:

W = −ETb, b = −1

2
E W

where E is the third order Ricci tensor.
The second derivative of O is now considered.

Ö = lim
dt→0

Ȯ(t+ dt)− Ȯ(t)

dt
⇒

Ö = lim
dt→0

W(t+ dt)O(t+ dt)−W(t)O(t)

dt
In the specific case W is constant in time, so

Ö = lim
dt→0

WO(t+ dt)−WO(t)

dt
⇒

Ö = W lim
dt→0

O(t+ dt)−O(t)

dt
⇒

Ö = W Ȯ

Additionally, as is well known for any rotation tensor

O OT = I⇒

Ȯ OT + O Ȯ
T

= 0⇒
W + WT = 0⇒
W = −WT ⇒

W ∈ Skw (11)
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As far as the relationship between the quantities of the first system and those of the
second system is concerned, the following is known:

m′ = m , ṁ′ = ṁ (12)

x′ = OTx (13)

ẋ′ = Ȯ
T
x + OT ẋ⇒ v′ = Ȯ

T
x + OTv (14)

v̇′ = Ö
T
x + Ȯ

T
ẋ + Ȯ

T
v + OT v̇⇒

v̇′ = Ȯ
T

WTx + 2Ȯ
T
v + OT v̇ (15)

w′ = OT (w − b) (16)

ẇ′ = Ȯ
T

(w − b) + OT ẇ (17)

For the transformation of the forces and the moments the rule for vectors is used:

f ′ = OT f , m′ = OTm (18)

For θ, θ′, θ̇ and θ̇
′

the assumption is made that they are symmetric.

To begin with, the form of the kinetic energy in the second system is evaluated. Intro-
ducing in the kinetic energy rate equation the above equations one gets

Ė′kin =
1

2
ṁ
[
Ȯ
T
x + OTv

]T [
Ȯ
T
x + OTv

]
+

+ m
[
Ȯ
T
x + OTv

]T [
Ȯ
T

WTx + 2Ȯ
T
v + OT v̇

]
+

+
1

2

[
wT − bT

]
O θ̇

′
OT [w − b] +

+
1

2

[
wT − bT

]
O θ′

[
Ȯ
T

(w − b) + OT ẇ
]

+

+
1

2

[(
wT − bT

)
Ȯ + ẇTO

]
θ′ OT [w − b]

Using the above and setting the energy rate in the new system equal to the energy rate
in the reference system yields the following balance equations

θ̇ = Wθ + θW (19)

m = θ̇w + θẇ (20)

for the angular inertia tensor and the angular momentum respectively, where W is the
rotational velocity tensor corresponding to the vector w.

Though the example given here is a very simple one, the same principle can be used
to derive the balance equations in significantly more complicated cases, such as mul-
tiphase media.
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2.2 Micromechanical stress tensors

In several works [CMNN81, CL90, BV01], the sum of the work rates of the contacts
is set equal to the total work rate, in an attempt to derive the micromechanical formu-
lation of the stress, the couple stress and the hyper stress tensors in granular media
on the basis of the inter-granular forces. The methodology is briefly outlined and
critically discussed here.

For the sake of simplicity, the present analysis is restricted to a Cosserat continuum.
A more extended analysis may be found in [FG10]. The same approach has been
applied to so called non-simple materials [Nol72] to derive the formulation of the
corresponding higher order stress measures, for example for micropolar media [CL90,
BV01, TW02] and couple stress tensors. An assembly of grains is considered, with a
set C of ordered contacts a. The forces and couples at the contacts are denoted as fa

and ma respectively. A reference point O is defined. The assumption is made that the
displacement and rotation rates are affine, which means the displacement rate of the
grain (k) can be expressed in the form of a Taylor expansion about the center O of the
assembly as

u(k) = uO +∇uO · x(k) (21)

for the displacement rates and

w(k) = wO +∇wO · x(k) (22)

for the rotation rates. The relative velocity of the grains (i) and (j) at their contact a
will then be

va = v(i),c − v(j),c (23)

va = ∇uO ·
(
x(i) − x(j)

)
+ wO ×

(
x(j) − x(i)

)
+

+ ∇wO ·
(
x(i) − xO

)
×
(
xa − x(i)

)
+

− ∇wO ·
(
x(j) − xO

)
×
(
xa − x(j)

)
(24)

Since the internal power is invariant to the selection of the contact point, no loss in
generality results from assuming it to be located at mid-distance between the centers
of the two grains. As a result

va = ∇uO · la −wO × la +∇wO ·
(
xa − xO

)
× la (25)

where
la = x(i) − x(j) (26)

The relative rotation is simply

wa = ∇wO ·
(
x(i) − x(j)

)
(27)
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Figure 1: Contact between two grains.

This means that the rate of the internal work may be written as

Pint =
∑

a∈C

(
(fa ⊗ la) :

(
∇vO −WO

))

+
∑

a∈C

(
(fa × la)⊗

(
xa − xO

)
: ∇w

)

+
∑

a∈C

(
ma ⊗ la : ∇wO

)

where W(0) is the tensorial form of the rotation vector w(0).

For a continuum the internal power of a Cosserat medium is known to be

P̄int = V
(
σ : Γ̇ + µ : κ̇

)
(28)

where Γ is the generalized strain, µ is the couple stress tensor and κ is the curvature.
This would lead one to define

Γ̇ = ∇v −W

σ =
∑

(i,j)∈C
fa ⊗ la

κ̇ = ∇w

and
µ =

1

V

∑

a∈C
(ma ⊗ la) +

1

V

∑

a∈C
((fa × la)⊗ xa) (29)

In the above, the dependence of the couple stress tensor on the selection of the ref-
erence point is clear. This result is in agreement with the work of different authors
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[CL90, BV01]. It is however counter-intuitive, in that it shows a strong dependence
of the result on the choice of the reference point. In fact, contacts further from the
reference point seem to contribute more significantly to the final result.

Figure 2: Comparison of different couple stress tensor formulations [Ger11].

An alternative using only the first neighbors of each grain was suggested by Tordesillas
and Walsch [TW02]. This eliminates the dependence on the reference point, as the
expansion is now performed around a single grain. A comparison of the two different
measures is given in figure 2 for a simple shear test on a specimen of hexagons with
periodic boundary conditions. The code LMGC90 was used. The curvature in the
vertical direction is shown at the top, while the standard couple stress formulation
given here [CL90, BV01] and that of a variation of the one by Tordesillas and Walsch
[TW02, Ger11] follow. As may be observed, the results are very different. While
part of the difference may be attributed to fluctuations due to the discrete character of
the simulation, there can be no doubt that the two formulations provide very different
results. There is no doubt that such differences will also arise when considering other
stress measures, such as the hyper stress tensor.

The assumption of affinity is of course not a valid one, but rather only an approxi-
mation. It has been shown from DEM simulations [AMVH+06, Kru14] and experi-
ments [CCL97] that in reality displacements deviate significantly from this idealiza-
tion. Even so, the discrepancies in this case do not arise from it. The well known
formula for the stress tensor that has resulted from this consideration, under the as-
sumption that the displacement field is affine is used widely and has been found to be
in excellent agreement with the stress tensor evaluated from the forces applied at the
boundary in discrete element simulations. Moreover, similar approaches using instead
the elastic energy at the contacts show no dependence on the reference point [Ger14].

The variations seem to arise mostly from the process of equating a micromechanical
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quantity, such as the virtual power of the contacts, to a continuum quantity, in this
case the virtual power of a Cosserat continuum. Extreme care should be taken when
using this approach to make sure that the quantities equated to the micromechanical
ones truly correspond to their continuum equivalents. A more detailed discussion on
the comparison between micromechanical and continuum measures may be found in
[FTV06]. So, while there is no doubt of the correctness of the concept of setting the
internal work equal to the external work, care needs to be exercised in the details,
especially when passing from a discrete to a continuum formulation.

3 Variational methods

A variational principle is an assertion stating that some quantity, that is defined for
all possible processes that could potentially take place, reaches its minimum (or max-
imum, or stationary) value for the real process [Ber09]. The notion stems from the
idea, that the observable events are extreme in their character and that the general
principles sought are variational, i.e. they assert that certain parameters obtain their
maximum or minimum values in realizable physical processes. A simple example is
the intuitive understanding that Nature, given the chance, will follow a path of least
resistance to the final state, expressed loosely as the ‘principle of least action’.

Variational principles are not directly linked to either the first or the second law of
thermodynamics and are usually empirical in nature. Some of the more commonly
used ones in the field of mechanics will be discussed here.

3.1 Minimum potential energy

The potential energy of a body with respect to a reference configuration can be defined
as the work done in moving the body from the reference configuration to its new one.
It has the following characteristics [Kel05]:

1. a force field exists

2. to move something in the force field, work must be done

3. the force field is conservative

4. the force field itself does negative work when another force is moving something
against it

5. it is recoverable energy

An example is shown in figure 3. Taking into account gravity, the potential energy
of the first sphere is larger than that of the second one. In the absence of gravity,
both spheres have the same potential energy. In the same way, considering internal
energy, one may consider a very loose granular assembly in a box, with the particles
at a significant distance from each other. Under this definition, reducing the size of
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the box does not lead to a change in internal energy, as no work has been expended
for the change in the configuration. On the other hand, if the particles of the granular
assembly were acting as a gas with a degree of kinetic energy, an increase in internal
energy would follow the reduction of the size of the box. Correspondingly, the poten-

x

dE
dx

Figure 3: Equilibrium and potential energy gradient.

tial energy of a deformable body may be viewed as its elastic energy, which results
from the field of the internal stresses.

It is a well known principle, that a body will be in equilibrium, when it is located at
a position corresponding to zero gradient of the potential energy. Examples in figure
3 are the first sphere (located at a local maximum) and the second sphere (located at
a local minimum), while the third sphere is not in equilibrium. The bodies located at
local minima, like the second sphere, are in addition stable. Thus, one speaks of stable
and unstable equilibrium points.

The principle of minimum potential energy follows directly from the principle of vir-
tual work for elastic materials. It is used to obtain approximate solutions to problems
and is also known as the Rayleigh-Ritz method. The underlying idea is exceedingly
simple. A body under a certain load will reach equilibrium and, provided nothing pro-
hibits it from it, it will endeavor to reach a stable equilibrium. If the loads are known,
the field of displacements will be the one that maximizes or minimizes the potential
energy. It is usually assumed that the equilibrium is stable and that the potential en-
ergy will be minimized. For the field of displacements, trial functions are used. As
a result, the solution evaluated with the Rayleigh-Ritz method is an approximation of
the actual solution.

Examples are not included here, as such may be found in the chapter of this book that
is treating virtual work.
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3.2 Maximum plastic work principle

The domain in which the deformations of geomaterials are reversible is at best limited.
To predict the mechanical response of such materials, the most widely used approach
is elasto-plasticity. The strains, and also their increments, are most often decomposed
additively in an elastic and a plastic part

ε̇ij = ε̇eij + ε̇pij (30)

The yield function f(σ, :) is used to determine whether the deformation rate is elastic.
Elastic (reversible) strains only occur when

f(σ) < 0 (31)

whereas plastic strain increments become non-zero when the corresponding equality
holds.

Within the frame of elasto-plastic theories, it is common to assume that the plastic
strain is analogous to the gradient of the plastic potential function in the stress space:

ε̇pij = λ̇
∂g

∂σij
(32)

where g(σ, :) stands for the plastic potential function [Yu06]. When the functions
f(σ, :) and g(σ, :) coincide, one speaks of an associated flow rule or of the normality
rule, because the strain increment is normal to the yield surface. This plastic flow rule
was based on the observation in 1870 by de Saint-Venant [dSV71] that for metals the
principal axes of the plastic strain rate coincide with those of the stress. This is the so-
called coaxial assumption, which has been the foundation of almost all the plasticity
models for metals. An example after [IaH11] is shown in figure 4 for biaxial tests on
rolled titanium sheets. The yield surface has been interpolated using splines, while for
the strain directions the normality rule has been used.

Figure 4: Yield surface (left) and flow directions (right) after [IaH11].

The normality rule represents a maximum for the plastic work, as shown by Hill
[Hil48]. The proof is briefly outlined here. Let us assume that the plastic strain rate
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˙εij is given and is determined from the normality rule and the yield criterion at the
corresponding stress state, σij , represented by a point P in the stress space, figure 5.
If σ∗ij is an arbitrary state of stress represented by a point P∗ on or inside the yield
surface, then the difference between the incremental plastic works done by the two
stress states on the actual plastic strain rate is

Ẇp =
(
σij − σ∗ij

)
ε̇pij (33)

The above represents the scalar product of the vector P∗P and the plastic strain rate.
If the yield surface is strictly convex, the angle between these vectors is acute and the
scalar product is positive. Therefore

Ẇp =
(
σij − σ∗ij

)
ε̇pij ≥ 0 (34)

which means that the plastic work has a maximum for associated flow rule, under the
condition that the yield surface is convex. This is known as the maximum plastic work
principle or theorem. Though presented here as given by Hill [Hil48], it seems to have
been originally proven by von Mises [vM28].

P

P*

ε

ε

.

.
σ - σ* 

p

p

Figure 5: Potential energy gradient.

In short, the maximum plastic work principle is a mathematical statement of the fol-
lowing two important ideas: (a) The yield surface is convex; (b) The plastic strain rate
(or increment) is normal to the yield surface.

It must be noted that a large amount of experimental data suggests that the coaxial
assumption is generally not valid for soils and rocks. The discrepancy is especially
large when it comes to stress rotations. An example after [GI00] is shown in figure
6. Efforts have been made in recent years to formulate the elasto-plastic response in
such a way as to satisfy the maximum plastic work principle, for example in [CH97,
Kra09, Fra18] and it has been shown that it is possible to recover associativity at the
cost of introducing a dependence on internal variables of the functions describing the
internal energy or the dissipation.

It should be remarked at this point, that, though associativity is an empirical observa-
tion for metals, the requirement that the plastic work be maximum is not one resulting
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Figure 6: Unit plastic strain increment vectors obtained from pure principal rotation
tests on dense Toyoura sand after [GI00].

from the first or the second thermodynamic law. It is rather an assumption that has
proven to be very useful, but is currently being debated. The intuitive justification
may be seen as follows: a body on which external work is imposed will, in agreement
with the requirement for energy balance, tend to either store this energy in the form
of internal energy or to dissipate it. Maximizing the dissipation is thus equivalent to
assuming that the body will strive to reach a minimum internal energy, or potential
energy, in the absence of kinetic energy, reaching thus a stable equilibrium as fast as
possible. Minima in potential energy are empirically accepted as attractors, but there
is no proof that the path to these attractors is the shortest possible.

From the point of view of the second law of thermodynamics, the restriction on the
direction of the plastic strains is much more relaxed, requiring only the dissipation
to remain non-negative at any given time. This would mean that the direction of the
plastic strains cannot deviate by more than 90o from the direction of the stresses.

4 Second order work

Hill [Hil58] stated that, under certain assumptions, the equilibrium of the body occu-
pying the volume V is stable if

∫

V

σ̇ij
∂u̇i
∂xj

dV > 0, ∀u̇i(xj) (35)

The underlying assumptions are mainly the small strain assumption and the assump-
tion of quasi static deformation. This gave rise to the so called second order work
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criterion, which is expressed as follows: If

d2W = σ̇ij ε̇ij > 0, ∀ε̇ij (36)

then the equilibrium is stable.

It is obvious that the local and the global formulations are not equivalent. The global
form, equation (35), can still be satisfied, if there exist points not satisfying the local
form, equation (36), as long as they are few enough. The satisfaction of the local form
at one point of the body occupying the volume V does not provide information on the
global form, equation (35). If the stress, strain and their increments are uniform in the
volume V , the two formulations are equivalent. The distinction is ignored here.

The second work criterion is classified as a stability criterion. Stability is however an
ambiguous term. Lyapunov [Lya92] defined a system as stable when small perturba-
tions in the initial conditions will lead to finite perturbations of the final solutions. Let
us consider once more figure 3. The second sphere is obviously in a stable state. The
first sphere from the right on the other hand is stable, if the length of the slopes on
its right and on its left are bounded, or, more simply, if the peak it finds itself at is
a local but not a global maximum of the height. From the point of view of potential
energy, the sphere is of course in a state of unstable equilibrium. Thus a more suitable
definition for the case of continua would be to require the perturbation of the final
solution to a continuous function of the perturbation of the initial condition. A more
extensive discussion on the topic of stability definition, validity of the criterion and
comparison to other formulations may be found in the extensive literature, for exam-
ple [IN98, CCV04, NDK07]. The present section is limited to the connection of the
formulation to energetic considerations.

0 0.1 0.2 0.3 0.4

strain [%]

0

0.5

1

1.5

2

st
re

ss
 [M

P
a]

0 2000 4000 6000

time [sec]

0

0.05

0.1

0.15

to
ta

l w
or

k 
[k

P
a]

Figure 7: Uniaxial compression test (left) and corresponding work measures (right).

The work rate, or power, for the stresses reads

Ẇ = σij ε̇ij (37)

Considering the rate of the above equation yields

Ẅ = σ̇ij ε̇ij + σij ε̈ij = d2W + σij ε̈ij (38)
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It is obvious that the second order work is the rate of the power, if one neglects ac-
celerations. Since the application is as a rule restricted to the quasi-static regime,
accelerations are usually negligible. The requirement for a positive second order work
is thus equivalent to the requirement for a strictly increasing work rate. As the second
order work criterion requires the second order work to be positive for every possible
strain rate direction, it requires the work rate to be increasing also for every possible
strain rate direction. It should be remarked at this point that the criterion states that
the equilibrium is stable, when equation (36) is satisfied. This does not mean that the
equilibrium is necessarily unstable when equation (36) is not satisfied, meaning that a
non positive second order work is a necessary but not sufficient condition for unstable
equilibrium.
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Figure 8: Work rates (left) and second order work (right).

The question that arises, is what the physical meaning of the second order work princi-
ple is. A negative second order work is linked in a sense to a plastic unloading: while
the strain rate is positive, the stress rate is negative. The opposite is of course also
possible, depending on sign conventions. In such a situation, the rate of the reversible
changes in the internal energy will still be non negative. Since changes in the kinetic
energy are neglected, a positive value of the second order work would mean that the
rate of dissipation changes faster than the rate of the internal power can change.

We will try to illustrate this here, using a simple example. On the left of figure 7 the
axial stress versus the axial strain of a uniaxial test on a soft calcarenite is shown.
The test was performed with a constant radial strain rate as the controlling variable.
On the right of the same figure the total work, the elastic energy and the dissipated
energy are plotted. A constant elastic modulus was assumed, for the sake of simplicity,
even if, strictly speaking, the elastic modulus decreases in the course of the test. The
total, elastic and dissipated work are given in the same figure in blue, red and black
respectively, while their rates are given on the right of figure 8. The second order
work is given on the left of the same figure. Consider the red points in the figures in
the order of time as denoted by A, B, C, D and E, respectively.

From the beginning of the test to A the stress and the strain rate are both positive and
so is the second order work. It would also be positive in the case of a reversal of sign
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of the strain rate. All work rates are also positive. According to the second order work
criterion, the test is stable.

Between the points A and B the second order work is negative. The test is however
stable, in the sense that strain rate perturbations lead to continuous changes in the
stress. This is not in conflict with the second order work criterion, as it does not claim
that a negative second order work is a definite sign of instability. It should also be
remarked, that stress control at these points is not possible, something that is however
more a question of controllability than a question of stability, see [IN98].
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Figure 9: Strain rate versus time.

Between points B and C the second order work is positive and the specimen is unsta-
ble, since a positive strain rate would lead to a jump in the axial stress. This situation
is also in agreement with the second order work criterion, as it requires the inequality
to hold not for the actual, but for all possible displacement rates.

At point E one can easily observe that, while the rate of work is clearly increasing,
and has thus a positive time derivative, the second order work is negative. This is a
result of the increasing strain rate, as may be seen in figure 9, which means that the
change in the kinetic energy is not negligible, even in the case of a clearly quasi-static
uniaxial test.

Summarizing, it should be noted that, when applying the second order work criterion,
attention should be paid to the definition of stability and its differences to controllabil-
ity. Care should also be taken with respect to the kinetic energy, which was explicitly
excluded by Hill, but may be present even in quasi-static settings. A relevant dis-
cussion may be found in [CCV04]. Finally, it should be stressed that the criterion
requires the inequality to hold for all possible displacement increments, rather than
just the actual one.

5 Conclusions

In this chapter different methods and formulations, more or less closely related to
the concept of energy were outlined. The list is by no means exhaustive and several
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significant and commonly used methods were omitted. An example is the use of
concepts linked to energy to regularize ill-posed problems. The goal was to provide
the reader with a somewhat better understanding of the underlying assumptions of
each of these methods. It is hoped that this will render it easier to avoid common
pitfalls in application, that may lead to physically unrealistic results.
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Geomechanics as a field has increasingly being expanding towards including infor-
mation from different scales as well as physical mechanisms. The need for additional
information has brought elaborate requirements into the constitutive models required
to represent such rich information. In this work we present a constitutive framework
for including multi-physical mechanisms, relying on explicitly allowing for the energy
balance and the second law of thermodynamics to evolve and lead the system to its
point(s) of self organisation. Through theoretical examples from the fault mechan-
ics community and practical applications from Geomechanics, we show that different
self-organisation regimes can be achieved for different loading conditions and physi-
cal mechanisms included.

1 Introduction

Constitutive models for multiphysical processes in Geomechanics have the key re-
sponsibility of describing processes that are happening over several different length
and time-scales, yet affect the apparent response of materials related to all the spec-
trum of civil engineering applications. The challenging component in including mul-
tiphysical processes in constitutive models, is that the systems become extremely rich
in energetics and may self organize away from the maximum dissipation limit. Such
systems and cases are very well known in chemical engineering, as showcased by the
nobel-price wining work of Progogine and his co-workers [Pri90].

Geomaterials, unlike chemical engineering materials, have the particularity of chang-
ing their behaviour from solid-like to fluid-like upon failure. Modelling Geomaterials
has therefore the additional challenge of capturing such transitions. In this work we
will define failure and lay down the fundamental principles of multiphysics modelling
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in Geomaterials. After doing so, we will present a constitutive law based on these
principles. Examples given in this work include cases from fault mechanics as well as
laboratory experiments.

1.1 Failure and fracture in Geomaterials

Failure and fracture in geomaterials may have different manifestations, such as the
propagation of single fractures in otherwise intact rock, crack growth in presence of
multiple interacting fractures, initiation and percolation of damage zones under quasi-
static and dynamic loading, strain localization into shear- or compression bands.

Localization theory is a natural extension of Mohr’s strength of materials theory. The
mathematical formulation of bifurcation and post-bifurcation phenomena and related
instabilities constitutes the basis of a contemporary continuum theory of failure of
geomaterials [VS95]. From the theoretical point of view, the so-called Thomas-Hill-
Mandel shear-band model ([Hil62], [Man66]) was introduced in the early ‘60s and it
was widely publicized by the paper of Rudnicki and Rice [RJ75].

Localized failure, exhibited as shear banding, has been recently claimed as the primary
failure pattern for faults [Ric06] and landslides [Var2a]. However, field evidence from
exhumed faults reveals that seismic events take place in even narrower zones within
shear-bands, formed from post-failure evolution of the fault zone, dominated by weak-
ening mechanisms that are considered to be mainly thermal in origin [Ric06]. Note
that in ductile, visco-thermoplastic materials like metals, shear banding is commonly
observed during high strain-rate inelastic deformation.

1.2 The role of energy in shear localization of Elasto-Plasticity

These concepts of shear banding as material bifurcation of an elasto-plastic skeleton
have led to the identification of a material length scale defining the width of shear
bands. The critical stress, as well as the orientation and the thickness of the localized
shear failure planes (shear zones) are calculated through the eigenvalues of the elasto-
plastic stiffness modulus Cepijkl of the material [RJ75] obeying a rate-independent rhe-
ology, σ̇′ij = Cepijklε̇kl (the prime denoting effective stress). Within the framework of
the solid mechanical instabilities the shear (fault) zone thickness emerges as a solution
depending on the microstructure [MV87, PV11].

This rate-independent regime is typically used as an adequate description of brittle
processes, thus placing the formation of the shear zones (onset of localization) near
the maximum deviatoric stress [RJ75]. For example, in linear elastic fracture me-
chanics brittle fracture occurs without thermal activation when a critical stress level
is reached to split the bonds. At a critical energy threshold an elasto-dynamic fast
time-scale instability ensues where a variety of dissipative processes kick in such as
grain/particle rotations which release heat in extremely fast time-scales. The fast time
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Figure 1: (a) Conceptual model of the internal structure of a fault described by two
scales: the Principal Slip Zone (PSZ) in the centre surrounded by the fault zone. (b)
using the geothermal temperature as a thermal condition for the boundary of the fault
zone we obtain the thickness of the fault zone as a function of its internal structure
(average particle size) and the thermal pressurisation. (c) Using the higher temperature
required for chemical reactions as recorded in the PSZ a much length scale down to 3
times the average grain/particle size is obtained.

scale instability simplifies the processes as temperature and fluids do not have time to
diffuse. This regime is called undrained-adiabatic and is characterising extremely fast
co-seismic slip [Ric06, SSV11] of brittle failure events.

Within this brittle, solid mechanical framework recent studies [SSV11, VSS12, VSS13]
derived different levels of localisation corresponding to different energy (temperature)
regimes. Their results showcase the role of different mechanisms operating at different
scales and energy (temperature) levels. Even by adopting classical, rate-independent,
elasto-plastic theory for a material incorporating chemical, hydraulic and thermal sen-
sitivity we obtain some strong dependence of the shear band thickness with pressure
and temperature conditions.

This is shown by calculating the extent (thickness) of the brittle fault zone of Figure 1
(a) at different temperature regimes, marked by: (1) the temperature inferred from the
geothermal gradient for the boundary of the fault zone, (2) the activation temperature
of the dominant chemical reaction observed in the Principal Slipping Zone (PSZ). The
details of the approach can be found in [SSV11, VSS12, VSS13] and the results are
summarised in Figure 1 (b) and (c).
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1.3 Rate sensitivity

A vast category of geomaterials exhibit rate-dependent behavior during shear, thus
changing their mechanical properties and state with velocity. Recently, it has been
shown by Veveakis et al. [VVD07] that a fully saturated clay material may change
its properties past a critical temperature and slip velocity, when sheared under con-
stant load. In particular, a rapid solid-liquid phase transition may take place when
a normally consolidated clay expels water due to heat and becomes liquefied. This
phenomenon is called thermal pressurization and is usually related to the difference
of the thermal expansion coefficients of the two phases at low hydraulic diffusivities
and/or to the dehydration or “fugacity”of water bound to the mineral particles. Ther-
mal pressurization is considered as a major weakening mechanism both for landslides
([Var00], [LA07]) and seismic slip ([Ric06], [SF09]). Recently, Fialko and Khazan
[FK05] used a similar framework of shear heating and thermodynamics of phase tran-
sitions for the effect of melting. They showed that chemical transformations may
exhibit the same behavior with thermal pressurization, and provided the conditions
at which melting may reduce rapidly the strength of a fault. Since these weakening
processes are thermal in origin [Ric06], it is rational to anticipate that triggering one
of them could be due to thermally active, prolonged slip and in particular due to the
heat produced by friction at the base of a slipping fault.

In order to model this kind of behaviors (such as prolonged slip) it is common to
account for rate and state dependency in the frictional behavior of the geomaterials,
after the works of Dieterich ([Die72], [Die78]). In fact, the need to account for rate
dependent friction laws in order to model the stick-slip motions that characterize an
earthquake was brought into light by Gu et al. [GRRT84]. Scholz [Sch98] remarked
that the development of a full constitutive law for rock friction is crucial to understand
earthquake phenomena such as seismogenesis and seismic coupling, pre- and post-
seismic phenomena, and the insensitivity of earthquakes to stress transients. Later,
Marone [Mar98] indicated that the differences in the behavior of bare rock surfaces
as compared to shear within granular fault gouge can be attributed to dilation within
fault gouge. Following this study, Garagash and Rudnicki ([Gar12]) retrieved stable
and unstable regimes concerning the shear heating of a fluid-saturated slip-weakening
dilatant fault zone. They verified that shear heating tends to increase pore pressure and
decrease the effective compressive stress and the resistance to slip and consequently
tends to promote instability [VAV10, APV14, VPA14, VRL14].

Chester and Chester [CC98], based on field observations from the Punchbowlt fault,
San Andreas, suggested that unstable seismic slip is an extremely localized phe-
nomenon, that occurs primarily in an ultra thin shear zone of the order of millimeter
(the so- called “Primary Slip Surface” or PSS), which lies within a finely granulated
(ultracataclastic) fault-core of typically tens to hundreds millimeter. Note also that
the Aigion fault core of clay size particles consisting of finely crushed radiolarites,
extended to about 1m and was intercepted by a “fresh”distinct slip surface of sub-
milimiter size [SJP05]. This structure of an ultrathin shear zone within the ultracata-
clastic core is observed only in the case of a wet gouge, under hot conditions [BMJ95].
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It is to be noted also that under these hot-wet conditions little grain size reduction was
observed in the ultracataclastic core, and that a temperature weakening and velocity
strengthening frictional behavior is observed, which is dominated by solution transfer
processes, such as pressure solution.

In this study we will initially study a simple 1D shear problem, considering the ultra-
cataclastic core to be filled with a fully saturated, visco-plastic, porous, soil material.
The solid phase is assumed to have permanent contacts between the “grains”so that a
solid skeleton is formed and a normal effective stress can be defined. Based on basic
principles of thermodynamics we formulate the corresponding governing equations
for the problem of simple shear of a biphasic granular material. The non-Newtonian
viscous behavior of these materials is then studied for each assumed particular friction
law to the physics of the problem, emphasizing temperature weakening and velocity
strengthening behavior. We characterize each of these friction laws in terms of math-
ematical properties, stability and physical behavior, to extract criteria on the range of
the validity of each model. Through this analysis, we show that for all the friction
laws studied, when hardening fails to counterbalance softening, localization instabil-
ity occurs thus showing that shear heating of active faults is a post-failure localizing
mechanism, in a narrow shear band within the initial fault core.

The significant temperature increase due to this instability could have the potential
to set in effects like pressure solution and decomposition reactions ([APV14]). To
explore this possibility we consider the effect of chemical reactions that could be trig-
gered at elevated temperatures and are claimed to dominate the later, unstable stage of
the slip evolution that is taking place in seismic velocity range (> 1 m/s), in extremely
localized zones.

2 Thermodynamical Aspects

In this section we will construct the governing heat diffusion equation for a biphasic
material, consisting of a solid granular phase and a fluid phase, under constant volume
from first principles of thermodynamics. In multiphasic materials partial temperatures
for each phases are usually defined. In this study, we assume that the specific sur-
face of the grains is large enough, so that the system’s phases are always in thermal
equilibrium. This assumption allows us to define a unique temperature field for both
phases θ(xk, t), and restricts the validity of the model presented in this study.

Let e = e(xk, t), P
(m) = P (m)(xk, t) and Qi = Qi(xk, t) be the specific internal

energy, the stress power and the heat flux, respectively. The local form of the energy
balance equation as applied to the mixture reads as follows ([VS95])

ρ
D(m)e

Dt
= P (m) − ∂Qk

∂xk
(1)

where D(m)

Dt is the barycentric material time derivative of the mixture and ρ = (1 −
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φ)ρs + φρw is the mixture’s density, φ being the porosity and ρs, ρw the densities of
the solid and fluid phase, respectively.

One of the most common expressions for the 2nd law of Thermodynamics is given by
Clausius -Duhem inequality

ρ
D(m)s

Dt
≥ − ∂

∂xk

(
Qk
θ

)
(2)

where D(m)s
Dt is the specific entropy production.

By substituting the Energy Balance Equation (Eq. (1)) into Eq. (2) we can identify the
expression

Dloc = ρθ
D(m)s

Dt
− ρD

(m)e

Dt
+ P (m) (3)

as the local dissipation of the mixture ([Tru69]). This equation (Eq. (3)), along with
the Energy Balance one (Eq. (1)), yield

ρθ
D(m)s

Dt
= Dloc −

∂Qk
∂xk

(4)

The last equation is known as the local entropy production balance law. Based on this
equation, one can derive an evolution equation for the temperature by expressing the
local entropy production as a function of temperature and adopting Fourier’s law for
the heat flux.

Indeed, we may use the definition of the specific entropy through Maxwell’s relations,
s = −(∂ψ∂θ )V , where ψ = e − θs is the Helmholtz free energy, to the first term of
Eq. (4),

ρθ
D(m)s

Dt
= −ρθ ∂

∂θ

(
∂ψ

∂θ

D(m)θ

Dt

)
(5)

If we expand the derivative of the r.h.s. of Eq. (5) and set −θ ∂2ψ
∂θ2 = jCm, we obtain

the following expression for the specific entropy production

ρθ
D(m)s

Dt
= j(ρC)m

D(m)θ

Dt
(6)

In the above expressions Cm is the specific heat capacity of the mixture and j =
4.2J/cal is the mechanical equivalent of heat. The specific heat capacity of the mix-
ture is calculated in reference to the partial masses of the constituents, through mix-
ture’s theory, (ρC)m = (1− φ)ρsCs + φρwCw, where Cs and Cw is the specific heat
of the solids and of the water, respectively.

In order to determine the third term of Eq. (4) we assume that the heat flux vector
obeys Fourier’s Law for thermally isotropic media:

Qk = −jkm
∂θ

∂xk
(7)
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where km = (1 − φ)ks + φkw is the thermal conductivity of the soil-water mixture
and ks, kw is Fourier’s thermal conductivity of the solid and water, respectively. The
negative sign in Eq. (7) represents that heat flows from the hotter areas to the colder
ones.

Thus, Eq. (4) can be written, in view of Eqs. (6) and (7), as a heat diffusion equation
([VS95], [VVD07])

D(m)θ

Dt
= κm

∂2θ

∂x2k
+

1

j(ρC)m
Dloc (8)

where κm = km
(ρC)m

is Kelvin’s thermal diffusion coefficient of the mixture. In order
to evaluate it we usually use the expressions of heat capacity and thermal conductivity
from mixture’s theory formulation (km = φkw + (1 − φ)ks). However, the experi-
mentally calculated thermal conductivity of the mixture, keffm , is in general lower than
the theoretically predicted one, km, being comparable only for small values.

In the derived heat diffusion equation for a biphasic mixture under constant volume
(Eq. (8)) the dissipation function, Dloc, remains undefined. It should be carefully
evaluated for the material under study, depending on the specific problem (simple
shear, triaxial compression etc) through experiments and proper constitutive modeling.

3 Shear Heating Formulation

In this section we will apply the governing heat diffusion equation, derived in the
previous section, in a specific geomechanical problem. Therefore we consider the
deformation of a long shear-zone of water-saturated clayey material. We assume that
this shear-zone has a thickness d and that the various mechanical fields vary only
along the short z-direction, (Fig. 2). The maximum value of the temperature profile
is achieved at the center of the shear-zone, z = 0. In addition, we assume that the
shear-zone material is at critical state (in a geotechnical sense), deforming thus under
constant volume and load. The only non-zero velocity component is v = v(z, t).

At the shear-zone’s boundary a constant normal stress σn is assumed to act, together
with a shear stress τd. Following Terzaghi’s effective stress principle the effective
stress tensor acting on the solid skeleton in our case (Fig. 2) consists of two compo-
nents, σ′ = σn− p (where p is the pore fluid pressure) and τ . The latter, is commonly
assumed to obey a Coulomb friction law, τ = µσ′, where µ is the friction coefficient
at critical state (remaining constant for the considered case).

Following recent studies of Rice [Ric06] and Sulem and Famin [SF09] we neglect
inertia inside the shear band,

∂τ

∂z
= 0 (9)

This requirement is valid when the shear band thickness d is negligible. Indeed, one
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Figure 2: Steady shearing of a shear-zone. The steady-state profiles of (a) the loading
and boundary conditions and (b) the thermal conditions are depicted.

may write

∂τ

∂z
= ρ

∂v

∂t
⇒ ∆τ

d
= ρηg (10)

where ∆τ = τ(z = d/2)−τ(z = −d/2) is the shear stress variance in the shear-band,
g = 9.81m/s2 is gravity’s acceleration and η is a proportionality constant. In order to
have a significant shear stress difference across the shear-zone the product ∆τ = ρηgd
must be significant. Assuming an acceleration of about 10 times the acceleration of
gravity (i.e η = 10) and a typical value for the soil density of about 2500kg/m3, we
obtain ∆τ ' 25 · 10−2 · d MPa/m. In order to have significant variations across the
shear-band, d should be of the order of tens of meters. However, as noted also in the
Introduction, since d ∼ 10−1 − 10−3m, ∆τ is negligible, so that τ = τd(t) remains
constant across the shear-zone [SF09]. It is evident that, since µ = const. (critical
state friction coefficient) the pore pressure is constant across the shear zone as well
(p = p(t)). Since no pore pressure variations are assumed, apart from the excess pore
pressure generation due to the various chemical processes, p = const. during creep
(where σ′ = const.), and thus τd = const.

3.1 Viscosity and Dissipation Function

Assuming that the material is fully plastic, in the one-dimensional framework the
dissipation function of Eq. (8) is always positive and can be written for the problem
of simple shear as [Var2a]:

Dloc ' βT τdγ̇ ≥ 0 (11)

where βT is the Taylor-Quinney coefficient [TQ34], a fraction of the mechanical work
that converts into heat during simple shear, and γ̇ = γ̇p ≈ V/d is the plastic shear
strain rate, where V is the interface velocity ([Var2a], [VVD07]). Under the above
definitions, Eq. (8) can be written in its final form:

D(m)θ

Dt
= κm

∂2θ

∂z2
+

βT τd
j(ρC)m

γ̇ (12)
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In order to proceed with our analysis, we are obliged to further investigate the nature of
the friction coefficient, introduced in the Coulomb’s law. Without loss of generality,
we introduce indicative reference quantities for the temperaure and strain rate, θref
and γ̇ref respectively, along with the dimensionless quantities

z? =
z

(d/2)
, t? =

κm
(d/2)2

t, θ? =
θ

θref
, γ̇? =

γ̇

γ̇ref
(13)

and reduce equation (12) to a simpler, normalized heat equation,

D(m)θ?

Dt?
=
∂2θ?

∂z?2
+

βT γ̇refτd
θref (jkm)

(
d

2

)2

γ̇? (14)

In this study we will assume that the friction coefficient is a function of rate and
state variables. State variables according to Thermodynamics are the macroscopic
quantities that result from the microscopic interaction of particles in a material (such
as temperature, pressure, internal energy, enthalpy, entropy, volume, density, mass).
Therefore, we assume that the friction coefficient depends on the dimensionless strain
rate and temperature, in a usual multiplicative sense,

µ(γ̇?, θ?) = f(γ̇?)g(θ?) (15)

In order for the friction coefficient to remain constant at critical state, the two func-
tions of strain-rate and temperature should exhibit an antagonistic behavior. Thus,
rate effects should counterbalance thermal effects (and vice versa) and determine the
rheological behavior of the material. Furthermore, we assume that the two functions
f(γ̇?), g(θ?) are monotonous. This issue is further addressed in the next paragraph.

It is easily understood under the above assumption that the material exhibits a non-
Newtonian rheology ([Var02]), since

τd =

[
σ′n
f(γ̇?)

γ̇?
g(θ?)

]
γ̇? (16)

As shear stress is assumed to be constant and f, g are monotonous, one may express
the strain rate as a function of temperature,

f(γ̇?) =
τd

σ′ng(θ?)
⇒ γ̇? = f−1

(
τd

σ′ng(θ?)

)
= φ(θ?) (17)

In view of Eq. (17), the heat equation, Eq. (12), becomes

D(m)θ?

Dt?
=
∂2θ?

∂z2?
+Grφ(θ?) (18)

where the parameter,

Gr =
βT γ̇refτd
θref (jkm)

(
d

2

)2

(19)
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is called the Gruntfest number [Gru63] and is the ratio of the two characteristic time
scales of the problem, namely the time scale of the heat produced due to mechanical
work over the time scale that the material conducts heat away. When Gr → 0 the
system is “diffusive”, since it has the capability to conduct all the produced energy,
and thus remain stable. On the contrary, when Gr → ∞ the system is “adiabatic”,
since the heat produced doesn’t have the time to be conducted away. This limit is
characterized by high strain rates and temperatures, having the tendency to promote
instability [Gar12].

3.2 Temperature-Dependent Friction Law

The problem at hand is a viscoplastic flow corresponding to an exothermal, tempera-
ture dependent process. Obviously, given the assumption of monotonous antagonistic
mechanisms, stated in the previous paragraphs, either rate hardening and thermal soft-
ening or vice versa will provide the same equation [VAV10]. Following the discussion
on the behavior of faults under hot-wet conditions [BMJ95], we restrict ourselves
to the former case, which is more pronounced also for temperature sensitive clays
[HB90, HP02, CL04, LLC08, CZV11].

Hicher [Hic74] reported experimentally a decrease of the critical state friction coef-
ficient with temperature of kaolin clay. His results are summarized in Fig. 3, where
several possible fits are also presented. In this section we will derive the heat diffusion
equation for three of these fits. In particular, we will study an exponential, a logarith-
mic and an Arrhenius-like dependency of the friction coefficient with temperature.

3.2.1 Exponential-power law dependency:

Following Vardoulakis [Var02] and Veveakis et al. [VVD07] we consider the expo-
nential dependency of the critical state friction coefficient with temperature, which is
shown in Fig. 3 as the thermal softening mechanism. Motivated by the experiments of
Leinenkugel [Lei76] on kaolin clay we also assume a power-law dependency of the
critical state friction coefficient to strain-rate, to obtain finally that [Var02]

µ = µref

(
γ̇

γ̇ref

)N
e−M(θ−θ1) (20)

whereM andN are the frictional thermal-sensitivity coefficient and the frictional rate-
sensitivity coefficient, respectively, while µref and γ̇ref are reference quantities of the
friction coefficient and the strain rate and θ1 a reference temperature. This temperature
is usually identified as either the temperature at the boundaries of the shear zone, or
an ambient temperature at which material properties, such as friction coefficient, are
measured. In this study we assume the latter, in order to study the effect of thermal
boundary conditions to the system.
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Figure 3: Critical state friction coefficient of a black (kaolin) clay. Various fitting
curves are depicted, on the experimental data provided by Hicher. The best fit for
the Arrhenius law, µ = µ0exp

(
Ed
Rθ

)
, is achieved for µ0 = 0.25 and Ed/R =

14.3◦C([Hic74]).

Setting in this case θ? = m (θ − θ1), where m = M/N , the corresponding di-
mensionless diffusion equation is obtained from Eq. (18), for φ (θ?) = mγ̇0e

θ? ,

Gr = mβT τdγ̇0
jkm

(
d
2

)2
, and γ̇0 = γ̇ref

(
τd

σ′
nµref

) 1
N

[Var02]

D(m)θ?

Dt?
=
∂2θ?

∂z?2
+Greθ

?

(21)

Notice that in this law the material sensitivity to temperature and strain rate, expressed
through m, is incorporated to the expression of the Gruntfest number.

3.2.2 Log-log dependency:

If we assume a logarithmic dependency of µ with temperature and strain rate, then we
may consider the widely accepted Dieterich-Ruina friction law ([Die78]) for the case
of shearing of a finite-thickness shear-band ([VVD07])

µ = µ0 +Aln

(
γ̇

γ̇0

)
+Bln

(
θ

θref

)
(22)

where A and B are the frictional thermal-sensitivity coefficient and the frictional rate-
sensitivity coefficient, respectively. Notice that the original law is frequently used
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for rate sensitive materials, where θ is a state-parameter, conjugated to the asperity
of rock-to-rock contacts. Therefore adopting this law for thermally and rate sensitive
materials, one should thoroughly study experimentally the range of the sensitivity
coefficients. As we will see in the following section and unlike the exponential law,
this type of model is sensitive to the ratio of these two coefficients.

By accepting the dimensionless quantities of Eq. (13) for γ̇ref = γ̇0, the corre-
sponding diffusion equation is obtained from Eq. (18), for φ (θ?) = γ̇0θ

?m, where
m = −B/A, and Gr = βT τdγ̇0

θref (jkm)

(
d
2

)2

D(m)θ?

Dt?
=
∂2θ?

∂z?2
+Grθ?m (23)

3.2.3 Arrhenius-power law dependency:

The most known among all the friction laws (rheological models) is the Arrhenius law,

µ = µref

(
γ̇

γ̇ref

)N
e
Ed
Rθ (24)

where Ed is the activation energy of the frictional heat production and R the universal
gas constant

(
8.3JK−1mole−1

)
. Setting θ? = m(θ − θ1) the corresponding dimen-

sionless diffusion equation is obtained from Eq. (18), for φ (θ?) = mγ̇0e

(
− Ard

1+δθ?

)
,

Ard = Ed/RNθ1, δ = 1/(mθ1), Gr = mβT τdγ̇0
jkm

(
d
2

)2
, and γ̇0 = γ̇ref

(
τd

σ′
nµref

) 1
N

D(m)θ?

Dt?
=
∂2θ?

∂z?2
+Gre

(
− Ard

1+δθ?

)
(25)

Notice that the ratio of the thermal to rate sensitivity of the material is also present
in this law, expressed by the quantity Ard. In a chemical engineering context, this
is defined as the activation energy of the friction. In the present formalism, Ard is
interpreted as the energy threshold at which the friction coefficient becomes thermally
and rate sensitive. We need to notice that for rate hardening, for 0 < N < 1 the
rate response of the friction coefficient is concave, for N = 1 linear and for N > 1
convex. Since we anticipate that the friction coefficient remains finite even at large
strain rates, we require a concave response, 0 < N < 1.

4 Characterization of Rate- and State- Friction Laws

4.1 Characterization in terms of mathematical properties

From previous works [VVD07] we know that Eqs. (21),(23) may present a property
that is called finite-time blow up (i.e. finite time singularity in their solution. On the
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other hand, it can be shown that Eq. (25) does not present such kind of a behavior.
The physical properties of the different behaviors are not directly obvious and call for
further investigation. Therefore, we will proceed by performing in the next paragraph
the numerical bifurcation analyses of the three different rheological (frictional) models
presented in section 3.

4.2 Characterization in terms of Stability and Bifurcation Analy-
sis

The steady state of the three equations (21),(23),(25) are studied, together with Dirich-
let and Neumann boundary conditions,

d2θ?

dz?2
+Greθ

?

= 0, {θ?(1) = θbound, θ
?′(0) = 0} (26)

d2θ?

dz?2
+Grθ?m = 0, {θ?(1) = θbound, θ

?′(0) = 0} (27)

d2θ?

dz?2
+Gre−

Ard
(1+δθ?) = 0, {θ?(1) = θbound, θ

?′(0) = 0} (28)

Notice that since we are studying the steady state of the heat equations, we may ne-
glect convective terms, as shown by Vardoulakis [Var02]. The temperature profile is
assumed to satisfy a standard symmetry condition [CDMM89], being maximum at the
core of the shear-zone (z? = 0). The value of the temperature at the boundary of the
shear-zone (z? = 1) is assumed to be constant. This choice is dictated by the fact
that we examine the behavior of the shear zone in steady state and will not be valid in
any time-dependent framework, since in that case the problem of the heat diffusion is
driven by a characteristic time scale which should be compared to the characteristic
time scale of slip evolution [Gar12], expressed in this model by the Gruntfest number.
For example in Veveakis et al. [VVD07] it was shown that during quasi-static creep,
the boundary temperature evolved along the variations of the core temperature.

For determining the stability of the three models, we solve each equation using a
finite differences scheme along with an arc-length continuation method ([CK91]). The
eigenvalues of the Jacobian matrix of the numerical system are also calculated and
determine the stability regimes of the system (according to the lines of the arc-length
continuation method, thoroughly presented in [CK91]). As shown in Fig. 4 ((a) and
(b)) the first two equations (26),(27) present a turning point at a critical value of the
Gruntfest number, Grc: (Eq. 26) presents it always, while Eq. (27) only when m > 1.
This turning point defines through the sign of the eigenvalues a stable (lower) and an
unstable (upper) branch of the solution.

The behavior depicted in Fig. 4 ((a), (b) and (c)) represents the celebrated phenomenon
of thermal runaway [Fow97]. Depending on the value of the Gruntfest number, the
problem has two (Gr < Grc), one (Gr = Grc) or zero (Gr > Grc) steady state
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Figure 4: Bifurcation Diagrams (or response curves) of: (a) the Bratu problem. Re-
sults are plotted for different values of the boundary temperature. All the profiles
present a turning point, for Gr = Grc. The lower branch is stable, while the upper
branch is unstable; (b) the log-log (or Dieterich-Ruina) law for various values of the
power coefficient, m. It is to be noted that for m > 1 the model presents a turning
point, exactly like the Bratu problem, while for m < 1 the solution is stable; (c) the
same law for m = 1.5, plotted for different boundary temperatures; (d) the Arrhenius
law model, plotted for θ?bound = 0; (e) the lower branch of a folded S-curve of the
Arrhenius law model, plotted for different boundary temperatures.
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solutions. The effect of the boundary conditions is also depicted in this figure. As
it can be seen in Fig. 4((a)and (c)), while boundary temperature increases the critical
value for the Gruntfest number, Grc, decreases. Due to the assumption of constant
shear stress during creep (see Section 3) and the definition of the Gruntfest number
(see Section 3.2.1), the latter implies a decrease in the critical strain-rate value, γ̇0.
From the previous analysis we may conclude that, the exponential and the logarithmic
law, for m > 1, present the same qualitative behavior.

Similarly to the logarithmic law, the number of steady state solutions of the Arrhenius
one may vary (Fig. 4(d)). As discussed by Law ([Law06], pp. 313-317) one may
approximate the condition for which the Arrhenius law loses steady state solutions by
the inequality

Ard ≤ 4 (1 + δ · θbound) (29)

As long as this inequality holds, the system has one stable steady state solution for all
Gruntfest numbers, a response frequently addressed as “stretched S-curve”[Law06].
As we observe in Fig. 4(e), by increasing the boundary temperature (imposing a higher
energy level to the system), the lower stable branch shrinks with respect to the loading
conditions, as expressed by Gr. At the same time, the range of temperatures defining
the stable area (θu − θL) for a given Gr shrinks accordingly. The same inequality
implies that, when the friction has a small Ard, and therefore the heat production
inside the shear zone is significant at lower temperatures, the system response tends
to that of a stretched S-curve. Again, for a given boundary temperature (energy level)
the ability of the system to remain at relatively low temperatures is diminished the
faster the frictional effect takes place (Fig. 4(d)). This discussion highlights also the
necessity for detailed experiments on the rate and thermal response of the material
under study, given the fact that m and Ard depend on the thermal to rate sensitivity of
the material.

When inequality (29) fails, the bifurcation diagram of the steady state problem is that
of a folded S-curve as depicted in Fig. 4(d). In this case, although the Arrhenius law
does not provide the property of thermal runaway, its behavior is identical to the expo-
nential and logarithmic one for lower temperatures; a lower, stable branch is followed
by an intermediate, unstable one. As shown by the asymptotic analysis of Fowler
([Fow97], pp.181-190) on the problem of Eq. (25), the Arrhenius law coincides with
the exponential one for temperatures of order ∼ O(1). The difference however is that
at elevated temperatures the Arrhenius law presents a third, stable, branch (Fig. 4(d))
which means that for higher orders of temperature the system will tend to a rather
high, but finite temperature [MLB9a]. Indeed, again from this asymptotic analysis
it is shown that the upper stable branch is reached for temperatures greater than the
order of ∼ O(Ar2d), raising the question as whether these temperatures required to be
on this branch of the Arrhenius-power law are realistic. Finally, we can observe from
Fig. 4(e) the same decreasing behavior of the critical Gruntfest number of the lower
turning point, Grc, with increasing boundary temperature.
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4.3 Characterization in terms of physical behavior

In Fig. 4 the unstable branches of the diagrams represent a significant process; by
plotting the dimensionless dissipation function (Fig. 5) we may observe that, after the
turning point, the curvature of the dissipation profiles changes, leading to its local-
ization towards the center of the shear-zone. Thus, the unstable branch of the system
may correspond to thermal localization, in a time-dependent, quasi-static evolution.
Since the shear strain-rate is conjugated with temperature through Eq. (17), it is evi-
dent that -similarly to strain softening- thermal softening corresponds to deformation
localization as well ([VVD07]). This localization signifies the formation of an even
thinner shear-band within the initial shear-zone. This physical behavior is identical for
all the laws under certain conditions (m > 1, Ard > 4 (1 + δ · θbound)), since they all
present an unstable branch. The latter highlights an important difference between the
three laws; the response of the exponential is independent of the material parameters
and boundary conditions having a single free parameter (Gr), whereas the ones of the
logarithmic and the Arrhenius law depend also on the sensitivity ratio m, and the sen-
sitivity ratio Ard and the boundary temperature, respectively. It remains to be verified
whether these additional stability diagrams correspond to an observable manifestation
of the real geophysical problem.

In real geomechanical processes, in quasi-static conditions, the system will assume
a specific Gruntfest number. Depending on the initial condition, the evolution of the
temperature is evidently characterized by the equilibrium points. For all the mod-
els and for all initial temperatures below the unstable steady state, the system will
asymptotically tend to the low, stable steady state temperature for the given Grunt-
fest number. If the initial condition is above the unstable steady state temperature,
the first two laws predict an infinite temperature growth. This effect, along with the
mathematical property of blow-up (that the two laws present), are not physically ad-
missible properties, since infinite temperature growth is not allowed in nature. On
the other hand, the Arrhenius law presents qualitatively the same mathematical and
physical behavior at lower temperatures, fits the experimental data (from experiments
at ambient temperatures) equally well (Fig. 3) and leads the system to rather elevated,
but finite, temperatures. Therefore, from a modeling point of view, it is reasonable to
prefer it from the other two models.

Concerning the behavior of the shear zone at a higher regime, one could assume that
the temperature is sufficiently high to trigger a chemical reaction within the shear-
band. Such an effect could counterbalance the localization effect and provide a new,
stable, steady state at different orders of temperatures, depending on the nature of the
aforementioned reaction. To clarify this claim, in the following section we present the
coupling of frictional heating of the Arrhenius type with chemical reactions triggered
at high temperatures.
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Figure 5: Plot of the profiles of the dissipation functions (1) D?/Gr = eθ
?

, (2)

D?/Gr = θ?m,m = 5, (3) D?/Gr = e−
Ard

1+δθ? , δ = 10−2 and for an arbitrary
value of Ard, across the shear zone. Since Gr > 0, the figure depicts qualitatively the
shape of each dissipation function (a) at the lower stable and (b) at the unstable branch
of the response curves of Fig. 4. We notice that localization of the dissipation occurs
after the bifurcation point Grc, i.e. at the unstable branch of the response curves of
the three laws.
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Figure 6: Schematic for the decomposition of the plastic flow rule in volumetric and
Deviatoric components. A point M in the p′ − q space (mean effective stress – shear
stress) is shown with its corresponding point MY on the yield envelope.

5 Generalization for a 3D Constitutive model

Based on the work of the previous sections, we identified the Arrhenius law as the
most generic and representative in order to describe thermal sensitivity of geomateri-
als. However, the Arrhenius law can be generalized to include activation energies for
interface and internal dissipative mechanisms. In this section, we will generalize the
Arhenius dependency previously described, to include such effects, and cast it into a
3D consitutive law of elastoplasticity able to describe multiphysical effects.

The underlying physical model for this exercise is based on the principles of overstress
plasticity [Per66], used in a novel elasto-viscoplastic approach [PV16]. Following the
classical considerations of mechanics, the total strain rate is decomposed in an elastic
(reversible) part and a plastic (irreversible) part. The reversible component is assumed
to obey a linear thermo-elastic relationship,

ε̇rij = Cijklσ̇
′
kl − λs∆θ (30)

where Cijkl is the compliance modulus. The irreversible element of the strain rate
obeys an associative visco-plastic flow law of the form ε̇iij = Π̇nij , where nij =
∂f
∂σ′

ij
/|| ∂f∂σ′

ij
|| the unit vector of the plastic potential and f is the yield function and Π̇

is a (scalar) plastic multiplier (see Fig. 6).

The plastic multiplier describes the overstress function, here taken to be the Euclidean
norm of the distance of the current stress state vs the original yield surface: Π̇ =√
ε̇i 2d + ε̇i 2v . In this expression, ε̇id and ε̇iv are the deviatoric and volumetric parts of

the strain rate tensor (see Fig. 6) , respectively, following the incremental relations

ε̇id = ε̇0

〈
q − qY
σref

〉m
exp

(
−Q

d
mech

Rθ

)
, (31a)

ε̇iv = ε̇0

〈
p′ − pY
σref

〉m
exp

(
−Q

V
mech

Rθ

)
, (31b)
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where ε̇0 is a reference strain rate, q is the equivalent deviatoric (or von Mises) stress,
p′ is the volumetric mean effective stress, qY and pY are the respective effective
stresses at yield, σref is a reference stress, R is the universal gas constant, θ is the
temperature field and 〈·〉 denote the Macaulay brackets.

These expressions imply that the material is admitting thermal sensitivity expressed
through the activation enthalpies for the deviatoric ( Qdmech ) and the volumetric
(Qvmech) components. This activation enthalpy incorporates the activation energies of
all the micromechanical mechanisms, like frictional initiation [Ric06] or volumetric
mass diffusion mechanisms [VRL15] like pore collapse [PV16] and can be a function
of all the global and internal state variables of the problem at hand. In essence, these
exponential expressions act like the hardening laws of classical plasticity allowing for
information to be transferred across the scales. An example of such information will
be illustrated in the following paragraphs, concerning the mechanism of pore collapse.

The activation enthalpy is in principle expressed in the generalised form Q = E +
P ∗Vact where P ∗ is a measure of pressure responsible for driving the internal mech-
anism, while E and Vact are the activation energy and volume of the internal mech-
anism considered (here pore collapse) and are yet to be determined. Following the
recent work of Poulet and Veveakis [PV16], we assume isotropic response of the
activation enthalpies (Qdmech =Qvmech = Qmech), and seek the most appropriate ex-
pressions for P ∗ and Vact. This will be achieved in the next sections, through fitting
data for different tests (in particular triaxial and isotropic compression) and materials
(sandstone and mudstone). Following this exercise, the final form of the activation
enthalpy will be retrieved.

5.1 Modelling Isotropic compression

We start by considering isotropic compression tests conducted on Bleuswiller sand-
stone, for wet and dry conditions [FGS07]. The specimens used were 80 mm in length
and 40 mm in diameter, having initial porosity 25%, grain size 80 - 180µm and per-
meability 2× 10−14m2. The experiment have conducted one dry and wet conditions
under hydrostatic loading at confining pressure up to 280 MPa.

We modelled both dry and wet conditions under hydrostatic loading. The results are
shown in the fig. 7. We normalised the stress for the numerical experiments using the
yield values of 190 MPa for the dry sample and 132 MPa for the wet sample. Since
we have drained isotropic tests, the excess pore pressure was calculated to be zero,
therefore suggesting that the activation enthalpy is a linear function of the confinement
pressure, obeying:

Qmech = E + P ′c OCR α1 R θ (32)

where in this case the activation volume was expressed as Vact = α1Rθ, with α1

a constant, OCR = P ′c(max)/P
′
c the Overconsolidation ratio expressed as the ratio
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Figure 7: Matching the loading phases of isotropic compression experiments from
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Figure 8: The porosity evolution with increase the effective pressure

between maximum effective confinement and P ′c(max) and the current confining ef-
fective pressure P ′c.

Using this expression, we were also able to match isotropic compression data from
tests that have been performed on diatomaceous mudstone [OKH+11]. The authors
of this experimental work [OKH+11] used a prismatic specimen with 8 cm high and
4 cm side. We have modeled this behavior and there is an excellent agreement of the
simulation with the experimental data as shown in figure 8.
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5.2 Modelling Triaxial compression

To show how is the model is responding against real data from the experiments, we
have chosen a very notable set of experiments in sedimentary rocks. The experiments
were conducted by [WDZ97] on Bleurswiller sandstone at different confinements.
The samples had initial porosity of 22.6 % and were cored parallel to the bedding.
Cylindrical sample have been used for this test ( 18.4 mm diameter and 38.1 mm
length ), under a fix loading rate of 5 ∗ 10−5/s. The levels of confinement pressure to
observe different deformation patterns were (5, 20, 40, 60, 100, 150) Mpa. This sand-
stone materials has a cap yield surface as shown in figure (9) which is a combination
of Drucker prager and modified cam clay as a cap .

In order to model the response of sandstone, we run a numerical experiment to model
the real experiment to reproduce the stress strain curves with different confining pres-
sure and the methodolgy has been described by [PV16]. We fit the experimental curves
reported for these materials by using the material properties listed on table 1 and vary-
ing only Vact at different confining pressures. The optimal fit acquired is shown in
Fig. 10, and the formula of Qmech was inverted to be:

Qmech = E0 + P ∗ Vact (33)

P ∗ = P ′c OCR− α2

α1
Pf (34)

Vact = α1

(
1− lnP ′c OCR

lnPcs

)
Rθ (35)

This expression implies that the energy term P ∗ Vact represents the effect of inter-
face strength of cemented materials (whether by solid cement, capillary bridges etc),
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Figure 10: The deviatoric stress (τ ) vs. axial strain results for the experiments (sym-
bols) and the numerical simulations (lines).

with the driving pressure P ∗ being a Bishop-like effective pressure representing the
maximum effective pressure the interface has ever experienced. The activation vol-
ume required to describe the strength of this interface follows a stress path dependent
Laplace-like law, in which Pcs represents the initial effective confinement required for
the material to end in critical state while being loaded at a given stress path.

Having inverted for the final formula of Qmech, we are extending the work by fitting a
different material. To this end we recall the triaxial compression experiments that have
been conducted on diatomaceous mudstone by [OKH+11]. They performed a series
of triaxial tests on six rectangular shaped-prismatic specimens with 8 cm high and 4
cm side. In order to avoid the effect of the initial anisotropy the specimens was made
with longitudinal direction perpendicular to the plane of sedimentation.They used dif-
ferent levels of confining pressure to observe different deformation patterns and the
scenarios are listed in Tab. 2. All tests were pursued to a maximum axial strain of 20%
approximately.

To model the response of this soft material and its behavior for this specific test, we
have used the inverted formula ofQmech of Eq. 33, combined with a modify cam clay
as a yield surface (Fig.11), defined as:

( q

M

)2
+ p(p− pc) = 0 (36)

where pc is the pre-consolidation pressure and M the slope of the critical state line.
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Parameter Sandstone
cth
[
m2/s

]
10−6

kπ
[
m2
]

3× 10−16

µf [Pa.s] 10−3

βm
[
Pa−1

]
10−7

ε̇0
[
s−1
]

1
Emech

[
Jmol−1K−1

]
25

λm
[
K−1

]
10−3

σ′ref [MPa] 189

Tref [K] 300
xref [m] 0.02
χ [−−] 1

Table 1: Parameters used in order to fit the experimental data for sandstone. We
have used the expression chy = kπ/µfβm for the hydraulic diffusivity where kπ the
permeability and µf the fluid viscosity.

Table 2: Confinement pressures used in experiments from [OKH+11]

Case No. CD1 CD3 CD3 CD4 CD5 CD6

Effective confining pressure (MPa) 0.25 0.5 0.75 1.0 1.5 2.0
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Figure 11: Best Fts for Modifed Cam Clay (plain line) and Original Cam Clay (dashed
line) yield surfaces are plotted with experimental stress paths and yield points (dots)
digitised from Fig. 5 in [OKH+11]

We fit the experimental curves reported for these materials by using the material prop-
erties listed in Tab. 5.2. The results are shown in figure 12.

It is to be noted that both materials where fitted without significant temperature in-
crease inside the sample (less than one degree). Also, the optimal values of α1 and α2

in the expressions of Eqs. 33 -characterizing the driving pressure P ∗ and the activa-
tion volume Vact respectively- are such that the system’s dissipation rate self organizes
along a global maximum.

6 Conclusions

In this work we have presented an energy-based constitutive framework that can ac-
commodate mutli-physical mechanisms. We have shown that within the theory of
multiplicative visco-plasticity we may explicitly account for the temperature sensitiv-
ity of materials and that all commonly used laws for thermal sensitivity produce the
same qualitative response. We have therefore used the most generic one to general-
ize for a 3D constitutive law of thermo-poro-elasto-viscoplasticity and showed that
by considering internal interface mechanisms we may reproduce laboratory results
for different rocks and tests with the same model. Following these promising results,
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Figure 12: Matching CD1-CD6 experiments with simulation results. Note that the
results are shown in a normalised stress space, where the preconsolidation pressure
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pore fluid pressure during the experiments, the numerical results are normalised using
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Parameter Mudstone
cth
[
m2/s

]
10−6

kπ
[
m2
]

10−16

µf [Pa.s] 10−3

βm
[
Pa−1

]
10−7

ε̇0
[
s−1
]

1
Emech

[
Jmol−1K−1

]
18

λm
[
K−1

]
10−6

σ′ref [MPa] 2.26

Tref [K] 300
xref [m] 0.02
χ [−−] 0.6

Table 3: Parameters used in order to fit the experimental data for mudstone. We
have used the expression chy = kπ/µfβm for the hydraulic diffusivity where kπ the
permeability and µf the fluid viscosity.
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more work is required to further constrain the open parameters used in this model and
reduce the number of experiments required to attain the same amount of information.
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Much of the complexity of the macroscopic behaviour of granular materials originates 
from interactions among their constituents, as well as from the propagation of these 
interactions across scales. Examples of these multi-scale processes are mechanisms 
such as grain rearrangement and breakage, which are often driven by the simultane-
ous action of mechanical and environmental phenomena. Understanding these pro-
cesses is important to engineer geotechnical structures, design infrastructure materi-
als, and optimize material processing technologies. This chapter reviews the applica-
tion of energy methods to crushable granular materials subjected to multiphysical 
loading. First, the energetics and kinetics of fracture growth in brittle solids will be 
reviewed in the context of the thermodynamics of internal variables (TIV). The same 
methodology will then be extended to a granular system consisting of brittle particles. 
By defining the work input and energy storage for the system under study, it will be 
shown that the multiphysical response of particulate materials can be modelled in 
close analogy to the mathematics of fracture in brittle solids. The goal of this chapter 
is thus to show with reference to the particular case of crushable granular materials 
how TIV can be used to interpret a variety of multi-physical processes taking place at 
very different length scales.  
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1 Introduction 

 
The mechanics of granular geomaterials has been studied in the context of various 
disciplines, such as geotechnical engineering, petroleum engineering, geoscience and 
physics due to their pervasive presence in nature and the wide range of relevant tech-
nological and industrial applications. At elevated pressure, particle breakage is one of 
the crucial mechanisms governing mechanical and hydraulic properties of granular 
assemblies. For example, grain breakage is responsible for excessive settlement dur-
ing dam construction [Old01], subsidence due to depletion of hydrocarbon reservoirs 
[Ver17], and long-runout behaviour of landslides [Wan02]. Grain crushing is often 
exacerbated in the presence of environmental loadings. Evidence includes water vapor 
assisted creep of rockfill [Old07], saturation-induced crushing of sands [Ova13] and 
chemical weakening of granular rocks [Bau00]. Since geomaterials are exposed to 
constantly changing environmental conditions, studying the interplay between grain 
crushing and hydro-chemo-mechanical agents becomes crucial to assess the short and 
long-term behaviour of many geotechnical and geological systems. 

The understanding of grain crushing has been significantly improved thanks to the 
numerous experimental, numerical and theoretical studies conducted during the past 
decades [Har85, Lad96, McD96, Nak01a, Ova13, Cil14]. Some key conclusions from 
these studies are summarized below: 

1) The yielding and hardening in high pressure compression tests correspond to the 
onset and accumulation of grain breakage. The terms ‘clastic yielding’ and ‘clas-
tic hardening’ are often used to highlight the role of grain breakage in these pro-
cesses [McD98].  

2) Crushing of grain assemblies depends on individual particle characteristics, pack-
ing condition and grain size distribution (GSD) [Nak99, Nak01b, Nak01a]. Large 
values of yielding stress are often observed in specimens composed of tougher 
particles and smaller grains; Well-rounded particles give sharper yielding transi-
tion than angular particles; Densely packed specimens display higher yielding 
stress than loosely packed ones [Nak01a, McD02c]. 

3) Granular assemblies monotonically loaded (e.g. via 1D compression and simple 
shear) to sufficiently high compressive stresses tend to achieve an ultimate fractal 
GSD [Sam87, McD96]. The fractal dimension of such GSD inferred from labor-
atory and numerical experiments is about 2.5~2.7 [Sam87, Ben10, McD13].  

4) The creation of new surface area through particle fragmentation must be consid-
ered as a source of energy dissipation in addition to frictional dissipation 
[McD98]. It has also been recognized that there is an additional amount of energy 
dissipated through the redistribution of the contact forces across the soil matrix 
upon each breakage event [Ngu09, Rus13]. 

Existing models which tackle the mechanics of crushable granular soils can be cate-
gorized into three groups: phenomenological approaches based on elastoplasticity, 
micromechanical models based on fractal mathematics, and thermomechanical mod-
els based on breakage mechanics theory. In elastoplasticity approaches, the primary 
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focus is on the stress-strain response, and the evolution of soil gradation is a not ex-
plicitly considered or modelled. For example the model by [Pes95] describes the high 
pressure 1D compression response of sand via an incremental stress-strain relation 
that implicitly incorporated the onset of particle breakage by approaching to the so-
called Limiting Compression Curve (LCC). The elastoplastic model proposed by 
[Kik10] introduces gradation-dependent critical state. The yield mechanism associ-
ated with grain crushing is described via a separate yield function (i.e. a cap surface) 
in addition to the Mohr-Coulomb yield surface. These models often exhibit good 
agreement with the stress-strain responses, but overlook the microscopic mechanisms 
and the energetics associated with the creation of new surface area. On the other hand, 
fractal models rely on the grain size distribution, the pore size distribution and the 
single-particle failure probability to describe the evolution of gradation and porosity 
under isotropic compression [McD96, McD98, Rus11]. The energy function of 
[Ros63] is often revised to account for the energy dissipation due to creation of new 
surface area, to establish the macroscopic compressive response of the system. These 
approaches are physically appealing, considering their potential to link with the mi-
croscopic statistics of granular soils. However, they have been so far limited to only 
the 1D case and have not been generalized to triaxial compression or simple shear 
paths.  

The Breakage Mechanics theory [Ein07a] offers an energy-based continuum frame-
work to model crushable granular materials, while providing analytical tools to up-
scale microstructural processes at the continuum level. The theory is established 
within the framework of thermodynamics with internal variables (TIV) by using the 
grain size distribution to define a new internal variable referred to as Breakage. Such 
enrichment allows the coupling of the energy, microstructure, and stress-strain re-
sponse of the granular assembly. In this paper, the intimate connection between the 
particle-scale energetics of grain fracture and the mechanics of continuum breakage 
in granular solids is discussed. In particular, it will be shown how this framework 
represents a versatile platform to model the rate dependency and environmental effect 
associated with grain crushing.  

2 Energetics of brittle fracture 

Since the pioneering work of [Gri21], fracture mechanics has become a discipline that 
is intimately connected with energy principles and methodologies. The Griffith crite-
rion states that cracks propagate if the energy available to extend their length (i.e. the 
energy release rate) is equal to the surface energy of the newly created area, which is 
essentially a special case of the principle of energy balance. This energy-based ap-
proach circumvents the difficulty of dealing with infinite tensile stresses at the crack 
tip and accounts for the most crucial factors controlling the growth of cracks, such as 
material properties, crack geometry, and stress level. Since its proposition, numerous 
generalizations have been developed, e.g. for nonlinear solids, non-isothermal condi-
tions, dynamic propagations, and fatigue under cyclic and environmental loadings. 
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Others seek for reinterpretation of Griffith theory in the context of modern thermody-
namic theories. One of the major achievements is the J-integral [Ric68]. When stud-
ying the energetics of fracture propagation, Rice identified a path-independent inte-
gral that characterizes the variation of elastic energy during an infinitesimal advance-
ment of the crack front, which is later proven to be the identical to the energy release 
rate in the Griffith theory. Such development has been extensively used in computa-
tional methods to calculate the energy release rate (e.g., [Moe99, Sta03]). Another 
important work by [Ric78] is the recast of the Griffith theory in the framework of 
TIV. Such treatment has provided a unifying perspective of the quasi-static and rate-
dependent propagation of cracks, as well as a framework to incorporate environmental 
factors. Here we summarize Rice’s approach adapted for crack growth in a uniaxially 
stressed particle, and show how the same results can be achieved through the Hyper-
plasticity formalism [Hou07].  

Consider a disk-shaped particle (2D loading configuration) that contains a pre-exist-
ing flaw. The state of the selected system can be characterized by an external variable 
Δ (representing the reversible displacement of the loading plate) and an internal vari-
able l (representing the length of the crack, here assumed to be monotonically increas-
ing). Isothermal conditions are assumed, thus including the possibility of heat ex-
changes with the environment (e.g., the heat flow Q in figure 1). 

 

Figure 1: Schematic diagram of fracturing process in disk-shaped particle with centre 
crack. A tensile stress field is assumed to prevail near the crack tip, thus considering 
a scenario of mode I crack propagation.  

2.1 Rice’s approach  

The first law of thermodynamics states: 

 Q F U       (1) 

where U is the internal energy of the system which depends on   and S (external 
variables) and crack length l (an internal variable). The second law can be written in 
the following form: 

 / ,   0c cS Q T        (2) 
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where S is entropy; c  is the entropy production rate during cracking. Combining 

equations (1) and (2) to eliminate Q , one obtains the free energy balance equation: 

 0cF T        (3) 

where   is the Helmholtz free energy of the entire system (per unit thickness) de-
fined as: 

    , , , ,l T U l S TS       (4) 

Considering isothermal conditions (i.e. 0T  ), equation (3) can be rewritten as: 

 0cF l T
l

          
   (5) 

The system’s Helmholtz free energy can be decomposed as energy stored in the solid 
as elastic strain energy s  and on the crack surface in the form of surface tension: 

  , 2s l l       (6) 

Here the surface is treated as an independent phase in the Gibb’s sense, i.e. a surface 
phase can carry mass, momentum, energy and entropy but with zero thickness. 

According to the definition of elastic strain energy, the following relations can be 
derived: 

 ,     s s
IF G

l

 
   

  
  (7) 

where GI is the type-I (tension) energy release rate. Substituting equations (6) and (7) 
into (5) yields: 

  2 0I cG l T      (8) 

equation (8) recovers the classical Griffith criterion for the case in which only crack 

growth is allowed (i.e., 0l  ), having that: 

 
0    for   0 2

0    for   2

I

I

l G

l G





   

 



   (9) 

2.2 Hyperplasticity formalism 

An alternative way of deriving equation (8) is to adopt the Hyperplasticity formalism 
[Hou07]. This methodology defines the constitutive response of the system via two 
scalar functions, namely the Helmholtz free energy and the dissipation rate function. 
Under isothermal conditions, the first and second laws can be written as: 
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 ,  with 0W       (10) 

where W is the work input rate and   is the dissipation rate function. For the system 
depicted in figure 1, the only source of work input is external loading, W F  . For 
  and  , we take a slightly different view compared to Rice: the Helmholtz free 
energy is identical to the elastic strain energy and all the energy transferred to the 
surface is considered as “dissipated”. This is because we focus on crack growth only 
and the energy that enters in the surface phase is regarded as irreversible. Thus, one 
can write 

  ,s l      (11) 

 2 0cl T       (12) 

Substituting equation (11) into (10) gives: 

 2 0s s
cF l T

l


                  
   (13) 

Substituting equation (7) into (13) one obtains again the Rice’s criterion (8). The new 
insight provided by this formalism is the view of fracture as a yielding phenomenon.  
For example, assuming that energy is dissipated solely by surface area creation (i.e. 

0c  ),  becomes a homogenous function of l  of degree 1 and its degenerated 

Legendre transformation represents a yield surface in the stress space [Hou07]: 

 1 0
2

I
C

G
y


     (14) 

Such a criterion bounds the reversible regime for cracked solid and represents a yield 
surface for fracture expressed in energy terms. Note that this yield surface does not 
contain any hardening parameters, the predicted fracture phenomenon resembles the 
elastic-perfectly-plastic scenario. This means the crack velocity becomes unbounded 
once the critical energy release rate is reached ( 2I ICG G   ) (figure 2).   

 

 

Figure 2: Griffith crack model in IG l  plane.  
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3 Kinetics of crack growth 

The predicted unbounded crack growth velocity at GIC and the lack of crack growth 
below GIC does not agree with experimental observations of brittle solids in natural 
environments. A common phenomenon is the so-called subcritical crack growth, re-
ferring to the extension of cracks at a finite velocity below the critical threshold GIC 
[Atk87]. This phenomenon has been observed in glasses, ceramics, quartz and various 
types of natural rocks, and is highly sensitive to environmental factors such as relative 
humidity and temperature [Wie67, Atk82]. Figure 3a shows a typical plot of crack 

propagation velocity, l , as a function of the stress intensity factor KI (related to energy 

release rate via the celebrated Irwin’s relation 2 /I IG K E ), in the presence of vari-

ous degrees of water vapour concentration. Three crack growth regimes can be iden-
tified, all located at values of KI greater than KI0 (often referred to as stress corrosion 
limit). Region I, is the regime where the crack velocity increases exponentially, and it 
is assumed to be controlled by the reaction rate between environmental species and 

strained bonds in proximity of the crack tip (thus making l  dependent on both KI and 

chemical conditions). At higher values of KI (region II), where l  displays a much 
weaker dependence on KI, the diffusion of the reactive species towards the crack tip 
is often hypothesized to govern the crack propagation velocity. Finally, in region III 
KI approaches the critical value KIC in vacuum, at which the crack propagates cata-
strophically without displaying any noticeable dependence on the environmental 
agents. Based on such observations, many kinetic models have been proposed (see the 
review by [Atk87]). Among them, the Charles equation [Cha58] has been widely ap-
plied to interpret subcritical crack growth data. A possible form to express such a 
simple kinetics law is given as follows [Old07]: 

 

Figure 3: a) Typical stress corrosion curves represented in the IK l   plane (after 

[Atk87]); b) IK l   diagrams for quartz-rich rocks exposed to various environmental 

conditions. The dash lines represent the Charles equation used with KIref=KIC and 

0 1 m/sl   (data from [Atk80, Atk84, Nar12]).  
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 0

n

I

Iref

K
l l

K

 
   

 
    (15) 

where n is the stress corrosion index (i.e., the constant controlling the rate of crack 

advancement); 0l
  is a reference crack propagation velocity; and KIref is a stress inten-

sity factor used for normalization purposes (which depending on convenience may be 
either the fracture toughness under vacuum, KIC, or the minimum stress intensity fac-
tor for fracture growth under the prevailing environmental conditions, KI0). The 
Charles equation satisfactorily models the crack growth behaviour observed in region 

I for most minerals and rocks. For example, figure 3b collects IK l   diagrams for 

synthetic quartz and quartz-rich rocks subjected to different environments, and it 
shows that the values of n may vary between 15 and 60.  

A limitation of the Charles equation is that it implies crack extension in the presence 
of any magnitude of stress concentration. In other words, it does not have a stress 
corrosion limit below which the growth of a crack ceases. This limit, however, is nec-
essary to explain the rate of crack growth in glasses at low values of stress intensity 
factor [Wie70], and its existence has also been hypothesized for rocks [Atk87]. An 
alternative model that includes a stress corrosion limit was proposed by [Mau85], and 
it can be expressed through the following relation: 
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where α and n' are two model parameters and the Macauley brackets are used to limit 

the length evolution to crack growth only (i.e., 0l  ). It is apparent that such a model 
imposes a threshold value of KI below which the growth of a crack is not possible 
(i.e., KI < KI0). By specifying the following relations between the parameters of equa-
tions (15) and (16): 
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it is possible to show that the Charles and Maugis equations have the same asymptotic 
behaviour at large values of KI: 
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where equation (1) has been used with KIref=KI0. Thus, the Maugis equation can be 
expressed in terms of the widely used parameters of the Charles law, as follows: 
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Figure 4a shows a plot of the Charles and Maugis equations on a double-logarithmic 
scale, from which the convergence of the two models at large values of KI is readily 
apparent. While both laws depict a subcritical crack growth with the same corrosion 
index (n=10), the Maugis equation also imposes a stress corrosion limit (KI0=0.1 
MPaꞏm0.5). Figure 4b illustrates the importance of such limit with reference to data 
reported by [Wie70]. It can be noted that the non-linearity of the crack growth process 
in proximity of the stress corrosion limit is accurately captured by equation (19), 
which therefore offers both conceptual and practical advantages.  

 

 
Figure 4: a) Typical plot of Charles and Maugis crack propagation equation (KI0= 0.1 

MPaꞏm0.5, n = 10 and 0l
 = 5×10-10 m/s); b) Interpretation data for soda-lime and boro-

silicate glass [Wie70] through the Maugis equation (KI0= 0.2 MPaꞏm0.5, n = 12 and 0l


= 8×10-10 m/s for soda-lime glass; KI0= 0.25 MPaꞏm0.5, n = 16 and 0l
 = 5×10-9 m/s for 

borosilicate glass). 

3.1 Thermally admissible kinetic relations 

In the previous section we introduced two kinetic relations for crack growth. These 
relations appear phenomenological in nature and are not evidently connected with 
thermodynamic principles. Indeed, equation (8) defines the constraints that any ki-
netic laws must satisfy to comply with the second law of thermodynamics. Substitut-
ing the Charles law equation (15) into equation (8) gives 
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c I
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
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 

   (20) 

It is apparent that the Charles equation only satisfies equation (8) when 2IG  . For 

0 2IG   , the Charles law gives a negative entropy production rate which cannot 

be justified without resorting to microscale processes (i.e., crystal structures of the 
solid, chemical reactions at crack tip). By contrast, by substituting the Maugis law 
(19) into (8) it follows 
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which satisfies equation (8) for all values of IG .   

By using the Hyperplasticity formalism, it is possible to construct kinetic relations 
that automatically satisfy the thermodynamic constraints. This can be done by speci-
fying a non-negative dissipation rate function that is homogeneous of degree higher 
than one or nonhomogeneous [Hou02]. For example, equation (12) becomes a non-
homogeneous function by specifying 
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Comparing equation (22) with the definition of dissipation rate ( ) Il G l   , the fol-

lowing relation immediately follows: 
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The inversion of equation (23) leads to a fracture kinetics: 
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which is identical to the Maugis law (19). The dimensionless term 
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can be interpreted as an overstress function similar to those widely used in Perzyna-
type viscoplasticity models, since ξC = 0 represents the rate-independent fracture func-
tion yC defined in equation (14) and positive values of ξC produce higher crack growth 

velocity l . For this reason, ξC will be hereafter referred to as fracture overstress func-
tion. 

Now let us revisit the physical meaning of the new term introduced in equation (22): 
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This term describes the dependency of the entropy production rate on the crack veloc-
ity. It accounts for all the additional energy dissipation mechanisms during fracturing.  
If 0cT  , the loss of elastic strain energy in the solid is completely converted to 
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the surface energy of newly created surface area and equation (22) leads to Rice’s 
fracture criterion. In reality, the loss of energy by surface area creation is always ac-
companied by additional dissipation mechanisms, which may include wave emission 
[Bou96], heat generation [Dol84], solid-environment reaction at crack surface 
[Mic82] or viscoelastic/plastic deformation of the solid in the vicinity of crack tip 
[Wei74]. Therefore, it is necessary to have 0cT   if any of the above-mentioned 

processes take place during fracturing. Deriving the particular expression of cT can, 

in principle, be achieved by examining the physical origins of each dissipation mech-
anism. For example, given a crack geometry, one can compute the energy consump-
tion during diffusion of reactive species from the ambient environment to the newly 
generated surfaces. Energy dissipation upon spontaneous chemical reaction of fluid 
molecules with strained solid bonds depends on the rate at which such processes take 
place and on the involved reactants. Dissipation through viscoelastic/inelastic defor-
mation near the crack tip can be evaluated based on the knowledge of the near-tip 
stress field as well as the material properties of the solid. In this chapter, these mech-
anisms are not differentiated, and are collectively accounted for via the expression 
(26). As a result, the Maugis law is recovered.  

3.2 Dissipation function and potentials 

To provide a context for the derivations which will be presented in the following sec-
tions, it is useful to introduce a more general way of obtaining equation (23) from (22) 
by distinguishing the definition of dissipation rate function and dissipation potentials. 
A comprehensive overview of this topic is given by [Hou14]. In general, the energy 
dissipation rate caused by the thermodynamic velocities α  can be expressed as: 

 ( , ) : 0  A α χ α    (27) 

where 1 2{ , ,... }n  χ  are thermodynamic forces conjugated to α ; A is a list of ex-

ternal variables. In describing the behaviour of materials, the thermodynamic veloci-
ties and forces generally correspond to the rate of change of internal variables (e.g. 

plastic strain pε , crack length l ) and their driving forces (e.g. stress σ , energy re-
lease rate GI), respectively. To define the constitutive relations between χ  and α , the 

existence of a force potential ( , )z A α  and flow potential ( , )w A χ  can be postulated 

[Hou14]: 

 
z




χ
α

; 
w




α
χ
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where w and z are related by Legendre transformation:  

 ( , ) :w z z   A χ χ α   (29) 
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The Φ, z and w are not independent of each other. In particular, for the case of Φ 
homogenous of degree one in α  (i.e. ( / ) :   α α  ), the thermodynamic forces 

χ  can be expressed as /  χ α . Comparing it with equation (28) it is apparent 

that Φ and z are identical. Another consequence of having both Φ and z homogenous 
of degree one in α  is that w collapses to zero (i.e., w=0), thus defining a locus that 
bounds the reversible region of the space of the external state variables (the so called 
yield locus) and outside which the inelastic response of the system is modelled as a 
rate-independent process [Ric71, Lub72]. This particular case is the basis of many 
rate-independent thermomechanical models for geomaterials [Col97, Col03, Ein07d]. 
In section 2.2, equation (14) is a consequence of a first-order homogeneous dissipa-

tion ( ) 2l l   . 

For the more general case of Φ homogeneous of degree N > 1 or non-homogenous 
function of α , it can be shown that the dissipation process becomes rate-dependent. 
For example, the case of N=2 corresponds to a linear viscoplastic behaviour [Per66], 
while N>2 or more complex non-homogenous functions lead to nonlinear viscoplastic 
theories [Hou02]. In section 3.1, Maugis’ kinetic law is a consequence of a non-ho-

mogeneous dissipation 2/
0( ) 2 2 ( / ) nl l l l l        . 

In the latter case, the force potential z can be constructed from Φ by using the follow-
ing relation [Hou07, Hac08]: 
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where τ is a dummy variable. Conversely, if the force potential z is known, Φ can 
always be derived from the following relation: 
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In both cases, the flow potential w can be obtained from equation (29). More gener-
ally, since Φ, z and w can be converted to each other via Equations (29), (30) and (31)
, it is sufficient to specify one of them to define the dissipative constitutive response 
[Hou14].   

We can immediately use equations (30) and (29) to derive the dissipation potentials 
for subcritical crack growth: 
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The kinetic relations (23) and (24) can be readily derived via equation (28). Therefore, 
we have shown that the Maugis law can be derived by postulating either one of the 
potentials Φ, z and w. This conclusion is useful in deriving other kinetic models where 
not all of the dissipation potentials can be written explicitly like this case.  
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4 Energetics of continuum breakage 

Let us now focus on the collective crushing of a granular assembly under mechanical 
loading. First, some basic concepts of continuum Breakage Mechanics will be intro-
duced without referring to microscale fracturing processes. Then the similarities and 
connections of breakage mechanics with fracture mechanics will be reviewed. Finally, 
a simple upscaling strategy to bridge single particle fracture mechanisms to the mac-
roscale breakage behaviour of granular assemblies will be discussed.  

4.1 Definition of breakage  

As summarized in section 1, granular assemblies that are monotonically loaded to 
sufficiently high stresses tend to approach an ultimate, self-similar GSD. This phe-
nomenon can be explained from a statistical perspective: “If particles fracture such 
that the smallest particles are in geometrically self-similar configurations under in-
creasing macroscopic stress, with a constant probability of fracture, a fractal geom-
etry evolves with the successive fracture of the smallest grains, in agreement with the 
available data.” [McD98]. The fractal dimension of such GSD inferred from these 
concepts is about 2.5~2.7 (figure 5).  

Based on these observations, [Ein07a] proposed a definition of breakage index based 
on the current location of GSD relative to the initial and ultimate fractal GSD, as 
shown in figure 6. Geometrically, the shaded area (the total breakage Bt) quantifies 
how much grain crushing has occurred in the system, and the cross-hatched area 
(breakage potential Bp) represents the total breakage the system can possibly undergo. 
Relative breakage Br is defined as the ratio between the two, so that Br=0 represents 
the uncrushed specimen and Br=1 represents the completely crushed state. Mathemat-
ically, Einav’s breakage index can be defined as: 
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where F, F0 and Fu are the current, initial and ultimate cumulative GSD by mass; x is 
the grain diameter; dm and dM are the minimum and maximum grain sizes.  

Given an initial and ultimate GSD and the relative breakage Br, infinite examples of 
current GSDs can be found to satisfy equation (33) since the calculation of area does 
not restrict the shape of the GSD. This limits the direct use of Br as an internal variable 
in continuum theories. A reasonable constraint to the shape of the current GSD is the 
assumption of fractional breakage [Ein07a], which hypothesizes that the measure of 
Br is fractionally independent: 
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(a)                                       (b) 

Figure 5: The development of an ultimate fractal GSD during (a) 1D compression test 
[Nak01b]; (b) Ring shear test [Coo04]. Please refer to the original papers for the cor-
respondence in the legend.  

 

 

Figure 6: Einav’ s definition of breakage (after [Ein07a]) 

 

where ( ) ( ) /g x F x x   is the probability GSD; B is the fractional breakage (or 

simply breakage). Equation (34) is a direct outcome of (33) by assuming fractional 
independency. In this way, the breakage B is one-to-one linked with the current GSD 
of a granular system: 

   0( , ) 1 ( ) ( )ug x B B g x Bg x     (35) 

The ultimate fractal GSD can be represented by the following function: 
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with α=2.5-2.7. Typically, the initial GSD can be represented by the same equation 
with a different fractal dimension: 
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where β controls the coefficient of uniformity of the initial GSD. For soils with mon-
odisperse grading, the following expression can be used: 

  0 ( ) MF x H x d   and  0 ( ) Mg x x d   (38) 

where H is the Heaviside function and δ is the Dirac delta function. 

4.2 Breakage Mechanics  

Let us start with energy balance equation (10). The system of interest is an assembly 
of brittle particles under mechanical loading. The work input is easily identified: 

 :W  σ ε  (39) 

where σ  is Cauchy stress and ε  is the infinitesimal strain tensor. To completely de-
fine the response of the system, one needs to specify the two scalar functions Ψ and 
Φ. By observation, the external state variables of the system are σ and ε . The internal 

state variables (ISVs) include breakage B, plastic strain pε , porosity n and fabric F, 
etc. To focus on the breakage process, let us select B as the only ISV for now. The 
two functions are then expected to have the following forms: 

 ( , ); ( )B B     ε   (40) 

[Ein07a] postulated that the elastic energy in the system characterized by GSD g(x, 
B) is distributed among different the grain size fractions  , x ε which is a function 

of x through a power function: 
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where  , x ε is the grainsize specific Helmholtz free energy that satisfies 
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; r  and dr are reference grainsize specific Helmholtz free energy and grain size re-

spectively; nM is a scaling parameter to be determined. [Ein07a] then conducted a 
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series of DEM analysis and found that nM=2 is a good approximation of the energy 
split in the system. Substituting equations (35) and (41) into (42) gives: 

      , 1 rB B   ε ε  (43) 

where   is the grading index emerged from the homogenization 
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The thermodynamic forces defined by equation (43) can be derived as follows: 
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Equation (45) represents a breakage-dependent elasticity model, i.e. the decrease of 
stiffness as gradation approach to ultimate state. Equation (46) defines a new variable 
named breakage energy. This quantity plays a similar role to that of GI in fracture 
mechanics, as it quantifies the energy release rate upon an infinitesimal change of the 
gradation of the system δB (instead of δl for fracture). Their conceptual correspond-
ence is illustrated in figure 7. 

The breakage criterion can be defined similarly to fracture mechanics by imposing a 
threshold on the energy release rate EB rather than on the stress σ . Experimental evi-
dence suggests that grain breakage progressively increases the energy required to 
cause further crushing [McD98], which is commonly referred to as clastic hardening. 
This leads to the postulation of the following breakage criterion: 
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where Ec is the critical breakage energy. Compared to the Griffith criterion I ICG G , 

the breakage criterion contains a hardening term  2
1/ 1 B  so that the energy re-

quired to cause breakage approaches infinity as B approaches 1. The dissipation rate 
function during breakage can be derived as: 
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It is possible to examine the physical meaning of equation (48). For this purpose, let 
us define the residual breakage energy  

 *
B uE      (49) 
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Figure 7: (a) Fracture propagation in a tensioned pre-cracked solid plate (i) before and 
(ii) after crack growth; (b) comminution in a confined granular assembly (i) before 
and (ii) after breakage growth. (after [Ein07c]) 

 

where        , 1 1u rB       ε ε ε . It represents the free energy that remains 

in the system for crushing grains. Substituting equation (46) into (49) gives  

  * 1B BE E B   (50) 

Substituting the breakage criterion (47), equation (50) finally reads: 
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This equation reveals that the breakage dissipation is linked with the change of Helm-
holtz free energy due to moving the current GSD to a new position, or simply, energy 
dissipation from breakage is equal to the loss in residual breakage energy.  

For illustration purposes, it is convenient to consider a one-dimensional (1D) scenario 
where the sample is subjected to isotropic compression only. Assuming the system 
obeys linear elasticity, the Helmholtz free energy and the corresponding elastic rela-
tions can be written as: 
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 (52) 

where tr( )v  ε   is the volumetric strain; tr( ) / 3p  σ  the mean stress; K the bulk 

modulus. Substituting equation (52) into (47) gives the critical breakage pressure (at 
B=0): 
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Equation (53) bears numerous similarities with the well-known expression of the crit-
ical tensile stress for a brittle solid plate with a pre-existing crack: 

 Ic
cr

EG

a



  (54) 

where E is the Young’s modulus of the plate; a is the half-crack length. Continuum 
breakage mechanics, in a similar way to fracture mechanics, predicts the critical stress 
threshold for the growth of surface area in the system (via comminution), which de-
pends on the material properties and the geometry of the system. For example, the 
effect of the stiffness is included in the bulk modulus K (thus suggesting that stiff 
particles and/or dense packing generate large yield pressures), while the role of the 
particle grading is embedded in ϑ (which tends to zero as the initial GSD approaches 
its ultimate configuration, thus suggesting that well-graded soils tend to have higher 
yielding thresholds compared to poorly-graded soils). The picture is completed by the 
critical breakage energy Ec (i.e. a parameter that reflects the crushability of the mate-
rial), thus playing a role conceptually similar to that of the critical energy release rate, 
GIC. This result, in contrast to the classical stress-based elastoplastic models, is tightly 
connected to the energetic principles in comminution theories and grain-scale fracture 
mechanics [Zha16]. It also provides tools for interpreting surface area measures dur-
ing high-pressure tests [Zha18] which will be discussed in the last chapter of this pa-
per.  

A better description of the elastic response of granular materials can be achieved using 
the pressure-dependent elasticity: 
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 (55) 

where  1 1vA K m     ; pr is a reference pressure; m controls the nonlinearity of 

the model; K  is the dimensionless bulk modulus. The constitutive responses defined 
by Equation (55) and breakage criterion (47) are plotted in figure 8. This basic 1D 
model can already capture several main traits of crushing processes, i.e. clastic yield-
ing and hardening as the GSD approaching the ultimate fractal distribution. Unloading 
does not produce reversed growth of breakage as constrained by the second law. Ap-
parently, the model needs several extensions to capture the realistic behaviour of 
crushable granular materials: 1) plastic strain associated with grain breakage need to 
be included; 2) stress states other than isotropic need to be considered.  

4.3 A rate-independent breakage model 

A triaxial breakage model considering plastic-breakage coupling can be achieved by 
including the following features in the 1D framework: 1) include plastic strains to the 
list of ISVs; 2) include the deviatoric stress, q, in the formulation; 3) couple a frictional 
yielding mechanism to the breakage yielding mechanism. The step-by-step procedure 
in developing such model is given by [Ein07b]. Here we only present the key equa-
tions defining the final form of the model.  

 

 

Figure 8: Compression response for a simple 1D breakage model (after [Ein07b]). 

 

The two scalar energy functions are expressed as: 
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for linear elasticity or  
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for pressure-dependent elasticity, and  

 2 2 2( , , ) ( ) ( ) ( )p p v p s p
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where  
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  (59) 

ω is the coupling angle that allocates the energy dissipation through breakage and 
friction; M is the critical stress ratio that controls the frictional limit during shear; 

2
3 :s  e e  the deviatoric strain; / 3v e ε I  the strain deviator; 3

2 :q  s s  the 

deviatoric stress; p s σ I  the stress deviator; superscripts ‘e’ and ‘p’ denote the 

elastic and plastic components, respectively.  

Equation (58) is a homogeneous function of degree 1 with respect to its variables 
( , , )p p

v sB     . Therefore, the resultant model is expected to be rate-independent and 

z  is the true dissipation potential of the system. Following the hyperplasticity 
formalism, the yield surface in true stress space can be derived as: 
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The flow rules are given by  

 

 

 

2 2

2 2

2 2

1 cos
2

1 sin
2

2

pB

B c

pB Bp
v

c

pBp
s

y B
B

E E

y B E

p pE

y q

q M p


 


  

  

 
 



 
 




 









  (61) 
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where λ is a positive plastic multiplier; , , Bp q E  are dissipative stresses; pBy is the 

yield surface in the dissipative stress space; The performance of the triaxial breakage 
model has been studied by several authors [Ein07b, Ngu09, Zha13] and examples of 
application are shown in figure 9.  

 

 

Figure 9: Model vs data for the (a) stress-strain behaviour and (b) porosity change for 
Adamswiller sandstone in different loading conditions. The prediction is given by 
pressure-dependent elasticity. (After [Ngu09]) 

 

5 Kinetics of breakage growth 

Section 3 discussed the connection between Rice’s interpretation of the Griffith’s cri-
terion and the Maugis crack growth law. The latter is shown to be a consequence of a 
higher-order term added to the dissipation of a rate-dependent fracture process, which 
augments the loss of energy via creation of new surface area by accounting for further 
dissipative processes. This result has inspired a strategy to convert a rate-independent 
initiation criterion (e.g., a yield surface) into a rate-dependent evolution law controlled 
by delayed fracturing (i.e., a kinetic relation), and it will be applied hereafter to the 
continuum modelling of delayed particle breakage.  

5.1 Simple isotropic model for rate-dependent breakage 

First, it is useful to examine the physical processes that govern the rate-dependent 
crushing of granular assemblies. Recent experimental data supports [Kar10, Lad10] 
that creep and relaxation of granular materials under high confining pressure is caused 
by the growth of subcritically stressed cracks in individual grains. Indeed, the time 
required to split a particle subjected to an external load P can be estimated by inte-
grating the corresponding crack growth velocity with respect to time [Old07] (figure 
10a). Depending on the magnitude of KI generated by the load P, the particle can crush 
catastrophically (i.e. KI≥KIC), fracture after a finite time (i.e. KI0<KI<KIC) or remain 
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intact indefinitely (i.e. KI≤KI0). Now let us consider a sand specimen subjected to sus-
tained confining stress (i.e., a creep test). Critically loaded particles arranged along 
the major force chains will be rapidly crushed. These events are reflected macroscop-
ically as instantaneous inelastic strains developed upon the application of a load in-
crement. The rest of the particles are either stressed with intermediate values of KI or 
slightly stressed with KI≤KI0. As time progresses, particles under sufficiently high 
stresses will be consecutively crushed, thus initiating grain rearrangement and force 
redistribution. Eventually, a stable configuration is achieved where most of the flaws 
within the particles are stressed below the corrosion limit and only limited strain ac-
cumulation is displayed over time (figure 10b) 

 

Figure 10: Schematic diagrams of a) fracture growth in a subcritically loaded particle 
and b) creep in a granular assembly 

 
Based on these considerations, the energy dissipation by grain crushing should not 
only contain the dissipation associated with the creation of new surface area and the 
associated energy redistribution, but it should also include additional sources of en-
ergy loss that reflect the net dissipation due to delayed inelastic interactions at crack 
tips. This can be incorporated in the dissipation function (48) in a similar way as for 
the fracture dissipation function (22) by adding a non-negative term TΛB: 
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The first term on the right hand side (RHS) of (62) is the breakage dissipation ac-
counting for the creation of new surface area and the associated loss of energy due to 
force redistribution in the original 1D breakage theory. The second term TΛB ≥ 0 col-
lects additional dissipative terms due to stress corrosion at crack tips and delayed 
breakage. Apparently, this term makes equation (62) a non-homogeneous function, 
thus implying a rate-dependent irreversible process. Following the same procedure 
outlined in Section 3.2, the force and flow potentials can be derived as: 
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where the dimensionless term 
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is the breakage overstress function. The breakage evolution law corresponding to 
equation (63) is derived as: 
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Combining equations (65) and (24), one obtains 
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  (66) 

This equation reveals the implications of having the same order of nonlinearity for the 
entropy production term TΛB for fracturing and breakage. In particular, according to 
(66) the corrosion index n not only governs the kinetics of crack propagation within 
the grains, but it also enters in the continuum description of the rate-dependent crush-
ing of an assembly. This hypothesis results in the same logarithmic growth of the 

internal variables l  and B  when plotted against their respective overstress functions 

C  and B  (figure 11). The applicability of such hypothesis will be discussed in the 

subsequent sections with reference to laboratory evidences. The performance of this 
1D model using linear elastic model is presented in figure 12. 

5.2 A rate-dependent triaxial breakage model 

A generalization of this 1D model to triaxial conditions can be pursued in a similar 
manner as in Section 4.3. The only difference is that the dissipation rate function in 
this case involves three thermodynamic velocities ( , , )p p

v sB      while the 1D case has 

only one ( B ). The coupling of multiple dissipation mechanisms in equation (58) pre-
vents the use of a generalization strategy based on the simple addition of a higher-
order source of energy dissipation TΛB. To circumvent such difficulty, the extension 
to multi-dissipative mechanisms is tackled by directly postulating a flow potential w 
rather than one of the functions Φ or z. For this purpose, by analogy with equation 
(63), the flow potential is postulated as 
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where ( , , )pB B pBE p q y  is the breakage plastic overstress function for triaxial 

loading. Applying the definition of flow potential gives the evolution laws: 
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  (68) 

where ( , , )pB B pBE p q y  . The relations above converge to the same breakage 

growth law in equation (65) whenever isotropic stress conditions are imposed (q=0) 
and volumetric plastic dissipation is neglected (=0). Furthermore, by setting n = 2, 
Equations (42) lead to an overstress-based viscous model with a linear viscous nucleus 
function , which has already been used in previous studies of crushing-induced com-
paction localization for regularization purposes [Das13]. It is shown here that such 
regularization can be obtained from a thermomechanical procedure based on the flow 
potential. Moreover, from this analysis it follows that the power law coefficient n 
should not be arbitrary selected, but it should rather coincide with the stress corrosion 
index of the constituting mineral (which is much larger than 2). 

 

 

 

Figure 11: a) Plot of Maugis model and subcritical crack growth data on the 0/ Cl l    

plane; b) visualization of equation (66) for different values of n. 
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Figure 12: Examples of isotropic breakage simulations exploring the effect of the pa-
rameters n and 0B under constant strain rate compression. 

5.3 Model validation 

Creep data from oedometric compression tests on a quartz sand reported by [Tak01] 
is selected for validation purposes (figure 13). The grading index has been computed 
by using the reported grain size (D50=1.43 mm) and assuming an initial uniform grad-
ing. Each load increment has been assumed to be applied in 1s, after which a creep 
stage was simulated. In addition, the parameters of the baseline breakage model ( K , 
G  Ec, M and ω) have been calibrated through a strategy similar to that used for the 

previous example, while the parameters n and 0B  have been selected to match the 

magnitude and rate of the measured creep response at a stress level of 20 MPa (figure 
13b). It is noticed that the computed compression curves and the predicted strain his-
tories at the other stress levels (σv =1.11 MPa ~ 9.95 MPa) exhibit an excellent agree-
ment with the experiments. Such agreement has been achieved by using a power law 
coefficient n = 30, which is within the range of values reported for typical rock-form-
ing minerals [Atk82]. In addition, the negligible creep measured at the lowest stress 
levels (i.e. σv=1.11 MPa and 2.34 MPa) is correctly captured by the model, thus re-
flecting that under high compressive stresses and constrained kinematic conditions 
grain crushing plays a dominant role in the accumulation of creep. Although other 
time-dependent processes may influence creep rates in granular soils (e.g., at low to 
intermediate stress levels, where grain damage may be negligible and/or coexist with 
other inelastic mechanisms), the model performance in this specific example validates 
the hypothesized link between delayed crack growth and macroscopic creep for cases 
in which grain crushing is the main source of microstructural rearrangement.  

Karimpour and Lade [Kar10, Kar13, Lad14] recently performed a series of triaxial 
compression tests on saturated Virginia Beach sand under high confining pressures 
(8 MPa) to study the effect of the loading rate on its stress-strain, creep and relaxation 
responses. Such data are here used to validate the characteristics of the proposed  
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Figure 13: Data and model predictions of oedometric creep tests on quartz sand: a) 
compression response, b) creep response (data from Takei et al., 2001). Parameters 
used: ϑ=0.75, Ec=0.09 MPa and K =1500, G =1640, ω=15°, M=1.2, n=30 and 0B = 

2×10-2/ s. 

 

model along stress paths that involve considerable shear strains. The strategy is to first 
calibrate all the model parameters based on stress-strain curves reported for various 
strain rates, then, using the same set of parameters, to predict stress relaxation re-
sponses to be compared with measured relaxation curves. Figure 14 presents meas-
ured and simulated stress-strain curves for constant strain rate triaxial tests, for which 
a calibration strategy similar to that discussed in the previous cases has been used to 
constrain the model parameters. Stress relaxation tests are then simulated by interrupt-
ing each test at 2.8% strain level and then maintaining constant axial strain εa for one 
day, thus following exactly the procedure described by [Lad14]. The data in figure 
15a suggests that upon ceasing of axial straining, a drop of q manifests on the q-εa 

plane, while negligible volumetric changes occur during the relaxation stage. These 
characteristics have been successfully predicted by the model, though there is a slight 
over prediction of the volumetric compaction prior to the relaxation stage. Figure 15b 
presents the time history of q relaxation, as well as the absolute values of decreasing 
stress deviator. An excellent agreement between model predictions and experimental 
data is observed on both planes. More interestingly, the convergence of the three q-t 
curves after certain amount of relaxation time is successfully predicted by the pro-
posed model. 

For Virginia Beach sand a value of n =30 has been used, which again falls within the 
range of corrosion indices summarized in figure 3b. This evidence suggests that high 
values of n are necessary to properly capture strain-rate sensitivity, creep and relaxa-
tion in granular soils at high pressures. Other values of n (e.g. classical Perzyna model 
with n=2) would instead not be able to match neither of these effects due to the high 
sensitivity of the response to small changes in strain rates. Such observations indi-
rectly validate the hypothesis in equation (66), i.e. that the power law coefficient gov-
erning the breakage evolution is linked with the corrosion index controlling the 
growth of cracks in particles.  
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Figure 14: Experimental data and model simulations of the stress strain response of 
Virginia Beach sand subjected to various strain rates at a confining pressure of 8 MPa. 
The grading index ϑ=0.72 results from the reported D50=0.6 mm. The calibrated pa-
rameters are: Ec=0.12 MPa and K =4000, G =4360, ω=45°, M=1.02, n=30 and 0B

=2×10-2/s. 

 

 

Figure 15: Experimental data and model simulations of triaxial relaxation tests on 
Virginia Beach sand: a) q and εv responses, b) relative and absolute drop of q due to 
relaxation.  

6 Environmental effects 

It is known that the crushing behaviour of granular materials is sensitive to the state 
of the fluids occupying the pore space. The previous discussion has focused on the 
mechanical causes of particle breakage, thus placing less emphasis on the environ-
mental conditions at which such processes take place. Interactions between solids and 
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environment can indeed alter the crushing response of brittle granular materials at the 
scale of representative elementary volumes (REV). A common example is the effect 
of varying ambient relative humidity (RH), for which numerous tests on specimens 
made by silica and quartz particles [Che07, Brz14] or rock aggregates [Sow65] have 
shown that the exposure to water vapour can dramatically exacerbate crushing by 
lowering the macroscopic yield strength, enhancing the matrix compressibility and 
promoting long-term creep. For these reasons, dry sand specimens in equilibrium with 
high confining pressures often experience a reactivation of breakage and volumetric 
collapse upon water injection [Ova13]. Similarly, cemented granular rocks (e.g., sand-
stones) display marked water-sensitivity, in the sense that in the cataclastic regime 
fully saturated samples display much lower yield stress compared to nominally dry 
specimens [Zhu97, Bau00]. This section shows how the above phenomenon can be 
consistently addressed in the same thermomechanical framework by exploiting the 
breakage-fracture analogy at macro and microscales.  

6.1 Environmentally enhanced fracture growth 

Consider again a diametrically loaded disk with unitary thickness in the out-of-plane 
direction depicted in figure 16. The system is in contact with a heat reservoir with 
constant temperature T. The particle is immersed in a fluid mixture composed of k 
miscible surface-reactive species. The state of the system can be altered by controlling 
the compression force on the particle, as well as by changing the pressure of the fluid 
or modifying the number of moles of each species. The rate of work input introduced 
in the system through these three mechanisms can be written as:  

 
k

f i i
i

W F PV N        (69) 

where F and Δ are the axial load and displacement, respectively; P the fluid pressure; 
Vf the volume of the fluid; i  and Ni the chemical potential and the number of moles 

of species i in the system. Assuming no mass exchange between the solid phase and 
the other phases, the added molecules of species i can only exist in fluid form or be 
adsorbed on the solid surface, i.e. Ni can be decomposed into 

 2f surf f
i i i i iN N N N l       (70) 

where the superscript f and surf denotes fluid and surface portion, respectively; l is the 
crack length; i  is the surface excess concentration representing the adsorbed number 

of moles of species i per unit area of the fracture. Substituting equation (69) in the 
energy balance (10) and assuming the same fracture dissipation (12), one obtains: 

 0
k

f i i c
i

F PV N T            (71) 
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Figure 16: Schematic of a center-cracked particle immersed in adsorptive fluid mix-
ture.  

 

Substances in solid and fluid states, as well as those present in the form of surface 
excess, can carry both entropy and energy. Therefore, the total Helmholtz free energy 
can be decomposed into three contributions:  

 2s f surf l       (72) 

where ( , )s s l     is the elastic energy stored in the solid phase; 

( , )f
f f f iV N    is the fluid free energy; ( )surf surf i   is the surface excess free 

energy per unit area. Since in this study the solid phase is not involved in mass ex-
changes, the composition of the solid is constant and the rate of change of its Helm-
holtz free energy is independent of the chemical potentials of the solid species. A 
similar argument can be used for the temperature, T, in that the restriction to isother-
mal processes allows the exclusion of T from the list of arguments of s . 

By substituting equations (70), (72) into (71), the following thermodynamic con-
straint  can be derived: 

 2 0s f surf cl T        (73) 

where  
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is the rate of solid dissipation; 
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k

surf i i surf
i

         (76) 

is the rate of surface dissipation per unit area. Let us restrict the discussion to non-
dissipative constitutive response of the fluid mixture and the surface (i.e.

0f surf   ). In this case, equation (75) is the standard free energy balance for 

homogenous multicomponent fluid [Deh06] and equation (76) embodies a relation 
between the chemical potential and the number of adsorbed molecules of species i:  

 surf
i

i








  (77) 

To further interpret the energy balance for solid-fluid interface (76), it is convenient 
to define an energy potential from the Legendre transformation of surf  as 

 
1

( ) ( )
k

i surf i i i
i

   


      (78) 

The rate of change of this potential can be expressed as follows by substituting equa-
tion (78) into (76) noticing 0surf  : 
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Equation (79) is the celebrated Gibbs adsorption isotherm for multicomponent ad-
sorptive fluids. Indeed, the energy potential γ defined in (78) is the solid-fluid interfa-
cial energy (or, more simply, the surface energy) that represents the energy consump-
tion due to the creation of a unit area of such interface (assuming no other dissipation 
sources). The Gibbs adsorption isotherm states that the solid-fluid interfacial energy 
is a function of the chemical potential of each adsorptive species in the environment. 
For inert species that do not interact with the surface (i.e. 0i  ), their concentrations 

in the fluid phase do not alter the interfacial energy. Otherwise, the amount of ad-
sorbed molecules 0i   is typically a monotonically increasing function of i  

[Sin85], which according to equation (79) implies a decrease of surface energy upon 
adsorption. 

Substituting equation (78) and 0f surf    into equation (73), one can derive 

again equation (13) that embodies the Rice’s criterion (8). This concept is important 
to explain the results of experiments subjecting granular solids to changes in relative-
humidity (e.g., [Old03]). In these tests, the controlled external variables are total 
stresses and strains, air relative humidity, and the total air pressure (typically kept at 
atmospheric value). As a result, the chemical potential of the water vapour μw is the 
only varying state variable for the fluid phase, thus allowing the integration of equa-
tion (79) under constant i  ( i w ): 
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   ˆ ˆ( )
w

w a w w wd


    


     (80) 

where a  is the solid surface energy in dry air (which can be treated as a constant) 

and the subscript w denotes water vapour. The chemical potential μw can be further 
expressed in terms of partial vapour pressure wP  and thus the relative humidity 

[Deh06]: 

 
0 0

ˆ ˆ( ) ln ( ) ln
wP RH

a w w w a wRT P d P RT RH d RH  
 

         (81) 

where ,/w w satRH P P  is relative humidity; where ,w satP  is the saturation vapour par-

tial pressure. 

To further explore the implications of the Gibbs isotherm, the Langmuir isotherm is 
selected to relate w  and w

  for the adsorption of ideal gases on solid surfaces 

[Cou10]: 

 
 

max max

1 / 1 exp /
w w

w
w w w

f RH f RT

 
  

  
  (82) 

where wf  and max
w  are two model parameters that should be calibrated from adsorp-

tion tests. Here we consider a set of water-quartz and water-silica adsorption data (fig-
ure 17a) to locate a range of adsorption parameters wf  and max

w  for the surface of 

sand or rock particles. The curves A, B and C are generated by equation (82) using 
different values of wf  and max

w  (specified in the figure caption). Combining the 

equation (82) with the Gibbs isotherm (81), the surface energy can be expressed ex-
plicitly as a function of RH: 

  max ln / 1a w wRT RH f       (83) 

The effect of varying surface energy on the fracture toughness of a brittle solid can be 
readily derived through the Irwin’s relation (i.e., 2

02 ~ IG K  ): 

 max0

0,

1 ln 1I
w

I a a a w

K RT RH

K f


 

 
     

 
  (84) 

where KI0,a is the fracture toughness in dry air. The validity of equation (84) is exam-
ined through the experimental data reported by [Nar12] about the KI0 for different 
rocks subjected to changing relative humidity in figure 17b. 

Combining equation (83) with the Maugis kinetics law (19) allows for an environ-
ment-dependent propagation of cracks. The performance of this model is compared 
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again with Nara’s data in figure 18. A good agreement is illustrated between model 
predictions and data for two sandstones at different values of RH.   

 

 

Figure 17: a) Calibration of the parameters for Langmuir adsorption model and b) 
predictions of fracture toughness subjected to various RH (data from [Nar12]). The 
adsorption parameters for curve A are fw=5 and max

w =1×10-3  mol/m2, for curve B are 

fw=1.5 and max
w =1.9×10-4 mol/m2, and for curve C are fw =0.5 and max

w =3×10-5  

mol/m2  

 

 

Figure 18: Predicted vs. observed subcritical crack growth curves under different val-
ues of relative humidity: a) Shirahama Sandstone (n=20, 810 m/sl  and KI0,a=0.3 

MPa.m0.5); b) Berea Sandstone (n=40, 810 m/sl  and KI0,a=0.22 MPa.m0.5).  

6.2 Breakage of a granular assembly in wet air 

Now consider a three-dimensional (3D) REV of brittle particles in contact with wet 
air (figure 19). By assuming that all processes are sufficiently slow to ensure that heat 
transfer and water vapour flow can be neglected, the Clausius-Duhem inequality for 
the entire system can be expressed as follows [Cou10] 
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 : 0
k

i i
i

n    σ ε     (85) 

where /i in N V  is the number of moles of species i per unit total volume of the 

REV, which as in equation (70) can be decomposed into two components: 

 a
i i s in n A     (86) 

where a
in  is the number of moles of free molecules in the air; As is the specific surface 

area (here defined as the solid surface area per unit total volume of the REV), and Γi 
is the number of moles of adsorbed molecules per unit solid surface area. 

 

Figure 19: Schematic of a REV of granular skeleton immersed in ideal gas mixture. 

 
Similar to equation (72), the total Helmholtz free energy consists of three components: 

 s a s surfA       (87) 

where Ψs, Ψa and s surfA are the free energy stored in the solid skeleton, air, and solid-

air interface respectively. The thermodynamic constraints for such system can be de-
rived by substituting equations (86) and (87) into (85): 

 0s a s surfA      (88) 

where  

 : ( )
k

s i i surf s s
i

P A        σ ε      (89) 
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μini

 σ:ε

T=T0
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are energy dissipation terms due to changes of the state of solid skeleton, gas mixture 
and solid-gas interface, respectively. Equations (90) and (91) resemble the relations 
discussed in Section 6.1, in that they reflect the free energy balance for ideal gas mix-
tures and the adsorption isotherm. Hence, they can be treated as reversible non-dissi-
pative processes, thus restricting the analysis to the constitutive relations of solid skel-
eton under the constraint 0s  . 

Equation (89) can be simplified by considering (78) and the relation 

tr( ) :    ε I ε    (which implies incompressible solid grains): 

   : 0s s sP A     σ I ε    (92) 

Substituting the Helmholtz free energy (43) and considering the hyperelastic relation, 
equation (92) reduces to 

  , ' : 0p
B s B sE A B    σ ε   (93) 

where ' P σ σ I  is the effective stress (or the net stress if the pore fluid is air; 
[Nut08]); , /s B sA A B   is a function that reflects the intensity of surface area growth 

with respect to an infinitesimal change of GSD. 

The rest of the development for a rate-dependent triaxial breakage model in surface 
reactive environment follows the same procedure as in Section 5.2. The same form of 
flow potential equation (67) is assumed: 
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with the yield surface in true stress space expressed as 
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 (95) 

Note that the critical breakage energy Ec in equation (67) is replaced by ba  based on 

grain-scale analysis [Zha16]. The evolution laws of the system can be derived in the 
same way 
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 (96) 
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The formulation is completed by a surface growth function which is here assumed to 
be given by  

 
  01

1
A s

s
V

B A
A

B








 (97) 

The derivation of this relation is discussed in detailed by [Zha18] and its agreement 
with reported data is shown in figure 20. 

 

Figure 20: Performance of the surface growth function equation (97) against experi-
mental data from oedometric compression test on quartzite shale sand (data after 
[Ova13]). 

6.4 Model performance 

Quantitative results can be obtained for the case of isotropic compression (i.e. q=0). 
For linear elasticity, the comminution pressure can be derived by substituting equation 
(52) into (95) 

  2

,

1 2
' 1

1
bM

CR s B
M

B K
p a B A

B


 


     

 (98) 

Similarly, the comminution pressure for pressure-dependent elasticity model can be 
expressed as follows: 
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 (99) 

In both cases the incorporation of equation (83) into (98) or (99) provides 'CRp  as a 

function of the water vapour potential, μw. Such dependence can be explored by using 
curve A from figure 20. Figure 21 shows the variation of the comminution pressure 

'CRp  as a function of the chemical potential of water vapour, w
 , and of the relative 

humidity, RH. It can be noticed that the computed yield stress monotonically de-
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creases upon increasing values of chemical potential (or, equivalently, upon decreas-
ing values of RH), thus reflecting a lower crushing resistance of a granular matrix 
embedded in a humid environment. Figure 22 plots clastic hardening and suction hard-
ening characteristics of the yield surface in p'-q-B and p'-q-RH space, from which it 
is possible to note the growth of the yield stress upon comminution and drying. While 
the analysis is reported only with reference to a pressure-dependent elastic law, similar 
trends would have been obtained also in presence of a linear elastic granular matrix.  

 

Figure 21: Isotropic yield pressure as a function of a) chemical potential of water va-
pour and b) relative humidity at various levels of B. Curves computed for a pressure-
dependent elastic law (99). 

 

Figure 22: yield surface (95) in a) p'-q-B space plotted for RH=1, and b) p'-q-RH space 
plotted for B=0. 

 

Now it is possible to simulate again Takei’s oedometer test on quartz sand calibrated 
in figure 13 under alternating hydraulic conditions. The interruption of dry creep by 
flooding the specimens typically cause a substantial acceleration of the creep re-
sponse, which can be explained as a signature of the feedback between water weak-
ening and volumetric collapse. Figure 23a displays predicted two-stage creep re-
sponses at different stress levels for the same quartz sand is predicted to cause sharp 
increases in volumetric strain, as well as to activate creep effects even if they were not 
predicted under dry conditions (e.g., for σv=2.34 MPa). The same phenomenon has 
been observed in numerous two-stage creep tests on sand [Che07, Brz14], for which 
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significant grain breakage is often observed after flooding and/or creep. These evi-
dences are consistent with the model simulations depicted in figure 23b, where in-
crease of specific surface area accompanied by flooding and creep is reported. 

 

 

Figure 23: a) Simulated two-stage creep tests of quartz sand and b) corresponding 
surface growth curves.  

 
The experimental data on Pancrudo rockfill reported by [Old03] provides an oppor-
tunity to evaluate the model under multiple values of relative humidity. Figure 24 
refers to conventional oedometer tests involving a rapid vertical loading followed by 
a creep stage. The time interval Δt between two load increments is 1000 min, while 
the total time until completion of the test is approximately 9.5 days. These tests can 
be simulated more accurately by replacing the constant stress-rate loading with a se-
ries of sudden load increments followed by creep stages (i.e. a loading process which 
mimics directly how the data were obtained). In addition, the wetting stage of the test 
with RH=15.2% is also simulated by increasing RH in a similar incremental manner. 
Figure 24a shows that the computed compression curves agrees well with the experi-
mental measurements at all levels of relative humidity. Fig. 24b plots the collapse 
strain vs. RH during the wetting stage of the tests with initial RH=15.2% and 95.9%. 
The model can provide a satisfactory quantitative agreement in terms of the relation  

 

Figure 24: Oedometric compression with wetting stage: stars are data from Oldecop 
and Alonso (2003); open circles connected with lines are model performance 
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between collapse strains and relative humidity, RH. Such agreement is a direct con-
sequence of the combined use of the Gibbs isotherm and Langmuir adsorption law, 
which corroborates the model hypothesis about the link between the weakening of 
granular materials in wet environments and the reduction of mineral surface energy 
due to water adsorption.  

7 Conclusions 

This paper has reviewed the application of energy principles in developing constitu-
tive laws for fracture propagation in single particles and comminution in granular as-
semblies. The development of Breakage Mechanics theories for both rate-independent 
and rate-dependent scenarios has been revisited in analogy with the formalism of frac-
ture mechanics by emphasizing the close similarity between fracture laws at the scale 
of individual particles and Breakage laws at the level of granular continua. Such anal-
ogy has led to fruitful applications and generalizations of the breakage mechanics the-
ory, including the modelling of rate-dependent crushing starting from the kinetics of 
subcritical crack growth, as well as the incorporation of environmental effects due to 
stress corrosion at the crack tip. Similar lines of research developed over the last few 
years have shown that the Breakage Mechanics framework can be readily extended to 
a variety of materials and processes by exploiting such physical and conceptual dual-
ity between inelastic processes occurring at the grain scale and their implications at 
the macroscopic scale of granular solids. Examples of such recent developments in-
clude the interpretation of the grainsize-dependent properties of granular soils 
[Zha16], the formulation of critical state theories for crushable sand [Ten16], the me-
chanics of unsaturated granular soils [Bus12], cemented granular materials [Ten14, 
Bus15] and the effects of chemical deterioration in porous rocks [Ten14, Bus15].  

Throughout the chapter, the benefits of TIV-based constitutive modelling have been 
emphasized by pointing out that: 1) TIV provides a well-defined hierarchical structure 
for modelling granular geomaterials that satisfies thermodynamic constraints; 2) this 
methodology is not limited to the mechanical response, but it can also model hydrau-
lic, chemical, thermal and other multiphysical processes in a unified manner; 3) the 
degree of complexity and the number of features of the model can be flexibly adjusted 
by adding and/or removing ISVs; 4) TIV also provides a platform to integrate micro-
mechanical considerations when combined with proper statistical homogenization 
schemes.  
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