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Editorial

The ALERT Doctoral School 2019 on “The legacy of Ioannis Vardoulakis to Geome-
chanics” will take place in Aussois, from October 3rd to 4th, 2019. The School has
been organized by Prof. Jean Sulem (Ecole des Ponts Paris Tech) and Prof. Cino
Viggiani (Université Grenobles-Alpes). I sincerely thank the organizers and all the
contributors to this book for their effort!

Professor Ioannis Vardoulakis has been a prolific researcher, whose interests include
many aspects of the geomechanics but also physics, mathematics. . . It is therefore
hardly possible to cover all his contribution to science. The Doctoral school 2019 will
focus on the granular materials, and will show how theoretical concepts can impact
engineering applications. I am therefore convinced that this school will be beneficial
to the ALERT community.

The organizers of the school decided to highlight the legacy of Professor Ioannis Var-
doulakis with three topics: the mechanics of granular materials (both experimental
approach and modelling), the modelling of strain localization in geomaterials and the
hydromechanical couplings. The school will also cover some geotechnical applica-
tions, like the landslide mechanics and petroleum geomechanics. It has to be pointed
out that the school will run over two days (instead of 2.5 days in the previous years).
We expect therefore that every participant will attend the school up to Friday evening.

As usual, the pdf file of the book can be downloaded for free from the website of
ALERT Geomaterials (http://alertgeomaterials.eu/publications/) after the school.

On behalf of the ALERT Board of Directors I wish all participants a successful ALERT
Doctoral School 2019!

Frédéric Collin
Director of ALERT Geomaterials
University of Liege
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The legacy of Ioannis Vardoulakis to

Geomechanics – Foreword

Jean Sulem(1) and Gioacchino (Cino) Viggiani(2)

(1) Laboratoire Navier-CERMES, Ecole des Ponts ParisTech, IFSTTAR, CNRS,

Université Paris-Est, Marne-la-Vallée

(2) Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, F-38000 Grenoble, France

____________________________________________________________________

Professor Ioannis Vardoulakis was not only a highly recognized scientist. He was

also a passionate and talented educator; all his former students and colleagues

remember his tremendous energy, enthusiasm and generosity in teaching and

mentoring young scientists. He was among the pioneering members of the ALERT

Geomaterials network who established the ALERT Doctoral School, as he strongly

believed in the need of international networks for educating the engineers and

scientists of today and tomorrow. In his lecture notes and courses, Ioannis

Vardoulakis had a special ability to present at the same time fundamentals and

advanced notions (for “good” students, as he used to say). For example, he could

introduce in a very natural and physical way, complex concepts of higher order

continuum theories when teaching a class on basic strength of materials. Although

Ioannis Vardoulakis had a strong background in theoretical mechanics, the way he

used to communicate was that of an engineer – using simple and precise sketches

drawn on the blackboard. As a researcher, Ioannis Vardoulakis had a special

curiosity and taste for challenging scientific questions. Among them, one of the first

topics that he addressed was related to slope stability or consolidation process in a

softening ground. His large scientific culture gave him the ability to link various

scientific fields and to propose novel and inspiring ideas. This is how he early found

out that exploring advanced mathematical concepts of uniqueness and bifurcation

could help in solving practical engineering issues, as for example borehole stability

problems as encountered in petroleum industry. His scientific approach was based

on first exploring the physical processes and identifying the dominant mechanisms,

then imagining ‘simple’ conceptual experiments, writing down the governing

equations in the simplest possible way, and then developing more advanced models

by progressively relaxing some assumptions and hierarchically increasing the level

of complexity. In doing so, Ioannis Vardoulakis showed interest in, and contributed

to, the whole chain of research from fundamentals to applications. Ioannis

Vardoulakis has produced milestone papers in various fields of geomechanics.

Although it is not possible to cover in a single ALERT doctoral school all the topics

he addressed, some emblematic subjects have been selected for this school. The

chapters in this volume have been prepared to highlight the legacy of Ioannis

Vardoulakis contributions to the current developments. Already in the mid-seventies,

Ioannis Vardoulakis published highly cited papers on strain localization analysis
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including discussions on fundamental mathematical issues of uniqueness and

stability and experimental observations in element tests on sand. He recognized the

key role of the microstructure of the material in strain localization phenomena and

the necessity to look at the small scale physics in order to enhance the constitutive

description of the material and introduce the necessary mathematical tools for

regularizing the underlying governing equations. In his milestone paper coauthored

with Hans-Bernd Mühlhaus [Müh87], Ioannis Vardoulakis showed that the

framework of Cosserat continuum theory was appropriate to describe shear banding

in granular materials; advanced experimental testing and Discrete Element Method

simulations confirmed later significant grains rotations inside a shear band. This

topic is revisited in the chapter by Ioannis Stefanou and Eleni Gerolymatou, which

presents the basics of bifurcation theory and higher order continuum regularization

techniques. In the mid-eighties, Ioannis Vardoulakis published the first images of the

progressive development of a shear band in a sand sample using x-rays [Var85].

Since then, advanced 3D imaging techniques and full-field measurements in

experimental geomechanics have permitted an in-depth analysis of the micro-

mechanisms involved in strain localization for various types of geomaterials. This

topic is addressed in the chapter by Edward Andò. Another research area of Ioannis

Vardoulakis was the mechanics of granular materials in relation with internal

erosion processes and hydrodynamic instabilities. Modelling issues in the mechanics

of granular materials are addressed in the chapter by Itai Einav, Benjy Marks, and

Pierre Rognon with special attention the evolution of the structure of a grain

assembly due to grain mixing/segregation and grain crushing, whereas

hydromechanics issues are addressed in the chapter by Holger Steeb. For

geotechnical applications, Ioannis Vardoulakis emphasized the key role of thermo-

hydro-mechanical (THM) couplings in strain localization and stability analyses.

One can mention another milestone paper on THM couplings in landslide

mechanics with application to the Vajont case study [Var02]. This topic is

addressed in the chapter by Alexander M. (Sasha) Puzrin with special attention on

slip surface growth and post-failure evolution. Although the scientific contributions

of Ioannis Vardoulakis might appear as being too sophisticated, or too “academic”,

for practical engineers, it turns out that his work on bifurcation phenomena in

geomechanics [Var95] has attracted the interest of petroleum engineers for dealing

with difficulties encountered in operations such as borehole stability and sand

production. This is the topic of the chapter by Euripides Papamichos and Panos

Papanastasiou.

We would like to thank all the contributors to this volume and hope that the papers

collected herein will provide a good overview of the impact that the work by Ioannis

Vardoulakis has on the Geomechanics of today and tomorrow.

Jean Sulem

Cino Viggiani
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Mechanics of granular materials I.
Experiments on grains

Edward Andò

Laboratoire 3SR, Université Grenoble Alpes and CNRS. F-38041
Grenoble, France

This chapter discusses current experimental capabilities in measuring the mechanical
behaviour of granular materials. A short introduction is made regarding fundamental
concepts in experimental mechanics. Thereafter more advanced measurement tech-
niques for capturing granular behaviour are introduced and discussed. This chapter
closes with a look at future techniques which may disrupt the field bringing even more
information into the light.

1 Experimental Geomechanics – Opening

The primary objective of experimental geomechanics is to capture the behaviour of ge-
omaterials as they respond to an applied stress or strain path. Traditional soil mechan-
ics unit-testing aims to study the stress-strain response of supposedly homogeneous
specimens in order to measure some inherent “constitutive behaviour” – as opposed
to structural tests with explicitly induced inhomogeneity conditions such as a pene-
tration test or a trapdoor experiment. In classic unit testing forces/displacements are
applied on the boundaries of carefully-prepared specimens and the resulting displace-
ments/forces are also measured on the boundaries (or on average). The mechanics that
can be captured from such testing requires the assumption of homogeneity in order to
interpret boundary measurements and can end up averaging/smoothing out inhomo-
geneous behaviour.

This chapter will stay with traditional unit testing, but will give an idea about how
full-field measurements can be used to capture:

• first of all descriptors of granular materials such as their shape and size as well
as their arrangement

• then the measurement of granular kinematics as a sample responds to applied
stresses or strains
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2 Crash course in measurement theory

2.1 Objectives of making measurements
The objective of experiments on the mechanics of granular materials is to characterise
the deformation processes – a description of a state or a change of state.

An understanding of the quality and limitations of the measurements deployed in an
experiment is essential. Without descending into the fundamental limitations of mea-
surement at the particle physics scale, the types of measurements used in conventional
soil mechanics are not perfect, and in order to describe reality properly the error that
measurements can make is a fundamental part of the description. The accounting for
experimental error is unfortunately not as prelevant in experimental mechanics in our
field as it could be. For the usual effort of performing experiments to develop or cali-
brate mathematical models of behaviour, the uncertainty in the measurement (as well
as the inter-sample variability) is an essential piece of information for the modelling
effort.

2.2 Classical sources of uncertainty
Measurements are fundamentally uncertain, and the characterisation of the level of
uncertainty is necessarily basic good practice in experimental mechanics. The level of
uncertainty of a measurement is the sum of a number of different sources of error or
noise.

As an initial example let us take the measurement of a displacement. Figure 1, shows
two potential devices for measuring displacements – the body of both are attached
to some reference point and movement of the probe at the bottom is measured. The
internal mechanisms of both devices is very different – on the left there is a mechan-
ical (dial) indicator, which essentially multiplies the possibly small displacement of
the probe as a large displacement of the dial on the face, which is then read by the
experimentalist. On the right, an LVDT (“linear variable differential transformer”)
changes a source voltage into output voltage by some linear function proportional to
the displacement of the probe.

In both systems a further readout system is required to record the measurement. In the
case of the mechanical system this is the experimentalist’s eye and notebook, whereas
in the electronic case this is most usually a digital voltage meter – and ADC (Analogue
to Digial Converter) which records the analogue voltage over a given range, say [0,
5V] and describes fractions of this range as a digital value (an integer running from
0 to a pre-defined maximum value). Both readout systems have limitations which
resemble each other more than one might think – the possible values that can be read
out depend on the level of discretisation that is made of the relatively continuous
(we will return to this) measurement range. In the case of the mechanical system,
the eye can tell only so many different values between the marks on the face, with
fundamentally limits the smallest displacement that can be measured even though the
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Example measurements of displacements
(mechanical) dial indicator (electronic) LVDT

Figure 1: Examples of tools to measure displacements, an analogue me-
chanical indicator. https://en.wikipedia.org/wiki/Indicator_(distance_

amplifying_instrument) (left) and an electronic LVDT. https://bditest.

com/product/sensors/displacement/lvdt-displacement-sensor/ (right).

hand may be making smaller but undetectable movements. In the same way, the fact
that the [0, 5V] range is explicity discretised into a number of integers also limits the
smallest displacement that can be measured. For example a 16-bit sensor can record
values from [0, 65535] meaning that the [0, 5V] range is discretised into (5−0)

(65535−0) =

0.000 076V increments. As before, although the LVDT might be sensitive to smaller
voltage changes, there is this strong limitation in the readout system. In both cases
there is a minimum sensitivity below which a change cannot be measured.

Furthermore, in both systems in a static situation one might notice fluctuations of the
measured value when repeated with time. This can be due to the precision of the esti-
mate of the position by eye, but often with electrical measurements there are electrical
fluctuations (the driving voltage in the example above) which when uncontrolled can
scatter the measurement. This scatter can be characterised and in a number of cases
reduced with understand of the measurement system. Common sources of this sort of
noise in electrical systems are 50Hz temporal fluctuations from the grid supply, and
inherent variations in the ADC used to read the signal. If this scatter follows a statis-
tical law that can be identified – Gaussian distributions often appear – this knowledge
can be used to give an uncertainty to the measured value, as well as means to find the
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true value by repeated measurements – which are usually taken to be independent. In
the case of a Gaussian distribution, averaging N samples will reduce the noise in the
measurement by

√
N .

Furthermore if the measurement in question requires some kind of accumulation, or
counting of discrete events – such as counting sheep, or more commonly in experi-
mental mechanics photons, further complications can arise. In the case of photons,
a continuous flux of photons can only be detected by detecting individual, discrete
photons. For a given integration time, if very few discrete photons are captured, the
measured flux will be very erroneous, and any noise in the measurement will be very
damaging. This sort of sampling bias can often be modelled as a Poisson process and
therefore be expected to follow a Poisson distribution.

2.3 Sources of uncertainty in full-field measurements
Full-field measurements can vaguely be defined by measurements where the distribu-
tion of a variable is measured in many different points. Just as the “point” measure-
ments discussed above are often mediated by a change of voltage/resistance which is
linked to the change in the desired measurement, in the case of full-field measure-
ments, the properties sought are often related to some light emission/reflection which
can be captured with a camera (may exceptions exist, such as ultrasonic tomography).
Full-field measurements suffer from all the above problems, but the fact that many
measurements are repeated in space mean some additional sources of error that are
difficult to consider for “point” measurements above. This is essentially that the so-
called “point” measurements sometimes are an uncontrolled local average of some
physical value that is being measured and are therefore not punctual. A clear example
of this could be a temperature measurement that represents an average along the sens-
ing tip, and even around the tip. In the context of full field measurements, a similar
concept applies: each one of the measured values is subject to a discretisation error,
has a minimum sensitivty and a time-varying noise (all as above) but furthermore
there can be some lack of independence of nearby measurements. This effect is not
an uncorrelated random noise as might be expected for individual measurements, but
is rather strongly correlated in space. This effect can have different sources – in the
case of optical methods like taking photos with a camera it can be related to the optics
(bad focus means blurry images where there is a correlated noise), or in the readout
system, where values can “bleed” onto nearby ones.

2.4 Rapid introduction to x-ray tomography
Without going into too much detail on techniques, x-ray tomography is an optical full-
field measurement technique that takes advantage of the penetrating character of x-ray
radiation to make an indirect measurement of the x-ray attenuation coefficient in a 3D
volume.

Fundamentally, the first order physical model that describes the interaction of x-rays
with matter is the well-known Beer-Lambert Law:

8 Mechanics of granular materials I. Experimental approach
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I = I0e
−µρx (1)

This states that a photon beam with flux (e.g., in photons/sec) I0 travelling through a
given material is reduced by en exponential function of the path length of the beam
x and the material properties (x-ray attenuation and density) µρ into an output flux I .
µρ depends on material properties as well as the energy of the photons.

X-ray tomography aims to measure a 3D field of µρ. This cannot be done directly,
so the fact that x-rays travel through matter is exploited. If a beam of initial flux I0
interacts with a specimen and is recorded I after the interaction with the object, this is
called a radiography, or a radiographic projection, since the (unknown) x-ray attenua-
tion field is projected (integrated) in the direction of the beam. During a tomographic
scan, the (unknown) x-ray attenuation field is projected in a number of different direc-
tions and the recorded.

An inverse problem can then be solved (traditionally by a technique called “filtered
back-projection”) in order to obtain the 3D field of µρ which will be referred to as
the x-ray attenuation field – this process is called “reconstruction”. In most x-ray
tomography setups, µρ cannot be reconstructed quantitatively because x-ray detectors
to measure the x-ray flux after interaction with the specimen I/I0. This immediately
means that the reconstructed field is a somehow averaged µρ over all the frequencies
that were emmitted and detected. The fact that in reality µ depends on frequency
creates well-known non-phisical errors (“artefacts”) in the reconstructed field known
as “beam-hardening” for which there are some mitigation strategies which will not be
discussed further.

Depending on the physical size of the pixels that are used, and the optical zoom fac-
tors, each 3D pixel (“voxel”) in the reconstructed field represents a the x-ray attenu-
ation coefficient in a small physical volume. In most scanners used in experimental
mechanics, these little volumes are cubes, and their size – which is purely geomet-
rical – is expressed as the length of one of the sides of the cube, the “pixel size” in
micrometers/pixel. It is important to note at this stage that given this discretisation of
space, that a voxel situated on the edge between two materials will (discussions about
noise left aside) have a volume-averaged value of the x-rayh attenuation coefficients
present in the voxel. This is known as the “partial volume effect” and is often (and in
my opinion incorrectly) considered a source of noise – it is simply the consequence of
the discretisation of space.

Armed with this knowledge, we can now conclude that with penetration-based volu-
metric tomography provides:

• A 3D volume measurement of a non-quantitative x-ray attenutation field

• Every measurement “point” (small subvolume of a fixed size called a “voxel”)
has a certain amount of random noise

• Due to optical effects there can be noise with spatial correlations, such as blur
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ALERT Doctoral School 2019



• There are other sources of noise commonly referred to as artefacts, which are
closely tied to the measurement technique. Ring (not discussed so far) and
Beam Hardening are the most important types

The above list of deviations from reality gives an important first-order approach to
define the quality of a tomographic measurement:

• Signal-to-Noise Ratio (the desired measurement – e.g., the x-ray attenuation
coefficient of the grain and pore phases – compared to the level noise)

• Level of blur (expressed in mm)

This in turn leads to a convienent way to characterise a given scanner for a given
sample:

• Signal-to-Noise ratio

• Spatial resolution (mm)

• Temporal resolution (scanning time in minutes)

On a typical lab-based scanning system these three quantities can be traded off, and
so when designing an experiment it is important to understand the sensitivity of a
full-field measurement to these three quantities.

3 3D static measurements of granular media

Geological granular media typically consist of silicate or carbonate particles in water,
oil or air. The ability to measure a 3D field of x-ray attenuation coefficient is very
convenient for characterising these materials since there is a significant difference in
density (and therefore an expected difference in x-ray attenuation coefficient).

This chapter will focus on discrete measurements, where grains can easily be detected
in the reconstructed x-ray tomography volumes. Adopting the language from the pre-
vious section, the identification of particles clearly requires the spatial resolution to be
far below (for argument sake let’s say 10 times smaller when measured in mm) than
the size of the particles. Furthermore, in order for particles to be distinguished from
pores, the signal to noise ratio must be sufficiently high.

It is important to note at this stage, that the requirement for high spatial resolution
is only needed for a discrete handling of the particles, and that much important ex-
perimental work has been done at lower spatial resolution – the foundational work of
Jacques Desrues immediately comes to mind. Since density is a key variable in the
behaviour of granular media, a local density can easily be measured with x-ray to-
mography, even if grains cannot be seen. In the work mentioned above, this permitted
the key discovery that the concept of a critical state density is particularly true locally
within shear bands compared to globally in the specimen.

10 Mechanics of granular materials I. Experimental approach
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3.1 Identifying particles
Returning to discrete measurements, if the signal to noise ratio is very high, one would
expect to be able to classify each voxel in the reconstructed image by simply applying
a threshold value. Figure 2 shows the sort of image which is nowadays easily obtained
of a sample of sand within an experiment. Grains can easily be distinguished by eye
from the air in the pores and the material of the confining vessel.

Figure 2: Horizontal slice of a reconstructed x-ray attenuation volume. As is con-
ventional high values are white and low values dark. Material is Hostun sand (D50

= 330 µm) and pixel size is 10 µm/px. The sample is housed in a PEEK oedometer,
experiment performed by Max Wiebicke

At the very first order, the solid phase can be separated from voids by establishing a
threshold grey value. Figure 3 shows the distribution of reconstructed x-ray attenu-
ation coefficients for a crop in Figure 2 which contains only air and grains (i.e., the
material of the cell is excluded). It is clear that the values in the image corresponding
to the air (≈12000) and the solid grains (≈ 48000) are well, separated, which means
that the signal-to noise ratio is relatively low. If a Gaussian noise model were to be
used (which is reasonable in this case), the signal-to-noise ratio can be calculated as
the difference in greyvalues of the peaks, compared to standard deviation (also has
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Figure 3: Histogram of grey values of the central part of Figure 2

units of greyvalues) of the noise, which can be obtained by fitting either peak. The
standard deviation of of both peaks is expected to be the same, if the solid material
is “pure” – if the solid material presents gaussian variations of x-ray attenuation, this
will obviously increase the standard deviation of this phase.

The partial-volume effect is clearly visible as a raised value between the peaks, which
is not present below the lower peak or above the higher peak. Its relative significance
is related to the small size of grains in the image – or more correctly to the large
numbers of interface voxels found in the image.

Starting from such a 3D measurement and from the appearance of the distribution of
grey values, it is clear that a greyscale threshold will work appropriately. The way in
which this can be set is twofold: either by modelling the grey value distribution in the
reconstructed images (e.g., finding the minimum of the intersection between the two
Gaussian fits of each peak), or in such a way to obtain the total solid volume measured
for example at the end of a test. It is important to note that this thresholding operation
represents a significant coarsening of the image – more advanced techniques for the
representation of the solid phase such as level-sets can avoid this coarsening, but are
much more complicated to use for simple analysis.

The solid phase must then be separated into individual particles. This is a challenging
problem called segmentation. The classic way that this is solved is using a “water-
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shed algorithm”, which tends to work quite well for relatively convex particles with
point contacts and not too wide particle size distribution. Very briefly, at their base,
watershed algorithms are geometrical, especially the “morphological” variant which
will be discussed here. Given the binary map of the grain phase to be split into in-
dividual particles, the distance of each grain-phase voxel to the nearest pore voxel is
found – this is expressed as a “distance map” of the grain phase. What is expected is
that voxels on the edge of each grain will have a low value, and that this value will
increase steadily towards the centre of each particle. In fact, the centres of particles
are defined directly (as “markers” for the watershed) from the distance map – the 3D
high points in the distance map are considered the centres of grains – in order to allow
some non-sphericity very close high points are merged. These high points are num-
bered, and nearby voxels are associated to each number based on a flooding of the
inverted distance map.

Higher fidelity segmentation is an active field of research, since it is such a critical
step – especially for non-spherical grains. Regardless of the technique used, the result
is that every voxel belonging to the grain-phase is given a unique number or label, as
can be clearly seen in Figure 4.

Figure 4: Slice through a labelled image, with different (scattered) colours indicating
differently numbered grains
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A labelled 3D image is the ideal starting point for all grain-based measurements: for
example each grain can be individually interrogated as a discrete and contiguous cloud
of voxels. This allows, for example, for a grain-size distribution to be obtained, on the
condition of having a well-defined “size” to measure, with a relative error in the order
of the pixel size.

3.2 Characterising particles

Particle Volumes Starting from a correctly labelled image, and armed with the fact
that sand grains, at the large scale are on the whole rather convex, a simple counting
of the number of voxels making up each labelled grain gives an accurate and rather
unbiased and stable (with respect to a change of resolution) measurement of volume.
This measurement can be rendered a little more sensitive to partially-filled voxels
on the edges by weighting voxel densities proportional to their grey value (since the
reconstructed grey value is roughly proportional to density).

The extension of this sort of measurement to the reproduction of sieve sizes is not
particularly challenging, the main question being how close to simulating the actual
sieving procedure one wants to go. Some examples can be found in [ADAR+14,
KAP+17].

Particle Positions The centre of mass of a label is simply calculated as the mean
position of the voxel-cloud making up the grain – again, weighting by the grey value
can improve sensitivity. Outside of the extraordinary case of cubic particles aligned
with the coordinate axes, averaging means that the accuracy of this measurement is far
better than the pixel size, around 1

20 th of the pixel size for a grain measuring roughly
15 pixels in diameter according to [And13].

Grain orientation can be defined in a number of different ways. Some typical meth-
ods used in the literature are:

• Feret diameters (or caliper lengths) where voxelised objects’ sizes are probed
with digital calipers (or more correctly plates) at a number of different orienta-
tions. The shortest orientation (for lentil-like particles) or the longest orientation
(for rice-like particles) can be unique and thus useful for detecting the orienta-
tion of such particles

• The Moment of Inertia Tensor and its eigenvectors are also a common way to
measure the orientation of a particle’s long and short axes – although these are
not always aligned with the axes in a symmetric shape. This method has the
significant advantage with respect to Feret of not having to scan a number of
discrete angles which can limit sensitivity, as well as taking advantage of the
full body of the 3D data available

• Geometrical fits of particle shapes can be good ways of detecting their orienta-
tion – 3D ellipsoid fits are often used – however for good results some a-priori
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information about the shape of the particle is needed, which is unfortunately not
typically available for natural particles

Generally speaking, the quality of the definition of a particle’s orientation depends
both on the method used to measure the orientation, and on the shape of the grain. It
is clear that in the extreme case of a perfect sphere, its orientation is not defined, and
for particles very close to spheres, making an accurate and stable measurement will
be difficult. It can be safely said that the less spherical the shape of a grain, the better
the measurement of orientation will be, regardless of the method used to measure it.
The overall picture is not so simple, however, since there can be some features of a
grain’s shape which are unmistakable and others where the shape can induce errors:
for the examples given above, only the long axis of rice and the short axis of lentils
are representative and stable when measured in a number of different states.

It must be said that the evolution of measured particle orientation is not necessarily
stable for natural sand grains, where for small changes in orientation, non-unique axes
can “snap”, see [AHV+12]. In this case an initial orientation can be updated using
incremental rotations measured with image correlation. The identification of a unique
or representative axis to orient natural particles is not necessarily obvious but can be
studied on high-resolution images.

Grain surface/topology is a challenging measurement because of the fractality of
natural grain surfaces [SB89, MT90, SVK+02], which means that the measurement
of the surface area, for example, depends on the scale of measurement (i.e., the spa-
tial resolution in this case). This makes a direct measurement very problematic (by
any means), however a-priori knowledge of the fractal length of the surfaces of the
material in question can be of use for interpreting a measurement made at a given
scale. Furthermore, starting from a 3D image where the grey values have already been
thresholded to define the volume of a grain, a significant amount of precious greyscale
information for reconstructing the surface of the grain is lost.

Inter-particle distance measurement for inter-particle contact detection. The se-
ries of steps described above to obtain labelled 3D volumes representing each indi-
vidual particle are relatively standard, however they introduce a tacit assumption that
damages the detection of contacts: the grey value threshold. Although this seemingly
innocuous step retrieves the correct solid volume, in a voxel partially filled with edges
of two close-but-not-touching grains there is no obvious way to assign solid pixels to
each particle and see whether the grains are really in contact1; the single voxel may
appear dense enough to seem solid, and therefore the obvious conclusion to draw is:
since there is a solid bridge between two particles, they must be touching. Based on
this simple reasoning, the number of contacts that a particle has, can be shown to be
systematically over-estimated. Some remedial measures being developed in the ongo-
ing PhD work of Max Wiebicke2 allow the over-detection distance to be reduced but

1in the case of natural materials where there is no a-priori model for the shape which would significantly
improve the accuracy of the interparticle distance measurement

2working between TU-Dresden and Laboratoire 3SR in Grenoble
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never eliminated when dealing with images of irregular natural particles [WAHV17].
Furthermore, given that one deals with an over-detection distance, a doubling of the
spatial resolution only yields a halving of this over-detection distance, a situation very
unlike the measurement of particle positions which improves with a very strong func-
tion of the spatial resolution (the actual numbers depend on the shape of the object).

Inter-particle contact orientation Also of interest in the PhD work of M. Wiebicke is
– given correctly-identified interparticle-contact points – the measurement of the local
orientation of the contact plane. This is of key mechanical importance for finding the
orientation of the force which can be transmitted with no tangential components (and
thus the cone of possible forces given a constant friction) as well as the contact-sliding
direction. This poses a serious metrological problem: this key mechanical variable –
a contact – does not actually exist! Current attempts to reconstruct the orientation
of the contact plane from the “watershed line” that separates contiguous parts of the
solid phase have large errors (in the order of 10 degrees) and do not benefit at all from
increases of spatial resolution, since fractal surfaces in contact in reality have very
few touching points. The future directions to explore to overcome this impasse must
involve the use of the local surface topology to make two independent measurements
of surface orientation to be compared and combined.

4 3D kinematic measurements of granular media

When a series of images has been acquired where particles rearrange (without break-
ing) following the trajectory of every particle is of clear interest.

Again, individual grain labels are a very convenient way of defining grains in the
context of grain tracking from a 3D image of a given state to find their corresponding
positions in a 3D image of a different state.

In time-series data where particles are rearranging, all imaged states can be labelled,
and labelling can be made consistent across time using techniques such as ID-Track
[AHV+12] or equivalent [SFA+12, AJDAR16]. Changes in particle position there-
fore naturally provide a measurement of 3D particle displacements. This technique is
however very sensitive to segmentation errors (i.e., if a particle is correctly identified
in one scan, and split in two in the next scan). However if a reliable labelled image
is obtained for two states, and labels can be made consistent between states, then dis-
placements can be measured as a change of centre of mass of each particle. Rotations
can also be defined by follwing the rotation of the basis offered by the eigenvalues
of the Moment of Inertia tensor discussed above (on the condition that these axes are
quite unique).

Displacements and rotations can also be measured using only one labelled image (typ-
ically the initial one) by using the greyscale data in the context of Digital Image Cor-
relation (DIC), as first done by [HBD+10]. This general family of techniques aims
to find an optimal transformation to minimise the difference between a reference and
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a deformed scan. Generally speaking, if transformations are not too large these tech-
niques tends to be quite robust. With image correlation, particles are tracked from
one image to the next in order to measure their change in postition, the same order of
accuracy can be obtained (see [PLB10]).

However, in order to be able to use the “particle characterisation” tools detailed above
to monitor the evolution of each particle’s properties (the coordination number for in-
stance), subsequent labelled images are highly desirable. To this end, 4D-segmentation
techniques are of clear interest for this sort of data.

5 Discussion and future directions

There is no doubt that for micro-mechanical work of real engineering relevance, it is
essential to go beyond the particle – kinematics and descriptions of shape – and focus
on the way in which forces are transmitted through a rearranging granular assembly.
To this end, the above discussion presents a bleak state of affairs for the “direct” mea-
surement of granular entities attached to inter-particle contacts, which is particularly
bad news for the experimental measurement of variables depending on these quanti-
ties; a perfect example of this is the Fabric tensor mentioned in the introduction.

However, the ease with which particles can be identified and followed during a me-
chanical test can be exploited to the experimentalist’s advantage: a stunning recent
example [KBB+17] shows how given an initial 3D image of a granular assembly, par-
ticle positions and orientations can be updated with degraded tomographies, with as
few as 1% of the number of projections required to reconstruct a whole image. Here
we propose two possible directions for improving inter-particle contact measurements
which make use of the very high quality of measurements that can be made of particle
kinematics.

5.1 Using particle registration to increase spatial resolution

[KBB+17] show the extraordinary attractiveness (from an optimisation standpoint) of
rigid particle transformations through space, and suggest a potential method by which
the spatial resolution/field-of-view trade-off can be improved in order to increase the
quality of the measurement of granular Fabric for example. The idea, which is at the
very heart of the PhD project of O. Okubadejo3 would be to improve particle track-
ing in a framework in which segmentation errors and tracking errors can be reduced
iteratively taking into account the whole series of 3D images acquired throughout a
test. A successful tracking of each grain would then mean that the experimentalist
has a (relatively large) number of registered greyscale 3D images of the same particle.
At the very first order this could be used to obtain a significantly de-noised image of
the grain, but could subsequently yield a super-resolution image of each grain (espe-
cially from views from different positions and angles). Super-resolution works in the
particular case where the real spatial resolution is better than the geometrical voxel

3working in Grenoble between Laboratoire 3SR and GIPSA-Lab
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size, meaning that each voxel in this case can be subdivided and a higher resolution
image can be reconstructed on this new basis meaningfully. This means that the over-
detection distance for inter-particle contact detection is reduced, and the quality of the
map of the surface of each grain is improved, allowing a better contact plane to be
estimated in the technique proposed above.

5.2 Using particle kinematics to deduce local conditions
Another piece of information that can be exploited to improve measurements of con-
tact properties from a series of images starts again from a high quality tracking of
particles; however in this case we will interest ourselves with particle rearrangements.
The precision that can be obtained for the displacements and rotations of each grain
is at least an order of magnitude greater than the over-detection distance for contacts:
this leaves some room to scrutinise granular displacements for signs of reorganisation,
which in turn give indications regarding the balance of forces, or presence of contacts.
This discussion of course works increasingly well where small increments of rear-
rangement separate each image in the sequence, improving the chances of catching
individual reorganisation events. When studying a neighbourhood of particles where
some rearrangement is measured between two states, out-of balance forces must have
existed at some point during the interval studied. This causes a particle to move with
respect to its neighbours while losing, shifting along, or gaining contacts. This in itself
is not a profound discovery, however a rearrangement event means that a number of
pieces of information can be associated with this interval: for example to bound the
uncertainly regarding apparent contact points (subject to the over-detection distance
error developed above), as well as to set limits (given a simple friction model) on the
forces at play over these contacts. This sort of approach really starts to make sense
when deeply integrated with grain-scale modelling able to take each individual grain’s
shape into account in the style of [KAVA18].

5.3 Far in the future: breakage
A challenge with a significant jump in complexity is the handling of grain breakage,
which first of all introduces the problem of non-persistent grains in the tracking of
particles, and thus the correct measurement of the kinematics of the fragments of each
grain that breaks. The fact that particle sizes reduce while the spatial resolution of the
images stays constant also causes problems to the measurement of fabric, even given
the potential developments outlined above.

Currently, studies allowing full quantification of breakage are severely limited in the
number of particles [CA12, ZWC+15]. Studies with a larger number of particles
suffer from the above-mentioned problems of resolution, but are improving in the
direction of full fragment tracking [CA14, AAGK+15, OKA+17, KAP+17].
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5.4 Conclusion
In conclusion, it appears that for natural sand grains the first two of the three points
of micro-mechanical characterisation set out in [CCL97]4, can be safely obtained for
grains, however the presence and the properties of grain-to-grain contacts are a signifi-
cant measurement challenge. This paper has shown that the essential grain-scale ingre-
dients (based on inter-particle contacts) clearly set out in [RTR04] or [FD11b, FD11a]
are not easily and directly accessible from 3D images issued from experiments carried
out in-situ inside an x-ray scanner. Two potential paths to follow for the improvement
of these measurements have been outlined, both of which are based around a deeper
and more comprehensive use of the fact that the 3D data is time-resolved.
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Landslide mechanics and growth of slip

surfaces
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____________________________________________________________________

Quantification of the phenomenon of growing slip surfaces in soils is critical for

understanding progressive and catastrophic failure in geotechnical problems. A

large variety of landslide mechanisms is affected by these phenomena. The chapter

introduces simple criteria for catastrophic and progressive slip surface propagation

using energy balance and process zone approaches and provides their experimental

validation. Progressive slip surface propagation is then used together with the

landslide pressure calculations to identify the landslide influence zone and to

predict evolution of the compression zone in constrained terrestrial landslides. For

submarine landslides, catastrophic slip surface propagation allows explaining their

large dimensions, while progressive propagation helps to understand the

mechanisms of their post-failure evolution and the resulting geomorphological

patterns.

1 Introduction

Progressive failure in landslides has been traditionally associated with long-term

stability of slopes in overconsolidated clays [Ske64, Bje67, Bur77, Var02], although

the short-term stability can be affected as well. Progressive failure in normally

consolidated clays has also been documented [e.g., Ber89]. Many theories developed

to explain the progressive failure phenomenon are concerned with definition of

shear resistance of soil and assume that the slip surface appears instantaneously

along the entire length of the landslide.

Experimental studies of strain localization pioneered in clays by [Mor67] and in

sands by [Var81] demonstrated formation of the slip surfaces (shear bands) with

thickness of about 200 and 20 mean grain diameters, respectively. To describe strain

localization, [Rud75] proposed a bifurcation condition obtained by combining the

constitutive relationship with equilibrium and compatibility conditions on assumed

localized shear band. The great advantage of the [Rud75] approach is its ability to

account for elasto-plastic soil behavior and to provide the shear band orientation and
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the displacement discontinuity. These solutions are applicable to granular soils, and

for a long time this approach dominated the literature related to quasi-static strain

localization analysis in soils [review by Var95]. The next step would be to model its

gradual propagation observed in both normally and overconsolidated clays. [Ske64]

and [Bje67] suggested that fracture mechanics concepts might throw light on

progressive failure. Palmer and Rice [Pal73], proposed an approach for analysis of

the growth of localized shear bands in the progressive failure of overconsolidated

clay. An important advantage of this approach is that the shear band evolution is

treated as a true physical process. This is achieved by a proper mechanical

consideration of the end (process) zone of the shear band and by utilization of an

energy based criterion for its propagation. In reality, this evolution may have stable

and unstable stages, so that an important difference between the progressive and

catastrophic types of failure can be distinguished.

This chapter introduces criteria for progressive and catastrophic growth of slip

surfaces and demonstrates how these criteria can be used to improve our

understanding of certain mechanisms of terrestrial and submarine landslides.

2 Criteria for the slip surface growth

The problem formulated below is closely related to the problem of a long slope

inclined by angle α to the horizontal, into which a step of height h is cut, causing the

shear band of the length l to propagate upward from the base of the cut, parallel to

the slope surface (figure 1a). This problem was analyzed approximately by [Pal73]

using the J-integral with the assumption that h and ω are small in comparison to l.

Here ω is the size of the end zone near the tip, beyond which the shear resistance τ is

essentially equal to residual shear strength τr.

While applicable to overconsolidated clays, the problem illustrated by figure 1a is

not really meaningful for sands and normally consolidated clays, because the

stresses developed in the sliding part of the slope are tensile and cannot be sustained

by soils with no tensile strength. In order to address these limitations, [Puz05]

considered a related problem (figure 1b) where all the stresses are compressive.

Figure 1: Shear band propagation caused by: a) a cut in the slope; b) discontinuity

parallel to the slope surface.
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Following [Puz05], we consider a thin linear discontinuity that is parallel to the

slope and its length l is sufficiently larger than both its depth h within the slope and

the length ω of its end zones (figure 1b). Apart from the two small end zones, the

shear resistance τ along this discontinuity drops to its residual value τr. At the very

tips of the shear band as well as at any point outside the band, the shear resistance is

equal to its peak value τp. We are interested in conditions, under which the initial

shear band will grow parallel to the slope surface. This will allow for a proper

identification of catastrophic and progressive types of soil failure.

2.1 Theoretical approaches

Extension of the [Pal73] approach to a wider variety of soils requires for non-elastic

soil properties (e.g., hardening plasticity, strain softening, zero tensile strength,

active and passive failure modes, etc.) to be taken into account. This section

demonstrates how the energy balance and process zone approaches can be applied to

the simple problem of the shallow shear band propagation in an infinite slope built

of such a soil.

Energy balance approach

The energy balance approach requires that the energy surplus produced in the body

by incremental propagation of the shear band should exceed the work required for

this incremental propagation. Mathematically this can be expressed as the following

inequality:

∆�� � ∆�� � ∆�� � ∆�	 (1)

where ∆�� is external work made in our case by gravitational forces on downslope

movements of the layer above the shear band; ∆�� is the internal work made by the

normal stress acting parallel to the slope surface on deformations of the layer caused

by changes in these stresses; ∆�� is the plastic work dissipated on the shear band,

which is required to overcome the residual shear resistance along the band; ∆�	 is

the plastic work dissipated in the shear band during its propagation, which is

required to overcome the shear resistance in excess of residual in the end zones of

the band.

Figure 2: Constitutive behaviour: (a) in the shear band; (b) in the sliding layer.
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[Puz05] used the energy balance approach to demonstrate that in an infinite slope

(figure 1b) with inclination angle 
, where:

- the slip surface is strain softening (figure 2a), with undrained shear strength

decreasing from peak �� to residual �
 over the relative displacement δ
 ,

- the sliding layer is elasto-plastic (figure 2b) with different plane strain

deformation moduli (�� and �� ) and passive/active failure criteria (�� and

��) in loading and unloading, respectively,

the shear band will propagate catastrophically (i.e., under existing external forces) at

the depth ℎ parallel to the slope surface once its initial length �0 exceeds the critical

value of:

�0 � ��
 � 1� ��
��

��

 (2)

where

�� � 2��δ�ℎ
�� � �
; 
 �

�� � �

�� � �
 ; �� � �'ℎsin
 (3)

are the characteristic length, shear stress ratio and gravitational shear stresses,

respectively,

δ� � 0
�
 � � �
  �!
�� � �
 (4)

is the characteristic displacement, proportional to the area below the softening curve,

representing the energy dissipated in the process zone of the shear band. This

parameter is critical for the analysis of the SBP: the larger is δ� – the more work has

to be done to propagate the band. Because in the energy balance approach the length

of the end zone is neglected, the above equations apply equally to different shapes of

the degradation curve.

Figure 3: Identification of shear zones in the process zone approach.

For a finite length of the end zone, however, the critical length of the shear band will

be affected by the shape of the degradation curve. [Zha15] analyzed such a case

using a process zone approach for a simplified symmetric problem in figure 3. If

there were no discontinuity, the slope down to the depth h would be subjected to an

initial internal lateral force per unit thickness (Pg) caused by earth pressure, and an

initial shear stress (τg) caused by the soil weight and slope angle. Note, all ‘forces’

referred to in the following are forces per unit (out of plane) thickness. Conceptually,
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the problem is explored by fixing a length, l0, of initial failure zone, where the

strength has been reduced to its residual value, τr, along its entire length, flanked by

the material where the softening has not yet been completed. Then the slope is

brought to catastrophic failure by increasing the gravity loading such as might occur

due to sedimentation or increase in slope angle caused by diapirism.

The initial failure zone within the slope will disturb the stress and strain fields in

its vicinity for any level of gravity loading, τg, that exceeds the residual shear

strength, τr, in this zone. As the relative magnitude of τg increases (relative to the

peak and residual strengths outside the initial failure zone, τp and τr), first a region of

elastic shear and then the process zone will start to grow adjacent to the initial

failure zone, with plastic deformations causing partial softening. As it does so, the

internal lateral force P will increase above Pg within the elastic and process zones

and the leading half of the pre-softened zone. In general, the x coordinate at the end

of the process zone (start of the pre-softened zone) is taken as x1, which approaches

a value ω at the critical condition of catastrophic failure.

Figure 4: Profiles of key variables at different stages of failure: (a) shear stress; (b)

lateral force; (c) elastic shear displacement within shear band; (d) plastic shear

displacement within shear band.
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Figure 4 shows profiles of key variables (shear stress τ , P, δe and δp) at three

stages of gradually increasing gravity shear stress, τg: Stage 1, where the peak

strength had just been mobilised due to elastic deformations in the shear band

immediately adjacent to the pre-softened zone; Stage 2, at the onset of catastrophic

failure, where the lateral force, P, in the material above the shear band has reached a

maximum value, Pmax, at the interface between the pre-softened and process zones;

and Stage 3, just after catastrophic failure where additional displacement has caused

the shear strength of the shear band in the process zone to degrade below τg and

towards the residual value at the interface with the pre-softened zone. For

convenience with later algebra, the origin, O, of the Cartesian coordinates system in

figure 3 has been placed at the interface between the process zone and the region of

purely elastic deformations, and thus moves as the gravity shear stress increases.

According to the process zone approach [Zha15], in case of the linear decay of

shear strength in figure 2a, the shear band will propagate catastrophically once its

initial length �0 exceeds the critical value of:

�0 � ��
 � 2 1 � 
 ��

 (5)

In case of the exponential decay, catastrophic propagation of the shear band will

take place once its initial length �0 exceeds the critical value of:

�0 � ��
 � 2 1 � 
 1 � ln
 ��



(6)

In summary, three stages of progressive failure of a clay slope with a softenable

shear band may be distinguished (figure 5): 1) purely elastic shearing; 2)

development of the process zone; 3) catastrophic failure. The linear and exponential

decay criteria, as well as the energy balance criterion PG1 (equation (2)) are plotted

for comparison. For detailed discussion of these results see [Zha15].

Figure 5: Distinguishing features of the three failure stages in �0 �� vs 1 
 plane.
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2.2 Experimental validation

In order to obtain the experimental evidence of the SBP in conditions close to

observed submarine landslides, a testing setup has been built at the ETH Zurich

[Puz16]. A 4 cm thick layer of saturated kaolinite clay has been consolidated in a 2

m long and 25 cm wide chute with steel bottom and glass walls (figure 6a). The

slope was then inclined by 10° and a miniature ‘bulldozer’ applied a gradually

increasing static force at the top of the sliding layer, which was measured using a set

of three load-cells. Displacements of the ‘bulldozer’ were measured by a laser

displacement sensor. This experiment provided for the first time direct

measurements of the evolving length of the shear band. The measurements were

performed using a swept wavelength interferometry fiber optic strain sensing

technology by installing two optical fibers parallel to the slope in the sliding layer

with the help of plate micro anchors, spaced at 1 cm distance from each other,

resulting in 400 individual high precision strain gages along the slope. The cables

were pre-tensioned and the compressive strain distribution in the sliding layer could

be measured for different positions of the ‘bulldozer’ (figure 6b).

Figure 6: Shear band propagation in a kaolinite clay slope: (a) experimental setup; (b)

evolution of measured compressive strains in the sliding layer for different levels of

applied force (in N); (c) strain softening in the interface tests; (d) evolution of the

shear band length.
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Closer to the “bulldozer”, reliable strain measurements can be taken only until the

compressive strain does not exceed the pre-tensioning. Fortunately, in order to

capture the SBP propagation the relevant measurements are those further away from

the “bulldozer”. Indeed, because the layer only gets compressed where the shear

band has already propagated, its length is determined by the length of the strain

profile in figure 6b, identified with the unprecedented spatial resolution of 1 cm.

Analytical and numerical investigations of test conditions required soil

parameters, which were obtained from independent interface shear, ring shear,

oedometer and chute stiffness tests. The interface tests are here of particular interest,

showing softening behaviour at the contact between the sliding layer and the steel of

the chute for both normally and lightly overconsolidated (OCR=3) clays (Figure 6c).

These softening curves have been used directly as a constitutive relationship for the

interface behavior in ABAQUS. Numerical simulation of the evolution of the length

of the shear band propagating progressively at the bottom of an elastic layer

(inclined by 10° ) is shown by a dashed line in Figure 6d as a function of

the ’bulldozer’ displacements.

The same test has been simulated analytically using the energy balance approach,

where the characteristic displacement �� was calculated from the area below

softening curves in the figure 6c. The length %&' of the propagating shear band is

given as a function of the stress ratio r defined from equation (3) and of the pressure

�', applied by the „bulldozer“ at the top of the slope:

%&' �� �' � �0
�� � �


ℎ

 �

1



2��ℎ��
�� � �
 (7)

where �0 is the initial lateral pressure (at rest). The “bulldozer” displacement is

given by

�' �
0

%&' () )  ) � 1
�� �'%&' � �
 � �� %&'2

2ℎ* (8)

and eliminating �' between equations (7) and

(8) gives the parabolic relationship between �' and %&' shown as the solid line in

figure 6d. Analytical and numerical predictions in figure 6d match within 10%, but

more importantly, they both fit reasonably well the measured shear band length

(data points in figure 6d).

This example provides both a direct experimental evidence of the SBP in a slope

built of saturated, normally to lightly overconsolidated clay and a confirmation that

energy balance approach is capable of its quantification.

2.3 Progressive vs catastrophic failure

The above experiment simulates progressive SBP, i.e., under gradually increasing

external forces (in this case the weight of the ‘bulldozer’, figure 7a). This was

achieved intentionally, by choosing the 10° inclination of the chute, which was not

sufficient for the gravitational shear stress �� to exceed the residual shear strength �
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(i.e., r < 0). Under such conditions propagation of the shear band can be terminated

at any moment by keeping the bulldozer load constant, allowing for more accurate

measurements of the shear band length.

By increasing inclination of the chute and making the gravitational shear stress

larger than the residual shear strength (i.e., 0 < r < 1), the catastrophic SBP could be

recorded (figure 7b). After exceeding the critical length, the catastrophic SBP took

place under practically constant ‘bulldozer’ force and was around 30 times faster

than the progressive SBP, which, as mentioned above, was fully controlled by the

rate of increase of the ‘bulldozer’ force. The measured velocity of the catastrophic

shear band propagation was, as expected, of the order of the shear wave velocity.

In summary, the shear band propagation phenomenon allows for the following

types of failure to be identified. In progressive failure, propagation of the shear band

is stable in the sense that it requires work of the additional external forces. In

catastrophic failure, propagation of the shear band is unstable, and takes place under

existing external forces. The term delayed failure, often used in the geotechnical, is

in fact a particular case of catastrophic failure, in which propagation of the shear

band is unstable, but delayed in time owing to, for example, local pore water

suctions caused by dilation within the shear band, or viscoelastic creep of soil and

bulk pore water diffusion.

(a)

(b)

Figure 7: Evolution of the applied force and the shear band length in time for (a)

progressive and (b) catastrophic failure.
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3 Progressive failure in constrained terrestrial

landslides

Understanding of failure mechanisms of creeping terrestrial landslides is of critical

importance for assessment and mitigation of their hazard. In general, when a

creeping landslide is constrained by an obstacle, either natural (a milder slope or a

rock outcrop) or artificial (a retaining wall), it slows down, creating an impression of

being stabilized. Sometimes, however, the stabilization phase is followed by

acceleration, caused by the soil failure at the obstacle. At what pressure will the soil

fail? What causes the failure in the compression zone above the obstacle? Is it safe

to excavate below the failed zone? These and other questions can be answered by

considering combination of the kinematic failure mechanisms in the sliding layer

with progressive growth of slip surfaces underneath the sliding layer.

3.1 Landslide pressure

The problem of the limiting landslide pressure on an obstacle was first formulated in

1944 by Robert Haefeli of ETH Zurich, who recognized that the kinematics of the

problem does not allow for classical active and passive earth pressure theories to be

applied (figure 8). He derived an approximate solution using a limit equilibrium

approach with a number of rather arbitrary assumptions and simplifications. Since

then, the Haefeli solution has been widely applied for the design and analysis of

landslide retaining structures. [Fri17] revisited this old landslide pressure problem

(figure 9) by means of a rigorous upper- and lower-bound limit analysis and derived

the exact landslide pressure solution for a planar landslide with a weak slip surface

parallel to the slope (
 � +) and a vertical retaining structure in cohesionless soil:

,�ℎ	 � -)
�. �

2��ℎ	
�/2 � cos4 α

cos2φ' ⋅ 1 + 1 − cos2φ' 1 + tan2α
2

(9)

The landslide pressures from this solution increase with the strength of the sliding

layer and are significantly higher than the active, but much lower than the passive,

earth pressures. Of even higher practical importance, however, is that due to their

oversimplifying assumptions, the widely used approximate solutions appear to get

close to the exact solution only over a very narrow range of slope and friction angles

(figure 10a). It appears that for mildly inclined weak slip surfaces and high strengths

of the sliding layer, analysis and design of retaining structures based on well-known

approximate solutions can become dramatically unsafe.

Effect of the ground water on the total normalized landslide force were

demonstrated by [Fri17] in figure 10b. The lower and upper bound solutions are no

longer identical and, therefore, they do not represent the exact solution. However, it

can be concluded that the presence of water will always weaken the sliding body and

the force needed to fail the soil in the vicinity of a constraining obstacle will always

be smaller than the one for a landslide in dry condition.
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Figure 8: Kinematics of different limiting earth pressure situations: (a) active; (b)

passive; (c) the landslide case.

Figure 9: Formulation of the problem of landslide pressures.

Figure 10: Landslide pressure coefficients: (a) comparison between the Haefeli and

exact solutions; (b) effects of the ground water.
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3.2 Landslide influence zone

Continuing urbanization brings construction into landslide prone areas. Since 1940s

it has been understood that earth pressures acting on the structures within the sliding

body may significantly differ from those in the stable slopes with rigorous solutions

for landslide pressures presented by [Fri17]. Design codes reflect this knowledge

and recommend application of landslide pressures for construction in permanent

landslides. It is less clear, however, what kind of design pressures should be used

outside of the sliding body, in the proximity of the existing landslides? This question

is relevant for both permanent and one-time events and of particular practical

interest is the area just below the boundary of the high-pressure landslide

compression zone. Intuitively, there should be a transition zone, within which high

landslide pressures subside to the regular (at rest) earth pressures in the stable slope.

How large is this “landslide influence zone” and what are the lateral earth pressures

acting within it (figure 11)?

Understanding the mechanism of the downhill pressure transfer within the stable

part of the slope below the landslide is critical for finding the answers to these

questions. Progressive propagation of a slip surface into the stable part of the slope

(figure 6) has been investigated experimentally and analytically in Section 2.2 of

this Chapter. Once the steeper part of the slope fails, the lateral earth pressure in the

failed zone remains constant and is equal to the landslide pressure from equation (9).

The slip surface stops growing and its length is determined from equation (7) with

�' equal to the landslide pressure. The earth pressure at the tip of the slip surface can

be calculated, but not below that, because equation (7) has been derived using the

energy balance approach, i.e., neglecting the process zone.

To overcome these limitations, [Puz19] used the process zone approach (figure 3),

similar to the one of [Zha15], considering lateral pressure distributions below the

shear band, in the process zone and the zone of elastic shearing. This allowed for

estimating both the length of the “landslide influence zone” (figure 12a) and the

elevated earth pressures acting on the buildings embedded within this zone (figure

12b). This becomes particularly important when a building in this area has to be

replaced by a new one, raising questions about the magnitude of earth pressures that

should be used in design of both the excavation and the structure.

Figure 11: Progressive propagation of the slip surface into a stable part of the slope

below the failure in the upper unstable part of the slope .
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(a)

(b)

Figure 12: Process zone approach for estimating (a) the length of the “landslide

influence zone”; (b) earth pressures acting on the buildings within this zone.

3.3 Evolution of the landslide compression zone

The ski resort town of St Moritz, Switzerland, is partially constructed on a large

creeping landslide (figure 13a), which has been causing damage to buildings and

infrastructure. At the town centre, the landslide is constrained by a rock outcrop,

creating a compression zone in the sliding mass. After decades of gradual slowing

down, in the beginning of 1990s the landslide started to accelerate (figure 13b), in

spite of the fact that the average yearly precipitation remained fairly constant (figure

13b). [Puz11] demonstrated that a constrained creeping landslide experiences the
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progressive propagation of the slip surface, driven by the visco-elastic deformation

of the sliding layer (figures 14a and 14b). This results in significant earth pressure

increase in the compression zone, until the landslide pressure described by equation

(9) is reached, with subsequent failure and visco-plastic yielding of soil in this zone

(figure 14b).
(a)

(b)

Figure 13: St Moritz landslide: (a) the outline; (b) cumulative precipitation and

evolution of displacements within the compression zone.

This basic physical mechanism, relying on extensive laboratory and field tests and

long-term displacement monitoring, explains the paradox of the St Moritz landslide

acceleration (solid line in figure 13b). Although the model predicts that the landslide

could eventually slow down [Puz11], reaching certain constant velocity, its

displacements may become excessive for some buildings, requiring an early warning

system and further stabilization of the historic Leaning Tower (inset in figure 13a).

In general, by predicting the onset of yielding, the model can provide an important

timeframe for stabilization of constrained landslides.
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(a)

(b)

Figure 14: Conceptual model: (a) of the shear band propagation; (b) of the visco-

elastic-plastic behaviour of the soil in the compression zone.

4 Catastrophic failure in gigantic submarine

landslides

A Geographical Informational System (GIS)-based deterministic and probabilistic

slope stability analysis (PSSA) for offshore developments requires slope stability

calculations to be repeated millions of times, thus excluding possible use of finite

element analysis and relying mainly on analytical limiting equilibrium (LE) slope
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failure criteria. In strain softening soils, however, LE approach assumes that the

failure takes place simultaneously along the entire sliding surface where the shear

stress exceeds the peak shear strength. It cannot explain the failure of the parts of the

slope, where the shear stress is lower than the peak shear strength, frequently

observed in gigantic submarine landslides. There is a clear need in an alternative

approach, which would allow for overcoming this limitation while maintaining the

simplicity of the LE analysis.

A potential candidate to fill this gap is the shear band propagation (SBP)

approach [Pal73; Puz05; Zha15], which in contrast to the LE provides criteria for an

initial slip surface, in which the shear stress exceeds the peak shear strength, to

propagate into portions of the slope, where the shear stress is lower than the peak

shear strength but exceeds the residual strength. This helps to explain dimensions

and evolution of some terrestrial and submarine landslides in the nature.

4.1 Geomorphological patterns

Besides its inability to explain the gigantic dimensions of the observed submarine

landslides, LE approach also cannot distinguish between different landslide failure

modes, such as slab failures, spreadings, ploughings and runouts (figure 15).

Figure 15: Geomorphological patterns of submarine landslides

4.2 Shear band propagation in a non-linear slope

The existing SBP approaches have been developed for a case of an infinite or semi-

infinite slope. In submarine settings, however, slopes can be typically characterised

by monotonically decreasing functions (figure 16), with many slopes exhibiting an
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‘S-shaped’ Gaussian profile, formed as a result, for example, of tectonic regime, a

drape-covered scarp or a pile of debris from a previous landslide. In all these cases,

it is logical to assume that the initial weak zone would appear parallel to the slope in

its steepest part, where the combined action of the gravity and seismic loads could

overcome the degraded peak shear resistance of the soil.

For this 2D slope geometry, [Puz16] proposed to treat the submarine landslide

evolution as a continuous sequence of catastrophic and progressive SBP

mechanisms (figure 16). The SBP mechanism is capable of explaining the failure

evolution from a relatively short initial shear band, triggered (e.g. by an earthquake)

in the steepest part of the slope, where gravitational and seismic forces exceed the

peak shear strength (shear stress ratio r > 1, primary failure in figure 16). If this

initial shear band becomes sufficiently long, it can propagate catastrophically

parallel to the slope surface, into those parts of the slope where gravitational and

seismic forces exceed the residual shear strength (0 < r < 1), triggering a slab failure

(secondary failure in figure 16). Once the slab fails in active or passive mode at its

ends, this causes changes in the seabed level, driving progressive propagation of the

shear band into those parts of the slope where gravitational and seismic forces are

smaller than the residual shear strength (r < 0) and triggering spreadings, ploughings

and run-outs (tertiary failure in figure 16).

Figure 16: Evolution of submarine landslides.

Although the energy balance calculations using equilibrium in curvilinear

coordinates are rather cumbersome [Puz15], their outcome is surprisingly simple. It

follows that the one-dimensional (1D) SBP criterion in equation (2) for an infinite
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slope also gives a reasonably conservative estimate for a 2D topography. The only

difference is that the 2D criterion uses an average shear stress ratio calculated based

on the average gravitational shear stress, which in turn is calculated using the

average slope of the initial shear band (figure 17):

�0 � ��
 � 1+
��

��

��


�
(10)

where


� �
��� − �


�� − �

; ��� � �'ℎsin
9

(11)

Figure 17: 2D criterion of the SBP in non-linear slopes.

4.3 Post-failure evolution

[Bus19] applied the energy balance kinematic method of plasticity theory to the

large deformation problem of initiation and propagation of the spreading and

ploughing failure outside a failed slab in submarine sediments (figure 18). The

models account for the phenomenon of the progressive propagation of a slope

parallel slip surface, which is also quantified using the energy balance approach. In

contrast to existing approximate analytical and numerical solutions, the proposed

approach provides a theoretical basis for spreading and ploughing criteria as well as

the comprehensive dynamic solution of the problem of post-failure landslide

evolution. Incremental integration of the derived analytical expressions for kinetic

energy in time allows for modelling recurrent initiation of new kinematic failure

mechanisms with their subsequent large-scale deformation. Treating the failed slab

as well as the spreading and ploughing mechanisms as one composite dynamically

evolving mass movement allows for the final post-failure geomorphology of the

failed slope to be predicted using basic mechanical principles (figure 19).
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Figure 18: Kinematic mechanisms: (a) initial active failure; (b) spreading; (c) initial

passive failure; (d) ploughing.

Figure 19: Submarine landslide evolution: numerical integration of analytical

kinematic energy balance expressions.
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While similar results have been obtained by [Zha19] using Large-Deformation

Finite Element (LDFE) (figure 20) and by [Sto19] using Coupled Eulerian

Lagrangian (CEL) analysis (figure 21), the [Bus19] approach has significant

computational advantages for the GIS based probabilistic stability analysis: it uses

analytical criteria to identify spreading, ploughing and run-out and is based on

numerical integration of analytical expressions for kinetic energy.

Figure 20: LDFE simulation of ploughing and spreading (plastic strains).

Figure 21: CEL simulation of a run-out (plastic strains and kinetic energy).
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5 Conclusions

Quantifying the role of the growth of the slip surfaces in landslide mechanisms does

improves our understanding of these important geo-hazards, leading to some

interesting practical applications. For constrained terrestrial landslides, it has helped

to identify the landslide influence zone and to predict evolution of the compression

zone in a number of projects in Switzerland. For submarine landslides, [Rus15]

incorporated the SBP approach, into GIS-based deterministic and probabilistic

stability analysis and applied it to the area of the Caspian Sea floor designated for a

large new oil and gas development. The resulting annual probability of failure

predicted by the SBP approach (figure 22) was an order of magnitude higher than

the one predicted by the LE approach, approaching the observed historical landslide

frequencies and contributing to a more realistic landslide risk assessment. The

participants of the ALERT doctoral school are encouraged to think about further

potential applications.

Figure 22: Annual probabilities of failure predicted using: LE (left) and SBP (right)

approaches [Rus15], with permission of OTC.
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Strain localization in geomaterials and
regularization: rate-dependency, higher order
continuum theories and multi-physics
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Strain localization is a central topic in geomechanics as it is often related to failure
and other important physical phenomena and geological processes.
This chapter is addressed to graduate students and researchers interested in an in-
troduction to strain localization analysis. We present fundamental notions that are
frequently met in this topic, such as loss of uniqueness, bifurcation, stability, ill-
posedness and mesh dependency.
We first show the inherent pathology of classical, Cauchy, rate-independent continua
that leads to mesh sensitivity and we present methods for alleviating/regularizing this
problem. These methods involve the use of theories that result in the introduction
of characteristic time and length scales into the system. We focus mainly on rate-
dependent constitutive laws, Micromorphic continua and multiphysics.
Regularization of strain localization is shown as general as possible using bifurca-
tion and stability analysis and without prescribing exact constitutive relations. One-
dimensional examples are then used to illustrate each regularization approach and
show in a mathematically simple manner the main results.

1 Introduction

Strain localization is an important phenomenon in geomechanics. From a geometrical
point of view, strain localization is related to the creation of (quasi-)periodic geomet-
rical patterns as in figure 1. From an engineering point of view strain localization is
related to failure. For instance, failure of a retaining wall happens through the local-
ization of strain at the slip surface. At a larger scale, landslides or even earthquakes
occur due to localized, intense shear deformation in a narrow zone of millimetric to
centimetric scale.
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Figure 1: Network of quasi-periodic compaction bands (see paragraph 2.3 for defini-
tion) at Valley of Fire, Nevada, USA (date of photo: 25/12/2015).

In this chapter we give the fundamental tools for studying a) the conditions for which
strain localization takes place and b) its type. We focus mainly on deformation bands,
which are frequently observed in nature and in engineering applications. However,
the methodology that is developed can be applied for more complex patterns of strain
localization as is for example the checkerboard pattern shown in figure 2, diffusion
and/or run-away modes (e.g. [VS95, ND11, BSS17]).

The methodology we follow is based on bifurcation and stability theory of dynamical
systems. This theory gives a unified, general and rigorous mathematical framework
for studying strain localization in solids. It is worth emphasizing that, despite the var-
ious theoretical and mathematical complications related to constitutive modeling and
multiphysics couplings (see [LCBD09, Bow09] for some good references in contin-
uum mechanics and constitutive modeling), once the equations for the (dynamical)
system are established, bifurcation (and stability) analysis is a standard methodology.

In Section 2 we give the necessary definitions of common terms that are often found
in the literature when studying strain localization. We explain what is loss of unique-
ness, bifurcation, stability, ill-posedness and mesh dependency and we emphasize
their differences. We then focus on deformation bands, their various types and we
discuss the necessary conditions for their triggering (onset of localization). Next we
use the first Lyapunov method in order to derive qualitative estimations regarding the
thickness of the deformation band and its evolution. Furthermore, we explain why in
rate-independent Cauchy continua strain localization occurs on a mathematical plane
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Figure 2: Checkerboard pattern of dilating and contacting cells in water-saturated
granular medium (source: [VS95])

.

(deformation band of zero thickness), which is a mathematical and physical artifact
when experimental evidence is taken into account. As a consequence we show why
mesh dependency takes place when the finite element method is used for solving strain
localization problems.

In order to overcome the aforementioned mathematical and numerical artifacts several
approaches have been proposed in the literature for regularization. Here we explore
the following three regularization techniques. First, we present rate-dependent Cauchy
continua (Section 3), their ability to regularize the problem and their limitations. Scale
analysis is performed showing the characteristic time scale that rate-dependent Cauchy
materials introduce to the strain localization problem. In this way we highlight the
physics and the interplay of viscous, inertia and rate-independent terms and we show
when each one of them is dominant. Second, in Section 4, we show the general class of
Micromorphic continua (e.g. strain gradient theory and Cosserat continuum [Ger73b,
Ger73a, CCM01, Var09]), which regularize the problem by introducing characteristic
lengths. Finally, going a step further from a pure mechanical description, we show in
Section 5 the effect of multiphysics couplings that insert both characteristic lengths
and time scales in the problem [Var96a, Var96b, Ben05]. It is needless to say that
the literature in each one of this topics is huge and can be classified material-wise,
application-wise and method-wise.

Here we use simple one-dimensional examples in order to present the mathematical
developments in a simplified manner and to help understanding. These examples fol-
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low after a general presentation of the regularization techniques in three-dimensions.
Index notation is used throughout this chapter as it is easier for handling the simple
case of Cauchy continua and of Micromorphic continua with or without multiphysics
couplings.

This chapter is addressed to graduate students and researchers interested in strain lo-
calization analysis and can be read in any order. Readers that want a synthesis of
the different regularization techniques are advised to follow the order of the sections.
Readers that prefer a “hands-on approach” are advised to start from the 1D examples
in each section and repeat the calculations.
After studying this chapter we hope that the reader will be able to:

– Understand fundamental notions related to bifurcation theory;

– Perform a bifurcation analysis using the first Lyapunov method and derive the
conditions for strain localization under different constitutive assumptions and
continua;

– Identify the dominant time and spatial scales in a class of problems;

– Draw qualitative conclusions regarding strain localization zone thickness and
mesh dependency without cumbersome numerical analyses;

– Understand the added-value of Micromorphic continua such as the Cosserat and
strain-gradient continua;

– Investigate the effect of multiphysics couplings on the localization of deforma-
tions.

Updated versions of this chapter can be found at: http://coquake.eu/wp-content/
uploads/2019/06/ALERT_2019.pdf.

2 Strain localization

Strain localization is a phenomenon that is frequently met in (geo-)materials when
strain is localized into narrow zones of increased deformation. Instability, loss of
uniqueness, bifurcation, ill-posedness or even mesh dependency are terms that are
frequently used in the literature (some times erroneously or as unwitting abuse of
language) to describe this phenomenon from a mathematical point of view. Before
studying strain localization in details and proposing various regularization strategies,
it is worth define the meaning of each term.

2.1 Definitions
Loss of uniqueness, bifurcation and (in)stability are distinct, but related notions that
are frequently used to describe the behavior of physical systems.

Loss of uniqueness and bifurcation are associated with the existence of one or several
equilibrium states of a system. These equilibrium states are also called steady-states
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of a system and can be periodic in time or time-independent. Of course, the system
has to be non-linear in order to have several equilibria and not just only one. They
can depend also on several parameters whose value can determine the existence and
the number of this equilibrium states. In this case, these parameters are called bifur-
cation parameters. Examples of bifurcation parameters is the loading intensity, the
constitutive parameters of a material, geometry etc.

Besides the existence of one or several steady states for given values of the bifurcation
parameters, an equilibrium state may be stable or unstable. We say that an equilibrium
(or steady state) is stable when it returns or stays close to this equilibrium after a
small perturbation. An equilibrium is unstable when it is not stable. The notion of
stability is well established and mathematically rigorously defined in the original work
of Lyapunov [Lya92] in the end of 19th century. Stability is directly connected with
the time evolution of a system. This is in important point, because even if in common
practice time is neglected (e.g. quasi-static conditions), the transition from a steady-
state to another one happens in a certain time scale, which might be very short (sudden
failure of a brittle material) or very slow (geological phenomena).

According to the above, stability and bifurcation (or loss of uniqueness) are two dif-
ferent notions. However, bifurcation points are commonly accompanied with stability
change of the equilibrium states. This is illustrated in the following example. In
figure 3 we present a simple mechanical system consisted of a rigid bar attached to
a pivot point and a spring and loaded with a load P . We choose the applied load
P as bifurcation parameter and we plot the angle θ at equilibrium as a function of
P . The space (θ∗, P ∗) is called (bifurcation) parameter space and the asterisk de-
notes equilibrium. Solid lines denote stable equilibrium states and dashed unstable
ones. Obviously this system has several equilibria. For instance, for P ∗ < −kl,
where l is the length of the bar, the system has two equilibrium states. The first one
is when the bar is at vertical upward position θ∗ = 0 and it is stable. The second
one is when the bar is vertical but downwards (θ∗ = π) and it is unstable. When
−kl < P ∗ < kl the system has three equilibrium positions, but all are unstable ex-
cept the one corresponding to θ∗ = 0. In this system there is no unique equilibrium
and therefore the term loss of uniqueness is of no use. However, if one linearizes the
system in the vicinity of the θ = 0, then the equilibrium branch for θ∗ = π disap-
pears. In this case (see figure 3) the system has a unique equilibrium point for θ∗ = 0,
which is lost at P ∗ = kl (loss of uniqueness at the bifurcation point B). For rigor-
ous mathematical definitions of bifurcation, loss of uniqueness and stability we refer
to [Lya92, BN69, CCV04, BH91b, BH91a, SA16]. Another, important term that is
common in the study of physical systems is ill-posedness. A mathematical system is
said to be well-posed when:

– A solution exists;

– The solution is unique;

– The solution’s behavior changes continuously with the initial conditions.

This definition is given by Hadamard [Had02]. Problems that are not well-posed in
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Figure 3: Left: Spring-rigid bar mechanical system. Middle: Bifurcation diagram of
the spring-rigid bar system. B1 and B2 are bifurcation points. Right: Bifurcation
diagram of the linearized spring-rigid bar system in vicinity of θ = 0. The linearized
system has only one bifurcation point, B. Solid lines denote stable equilibrium and
dashed unstable ones.

the sense of Hadamard are termed ill-posed. Hadamard believed that problems that
are physically important are both solvable and uniquely solvable. However, nowadays
we know that the many among the most important modern problems are not uniquely
solvable. Examples of very important ill-posed problems are found in all scientific
disciplines. Strain localization, inverse problems (e.g. seismic inversion), earthquake
nucleation, neural networks, population growth, weather and chaos are some problems
involving ill-posed mathematical equations among many others. Even the very simple
example given in figure 3 is ill-posed in the sense of Hadamard as multiple equilibria
(solutions) exist.

Ill-posed problems are though difficult to solve and these difficulties appear in differ-
ent forms depending on the application. For example, strain localization is connected
with mesh dependency in finite elements analyses. Mesh dependency means that the
stress-strain response of the system, as well as the strain localization thickness (when
interested in deformation bands, see below) depend on the finite element discretiza-
tion used for solving the problem and further refinement of the mesh does not assure
convergence to a unique solution. In order to remedy mesh-dependency and other
undesired and nonphysical phenomena that are frequently met in ill-posed problems,
regularization is needed.

A mathematical problem is regularized either ad-hoc by changing the mathematical
equations to alleviate undesired pathologies or by introducing more physics to the
problem at hand. The mathematical problem might still remain ill-posed, but it will
be free of nonphysical behaviors which are not confirmed by observations. Such an
example is the formation of shear bands in rate-independent granular materials. As it
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will be shown below, modeling with the classical Cauchy continuum leads to the for-
mation of shear bands of zero thickness, which is contrary to experimental evidence.
Experiments show (e.g. [AHV+12]) that the shear band thickness is finite and equal
to some grain particles in size. Mühlhaus and Vardoulakis [MV87] regularized this
problem by introducing the missing integral lengths in the mathematical problem by
resorting to Cosserat theory (see section 4).

2.2 Instability of homogeneous deformation
The general PDE’s of the problem are:

σij,j = ρüi, (1)

where σij is the Cauchy stress tensor, ρ is the density of the material, ui represents the
displacement at direction “i” and the double dot denotes the second time derivative
(acceleration). The indices take values 1, 2, 3 and Einstein summation convention
is used herein. Suppose a homogeneous, homogeneously deformed solid that is in
equilibrium:

σ∗ij,j = 0. (2)

We assume a perturbation, ũi from the reference, homogeneous solution, u∗i , such that
ũi = ui − u∗i . ũi = 0 at the part of the boundary where displacements are applied
and ũi,jnj = 0 where tractions are applied. We consider the class of materials whose
constitutive law can be written (linearized) as follows:

σ̃ij = Lijklε̃kl, (3)

where σ̃ij = σij − σ∗ij , ε̃ij = 1
2 (ũi,j + ũj,i) and Lijkl a fourth order tensor de-

pending on the constitutive behavior of the material at the reference state, where the
linearization is made. Injecting equation (3) into equation (1) we obtain:

Lijklũk,lj = ρ¨̃ui. (4)

The above PDE is linear and can be solved by separation of variables (or Fourier
transform). Setting ũi = X(xk)Ui(t), equation (4) becomes:

LijklX,ljUk = ρXÜi. (5)

The general solution of equation (5) in terms of Ui is Ui = Ui(t) = gke
st leading to:

(
LijklX,lj − ρXs2δik

)
gk = 0, (6)

where δij is the Kronecker delta.
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H

Figure 4: Schematic representation of homogeneous (left) and localized deformation
(right) in the form of a band. Blue indicates the initial undeformed state and orange
the final form. The loading is applied slowly in a quasistatic manner such as to always
satisfy equilibrium σ∗ij,j = 0. A bifurcation from the equilibrium state with homoge-
neous deformation to another equilibrium state of non-homogeneous deformation can
occur under the conditions of described by equation (8).

2.3 Deformation bands
Figure 4 shows the formation of a deformation band. As explained below, shear, com-
paction and dilation bands are all deformation bands. The kinematics for the formation
of a deformation band determine the form of the perturbation ũi and consequently X ,
which has to be a planar wave propagating in direction ni, i.e. X(xk) = eiknixi .
k = 2π

λ is the wave number of the perturbation, λ its wavelength and i =
√
−1.

Therefore, the perturbation ũi takes the form:

ũi = gie
st+iknjxj (7)

and equation (6) becomes:
(
Γik − ρc2δik

)
gk = 0, (8)

where Γik = njLijklnl is the so-called acoustic tensor, c = iλs2π is the propagation
velocity of the sinusoidal plane wave described by ũi = Uie

iknixi+st. The above con-
dition for strain localization coincides with the bifurcation conditions determined in
[RR75] (see also Appendix A) and takes the form of a classical eigenvalue problem.
The above eigenvalue problem has three eigenvalues q(i) corresponding to three eigen-
vectors {g(m)

k } (m = 1, 2, 3). Given the eigenvalues and solving for the propagation

velocity we get c(m) =
√

q(m)

ρ . The Lyapunov exponent is then s(m) = −i 2π
λ

√
q(m)

ρ .

If an s(m) with positive real part exists, i.e. Re(s(m)) > 0, then the homogeneous
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solution u∗i is unstable and the system bifurcates to a non-uniform solution, a defor-
mation band, with direction ni. Strain localization takes place. The type of the defor-

n

n

n

n

n

g g

g
g

g

dilation band
dilatant shear band
shear band
contractant shear band

compaction band

p

q

Figure 5: ni and gi for different types of deformation bands.

mation band (compaction, shear, dilation band) is determined by the product nigi. If
nigi = 0, the deformation is a shear band, if nigi = −1 a pure compaction band and if
nigi = +1 a pure dilation (extension) band. The intermediate states, −1 < nigi < 0
and 0 < nigi < +1 correspond to contractant and dilatant shear bands, respectively.
This is schematically shown in figure 5. More precisely, for an elastoplastic material
whose plastic behavior is a function of the first and second invariants of the stress
tensor (figure 6), it can be shown that under axisymmetric compression conditions of
loading, strain localization occurs when the hardening modulus becomes lower than a
critical value hcr for given values of friction coefficient µ and dilatancy β (see figure
7 and [IR00]).

Figure 6: Elastoplastic yield envelope with hardening/softening (dotted lines). Com-
pression is considered negative.
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Figure 7: Critical hardening values in function of friction coefficient µ and dilatancy
β for strain localization [IR00]. Notice that for non-associate plastic flow rule, local-
ization can occur even with hardening (hcr > 0).

2.4 Mesh dependency
With the exception of some special cases of constitutive laws that are out of the
scope of the present chapter, the acoustic tensor Γik does not depend on the (per-
turbation) wavelength, λ. Therefore, its eigenvalues, q(m) will not depend on λ ei-
ther. Consequently, the Lyapunov exponent s becomes maximum for decreasing λ

(s(m) = −i 2π
λ

√
q(m)

ρ ). In particular s→∞ for λ→ 0. This means that the dominant

perturbation in time is the one with the smallest wavelength (ũi = Uie
iknixi+st). In

other words the minor imperfection in size in te medium will grow faster and dom-
inate over the other imperfections of larger wavelength. This is why in the classical
Cauchy continuum, which has no internal lengths (the acoustic tensor Γik does not
depend on λ), the deformation band thickness is zero. This means that strain local-
ization takes place on a mathematical plane. The fact that the smallest perturbation
propagates faster justifies also the mesh dependency in Finite Element calculations,
if one associates the mesh size with the characteristic wavelength of the perturbation.
For instance, in the frame of classical simulations in elastoplasticity of Cauchy rate-
independent continua with softening behavior (or even in perfect plasticity), the nu-
merically predicted shear band thickness depends on the finite element discretization
and on the element size (figure 8).

It is worth emphasizing that the above condition for strain localization‘is independent
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Figure 8: Shear band formation and mesh dependency for a rate-independent elasto-
plastic, von Mises, Cauchy medium with strain softening. The shear band thickness is
always 1-2 elements thick and therefore mesh dependent. The plastic strains and the
global energy dissipation are also mesh dependent.

of the specific constitutive law, provided that the material is rate-independent and that
equation (3) can be written. Rate-dependent materials are treated in the next sec-
tion where a similar approach is followed for studying strain localization. The above
methodology is quite general and can be applied in many problems, including prob-
lems with multiphysical couplings, such as thermo-poro-chemo-mechanical couplings
(e.g. [Ste14, Sul15]). Moreover, even though a Cauchy (Boltzmann) continuum was
considered here, the same approach can be applied in Cosserat or even higher order
continua (e.g. [Müh88, Sul11]) as shown in the next Sections.

2.5 1D example

τ

H

u

y

Figure 9: Simple shear of an infinite layer.

In this paragraph we present a simple one dimensional example in order to illustrate
the above theoretical notions. We consider a layer that is sheared as shown in figure
9. For the material of the layer we consider an elastoplastic constitutive behavior with
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mechanical softening. The yield surface is defined as:

F = σ12 − τ0 ≤ 0, (9)

The strain increments are split in elastic and plastic parts as follows (small deforma-
tions):

ε̇ij = ε̇elij + ε̇plij . (10)

In a linear, elastic, isotropic Cauchy medium, the stresses are related to the elastic
deformations as follows:

σij = Kεelkkδij + 2G

(
εelij −

1

3
εelkkδij

)
, (11)

where K is the bulk modulus and G is the shear modulus. In this 1D example the
system is invariant in x1 and x3 directions and, therefore, the momentum balance
equations become:

∂σ12

∂x2
= ρü1;

∂σ22

∂x2
= ρü2. (12)

We assume that at steady state (equilibrium) we have homogeneous shear. In particu-
lar, σ12 = σ∗12 = τ0, σ22 = σ∗22 = σ0. This state will be stable as long as any pertur-
bation does not grow in time. By perturbing the displacement fields (ui = u∗i + ũi)
Equations (12) become:

∂σ̃12

∂x2
= ρ¨̃u1;

∂σ̃22

∂x2
= ρ¨̃u2. (13)

For elastoplasticity with mechanical softening (equation (9)):

σ̃12 = 2G
h

1 + h
ε̃12

σ̃22 = Mε̃22,

(14)

where M = K + 4G
3 is the p-wave elastic modulus and h = 1

G
dτ0
dq > −1 is the

hardening modulus, with q̇ = γ̇pl(12). h < 0 denotes softening.

The perturbations ũi have to fulfill the boundary conditions: σ̃12

(
x2 = ±H2

)
=

σ̃22

(
x2 = ±H2

)
= 0. H is the height of the sheared layer. Equations (13) and (14)

together with the above boundary conditions form a linear system, which admits solu-
tions of the form of Eqs.(7) with {ni} = {0, 1, 0}. Replacing into equations (13) and
solving for s as described in the previous sections, we obtain:

s = ikvp or (15)

s = ±ikvs

√
h

h+ 1
, (16)

where vp =
√

M
ρ is the p-wave velocity. The system is unstable when Re[s] > 0 or,

equivalently when h < 0 (softening). As expected, the growth coefficient s becomes
infinite for λ→ 0, which leads to mesh dependency.
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3 Viscous regularization - characteristic time

Materials whose mechanical response depends on the rate of deformation, as well
as on the deformation itself, are referred to as viscous or rate-dependent. The gen-
eral expression without considering path dependence reads σij = σij (εij , ε̇ij). The
linearized form of the constitutive law around a reference state of homogeneous de-
formation (see above) reads:

σ̃ij = Lijklε̃kl +Mijkl
˙̃εkl. (17)

Injecting in the balance equation we obtain:

Lijklũk,lj +Mijkl
˙̃uk,lj = ρ¨̃ui. (18)

Using separation of variables (or Fourier transform) we can solve the above linear
equation. Limiting our analysis to deformation bands, the perturbation field is given
by equation (7). The balance equation now becomes:

− njLijklnlk2gkXU − njMijklnlsk
2gkXU − ρs2gkXU = 0 (19)

and finally: [
njLijklnl + njMijklnls+ ρ

( s
k

)2

δik

]
gk = 0 (20)

Drawing a parallel to the acoustic tensor, a corresponding second order tensor can
be defined for the quantity njMijklnl. It should however be noted that there is a
difference in units. The parallel for the viscous response can then be introduced as
∆ik = njMijklnl leading to:

(
Γik + ∆iks− ρc2δik

)
gk = 0. (21)

3.1 Scaling: Characteristic time and length
To determine the characteristic times, the following quantities are introduced

τ =
t

T
, χk =

xk
L
, (22)

where T is a characteristic time for the problem and L a characteristic length (e.g. the
height H of the sheared layer of figure 9. Introducing these quantities into equation
(21) and dividing by the shear modulus G yields:

[
Γik
G

+
∆ik

GT
ŝ+

(
L

vsk̂T

)2

ŝ2δik

]
gk = 0, (23)

where vs is the shear-wave velocity, vs =
√

G
ρ , ŝ = sT and k̂ = kL.
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Case 1: Characteristic time due to viscosity

Let us assume that viscosity is dominant. In other words Γik

G and ∆ik

GT are terms of
O(1) and L2

v2s k̂
2T 2

of O(ε), ε� 1. We will determine the characteristic time Tvisc for

this case. ∆ik

GTvisc
= cik ≈ O(1) leads to:

Tvisc = cik
∆ik

G
. (24)

Moreover, by hypothesis L2

v2s k̂
2T 2
� 1 and therefore:

Tvisc �
L

vsk̂
⇒ cik

∆ik

G
� Lλ̂

vs2π
⇒

λ̂� 2πvs
cik∆ik

GL
≡ λ̂∗. (25)

In other words, when λ � λ∗ the inertia terms in equation (23) can be dropped,
resulting in: (

Γik
G

+
∆ik

G

ŝ

Tvisc
+ εŝ2δik

)
gk = 0⇒ (26)

(
Γik
G

+ ciks

)
gk = 0. (27)

Assuming strain localization in an isotropic rock with G ≈ 30GPa, cij∆ij = η ≈
20MPas and vs ≈ 2000m/s, λ∗ ' 8m, which is much bigger than the localiza-
tion thickness in a deformation band that is of the order of some millimeters or even
smaller. Therefore, for typical applications, one would expect viscosity effects to be
dominant over inertial ones. This is also shown in the numerical examples in the next
paragraph.

Case 2: Characteristic time due to inertia

Suppose that inertia terms are dominant over viscosity. In this case Γik

G and L2

v2s k̂
2T 2

are terms of O(1) and ∆ik

GT of O(ε).

From L2

v2s k̂
2T 2
≈ O(1) it results that:

Tiner =
L

vsk̂
=

λ̂L

2πvs
. (28)

∆ik

GT � 1 yields:

cik
∆ik

G
� Tiner =

λ̂L

2πvs
⇒

λ̂� λ̂∗ = 2πvs
cik∆ik

GL
. (29)
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Equation (29) means that for very large wave lengths, inertia effects are dominant to
viscosity and the second term of equation (23) can be dropped:

(
Γik
G

+ s2δik

)
gk = 0. (30)

Based on the above scalings one -practically- characteristic length, λ∗, was identified
and two time scales Tvisc and Tiner. However, there is one more length scale that
could be identified.

Case 3: Time scale of negligible rate-independent terms

Of interest is the third and final combination, where both viscosity and inertia are
dominant over rate-independent behavior, i.e. L2

v2s k̂
2T 2

and ∆ik

GT are terms of O(1) and
Γik

G of O(ε), ε� 1.

Suppose first that λ̂� λ∗ (or Tvisc � Tiner). We assume a new time-scale, such that
τv&i = ε−1τvisc, with ε = L2

v2s k̂
2T 2

= T 2
inertia. The characteristic time scale related to

viscosity is expected to be slow. Therefore, this new time scale is expected to be fast.
After change of variables, equation (26) becomes:

(
εΓik
G

+ cikŝ+ ŝ2δik

)
gk = 0⇒ (31)

(
cikŝ+ ŝ2δik

)
gk = 0 (32)

and

Tv&i = εTvisc =
T 2
iner

Tvisc
(33)

For λ � λ∗ (or Tvisc � Tiner), ε =
cij∆ik

G = Tvisc, equation (32) holds again, but
in this case:

Tv&i =
T 2
visc

Tiner
. (34)

Which time scale is more important than the others, depends on the application at hand
(e.g. loading conditions, material parameters, localization thickness, imperfections
etc.). For a given application, the above scaling laws can considerably simplify the
calculations and give physical insight to the results.

3.2 Effects of viscosity and inertia
In one dimension equation (21) reduces to:

Γ + ∆s+
ρ

k2
s2 = 0. (35)
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The question to be answered is for which value of k does s receive its maximum value.
The solution to the above equation for Γ = 0 is s = 0 for any value of k and

s = −∆k2

ρ
(36)

is negative for any value of k other than 0, which corresponds to an infinite wave-
length.
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(a) α̂=0.1.
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(b) ∆̂=0.1.

Figure 10: s versus λ for different values of α̂ and ∆̂.

If Γ is not equal to zero, there is no loss in generality in dividing by Γ. Substituting in
λ = 2π/k then yields:

− 1 +
∆

Γ
s+

ρλ2

4π2Γ
s2 = 0⇒ (37)

− 1 + ∆̂s+ α̂λ2s2 = 0. (38)

The solutions to the above quadratic equation are:

s1,2 =
−∆̂±

√
∆̂2 + 4α̂λ2

2α̂λ2
. (39)

Of the two solutions only the one, corresponding to the plus sign, has a positive real
part. This is plotted in figure 10 for different values of the quantities ∆̂ and α̂. It
can be observed that the maximum value of s corresponds in all cases to λ = 0. In
contrast to what was discussed in section 2.4 for the case without any regularization,
the maximum value of s is now finite and in fact equal to 1/∆̂. This is illustrated in
figure 10a.

It can be further observed that larger values of inertia, represented by the term α̂,
correspond to a more rapid decrease in the value of s with increasing values of α.
This is particularly easy to note in figure 10b.
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Figure 11: s versus λ for different negative values of ∆̂ and for α̂=0.1.

Up to this point it has been tacitly assumed that the contribution of the viscosity has
been positive, in the sense that the material exhibits strain rate hardening, rather than
strain rate softening. This is the case when the eigenvalues of ∆ij in two- or three-
dimensions or the value of ∆̂ in one dimension are positive. It is however also possible
that a material may exhibit strain rate softening. For the one dimensional case its effect
is illustrated in figure 11. As may be observed, the maximum value of the growth
coefficient s goes to infinity as λ→ 0 and in fact does so faster than in the case of the
Cauchy continuum.

3.3 1D Example
The example considered in section 2.5 is revisited here, incorporating a viscous ma-
terial response. The sheared layer of figure 9 is considered. The material response is
assumed to be elasto-viscoplastic with the yield function given in equation (9) and the
elastic response given in equation (11). The strain increments are split in elastic and
viscoplastic parts as follows (small deformations):

ε̇ij = ε̇elij + ε̇vplij . (40)

with the viscoplastic strain increments described by a Perzyna type model [Per66]:

ε̇vpij = λ̇
∂F

∂σij
=

F

ηf0

∂F

∂σij
, (41)

where η is a constant with units of time, indirectly expressing viscosity, and f0 is a
constant with units of stress, commonly the initial value of the material parameter τ0.
The balance equations are the same as in equations (12) and (13) for the unperturbed
and the perturbed states respectively.

From the definition of the plastic multiplier λ̇ in equation (40) it results that:

Ḟ = ηf0λ̈⇒ (42)
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σ̇12 = 2G
h

1 + h
ε̇12 +

ηf0

1 + h
λ̈. (43)

From the definition of the viscoplastic strain and the form of the yield function it
results that λ̈ = ε̈vp12 . Moreover, the first time derivative can be substituted with a
perturbation by considering time integration and successive perturbation. The result
reads:

σ̃12 = 2G
h

1 + h
ε̃12 + 2

ηf0

1 + h
˙̃εvp12 ⇒ (44)

σ̃12 = 2G
h

1 + h
ε̃12 + 2

ηf0

1 + h
˙̃ε12 −

ηf0

G(1 + h)
˙̃σ12. (45)

Making use of equation (43) in equation (45) in the form of successive substitutions
yields

σ̃12 = 2G
h

1 + h
ε̃12+2

ηf0

(1 + h)2
˙̃ε12−2

(ηf0)2

G(1 + h)3
¨̃ε12+2

(ηf0)3

G2(1 + h)4

...
ε̃ 12−. . . (46)

It can be observed that the above is an infinite series with alternating sign of coeffi-
cients. The coefficients follow a geometric progress where the multiplier is equal to
ηf0

G(1+h) . To maintain an analogy to equation (17) only the first two terms on the right
hand side of the equation are retained. On the whole the constitutive law now reads:

σ̃12 = 2G
h

1 + h
ε̃12 + 2

ηf0

(1 + h)2
˙̃ε12

σ̃22 = Mε̃22,

(47)

where, again, M = K + 4G
3 is the p-wave elastic modulus and h = 1

G
dτ0
dq > −1 is

the hardening modulus.

Following the analysis presented in section 2.5 from the first balance equation we
obtain:

G
h

1 + h
k2 +

ηf0

(1 + h)2
k2s+ ρs2 = 0⇒ (48)

v2
s

h

1 + h
k2 + v2

s

ηf0

G(1 + h)2
k2s+ s2 = 0 (49)

Solving for s yields:

s = −1

2
v2
s

ηf0

G(1 + h)2
k2 ± 1

2

√(
v2
s

ηf0

G(1 + h)2
k2

)2

− 4v2
s

h

1 + h
k2. (50)

On the whole, from both balance equations we obtain:

s = ikvp or (51)

s = −v2
s

ηf0

2G(1 + h)2
k2 ±

√(
v2
s

ηf0

2G(1 + h)2
k2

)2

− v2
s

h

1 + h
k2, (52)
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Figure 12: Growth coefficient in function of the perturbation wavelength. Contrary
to Cauchy continuum, the maximum value of the growth coefficient is finite. For
λ̂� λ̂∗ ≈ 20 inertia is dominant.

where vp =
√

M
ρ is the p-wave velocity and vs =

√
G
ρ is the s-wave velocity. The

system is unstable when Re[s] > 0 and it reduces to the solution given in section 2.5
when η = 0.

A comparison to the Cauchy continuum is presented in figure 12. For η 6= 0, we
observe that the growth coefficient s becomes maximum for λ = 0, but non infi-
nite as in the case of rate-independent materials. In other words the presence of a
characteristic time due to viscosity limits the growth coefficient and consequently per-
turbations propagate in finite time. Moreover, in the absence of inertia (or if it is
very small, see scaling, paragraph 3.1) the growth coefficient is finite and indepen-
dent of the wave length of the perturbation (see figure 10 for α̂). The consequence of
this latter observation is that in numerical analyses the results are mesh-independent
[Nee88, WSD96]. However, they depend on existing perturbations related to the ma-
terial parameters (e.g. imperfections) or the loading conditions which might favor one
wave-length or another.

4 Micromorphic continua regularization -
characteristic lengths

The theory of Micromorphic continua is a general continuum theory that can repre-
sent various heterogeneous systems with microstructure of non-negligible size and
take into account various length and time scales (internal lengths) that the classical
Cauchy continuum fails to represent. The various features of the Micromorphic con-
tinuum theory were studied by many researchers in the past, showing several advan-
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tages compared to the classical continuum approach. Intrinsic wave dispersion, non-
singular fields in fracture mechanics, interesting properties related to the design of
metamaterials, are some of the applications that emerge from the deep study of these
continua. Regularization in strain localization problems is another feature of these
continua due to the characteristic lengths they embody.

According to Germain [Ger73b] the Cauchy continuum is a continuous distribution of
particles, each of them being represented geometrically by a point and characterized
kinematically by a velocity Vi. In a theory that takes microstructure into account each
particle has kinematic properties that are defined in a more detailed way.

At the microscopic level of observation, a particle appears itself as a continuum P (M)
of small extent. Let M be the center of mass of the particle P (M), M ′ a point
of P (M), ui the displacement of M (Vi its velocity), x′i the coordinates of M ′ in
a Cartesian frame parallel to the given, global frame and M its origin, u′i the dis-
placement of M ′ with respect to the given frame (V ′i its displacement) and xi the
coordinates of M in the given frame (see figure 13). D denotes the control volume.
As P (M) is of small extent, it is natural to look at the asymptotic expansion of V ′i
with respect to x′i:

u′i = ui + χijx
′
j + χijkx

′
jx
′
k + χijklx

′
jx
′
kx
′
l + . . . , (53)

where χij is a micro-deformation tensor, which expresses the gradient of the rela-
tive displacements u′i and χij...m are higher order micro-deformation rate tensors. In
three-dimensions: i, j, . . . ,m = 1, 2, 3. The tensors χij...m are assumed to be fully
symmetric with respect to the indices j, . . . ,m.

M

M′

iX

ix′

iV′

C
iV

( )P M

D

Figure 13: Continuum with microstructure.

Applying the principle of virtual power and using the divergence theorem (see [Ger73b]
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and [Ste18] for more details on derivation), we obtain:

τij,j + fi = 0, ti = τijnj

νijk,k + sij + ψij = 0, µij = νijknk

νijkl,l + sijk + ψijk = 0, µijk = νijklnl

. . . ,

(54)

where, again, ni is the outward pointing unit normal vector field of the boundary of
the solid. The above system of equations represents the equilibrium equations of a
Micromorphic continuum of order n (strong form).

The additional degrees of freedom of Micromorphic continua introduce microinertia
terms, whose presence leads to interesting wave dispersion properties, especially at
short wavelengths (optic branch) [SSV10] and finite Lyapunov exponents in localiza-
tion problems [SSV11].

In figure 14 we outline the various higher order (Micromorphic) continuum theories
and their special cases. Besides the classical continuum and the Cosserat continuum
(called also micropolar continuum, see [Var09]), a special case of Micromorphic con-
tinuum is also the second gradient and the indeterminate couple stress theory (called
also restrained Cosserat medium).

Figure 14: Higher order continuum theories according to Germain’s terminology
[Ger73b]; see also [Min64, Eri99].

Ioannis Stefanou 67

ALERT Doctoral School 2019



Retrieving the classical, Boltzmann continua, is straightforward by setting χij and the
higher order microdeformation rate tensors null. In this case, sij = 0 and τij = σij ,
i.e. equal to the Cauchy stress tensor, which is symmetric.

In the case that the particle P (M) is deformable and its microdeformation coin-
cides with the deformation of the (macro-)continuum, i.e. χij = Vi,j , we obtain
the so-called second gradient continuum theory. As in this case the microdeforma-
tion rate tensor is no more an independent generalized virtual velocity, one has to
start from the very beginning and apply the principle of virtual power for deriving the
strong form of the equilibrium equations and the appropriate boundary conditions. For
more details we refer to [Ger73b] and for some interesting applications of the theory
to [DSMP93, CCE98, ZPV01, CCC06, SDC07, KABC08, PZ16, DAD+17], among
others. Alternatively, second gradient continua can be derived by assuming that the
internal energy depends explicitly on the second gradient of the displacement field
[Ger73a, Min65]. As fat it concerns strain localization, second gradient continuum
leads to deformation bands of finite thickness and remedies mesh dependency in finite
element analyses. For a more detailed study of second gradient theories related to
strain localization we refer to [CCM01, CCC06].

4.1 Cosserat continuum
The derivation of the Cosserat continuum is more direct than the second gradient. The
basic assumption is that the particle P (M) behaves as a rigid body and so it can not
only translate, but also rotate. In this case the microdeformation rate tensor has to be
anti-symmetric and the rest higher-order microdeformation tensors zero.

Adding inertia effects and neglecting volumic forces, equilibrium equations (equations
(54)) become:

τij,j + fi = ρüi, ti = τijnj

mij,j − εijkτjk + ψi = Iω̈ci , µi = mijnj .
(55)

This is the strong form of the Cosserat continuum equations. τij is the Cosserat stress
tensor, which is not symmetric and mij is the Cosserat moment (couple stress) tensor.
εijk is the Levi-Civita symbol. fi and ψi are respectively volumic (body) forces and
moments and ui and ωci are respectively the Cosserat displacements and rotations. ti
and µi denote boundary tractions and I is the microinertia.

A constitutive law connects the generalized stresses τij and mij with the generalized
deformations γij and κij :

γij =ui,j + εijkω
c
k

κij =ωci,j ,
(56)

i.e. τij = τij(γij , κij) and mij = mij(γij , κij). We assume an equilibrium state
of homogeneous deformation and search for the conditions where this state becomes

68 Modelling of strain localization in geomaterials and regularization

ALERT Doctoral School 2019



unstable leading to the formation of a deformation band. To this extend, we perturb
the kinematic fields ui and ωi as follows:

ũi =ui − u∗i = Uie
st+kjnj

ω̃ci =ωci − ωc∗i = Ωie
st+kjnj .

(57)

Linearization of the constitutive law yields (see [RSS18] for an application in elasto-
plasticity):

τ̃ij =CTTijklγ̃kl + CTMijkl κ̃kl

m̃ij =CMT
ijkl γ̃kl + CMM

ijkl κ̃kl.
(58)

Notice that κij has units of deformation over length. Consequently, any ratio of the
various tensors CXX produces a characteristic length for the problem at hand. In-
serting equations (57) and equations (58) into equations (55) we obtain the following
system of algebraic equations:

[
Γik + ρ

(
s
k

)2
δik ∆ik

Ξik Πik + I
(
s
k

)2
δik

] [
Uk
Ωk

]
= 0, (59)

where

Γik = njC
TT
ijklnl (60)

∆ik = −i
1

k
njeqlkC

TT
ijql + njC

TM
ijkl nl (61)

Ξik = njC
MT
ijkl nl + i

1

k
eijrC

TT
jrkqnq (62)

Πik = njC
MM
ijkl nl − i

1

k
ernkC

MT
ilrnnl +

1

k2
eilrC

TT
lrnqenqk + i

1

k
eilrC

TM
lrkqnq. (63)

The strain localization condition for deformation bands in the framework of Cosserat
continuum is:

Det

([
Γik − ρc2δik ∆ik

Ξik Πik − Ic2δik

])
= 0. (64)

The singularity of the above tensor is similar to the condition found in [IW98, SW91]
for the onset of localization (s = 0). In these papers, the authors derive the localiza-
tion condition from the kinematic and static compatibility conditions across the shear
band as done classically for strain localization analysis [MV87, VS95]. Note that
if no Cosserat effects are considered the classical condition of localization for rate-
independent materials with a Cauchy continuum is retrieved, i.e. Det(njC

TT
ijklnl) = 0.

For more details we refer to [RSS18].

4.2 1D example of regularization with Cosserat continuum
An elastoplastic constitutive behavior with mechanical softening is considered in this
example. More advanced Cosserat constitutive models such as the Mühlhaus-Vardoulakis
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Cosserat plasticity model [MV87, VS95, RSS18] might be used, but the advantage of
this simple and unrealistic for granular material models is that analytical derivations
can be performed easily. The yield surface is defined as:

F = τ(12) − τ0 ≤ 0, (65)

where τ(ij) denotes the symmetric part of the stress tensor τij . The strains and curva-
tures of the Cosserat medium are split in elastic and plastic parts as follows:

γ̇ij = γ̇elij + γ̇plij

κ̇ij = κ̇elij + κ̇plij .
(66)

In a centrosymmetric, linear elastic isotropic Cosserat medium, the stresses are related
to the generalized elastic deformation measures according to the following constitutive
relations [Var09]:

τij = Kγelkkδij + 2G

(
γel(ij) −

1

3
γelkkδij

)
+ 2η1Gγ

el
[ij]

mij = 4GR2
(
κel(ij) + η2κ

el
kkδij

)
+ 4η3GR

2κel[ij],

(67)

where η1, η2, η3 are positive material constants and R is an internal length parame-
ter, which for a granular material can be identified with the mean radius of the grains
of the Representative Volume Element (RVE). For more details on homogenization
approaches tailored to Cosserat continuum and upscaling, both in elasticity and plas-
ticity, the reader is referred to [BV01, GSSS16, RC16]. γ(ij) and γ[ij] denote respec-
tively the symmetric and anti-symmetric parts of γij . The Cosserat shear modulus,
which expresses the stiffness related to the relative rotation of the particle (e.g. of a
grain) with respect to the macro-rotation of the continuum (e.g. of the assemblage of
grains) is defined as Gc = η1G. In this 1D example the system is invariant in x1 and
x3 directions and, therefore, the momentum balance equations become:

∂τ12

∂x2
= ρü1;

∂τ22

∂x2
= ρü2

∂m32

∂x2
+ τ21 − τ12 = Iω̈c3.

(68)

At steady state we have a Cauchy continuum under homogeneous shear. In particular,
τ(12) = τ∗(12) = τ0, τ22 = τ∗22 = σ0, τ[12] = τ∗[12] = 0 and m32 = m∗32 = 0. This
state will be stable as long as any perturbation does not grow in time. By perturbing
the displacement and the rotation fields at steady state (ui = u∗i + ũi, ω3 = ωc∗3 + ω̃c3)
equations (68) yield:

∂τ̃12

∂x2
= ρ¨̃u1;

∂τ̃22

∂x2
= ρ¨̃u2

∂m̃32

∂x2
+ τ̃21 − τ̃12 = I ¨̃ωc3.

(69)
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For elastoplasticity with mechanical softening (equation (65)):

τ̃(12) = 2G
h

1 + h
γ̃(12)

τ̃[12] = 2Gcγ̃[12]

τ̃22 = Mγ̃22

m̃32 = 4GR2κ̃32.

(70)

The perturbations ũi and ω̃c3 have to fulfill the boundary conditions: σ̃12

(
x2 = ±H2

)
=

σ̃22

(
x2 = ±H2

)
= m̃32

(
x2 = ±H2

)
= 0. H is the height of the sheared layer. Equa-

tions (69) and (70) together with the above boundary conditions form a linear system
which admits solutions of the form of equations (57) with {ni} = {0, 1, 0}. Replacing
into equations (69) and solving for s as described in the previous sections, we obtain:

s = ikvp or (71)

s = ±ikvs

√
h

h+ 1

√
η1

(
1 + 1

k2R2

)
+ h+1

h
η1
k2R2 + 1

, (72)

where I was taken equal to zero for simplicity. The system is unstable whenRe[s] > 0
or, equivalently when h < 0 (softening) and η1

(
1 + 1

k2R2

)
+ h+1

h > 0. The latter
condition leads to a critical wavelength λcr:

λ > λcr = 2πR

√
−1 + h

h
− 1

η1
. (73)

The wavelength of the perturbation has to be larger than this critical value for local-
ization to occur. Notice that λcr is proportional to the Cosserat internal length, R. If
R → 0 we retrieve the same condition for strain localization with the 1D example
presented in paragraph 2.5 for a Cauchy continnum (see figure 15).

5 Regularization and multiphysics couplings -
characteristic length/time

It is often the case that the mechanical response of a given material depends on other
physical or chemical processes taking place. Such processes can in turn be influenced
by the mechanical response of the material to the changing conditions and to the load,
leading for example to changes in porosity or internal structure and producing heat
through internal friction. If that is the case one speaks of multi-physical couplings.
The processes most commonly taken into account are hydraulic, thermal or chemical.

Materials whose mechanical response depends on a number of additional physical
quantities θi, i = 1, . . . , N , as well as on the deformation, obey the following general
expression, when the path dependence is not considered: σij = σij (εij , θm). The
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Figure 15: Growth coefficient in function of the perturbation wavelength. Contrary
to Cauchy continuum, strain localization is not possible for λ < λcr in the case of
Cosserat continuum.

linearized form of the constitutive law around the a reference state of homogeneous
deformation reads:

σ̃ij = Lijklε̃kl +Amij θ̃m. (74)

Injecting in the balance equation we obtain:

Lijklũk,lj +Amij θ̃m,j = ρ¨̃ui. (75)

Each of the quantities θi obey in turn their own balance equations, which, with little
loss in generality we can assume to be of the advection-diffusion type:

(
D(i) (um,n, θk) θi,j

)
,j
− (vjθi) , j +R(i) (um,n, θk) = θ̇i, (76)

where D(i) is the diffusion coefficient of the quantity θi, R(i) is the source or sink
term of the same quantity and vj is the velocity field controlling the advection. When
the diffusion coefficient is constant and the advective flow is incompressible, the
advection-diffusion equation simplifies to:

D(i)θi,jj − vjθi,j +R(i) (um,n, θk) = θ̇i. (77)

Expansion of the balance equation (76) leads to the following formulation:

D(i)θi,jj +
∂D(i)

∂um,n
θi,jum,nj +

∂D(i)

∂θk
θi,jθk,j +

−vjjθi − vjθi,j +R(i) (um,n, θk) = θ̇i, (78)
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where the dependencies of the functionD(i) (um,n, θk) have been omitted for the sake
of brevity. Linearization in turn yields:

D(i)θ̃i,jj +

+
∂D(i)

∂um,n
θi,j ũm,nj +

∂D(i)

∂um,n
um,nj θ̃i,j +

+
∂D(i)

∂θk
θi,j θ̃k,j +

∂D(i)

∂θk
θk,j θ̃i,j +

−vjj θ̃i − vj θ̃i,j +

+
∂R(i)

∂um,n
ũm,n +

∂R(i)

∂θk
θ̃k =

˙̃
θi, (79)

where the dependencies of the function R(i) (um,n, θk) have also been omitted. Col-
lecting the terms with the same perturbation components results in:

D(i)θ̃i,jj + P
(i)
j θ̃i,j − vjj θ̃i +Q

(i)
kj θ̃k,j +

∂R(i)

∂θk
θ̃k +

+S
(i)
mnj ũm,nj +

∂R(i)

∂um,n
ũm,n =

˙̃
θi. (80)

The stability of the system of equations consisting of the above system of equations
and equation (75) obviously depends on the values of the prefactors, which however
are not known at this point.

The corresponding linearized form for the balance equation (77) reads:

D(i)θ̃i,jj − vj θ̃i,j +
∂R(i)

∂um,n
ũm,n +

∂R(i)

∂θk
θ̃k =

˙̃
θi. (81)

The perturbation ũi is assumed to be of the form given in equation (7), while θ̃i is
assumed to be given by:

θ̃i = hie
st+iknjxj . (82)

Equations (75), (80) and (81) become:

−
(
k2njLijklnl + s2ρδik

)
gk + ikAkijnjhk = 0 (83)

[
−k2D(i)niδik + ik

(
P

(i)
j njδik +Q

(i)
kj nj

)
+
∂R(i)

∂θk
− (vjj + s) δik

]
hk +

+

(
−k2S

(i)
kjlnjnl + ik

∂R(i)

∂uk,j
nj

)
gk = 0 (84)

and [(
−k2D(i) − ikvjnj − s

)
δik +

∂R(i)

∂θk

]
hk + ik

∂R(i)

∂uk,j
njgk = 0. (85)
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respectively. Irrespectively of whether the simplified or the full form of the advection-
diffusion equation is used for the multiphysical processes, the system of equations
now takes the form: [

Cggik Cghil
Chgik Chhil

] [
gk
hl

]
=

[
0
0

]
, (86)

with
Cggik = −

(
k2Γik + s2ρδik

)
(87)

Cghik = ikAkijnj (88)

Chgik = −k2S
(i)
kjlnjnl + ik

∂R(i)

∂uk,j
nj (89)

Chhik = −k2D(i)niδik + ik
(
P

(i)
j njδik +Q

(i)
kj nj

)
+
∂R(i)

∂θk
− (vjj + s) δik, (90)

where the last two equations correspond to the full form of the advection-diffusion
equation.

Requiring the determinant of the system of equations to be equal to zero results in a
cubic equation in terms of s. The three roots clearly depend on the value of the various
multipliers, but some general remarks may be made without introducing numerical
values.

No coupling

When the coupling termsCghik andChgik are ignored, the possible roots are the two roots
resulting from the LSA of the stress balance without any regularization and an addi-
tional one from the advection-diffusion equation. When considering the advection-
diffusion equation with simplifications, it is clear that the real part of this root will be
negative as long as the diffusivity coefficient is positive. This is usually the case with
some exceptions, such as the consolidation equation when considering a collapsible
solid matrix.

One way coupling

Assuming only the physical process to have an effect on the stress balance equation
and itself not to be affected, one speaks of one way coupling. Then it is enough to
consider the solution of:

− k2Γ− s2ρ+ ikA = 0 (91)

with respect to s. The solution reads:

s = ±
√
−k2Γ + ikA√

ρ
= ±
√
−4π2Γ + i2πAλ√

ρλ2
= ±

√
−Γ̂ + iÂλ

λ
, (92)

where solutions with positive real part are principally of interest. It is clear from the
above equation that for λ→ 0 the real part of s goes to infinity, as for the case without
regularization.
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Two way coupling

When the coupling terms are taken into account a cubic equation results with the
coupling terms contributing to the constant term with respect to s. To illustrate the
effect of the coupling, the problem is considered in one dimension for a single coupled
process for the simplified form of the advection-diffusion equation. For the sake of
simplicity the advective term and the influence of θ on the source term are ignored:

−
(
k2Γ + s2ρ

)
g + ikAh = 0, (93)

−
(
k2D(i) + s

)
h+ ikdRg = 0. (94)

The determinant then reads:
(
k2Γ + s2ρ

) (
k2D(i) + s

)
+ k2AdR = 0. (95)

To investigate the effect of the coupling, we examine the influence of the various
terms. The equation to consider is a cubic polynomial:

ρs3 + ρk2D(i)s2 + k2Γs+ k4D(i)Γ + k2AdR = 0. (96)

where the values of the prefactors are not known, but their signs can be deducted with
the exception of the last term.

Table 1: Values used for the effect of multiphysical coupling on stability.

ρ D(i) Γ AdR
[kg/m3] [m2/s] [Pa] [Pa/(ms)]

1.0 0.1 -10−4 104

An attempt is made herein to visualize the effect of the different terms. For the graphs
that follow the values given in table 1 are used unless otherwise stated. In figure 16a
the effect of the coupling term on the mechanical problem is illustrated, when the latter
is stable. It is clear that positive coupling terms and negative coupling terms with a
high absolute value can lead to loss of stability, though the value of s when positive is
an increasing function of λ. In fact s is in all cases equal to zero when λ is equal to
zero.

For the values given in table 1 the effect of the diffusivity is illustrated in figure 16b.
It is clear that the maximum value of s corresponds to a nonzero value of λ, which
increases with increasing diffusivity, leading one to expect a wider localized zone for
higher diffusivity values. On the other hand, changes in the inertia, in the form of
changes in the material density, have a very similar effect, changing both the magni-
tude and location of the maximum value of s, as shown in figure 17a. The effect on
the location of the maximum seems to be less pronounced than that of the diffusivity,
but this may well be linked to the values selected here.
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Figure 16: s versus λ for different values of parameters.
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Figure 17: s versus λ for different values of α̂= and ∆̂.

In figure 17b the effect of the coupling term is illustrated. The most obvious result
is an increase in the maximum for increasing values of the coupling term. A detail
of this figure is shown in figure 18, illustrating the existence of a first positive branch
of s, which goes to infinity for zero λ. This area becomes smaller with increasing
values of the coupling term. This results from the mechanical instability and can be
alleviated by employing a mechanical response accounting for the materials intrinsic
characteristic time or length.

On the whole it may be concluded that (two-way) multiphysical couplings can have
both a stabilizing and a destabilizing effect on problem, but in any case introduce a
finite width for the localization zone.
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Figure 18: Detail of figure 17b.

5.1 1D Example
The example considered in section 2.5 is revisited here, incorporating thermal cou-
pling. It is assumed that the material exhibits either thermal softening or hardening
and that the shearing process generates heat. The constitutive law in its linearized
form will read:

σ̃12 = 2G
h

1 + h
ε̃12 +AT

σ̃22 = Mε̃22 +BT,

(97)

where T stands for the temperature, M = K + 4G
3 is the p-wave elastic modulus and

h = 1
G
dτ0
dq > −1 is the hardening modulus.

The temperature on the other hand will obey the equation:

∂T

∂t
= κ

∂2T

∂x2
+ 2βε̃12, (98)

where κ and β are assumed to be constants.

From the first balance equation and using the usual forms for the perturbations we
obtain

− (k2G
h

1 + h
+ s2ρ)g + ikAθ = 0⇒ (99)

− (k2v2
s

h

1 + h
+ s2)g + ik

A

ρ
θ = 0. (100)

Correspondingly from the heat balance we obtain

ikβg −
(
k2κ+ s

)
θ = 0. (101)

For more than one non-trivial solutions to exist, the determinant of the system consist-
ing of equations (100) and (101) must be equal to zero:

s3 + k2κs2 + k2v2
s

h

1 + h
s+ k4v2

s

h

1 + h
κ+ k2Aβ

ρ
= 0⇒ (102)
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ŝ3 + k̂2ŝ2 + k̂2 h

1 + h
ŝ+ k̂4 h

1 + h
+ k̂2Aβκ

ρv4
s

= 0, (103)

with

k̂ =
κ

vs
k, ŝ =

v2
s

κ
s. (104)

Cauchy∞

Coupled

Figure 19: Growth coefficient in function of the perturbation wavelength. While an
infinite value is observed for zero wavelength, a second maximum is present.

The growth coefficient as a function of the perturbation length is shown in figure 19. A
branch tending to infinity for λ→ 0 can be observed in a way similar to figure 18. As
already mentioned, this is a result of the lack of an internal length or a characteristic
time for the material.

6 Conclusions

This chapter focuses on providing the basic tools to graduate students for studying
strain localization in solids. The fundamental notions of loss of uniqueness, bifurca-
tion, stability, ill-posedness and mesh dependency are explained through simple exam-
ples. Without overlooking classical approaches in bifurcation analysis, we study strain
localization by using the systematic mathematical framework that provides Lyapunov
stability. More specifically, we use the first Lyapunov method for exploring the con-
ditions for which equilibria of homogeneous deformation become unstable leading to
strain localization. In this method we determine the growth in time of perturbations of
arbitrary wavelength from the equilibrium (steady-)state. One-dimensional examples
are systematically given to help understanding keeping calculus to the minimum.

First we study strain localization in a classical Cauchy, Boltzmann continuum. We
limit our analysis in deformation bands, i.e. compaction, shear, dilation bands and
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their combinations. This type of strain localization is often observed in several scales,
starting from laboratory experiments, such as shear band formation in a granular
material or compaction bands in porous rocks, to geological settings, such as faults
and landslides. We derive the conditions for strain localization for a general rate-
independent constitutive law. Under these assumptions we retrieve the acoustic tensor
and we study the dependence of the Lyapunov exponent (growth coefficient) in terms
of the perturbation wave length in order to determine the thickness of the localization
zone. We show that the perturbations that evolve faster in time (and dominate over
the others are characterized by asymptotically zero perturbation wave length and have
infinite Lyapunov exponent (singularity in time). This means that deformation bands
have zero thickness, which is in contrast with observations. This mathematical arti-
fact explains also the observed mesh-dependency in finite element analysis of strain
localization when rate-independent Cauchy continua are used.

The aforementioned pathology is partially remedied when rate-dependent Cauchy
continua are used. This viscous regularization introduces a characteristic time into
the system. Due to the presence of the aforementioned characteristic time, the Lya-
punov exponent remains finite (regularization in time). Moreover, when inertia effects
are negligible, it renders the system independent of the perturbation wave length. As
a result, the behavior of the system during strain localization (e.g. stress-strain pro-
file and deformation band thickness) is determined only by existing imperfections.
Such imperfections can be parasitic stresses or material defects. When inertia is not
negligible, the dominant perturbation is again the one characterized by the smallest
wavelength. Scale analysis shows that inertia terms are important when the perturba-
tion wave lengths are larger than a characteristic wavelength, which depends on the
material parameters. Three characteristic times are also identified showing when in-
ertia, viscosity or rate-independent behavior can be neglected. An one-dimensional
example using Perzyna viscoplasticity illustrates in a simple way most of the above
mathematical findings.

An alternative regularization technique, is the use of Micromorphic continua, such as
strain gradient and Cosserat continua, which enrich the continuum description with
characteristic lengths. The presence of these lengths remove mesh-dependency and
determine the thickness of the localization zone, which is proportional to the afore-
mentioned internal lengths. Moreover, in the presence of inertia terms the Lyapunov
exponent if finite. Therefore, Micromorphic continua remedy both spatial and time
singularities, in the expense however of a more complex theory and complicated math-
ematical derivations. As an example we study strain localization in a rate-independent
Cosserat continuum. We use first a general constitutive law in three-dimensions and
then we give an one-dimensional example of a sheared infinite layer in order to clarify
the mathematical derivations and to illustrate how Cosserat continuum regularizes the
problem. Notice, that Cosserat continuum was successfully used by Mühlhauss and
Vardoulakis for predicting the shear band thickness of granular materials [MV87].

The chapter closes with a section dedicated to multi-physics couplings and their effects
of strain localization. Thermo-Hydro-Chemo-Mechanical effects (THMC, among oth-
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ers) introduce several length and time scales to the system and consequently regularize
in a physical manner the underlying mathematical problem. Our analysis is again gen-
eral, in three-dimensions and considers n-couplings. We show that two-way coupling
is necessary for regularization. An one-dimensional example of an infinite layer with
thermo-mechanical couplings is then presented for making clear the effects of the var-
ious physical mechanism. A rate-independent Cauchy material was used in this last
example.

Following this theoretical results and examples the following question is raised:
Which is the best way and theory for best describing strain localization in solids and
in particular in geomaterials?
The answer is always found by the modeler and depends on the physical/engineering
problem at hand. For instance, for modeling the stress-strain response and the thick-
ness of the principal slip zone of seismic faults (i.e. a narrow shear band formed during
seismic slip) a THMC Cosserat continuum was recently used providing realistic pre-
dictions [RSS18, RSS18, VSS13]. For studying the damage zone during gallery ex-
cavation in the context of radioactive waste disposal a double-scale, poro-mechanical,
strain-gradient model was employed [EBC+16].

Acknowledgements

The author, I.S., would like to acknowledge the support of the European Research
Council (ERC) under the European Unions Horizon 2020 research and innovation
program (Grant agreement no. 757848 CoQuake).

Appendix

A Classical bifurcation analysis and acoustic tensor

Consider a homogeneous, homogeneously deformed solid subjected to quasi-static in-
crements of deformation. Let’s assume that after an increment, a deformation band of
thickness H is formed, which breaks the aforementioned homogeneity of the defor-
mation field (and consequently of the stress field) as shown in figure 20. The displace-
ment field remains continuous across the boundaries of the band, but its gradient does
not (different strains inside the band):

J∆uiK = 0 and J∆ui,jK = ginj (105)

where J.K denotes discontinuity across the deformation band boundary (e.g. JαK =
α+ − α− ), ni is the orientation vector of the deformation band with i = 1, 2, 3 in the
three-dimensional space, ui the displacement field and ∆ denotes the increment of a
field. (.),i denotes derivation in terms of xi.

The jump of the shear stresses at the boundary of the shear band is not zero due to
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Figure 20: Schematic representation of a deformation band and of the discontinuity of
the strain’s field.

acceleration (not in equilibrium). From the linear momentum balance we obtain:

J∆tiK = J∆σijKnj = −ρcJγiK (106)

where c is the velocity of a propagating discontinuity in direction ni such that JγiK =
J∆viK = −cgi, with vi the velocity field (see Hadamard conditions on propagating
discontinuities [Had03, LCBD09]). Consider the class of materials that for a small
increment ∆, the constitutive law can be written (linearized) as follows:

J∆σijK = Lijkl∆uk,l (107)

The tensor Lijkl can be continuous across the boundary of the band (JLijklK = 0)
or discontinuous in the sense that elastic unloading can occur outside the band, while
continued inelastic loading continues within the band. In the first case we say that
we have continuous bifurcation, while in the second discontinuous bifurcation. It is
shown that continuous bifurcation precedes discontinuous bifurcation [RR80]. Insert-
ing Eq.(108) into (106) and using (105) we get:

(
njLijklnl − ρc2δik

)
gk = 0 (108)

where Γij = njLijklnl is the acoustic tensor. This equation coincides with equation
(8).
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Desrues. Modeling the strain localization around an underground gallery
with a hydro-mechanical double scale model ; effect of anisotropy. Com-
puters and Geotechnics, 2016.

[Eri99] A. Cemal Eringen. Microcontinuum Field Thoeries. Springer Verlag,
1999.
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This paper presents basic knowledge, analytical, physical, mathematical and com-

putational modelling for the solution of research and advanced practical problems 

in petroleum engineering related to geomechanics. Petroleum geomechanics intro-

duces the in-situ stresses and rock-fabric in coupled flow-stress analysis in order to 

give more accurate predictions and to account for problems such as reservoir com-

paction and surface subsidence, casing collapse, fault activation and other. In all 

these problems the knowledge of the in-situ stresses and rock strength is required. 

For the applications of petroleum geomechanics we present modelling approaches 

to the problems of wellbore stability, sand prediction analysis and hydraulic fractur-

ing. 

1 Introduction 

In the last three decades the oil & gas industry has witnessed what can be called the 
‘petroleum geomechanics revolution’. Geomechanics has become a regular consid-
eration in all the phases of a field development from exploration to development and 
production. For the operator’s perspective regarding the commercial value of geo-
mechanics, evidence of the significance role of geomechanics is drawn from many 
field cases in the areas of drilling, production and reservoir management. Within the 
oil & gas service industry, geomechanics became the fastest growing commercial 
area for technical investment and payed revenue. Among the main drivers for the 
promotion and advances of petroleum geomechanics are the high rig daily rates in in 
excess of $500,000/day in the deep water of the Gulf of Mexico, in offshore West 
Africa and recently in the East Mediterranean, the drilling in harsh environments 
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such as tectonic fields, salt-domes, high-pressure high-temperature fields, and the 
drilling of more horizontal and extended reach wells spanned with multilateral junc-
tions. 
 
The last decade geomechanics plays a critical role in the shale oil and gas revolution 
successfully used in optimising shale hydrocarbon exploitation. Geomechanics 
knowledge in shale prospects enables an engineer or geoscientist to make better field 
development and operational decisions in spacing and drilling of stable long hori-
zontal sections and in multistage fracturing of stiff naturally fractured rock masses. 
Heterogeneity, mechanical anisotropy, and natural fractures in shale formations and 
their influence on drilling and stimulation are critical elements of a successful shale 
stimulation programme. 
 
Environmental concern and restrictions for the disposal of contaminated cuttings and 
produced water promoted new applications for reinjection and hydraulic fracturing. 
The demand for higher hydrocarbon recovery, leading to extreme reservoir deple-
tions, causes other problems such as surface subsidence and wellbore collapse, and 
opened a new area called ‘reservoir geomechanics’. Like in any other field, advanc-
es in the information technology such as software, visualization tools, the internet, 
and recently the handling of ‘big data’ with cloud computing and storage have their 
share in the promotion of petroleum geomechanics. 

 
In this paper we will focus on the three major problems related to petroleum geome-
chanics presenting basic knowledge, analytical, physical, mathematical and compu-
tational modelling in the solution of practical problems in petroleum engineering. In 
section 1 we will present the problem of wellbore stability and on the methods used 
to for calculating the optimum mud density for drilling wellbores. In section 2 we 
will extend the analysis for determining the optimum wellbore pressure for sand-free 
production of hydrocarbons. In section 3 we will present a modeling approach to 
hydraulic fracturing based on FEM which is employed for examining the influence 
of different coupled non-linear processes, such as plasticity, cohesive cracking and 
pore pressure which are involved in some applications of hydraulic fracturing. 
 
We recognize the work done and published in numerous papers on petroleum geo-
mechanics by many researchers and practitioners over the last half century. Some of 
the references, but not limited to those, will be given next within the sections. For a 
general reference on petroleum geomechanics the readers can consider the books 
[Fja01], [Zob01]. 

2 Borehole Stability 

Borehole instabilities during drilling cause substantial problems and result according 
to the industry about 5–10% of the drilling costs in exploration and production, 
incorporating loss of time and sometimes also of equipment [Fja01]. These numbers 
mean that the worldwide is in the hundreds of million dollars per year. A borehole 
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stability problem is an example of what drillers refer to as a tight hole or stuck pipe 
but also when they refer to mud losses. There are many possible causes of wellbore 
stability but usually the fundamental reason is mechanical collapse of the borehole. 
Table 1 lists after Pasic et al. [Pas01], possible causes of wellbore stability. Most 
instabilities occur in the overburden shale formations but sometimes they may occur 
within the reservoir. Sometimes the culprit is a lack of hole cleaning ability. Table 2 
lists indicators of borehole instabilities. 
 

Table 1. Causes of borehole stability (after Pasic et al. [Pas01]). 

Uncontrollable (natural) factors Controllable factors 

Naturally fractured or faulted for-
mations 

Bottom hole pressure (mud density) 

Tectonically stresses formations Well inclination and azimuth 

High in situ stresses Transient pore pressures 

Mobile formations Physico/chemical rock-fluid interaction 

Unconsolidated formations Drill string vibrations 

Naturally over-pressured shale collapse Erosion 

Induced over-pressured shale collapse Temperature 

 

Table 2. Indicators of borehole instabilities. 

Direct indicators Indirect indicators 

Oversize hole High torque and drag (friction) 

Undergauge hole Hanging up of drillstring, casing or 
coiled tubing 

Excessive volume of cuttings Increased circulating pressures 

Excessive volume of cavings Stuck pipe 

Cavings at surface Excessive drillstring vibrations 

Hole fill after tripping Drillstring failure 

Excess cement volume required Deviation control problems 

 Inability to run logs 

 Poor logging response 

 Annular gas leakage 

 Keyhole seating 

 Excessive doglegs 

 
Traditionally, the oil industry has looked at borehole instability as being caused by 
clay swelling, which can be treated by chemical additives (e.g. salt) to the drilling 
mud. The selection of mud weight has been governed by the pore pressure and the 
fracture gradient profiles: In order to prevent influx of fluids (in particular gas) it has 
been considered necessary to keep the mud weight above the pore pressure gradient. 
In order to prevent loss of mud into fractures it has been found necessary to keep the 
mud weight below the fracture gradient. This results in a maximum and minimum 
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mud weight that is called mud window. The mud window can also be estimated with 
rock mechanics analysis. 
 
In the analysis the stresses at the well are calculated form elastic or elastoplastic 
analysis. These stresses are counteracted by the drilling mud in the well which pre-
vent flow of pore fluid in the wellbore, prevents hole failure, transports drill cuttings 
to surface and cools the drill-bit. The mud pressure pw at a certain depth D of the 
well is controlled by the mud density ρw with pw = ρwgD. The oil well drilling lan-
guage refers to mud weight in density units and gradients of stress or pressure 
equivalently in density gradient units. When the mud is circulating the Equivalent 
Circulating Density (ECD) is used because the effective mud pressure is 5-10% 
higher than the static mud pressure due to friction in the annulus during flow.  
 
The borehole stability rock mechanics analysis can be easier demonstrated in a ver-
tical well. Horizontal and inclined boreholes can then be treated accordingly but 
applying the same methodology. Figure 1 shows the stresses in the formation as a 
function of normalized radial distance r/R at a vertical impermeable borehole based 
on linear elastic rock and isotropic horizontal stresses. The well radius is R, and σr, 
σθ, σz are the radial, tangential and axial stresses in the cylindrical coordinate system 
of the well. The far field horizontal stress is σh and the vertical stress is σv. The wall 
is impermeable wall when we have a perfect mud cake or we drill in shale. The 
formation pressure is denoted pfm. 
 
Depending on the stress magnitude we may have different cases: 

(a) The stresses are > >
z rθσ σ σ . In this case , 2 ,= = − =

r w h w z v
p pθσ σ σ σ σ . 

(b) The stresses are > >
z rθσ σ σ  and , 2 ,= = − =

r w h w z v
p pθσ σ σ σ σ . 

The borehole stability analysis uses the borehole stresses and the Mohr-Coulomb 
(MC) failure criterion to determine the minimum permitted well pressure to prevent 
shear failure at borehole wall (hole collapse). The MC failure criterion is written in 
terms of the maximum and minimum effective stress, the Unconfined Compressive 
Strength (UCS), the cohesion c and the friction angle φ as 
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Substituting the stresses results in 
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for cases (a) and (b), respectively. The mud weight is then calculated as 

,min

,min = w

w

p

gD
ρ . 
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(a)  
 

(b)  

Figure 1. Stresses at vertical impermeable borehole wall based on linearly elastic 

rock and isotropic horizontal stresses. Cases (a) and (b) depending on the magni-

tude of the stresses in the borehole wall. 

In general, for the various stress combinations Table 3 gives the minimum mud 
pressure to prevent shear failure instabilities. Figure 2 shows the shape of the failure 
modes after Maury [Mau01]. Based on the shape of the cavings in the surface we 
may determine the failure mechancism. 
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Table 3. Minimum mud pressure for different stress magnitudes 

 
 

 

Figure 2. Borehole failure modes depending on the magnitude of the borehole 

stresses (after Maury [Mau01]). 
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Al low well pressure we may run into tensile failure of the well due to tensile radial 
stresses. This may occur at low well pressure when we for example have underbal-
anced drilling with p

w
 < p

fm
. The condition for this is that 

 ,

,min
′ = −  = −rad tens

r s w fm sT p p Tσ  (3) 

where Ts is the tensile strength which of shale is rather low. This failure mode gives 
sharp, blade-shaped cavings and can lead to tight hole. The stress situation for ten-
sile radials tress failure is shown in Figure 3. 
 

 

Figure 3. Stresses at vertical impermeable borehole wall for tensile radial stress 

failure. 

Tensile failure may also occur at high well pressure and lead to hydraulic fracturing 
of the formation, as shown in the schematic in Figure 4. 
 

 

Figure 4. Hydraulic fracturing due to high well pressure. 

The condition in that case is 

 
,max 2′ = −  = − +frac

s w h fm s
T p p Tθσ σ  (4) 
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Depending on the magnitude of the other borehole stresses three cases are possible 
as illustrated in Figure 5. 
 

 

Figure 5. Hydraulic fracturing modes due to high well pressure. The second case is 

not likely in vertical wells. 

This analysis provides the mud weight window for the drilling program. It can 
summarized as follows: 

(a) The minimum mud weight is determined from the maximum values as deter-
mined by (i) Hole collapse in shale (shear failure case (a) or (b)), (ii) Radial ten-
sile failure in shale, (iii) Pore pressure in the case that underbalanced drilling is 
prohibited. 

(b) The Maximum mud weight is determined form the minimum value as deter-
mined by (i) σ

h
 the minimum horizontal stress in case of pre-existing natural 

fractures, (b) fracturing of borehole wall. 
 
Figure 6 provides after Hawkes and McLellan [Haw01] a schematic diagram of the 
effect of increasing mud weight in the failure mode of the borehole. 
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Figure 6. Hydraulic fracturing modes due to high well pressure. The second case is 

not likely in vertical wells. 

Besides the basic rock mechanics approach that was described here other issues 
enter also the borehole stability analysis such as (i) anisotropic stresses, (ii) deviated 
holes, (iii) rock anisotropy where shales have natural bedding which acts as weak 
plane, (iv) Plasticity effects, (v) Time-delayed borehole failure due to e.g. creep, 
consolidation, cooling or due to chemical interaction with the mud fluid. 

3 Sand production 

Sand production often occurs in the petroleum industry as the result of erosion of 
reservoir sandstones during hydrocarbon production. In such cases, the rock around 
a wellbore or perforation is plastified, decohesioned and weakened due to the stress 
concentration of the in-situ stresses around the cavity. When weakened and decohe-
sioned, the sandstone may erode by the produced fluid. The prediction of the sand 
production initiation and the amount of produced sand and how these are affected by 
the applied stresses and flow rates over time are important for safe and economical 
hydrocarbon production. It has been calculated that about 70% of the oil reserves are 
in reservoir sandstones that are prone to produce sand at some time during their 
production life. 
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In sandstone reservoirs, the wellbore itself may be used to produce hydrocarbons or 
perforations may be shot from the well vertically towards the formation. In the first 
case, sand production results from the failure of the wellbore while in the second 
case from the failure of the perforation itself. A perforated well is illustrated in Fig-
ure 7a where the well is first drilled and then a steel liner is put in place. The annu-
lus between the liner and the formation is cemented to support the formation and 
perforations are shot from the wellbore to the formation to allow the production of 
the hydrocarbons when a positive drawdown is applied. The perforations are small 
tunnels with typical length ca. 0.5 m and typical diameter 1.5 cm. The drawdown is 
the difference between the reservoir pore pressure pres and the well fluid pressure pw. 
The production flow rate increases when the drawdown increases, i.e. when the well 
pressure pw reduces. Figure 7b shows an example of massive sand production in an 
Indonesian field to demonstrate the problem. 

(a)  (b)  

Figure 7. (a) Schematic of a vertical perforated well in a sandstone reservoir under 

in situ total vertical stress σv, horizontal stress σh, reservoir pore pressure pres and 

well fluid pressure pw, and (b) Massive sand production in an Indonesian field. 

Sand production is a coupled hydro-mechanical process that involves two mecha-
nisms: (i) the applied stresses fail the rock around the cavity, and (ii) the fluid flow 
removes or erodes the failed rock. The hydrodynamic forces themselves are too 
weak to erode the intact rock. In fact, the total hydrodynamic forces per unit volume 
of the rock are equal to the pore pressure gradient. The sand production process is 
shown in Figure 8 in a sequence of X-ray CT scans of a specimen under compres-
sion and radial fluid flow towards the cavity. The specimen initially fails close to the 
cavity. With increasing stress more material fails, and it is eroded or produced by the 
flowing fluid resulting in a larger cavity. 
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Figure 8. Sequence (from left to right) of perforation failure and sand erosion under 

external compression and fluid flow towards the perforation cavity. X-ray CT scan 

sections along the hole axis of a hollow cylinder specimen tested in the laboratory 

[Pap05a]. 

Sand production involves three regimes, as illustrated in Figure 9, which plots the 
sand mass rate vs. the applied stress (or drawdown): (i) the no sand regime, (ii) the 
manageable sand regime, and (iii) the catastrophic sand regime. These three regimes 
are separated from the sand initiation stress and the catastrophic sand stress. Thus in 
sand production studies it is important to (i) predict the sand initiation stress that 
delineates the no sand regime and corresponds to the stress for initial failure of the 
cavity, (ii) quantify the sand mass versus time, stress and flow rate (or drawdown 
and depletion) in the manageable sand regime where sand is produced at a con-
trolled rate, and (iii) predict the catastrophic sand stress which marks the start of 
catastrophic sand production, i.e. a sand rate either unacceptable for the life and 
safety of the operations or so high that will cause plugging (sanding) of the well. In 
the last few years, despite the obvious disadvantages of sand production, the indus-
try in many cases chooses to operate in the manageable sand regime because of the 
increased production rates. Often this is a question of designing the appropriate 
facilities to handle and dispose the produced sand. 
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Figure 9. Sand production regimes: (a) sand initiation, (b) manageable sand pro-

duction, and (c) catastrophic sand production. 

3.1 Sand initiation 

Analytical sand initiation or sand onset prediction models use the near wellbore or 
perforation stresses to predict formation failure. For shear stress failure, which is 
most often the case in sand production, the simplest failure criterion compares the 
tangential stress at the hole with a suitable formation strength, e.g. [Kes01]. More 
sophisticated criteria include all stress components to improve the predictions in 
field conditions under various anisotropic stress fields [Pal01, Pap01a, Pap02a, 
Pap03a]. Experimental results on Hollow Cylinder (HC) and Hollow Prism (HP) 
sandstone specimens have shown that such models are necessary to replicate exper-
imental results [Pap02a, Pap03a]. Failure is assumed to be in shear due to the stress 
concentration at the hole. Failed rock is subsequently transported by the weak hy-
drodynamic forces of the flowing fluid leading to sand production. Sand onset is 
assumed to coincide with hole failure and therefore the two terms, hole failure 
strength and sand onset stress will be used in the following interchangeably. 
 
Hole failure criteria based on classical rock mechanics failure models, i.e. the Mohr-
Coulomb (MC) and the Drucker-Prager (DP), have been developed for better predic-
tions under the anisotropic stresses in the field. The models were developed by ap-
plying the MC and DP failure criteria to the stresses at the hole which are calculated 
assuming linear poroelasticity. The MC criterion contains one material strength 
parameter which for better predictions is calibrated on the hole failure/sand onset 
stress σS. The sand onset stress corresponds to the isotropic loading stress for hole 
failure in a HC test, and can be obtained experimentally. The DP model includes an 
additional frictional material parameter k1 that can be calibrated on anisotropic load-
ing HP tests. The parameter k1 influences the effect of axial stress, i.e. of the stress 
parallel to the hole axis. The effect increases with increasing value of k1. It can be 
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shown that k1 ≤ 0.5 such that hole failure is predicted under all loading conditions. In 
addition, the criterion that uses only the tangential stress is considered in the follow-
ing. This simplified criterion can be viewed as a simplified MC (sMC) criterion. 
 
Analytical sand onset criteria for field applications can be formulated for the sMC, 
the MC and the DP hole failure criteria. The formulation provides the critical for-
mation strength, i.e. either sand onset stress σS or uniaxial compression strength 
(UCS), for given in situ conditions and given drawdown and depletion. Alternative-
ly, it can provide the critical drawdown for given formation strength and depletion 
or the critical depletion for given formation strength and drawdown. Using these 
results, the typical sand onset triangle plots can be constructed. They plot the critical 
bottom hole pressure for sand onset as a function of reservoir pressure. 
 
Sand production onset models are derived from the HC hole failure models based on 
the assumption that wellbore failure corresponds to onset of sand production. The 
expressions for the open hole wellbore can be applied to perforated completions by 
considering the perforations as open holes of small diameter. In such a case, it is 
assumed that the wellbore does not influence the stress field around the perforations 
which is supported by numerical investigations [Pap03a]. In the following compres-
sive stresses strains are taken positive as usual in rock mechanics. Compressive pore 
fluid pressures are also positive. 
 
The hole failure criteria are expressed through an equivalent cavity stress σC that is 
compared with the sand onset stress or hole failure strength σS of the formation, i.e. 

 

0 No failure, No sand

0 Hole failure, Sand onset
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The equivalent cavity stress σC is given for the various criteria as 
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In the case of a deviated wellbore with fluid pressure pw, the non-zero effective 

stresses ′
mniσ  at the hole wall (r = ri) are obtained as 
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 (7) 

where σIJo are the original formation stresses in the (x, y, z) coordinate system of the 
wellbore and pres the reservoir pore pressure. For failure, an effective stress coeffi-
cient equal to 1 has been used in Eq.(3) for the calculation of effective stresses. In 
the above the drawdown Δpdd and the depletion Δpdep have been introduced as 

 
∆ = −

∆ = −

dep reso res

dd res w

p p p

p p p
 (8) 

where preso is the original reservoir pore pressure. The stress ratios χIJ describe how 
the in situ total stresses change with depletion Δpdep. The equivalent cavity stress σC 
for each model is obtained by substituting the effective stresses into expression 
Eq.(2) for σC for the sMC, MC and DP hole failure criteria. The equivalent cavity 
stress depends on the angle θ, and thus the most critical orientation for hole failure 
and sand onset will be at an angle θ that maximizes σC. Thus, the sand production 
criterion Eq.(1) becomes 

 ( ) 0− =
C S

Max
θ

σ σ  (9) 

For given in situ conditions and sand onset stress σS, criterion Eq.(9) can be applied 
to calculate whether the stress and pore pressure conditions are such that sand pro-
duction will occur. Alternatively, for given in situ conditions, Eq.(9) can be solved 

for the critical 
cr

S
σ  for sand onset. A scaling law for σS must be employed to account 

for the strengthening of a hole with decreasing hole diameter. A scaling law that has 
been proposed based on experiments on sandstones is written as [Pap02a] 
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where σS is the sand onset stress of a hole with diameter D and σSref is the sand onset 
stress of a reference hole with diameter Dref = 2 cm. The isotropic loading sand onset 

stress σSRef can be related to the UCS, i.e. ( )=
Sref

f UCSσ  ([Pap01a], [Cer01]) in 

which case, a critical UCS
cr for sand onset can also be calculated. 

 
For the sMC criterion, it is possible to obtain the maximum equivalent cavity stress 
and the critical drawdown without resorting to a search for the critical angle. This is 
possible because the model is simple and involves only the tangential effective 
stress. Substitution of the first of Eq.(5) into the first of Eq.(2) and analytically ob-
taining the maximum gives 
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Substitution of Eq.(11) in criterion Eq. (9) for sand onset can yield the critical UCS
cr 

for sand onset using the relation between UCS and σS. Alternatively, the critical 
drawdown for sand onset for given initial in situ stresses and reservoir pressure, 
formation strength and depletion can be obtained by solving with respect to the 
drawdown Δpdd to obtain 
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The sMC is often used in sand onset analyses due to its simplicity. However, it per-
forms poorly under anisotropic stresses because it does not consider the effect of 
axial stress (stress parallel to the hole axis) and shear stress on sand onset. Shear 
stresses develop when the hole is inclined with respect to vertical. The sMC gives 
straight lines in the sand onset triangle plot for the critical bottom hole pressure vs. 
reservoir pressure. It is the least conservative of all models giving the higher sand 
onset stress, except for the DP model which may give, depending on k1, a higher 
sand onset stress for some values of axial stress. 
 
The MC model considers the effect of the axial and the shear stresses. The axial 
stress effect, however, materializes when the axial stress becomes the major princi-
pal stress. For lower values, there is no effect of the axial stress. A change in the 
major principal stress gives a bilinear line in the sand onset triangle plot. The MC 
model coincides with the sMC model, for low axial stress values and vertical or 
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horizontal holes. It is the second least conservative after the sMC model, except 
again for the DP which may give, depending on k1, a sand onset stress for values of 
Kz > 1. 
 
The DP model considers the effect of the axial and the shear stresses. This gives a 
curved line in the sand onset triangle plot. The DP model shows the largest axial 
stress effect on sand onset stress. This effect is amplified with increasing the k1 val-
ue. It is the most conservative for axial stress less than the lateral stress (the stress 
normal to the hole axis), but it can become the least conservative for some values of 
axial stress greater than the lateral stress depending also on the k1. Note that the DP 
model predicts the same sand onset stress under isotropic stresses independently of 
the friction parameter k1, since the model is calibrated at these conditions. The k1 
parameter influences the effect of axial stress anisotropy on hole failure. This means 
that vertical holes are usually stronger with the DP model as compared to the sMC 
or MC while horizontal holes are weaker. 

3.2. Sand quantification 

In the manageable sand regime, the interest lies in predicting the amount of pro-
duced sand or sand rate. These are functions of the applied stresses, the fluid flow 
rate and time in the sense that the sand rate is not constant over time. The quantifica-
tion of produced sand has been the focus of investigations since the mid-90s when 
the operators began to realize the benefits of sand production in terms of increased 
hydrocarbon production. The increase in production results mainly from the possi-
bility of applying higher drawdowns but also from improved near-well flow charac-
teristics, such as improved near-well permeability, removal of damaged or plugged 
zones, etc. In fact, in some extreme cases, such as in the Canadian heavy oil reser-
voirs, oil cannot be produced economically without sand production. The benefits of 
sand production are of course been weighted against its negatives such as possibility 
of well failure, erosion and maintenance of pipelines and facilities, and sand separa-
tion and environmental disposal. 
 
Sand quantification is a transient, coupled mechanical and fluid flow problem in the 
post-failure regime of material behavior. Experiments were thus needed to elucidate 
the mechanisms involved and the important parameters at play. Models and analyti-
cal and numerical tools were then developed and a methodology for sand quantifica-
tion was established including material parameter identification and calibration 
[Pap05a], [Pap06a], [Pap07a], [Pap08a]. 
 

An important aspect in sand production is related to multiphase flow due to water 

breakthrough into a producing well. Water breakthrough leads to increased sand 

production mainly in already sand producing wellbores. Water below the hydrocar-

bons may break into a well as a result of two reservoir-drive mechanisms: (i) Water 

drive where oil is driven through the reservoir by an active aquifer and whereas the 

reservoir depletes, the water moves in from the aquifer below and displaces the oil, 
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and (ii) Water injection where water is injected into the reservoir to increase pres-

sure and sweep the oil from the reservoir and thereby stimulate production. Water 

injection increases the reservoir recovery factor and maintains the production rate 

for a longer period. Three water-driven mechanisms of increased sand production 

have been identified, namely: 

- Water-sensitive strength. In general, a decrease in rock strength (due to e.g. 

smectite cement, capillary strength, chemical effects etc.) is observed with increas-

ing water saturation with the most significant part of strength reduction occurring 

within the first 3-4% of water saturation and usually up to 20%. 

- Capillary cohesion in the near-cavity failed rock. In the failed and disaggregat-

ed zone, sand grains are held together by capillary cohesion forces due to connate 

water present in the reservoirs (e.g. sandcastle made with damp sand). When water 

saturation increases with water breakthrough, the capillary cohesion is eliminated, 

and sand is produced (e.g. sandcastle collapses as tide comes in). 

- Multiphase flow effects with a high pore pressure gradient front moving to-

gether with the water front. The pressure gradient front may destabilize the sand in 

the failed and disaggregated zone close to the cavity. 

4 Hydraulic Fracturing 

The hydraulic fracturing (HF) technique involves the pumping of a viscous-fluid 
from a well into the rock formation under high fluid pressure to fracture the reser-
voir. The pumping of fluid is maintained at a rate high enough for the fluid pressure 
to overcome the flow friction losses, the minimum in-situ stress or closure stress, the 
resistance to splitting the rock and hence to propagate the fracture (Figure 4.1). The 
initiated fracture as propagating in a complex stress field near the wellbore will re-
orient itself to propagate further in the direction of lease resistance which is perpen-
dicular to the minimum insitu compressive stress. During the pumping process, 
material like sand, called proppant, is gradually mixed with the fracturing fluid to 
ensure that the fracture will remain propped open after the pumping stops. A perme-
able channel of high conductivity will hence be formed for oil or gas to flow from 
the reservoir in the well. For the fundamentals and details on HF technique, design 
and execution the reader is refer to [Eco01]. This contribution focusses on the more 
advanced modelling of HF in weak formations. 
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Figure 4.1. Illustration of the hydraulic fracturing technique 
 

Hydraulic fracturing modeling involves the coupling of various complex physical 
processes including (i) the viscous flow of the fluid in the fracture and the leak off in 
the formation (ii) the rock deformation of the surrounding medium induced by the 
fluid pressure on the fracture surfaces in the presence of high confining stresses and 
(iii) the rock splitting and fracture propagation (Figure 4.2). In most models, includ-
ing analytical solutions and commercial design codes, the solid deformation is mod-
eled with the elasticity theory, represented by an integral equation that determines 
the non-local relationship between the fracture width and the fluid pressure. The 
fluid flow is modeled by lubrication theory, expressed by a non-linear partial differ-
ential equation that relates the local fluid flow velocity, the fracture width and the 
gradient of the pressure. The fracture propagation is assumed to take place when the 
stress intensity factor at the tip reaches a critical value equal with the rock fracture 
toughness which in many cases is ignored assuming to be close to zero.  

 
In field operations, attention is focused on the prediction of the wellbore pressure 
which is normally measured during the treatment and is the only parameter available 
to evaluate or to redesign in real time the operation. Classical hydraulic fracturing 
simulators often underestimate the measured down-hole pressures. Research work 
involving surveying on net-pressures (difference between the fracturing fluid pres-
sure and the far-field confining stress) indicated that the net pressures encountered in 
the field are on average 50-70% higher than the predicted by conventional models 
[Dam01]. These observations have triggered a series of new ideas and dedicated 
studies which looked into the importance of the rock plastic deformation in hydrau-
lic fracturing [Pap01, Pap02, Pap03, Pap04, Pap05, Pap06, Pap07, Dam01]. Sarris 
and Papanastasiou [Sar01, Sar02, Sar03] extended these studies to account for the 
pressure diffusion and porous behavior of the rock deformation. A common charac-
teristic of these studies is the use of the cohesive zone law to propagate fractures in 
order to investigate the inelastic behavior of rocks in hydraulic fracturing. The influ-
ence of the parameters of the process zone on hydraulic fracturing results was stud-
ied in [Sar01, Car01]. Some early studies utilizing the cohesive zone model in hy-
draulic fracturing include the important work in [Boo01, Boo02].  
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Figure 4.2. Geometry of a plane strain hydraulic fracture with the near tip processes  

 
The models presented were developed for plain strain geometry taking into consid-
eration the symmetry conditions. This geometry is appropriate for modelling short 
fractures with fracture height relatively greater than the fracture length. Furthermore, 
this geometry is also appropriate for examining tip effects since the deformation of 
any arbitrary fracture shape is approximately planar near the tip. The fracture propa-
gates perpendicular to the minimum in situ stress and remains planar. This prede-
fined path for the propagation is also convenient with the cohesive zone numerical 
approach. For the stress-deformation we assume that rock obeys the equation of 
plasticity. For the sake of completeness we describe next the involved physical pro-
cesses: the fluid flow, the rock deformation, the fracture propagation and the meth-
odology that was adopted in the numerical model. 

4.1 Fluid-flow 

The physical process of the fluid driven fracture involves the pumping of a viscous 
fluid that pressurizes the fracture surfaces which deform. Increasing the pressuriza-
tion, critical loading conditions will be reached ahead of the tip splitting the rock 
and driving hydraulically the fracture. Thus, this process reveals that there is a 
strong coupling between the moving fluid, rock deformation and fracture propaga-
tion.  

The fluids that are used in hydraulic fracturing are normally power-law with shear-
thinning behavior which means that the viscosity decreases with increasing shear 
rate. In order to avoid this complex fluid behavior, a simple appropriate model for 
fluid flow in a fracture is assumed to follow the lubrication approximation. It as-
sumes laminar flow of an incompressible uniformly viscous Newtonian fluid and 
accounts for the time dependent rate of crack opening. The continuity equation 
which imposes the conservation of mass in one dimensional flow is  
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dq dw
q

dx dt
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where q  is the local flow rate along the fracture in direction x, ql is the local fluid 
loss in rock formation and  w is the local crack opening. Eq. (4.1), which accounts 
for the fluid leak-off from the fracture surface into the rock formation, can be used 
to determine the local flow rate q.  
 
The second equation is derived from the conservation of momentum balance. For a 
flow between parallel plates the lubrication equation, which relates the pressure 
gradient to the fracture width for a Newtonian fluid of viscosity μ, yields  

3

.
12

w dp
q u w

dxµ
= = −                                                      (4.2) 

where p denotes the fluid pressure and u the average velocity of the fluid over a 
cross-section of the fracture. Eq. (4.2) determines the pressure profile along the 
fracture from the local width and the local flow rate. According to Eq. (4.2), the 
pressure gradient and hence the solution, is very sensitive to fracture width. There-
fore, the largest part of the pressure drop takes place within a small area near the tip 
where the width decreases significantly before it vanishes at the tip. 

4.2 Rock deformation 

In weak rocks, large inelastic deformation is expected to take place in the area near 

the crack tip due to high shear stress concentration (Figure 4.2). In such a case one 

should use plasticity theory which properly describes the irreversible deformation. 

When the fracture propagates the plastic zones unload elastically behind the advanc-

ing crack and the new area near the current tip deforms plastically. In summary, the 

rock mass remote from the fracture may deform elastically, whereas the area near 

the body of the fracture is initially elastic but then deforms plastically and finally 

unloads elastically after the fracture tip has advanced. Under such conditions, the 

plasticity model must be capable of dealing with non-proportional loading. Such 

capabilities are provided, of course, by an incremental flow theory of plasticity and 

finite element analysis. 

Among the different yield criteria, the Mohr-Coulomb model adequately describes 

the pressure-sensitive behaviour of rocks which exhibit dilatancy when sheared. 

Unlike most cases of classical fracture mechanics, the remote stress field in the hy-

draulic fracturing problem is compressive, due to the presence of the in situ stresses. 

In such a case the use of Mohr-Coulomb yield criterion, which is usually employed 

in cases of compressive stresses, is fully justified. The tensile failure along the prop-

agation line is modeled as described in the next section by a cohesive-type model. 

The Mohr-Coulomb yield criterion can be expressed in terms of maximum and min-

imum principal stresses, σ1 and σ3, respectively, (compression is negative) 
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where φ is the friction angle and σe is the effective stress which is related to the co-
hesion c via 

cos
2
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e c

φ
σ

φ
=

−
                       (4.4) 

Post yield strengthening with deformation can be modeled using a cohesion harden-

ing model. According to this model the equivalent stress, σe, increases with the 

equivalent plastic strain, εp, 

0 p

e e heσ σ= +                          (4.5) 

where
0

e
σ  is the value of effective stress at initial yield. The linear hardening plastic-

ity modulus h has been derived in [Pap02] from the loading and unloading moduli as 
measured in a uniaxial compression test. 

 

1
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loading
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E
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E

E

=
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                    (4.6) 

 

In the flow theory of plasticity the strain increment 
ij

dε  is decomposed into an 

elastic
e

ijdε  and a plastic part 
p

ijdε                      

e p

ij ij ijd d dε ε ε= +                                                                                           (4.7) 

The elastic strain increment 
e

ijdε  can be obtained from Hooke's law. The plastic 

strain increments,
p

ijdε , are generated when the stress state reaches the yield surface 

and can be expressed by a non-associated flow rule in the form 

p

ij

ij

Q
d dkε

σ

∂
=

∂
                                           (4.8) 

where Q is the plastic potential and the scalar function dκ is the plastic multiplier. 
The plastic potential Q can have a similar form to yield surface σe, if in equation 
(4.3) the dilation angle ψ replaces the friction angle, φ. 
                    

As mentioned before, the yield surface and plastic potential are generally functions 

of stresses and the hardening parameter εp. The hardening parameter εp is calculated 

from the principle of plastic power equivalence, 

p p

e ij ijd dσ ε σ=                                       (4.9) 
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In general, weak rocks obey a non-linear yield criterion and exhibit non-associative 
behaviour. Experimental results from triaxial compression tests show (a) that the 
dilation angle increases slightly with increasing plastic strain when low confining 
pressures are used but remains approximately constant in samples under high con-
fining pressure and (b) the value of dilation angle is a strong function of the confin-
ing pressure. In tests with low confining pressure the measured dilation angle is 
greater than the friction angle but decreases rapidly with increasing confining pres-
sure, eventually becoming negative. This indicates compaction at very high confin-
ing pressure. In hydraulic fracturing, compaction is excluded because the initial in-
situ mean pressure near the crack tip decrease during propagation. Furthermore, 
earlier computations in [Pap01] showed that the non-associative solution for zero 
dilation was bounded by the associative solution and the elastic solution. 

 

It is out of the scope of this paper to present details on the discretization of the fluid-

flow in the fracture and its coupling with the rock deformation. For more details on 

the discretization, coupling, iterative and continuation algorithms for the problem of 

hydraulic fracturing the reader is referred to [Pap03]. 

4.3 The cohesive zone model as fracture propagation criterion 

The cohesive zone model implies that normal stress continues to be transferred 
across a discontinuity which may or may not be visible as shown in Figure 4.3. This 
stress is determined from the softening stress-strain relation that various rocks ex-
hibit in calibrations tests. This transferred normal stress is a function of the separa-
tion and falls to zero at a critical opening and then the fracture propagates. The evo-
lution of the crack is governed by energy balance between the work of the external 
loads and the sum of the bulk energy of the uncracked part and the energy dissipated 
in the fracture process. The main mathematical difficulty is given by the fact that the 
fracture energy depends on the opening of the distributed micro-cracks. To simplify 
the mathematical difficulties, it is assumed that the cohesive zone localizes, due to 
its softening behavior, into a narrow band ahead of the visible crack [Hil01].  
 
The constitutive behavior of the cohesive zone is defined by the traction-separation 
relation derived from laboratory tests. The traction-separation constitutive relation 
for the surface is such that, with increasing separation, the traction across this cohe-
sive surface reaches a peak value and then decreases and eventually vanishes, per-
mitting for a complete separation. Simple cohesive zone models can be described by 
two independent parameters which are usually, for mode-I plane strain, the normal 
work of separation or the fracture energy GIC and either the tensile strength σt or the 
complete separation length δIC [Pap03,Pap04]. In those models, even though the 
implemented cohesive constitutive equation followed a simple rigid-linear softening 
response, the calculated normal to the propagation direction stress distribution ahead 
of the open crack exhibited a smooth non-linear response. 

   
Nevertheless, an additional parameter in these models is the slope of the initial load-
ing which may define a range from rigid-softening to elastic-softening response 
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under tensile stress-state. In order to investigate the main characteristics of the full 
curve in hydraulic fracturing, Sarris and Papanastasiou [Sar01] carried out computa-
tions for different initial slopes to simulate a rigid-softening to elastic softening 
behavior. The transition from the elastic softening to the rigid-softening was carried 
out by increasing the initial slope of the constitutive cohesive law by five times in 
each model. The case of the most rigid behavior corresponds to twenty times the 
stiffness of the most elastic case. In all cases the area under the curve which is relat-
ed to the work of separation is maintained the same (Figure 4.3b) 
 
The area under the traction-separation curve equals with fracture energy GIC which is 
the work needed to create a unit area of fully developed crack. For elastic solids this 
energy is related to the rock fracture toughness KIC through [Ric01, Kan01]  

2

21
IC

IC

G E
K

ν
=

−
                                                             (4.10) 

where E is the young modulus and ν is the Poisson ratio. The rock fracture tough-
ness can be calculated from laboratory tests. For the case of the rigid-softening be-
havior the traction-separation relation is uniquely determined by  

(1 )t ICσ σ δ δ= −                                                     (4.11) 

where σt is the uniaxial tensile strength of the rock and δIC is the critical opening 
displacement at which σ falls to zero. The value of δIC is given in [Kan01]  
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                                                   (4.12) 
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Figure 4.3 Representation of the fracture process zone and the constitutive cohe-

sive zone law. 
 

For the case of the elastic loading the cohesive constitutive relations were augment-
ed and modified to take into account the initial part of the curve as follows 

t

el

δ
σ σ

δ

 
=  

 
                                                                (4.13) 

with the limit of elastic deformation given by 

t
el

n

σ
δ

k
=                                                                    (4.14)  

where kn is the stiffness of the traction-separation relation in the loading regime with 
units of [MPa/m]. In the post-peak softening regime the cohesive constitutive rela-
tion is given by  
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In order to investigate further the influence of the cohesive zone law in hydraulic 

fracturing, Sarris and Papanastasiou [Sar01] have also studied different forms of 

softening behavior. 

For the numerical implementation of the cohesive zone model interface elements are 
employed along the propagation direction. The interface elements are two-
dimensional, isoparametric, 6-node or 4-node interface element. A consistent isopar-
ametric formulation permits modelling of curved crack surfaces and provides an 
element that is compatible with the 8-node quadratic displacement or 4-node linear 
finite elements that are used to discretize the internal domain. The numerical algo-
rithm requires initial conditions to be specified at t =0 for the initial fracture length 

ℓ (0) the width profile w(x)=0 and fluid pressure p(x)=0. In setting these initial 
conditions we recommend the analytic solution derived in [Des01] for an elastic 
material with zero fracture toughness. A meshing/remeshing scheme is employed in 
order to carry out longer propagations with fine mesh near the fracture tip. The 
meshing/remeshing scheme was based on the following steps: The sensitive area 
near the tip where high gradients exist was discretized using a fine mesh and the 
region away from the crack-tip was discretized with a coarser mesh. 

 

4.4 Computational results 

In this section we present sample results for hydraulically driven fractures in an 

elastic and an elastoplastic media to show the efficiency of the proposed algorithm. 

The parameters upon which the numerical computations were based are given in 

Table 1. With the chosen material parameters and in-situ stresses the rock is initially 

elastic but very close to a yielding state. 

Figure 4.4 shows the profiles of propagating elastic (solid-lines) and elasto-plastic 

(dashed-lines) fractures for the same fracture lengths. The cusping of the crack tips 

with zero slope is a result of the cohesive model which was incorporated as the 

propagation criterion. As mentioned earlier, the model of the elastoplastic fracture 

requires an initial fracture length which was set to 0.5 m; the influence of this can be 

seen in the width profiles in Figure 4.4 but as mentioned earlier the results are unaf-

fected in the area where the fracture was propagated. If we compare the fracture 

openings in the region where the fractures were propagated (i.e., distance from well-

bore between 0.5 and 2.2 m) we see that the width profile of the elastoplastic frac-

ture is much wider than the width profile of the elastic fracture. 
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Figure 4.4.  Fracture profiles for elasto-plastic (solid lines) and elastic (dashed-lines) 
 

Figure 4.5 shows the comparison of the net-pressure profiles in the fracture for the 

same fracture length. The very narrow opening of the elastic fracture results in 

greater pressure drop near the fracture tip and significant fluid-lag. Higher energy is 

required for propagating the elastoplastic fracture. Most of this energy is coming 

from the smaller fluid lag region. Plastic yielding near the tip of a propagating frac-

ture provides an effective shielding, resulting in an increase in the effective rock 

fracture toughness [Pap02, Pap04, Pap07]. This is shown in Figure 4.6 where we 

plotted the increase in the effective fracture toughness as a function of the fracture 

growth. The effective fracture toughness was determined using the calculated, path 

independent, J-integral [Ric01]. The value of the effective fracture toughness is 

directly related to the size of the plastic zones. 

The elastoplastic fracture was propagated further to reach a length of 8 m before 

examining the closure pattern (Figure 4.7). Figure 4.8 shows the width profile of a 

receding elastoplastic fracture. It was assumed that there was no fluid-flow in the 

fracture during closure, therefore the pressure acting along the fracture was constant. 

The elastoplastic fracture makes contact initially near the tip and then the closure 

moves towards the wellbore [Pap05, Pap06]. This closure pattern agrees with the 

experimental results reported by [Dam 01]. Figure 4.9 shows the corresponding net-

pressure at the wellbore vs fracture length during propagation and closure after the 

fracture has reached a) 5 m and b) 8 m length. These results show that the net-

pressure drops to zero while the fracture is still wide-open along a large proportion 

of the original length. The decrease of the fracture surface during closure will result 

in the underestimation of the insitu leak-off coefficient at the late stage of the pres-

sure decline analysis. More accurate leak- off predictions can be obtained in the 
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early stage of pressure decline analysis, immediately after shut-off of the pumping 

stage. The results of Figure 4.9 suggest that the fracture will close completely at 

negative net-pressures (fluid pressure less than the far-field stress). Application of 

classical analysis, which assumes that the fracture closes completely when the fluid-

pressure drops to the value of the far-field stress, would lead to the underestimation 

of the minimum insitu stress.  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.5.  Net-pressure profiles on fractures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. Apparent fracture toughness vs fracture extension. 
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Figure 4.7. Propagation of elasto-plastic fracture 

 

 

 
 
 

 

 
 
 
 
 
 
 

 

 

 

 

 
Figure 4.8. Closure of elasto-plastic fracture 
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Figure 4.9. Net-pressure at wellbore vs fracture length 
 
 

4.5 Summary of results and conclusions 

In summary, we found that plastic yielding provides a shielding mechanism near the 

tip resulting in an increase of the effective fracture toughness [Pap04, Pap07]. High-

er pressure is needed to propagate an elastoplastic fracture and the created fracture is 

shorter and wider than an elastic fracture [Pap01, Pap02]. We demonstrated that the 

standard hydraulic fracturing simulators, which are all based on elasticity, will yield 

better results if the unloading modulus is used as the Young's modulus. We have 

also modelled hydraulic fracture closure [Pap05, Pap06]. It was found that the as-

sumption made that the fracture closes completely once the fluid-pressure in the 

fracture drops to the value of the far-field stress, is not valid. In addition, we showed 

that the formation will be more stable after it is fractured due to the redistribution of 

the stresses [Pap05]. In [Pap07] it was shown that an induced HF due to CO2 injec-

tion is likely to propagate horizontally than vertically to the higher effective tough-

ness in the vertical direction. The reported results were found to be in good agree-

ment with the findings of hydraulic fracturing experiments carried out on large 

blocks in Delft University [Dam01]. 
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5 Conclusion 

Meeting unpredicted problems in petroleum geomechanics such as wellbore instabil-
ity, sanding during production and failures in hydraulic fracturing design and execu-
tion, is almost inevitable, attributed mainly to the uncertainties on the values of 
dominant parameters mainly the in situ stresses, rock strength and heterogeneities. 
This realization motivated the development of real time techniques for facing these 
problems. The main idea behind the new approach is to use real time measurements 
and monitoring in drilling, to evaluate the drilling job and to update the design in 
order to resolve the encountered problems. In the heart of the design and updated 
phases an accurate modelling for estimating the optimum mud-pressure is always 
needed. Similar approach is followed in hydraulic fracturing where downhole meas-
urements of the pressure and acoustic emissions, tracers and tilt-meters are deployed 
to estimate the fracture geometry and update the hydraulic fracturing simulators to 
the real time data. Sanding in unconsolidated formations, the transport of sanding 
from the reservoir to surface facilities and the estimation of the volumes of the pro-
duced sand are still outstanding issues in petroleum engineering. 
 
Finally, a new area in petroleum engineering, called reservoir geomechanics has 
developed in the recent years. The reservoir simulators are coupled with stress anal-
ysis in order to give more accurate predictions and to account for problems such as 
reservoir compaction and surface subsidence, casing collapse, fault activation and 
other. In all these problems the knowledge of the in situ stresses is required. The 
finite element analysis can be combined with local measurements for obtaining the 
in situ stresses near complex geological structures. 
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Grainsize dynamics: mixing, segregation,
crushing and their heterarchy
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Australia

This Chapter introduces the field of ‘grainsize dynamics’ – the mechanics dealing
with the evolution of particle size distributions in space and time, and their governing
forces. Typical forces in grainsize dynamics include mixing, segregation, crushing, at-
trition, agglomeration and thermal expansion. Here, we focus on the first three forces,
starting from stochastic particle scale physics and how/whether these physics could
be upscaled to frame enriched continuum models. A discussion will follow on why
‘open-system’ dynamics by mixing and segregation do not lend themselves for hierar-
chical approach that artificially identifies scales and treat them separately. Although
the physics of grain crushing can be understood using a ‘closed-system’ idealisation,
when coupled with mixing and segregation, the modelling of grain crushing also re-
quires an open-system description within a heterarchical approach that does not sep-
arate scales (yet benefits from non-hierarchical organisational rules). Although this
Chapter focuses on particle size, much of the presented philosophy may be adapted
for other shape descriptors such as elongation and sphericity.

1 Introduction

Our journey into grainsize dynamics began with Prof Ioannis Vardoulakis [Var], whom
the first author visited in Athens on June 2007. During that visit, and triggered by the
breakage mechanics theory [Ein07] of grain crushing, Ioannis (who masterfully used
to identify good problems) proposed a cooperation into what he thought would yield
the first mathematical solution to the oldest industrial problem in human history – the
problem of grinding flour using stonemills (see Figure 1), which involves simultane-
ous grain crushing, segregation and mixing. Similarly, motivated by Ioannis [Var],
such a solution should also help to address other large flow problems involving brittle
granular media, let them be pyroclastic flows or dry snow avalanches.
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Figure 1: The Vardoulakis’s challenge [Var]. Resolve mathematically the oldest indus-
trial problem in human history – the simultaneous crushing, mixing and segregation
of flour in stonemills.

To date, the grainsize dynamics in neither the stonemills nor the pyroclastic flow prob-
lems have been resolved! But we got much closer. This Chapter describes how.

In order to solve those problems framed by Prof Vardoulakis, his initial proposi-
tion was to combine the breakage mechanics theory with Gray & Thornton’s [GT05]
(GT’s) theory for bi-mixture flows down chutes involving both segregation and mix-
ing. During that visit, however, it became clear that these two theories adopt assump-
tions that are not amenable for a theoretical unification.

In particular, while GT’s original mixing-segregation theory can deal with open-system
flows of two sizes of grains [GT05], in brittle granular systems grain crushing always
introduce some degree of polydispersity. Discussion on this point along with a pro-
posed solution for modelling flows in polydispersed media will be offered in the sec-
tions focusing on mixing and segregation. Similarly, while the breakage mechanics
theory can capture the evolving polydispersity in brittle granular media, its intrinsic as-
sumption of an ultimate grainsize distribution is only appropriate for closed-systems,
and not for open-system problems such as stonemills and pyroclastic flows where par-
ticles can swap places through preferential advection. We shall come back to this point
in the section dealing with grain crushing, along with proposed heterarchical solution
that is free from the ultimate grainsize distribution assumption. We will emphasise:
(1) why hierarchical models – that are built on scale separation – cannot be used for
open system problems of stonemills and pyroclastic flows; and (2) the advantages of
heterarchical models for coupling crushing, segregation and mixing. In conclusions,
we will emphasise the remaining obstacles for establishing a smooth, reliable math-
ematical solution of grainsize dynamics in stonemills and pyroclastic flows based on
a continuum heterarchical model that could finally address the original challenge by
Vardoulakis [Var].
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2 Grainsize

By now you would have noticed the term ‘grainsize’ throughout article. Where the tra-
ditional ‘particle size’ is used to denote the representative size of a single particle, the
term ‘grainsize’ is used to express a continuous mathematical coordinate. With this in
mind, we can define the probability density function φ(s) as the grainsize distribution,
where s is the coordinate representing particle size. In general media, the grainsize
distribution varies over time and across the space. Similarly, one can define the mean
velocity u(s) of all the grains of a given grainsize s at a certain point in space x and
time t. Most generally, we can think of a five-dimensional (5D) continuua with:

φ ≡ φ(x, t, s), u ≡ u(x, t, s), (1)

where a representative volume element is defined by the three spatial coordinates in
x, the time t and grainsize s. In addition, the normalisation condition for probability
density functions requires that

∫ ∞

0

φ(s) ds = 1. (2)

To recover a certain value of the volume fraction of a range of particle sizes Φ, say
between sa and sb, we can take the integral of the grainsize distribution to give

Φ(sa < s ≤ sb) =

∫ sb

sa

φ(s) ds. (3)

3 Mixing

Mixing is the equitable process by which matter spreads evenly in space. In a per-
fectly mixed granular system, the nature of the grains including their particle size
distribution and their mechanical properties are the same anywhere we look. Mixing
granular systems can be achieved by two processes, namely shear-induced diffusion
and chaotic advection. None of these come for free. They both require some flow or
agitation to develop, meaning the input of some mechanical work.

This is a fundamental difference between mixing processes in granular materials and
molecular fluids. To highlight this difference, consider a first Thought Experiment
from the kitchen. Poor some flower into a bowl, add some raw sugar too, then wait.
As we know from experience, the flower and the sugar particles will not mix, at least
until we would start stirring them, for example with a spatula, or in other words, at
least until we would add a certain amount of mechanical energy into the bowl.
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Figure 2: Schematic representation of the mixing process. Initially, particles are or-
dered by size, but in this hypothetical scenario they mix as they flow down a slope.
Note that this is rather unphysical behaviour in this particular instance.

Next consider a second Thought Experiment from the kitchen. Open a container of
vanilla bean, then go and sit at the end of your lounge, a few metres away. After some
time, the fragrance will reach you without needing to mechanically stir the air. This
means that the vanillin molecules our noses detect have been somewhat spontaneously
mixed through the air molecules in order to get to our location.

So, if not like molecular fluids, how do granular materials mix? This section intro-
duces some elements of answers to this question, which still very much remain an
active field of research. The focus will be on both the known particle-scale mecha-
nisms at the origin of granular mixing, and on the available continuum models that
may capture mixing.

3.1 Physics at the particle scale

Mixing in granular media requires the grains to move relative to their neighbours.
On the other hand, in classical fluids mixing is associated with the relative motion of
molecules. Therefore, in both cases the origin of mixing is inherently microscopic,
with the particle size defining the dimension of the microscale in granular media, and
the molecule size defining the microscale in classsical fluids. Most generally, mixing
can be understood in terms of the elementary trajectories, of either grains in granular
media or molecules in fluids. The basic question that is underlying the physics of
mixing is then: will two initially close particles be separated, or will they stay close to
each other?

In the following we discuss how chaotic advection and diffusion could be related to
particle separation.
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3.1.1 Chaotic advection

An effective way for separating particles is to subject the material that carries them a
highly heterogeneous advective field. The velocity difference between two particles
distanced by ∆xp is given as ∆up = up(xp)− up(xp + ∆xp). (The subscript p was
added to distinguish particle kinematics from continuum kinematics). This means that
the distance between those particles ∆xp(t) =

∫ t
t′=0

∆updt
′ could quickly grow over

time t. Stirring grains with a spatula does precisely this, since some grains are pushed
along and around the spatula while others stay still. If one applies a non-steady stirring
pattern, the advective field will not only be heterogeneous but will also evolve over
time. The evolution of the relative distance between particles driven by many stirring
patterns may be described using an exponential law ∆xp(t) ∝ ∆xp(t = 0)eλt, with
λ being known as the Lyapounov exponent. The advective field for scenarios with
a positive λ > 0 is called chaotic. In those fields pairs of particles (exponentially)
quickly separate and the evolution of their distances should practically be impossible
to predict – hence the adjective ‘chaotic’. Chaotic advective field are good for mixing.

Back to the kitchen, a famous example for chaotic advective fields is the blinking
vortex field, which bakers can produce using egg bitters with two counter rotative
blades. Another way to produce chaotic advection is the baker’s map, which could be
followed by cutting bread dough in half, then stacking and compressing those halves
onto one another, then repeating this operation over and over. Finally, rotating drums
that are used as industrial granular mixers, produce intermittent recirculating flows,
which may also form some chaotic advective field.

3.1.2 Diffusion as a stochastic process

Diffusion of particles is typically associated with the random walk of their trajectories.
In molecular gas, this happens even without advective field. This is because molecules
or atoms in gas are thermally agitated. Kinetic theory applied for an ideal gas predicts
that the root-mean-squared of their velocities is given by: δup = 3kbT

m , where T is
the temperature expressed in Kelvins, m is the particle mass and kb the Boltzmann
constant.

Gas particle trajectory schematically involves a ballistic free-flight over a distance ε
at speed δup, followed by a binary collision with another particle and a bounce in
a different direction. Series of such steps forms a random walk with an elementary
step distance ε and frequency of direction change δup/ε. Under these conditions the
particle trajectories would be characterised by a mean square displacement growing
linearly in time, as:

lim
∆t→+∞

[xp(t+ ∆t)− xp(t)]
2

= βDt, where D = εδup, (4)

whereD is the self-diffusivity of the particles which has a dimension of length squared
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divided by time. In this formulation β, the constant controlling the growth, receives
the value β = 2, 4 or 6 depending on the system’s dimension (1D, 2D or 3D, re-
spectively). This means that the distance between the particles increases with time as:
∆xp(t) =

√
βDt. This is typically slower than the exponential separation in chaotic

advection.

The effect of mixing on the trajectory of one particle in a one-dimensional system
could therefore be represented as:

xp(t+ ∆t) = xp(t)±
√

2D∆t. (5)

Next, consider three adjacent representative volume elements (RVEs) in space {x +
∆x, x, x − ∆x}, which are separated by a distance ∆x = ∆xp =

√
2D∆t that

is set over the incremental time difference ∆t. We imagine many particles in each
of these RVEs being captured by the concentration function c(x) as the number of
particles per unit volume ∆x. The average exchange of particles through one RVE in
space at point x is governed by the surcharges in the concentrations that the adjacent
RVEs have relative to that x-RVE, which are given as ∆cup = c(x + ∆x) − c(x)
and ∆cdown = c(x − ∆x) − c(x). From a stochastic point of view, the change over
an incremental time ∆t in the x-RVE’s concentration (that is c(x)∆t) can then be
given by averaging the fluxes from the neighbouring RVE’s, as given by ċ(x)∆t =
1
2 (∆cup + ∆cdown), and therefore:

∂tc(x) = D
c(x+ ∆x)− 2c(x) + c(x−∆x)

∆x2
≈ D∇2c(x), (6)

where the approximation comes by identifying the second central derivative of the
concentration ∇2c(x); ∇ is the Del operator (in 1D: ∇ = ∂

∂x ); and ∂t = ∂
∂t is the

time derivative.

3.1.3 Diffusivity in granular media

In molecular gas, particle diffusion is thus driven by temperature-induced velocity
fluctuations. In granular materials, particles are large (typically larger than one mi-
cron) and therefore ‘athermal’ in that grains motion is not affected by their tempera-
ture, irrespective to how fast the molecules within them move. However, in sheared
granular materials, grains do exhibit strong velocity fluctuations. In diluted systems,
these velocity fluctuations scale like:

δu = γ̇f(n)d, (7)

where γ̇ is the shear strain rate (with dimension of inverse of time), d the particle size
and f(n) a function of the porosity n. Schematically, grains follow a trajectory com-
prised of free flight step of size ` ∝ f(n)d at a speed δup before colliding with another
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grain. This is similar to the trajectory of particles in molecular gas. Accordingly, the
coefficient of self diffusion in diluted granular system is given by [HLCY08, UB04]:

D ∝ γ̇d2. (8)

The fact that the diffusivity D is proportional to the shear rate γ̇ implies that granular
diffusion only happens if there is some shear flow (γ̇ > 0). This is why it is referred
to as shear-induced diffusion.

In dense granular flows, the gas analogy breaks down. Grains are so densely packed
that there are hardly any spaces between them for free flights. Instead, grains endure
sustained and multiple contacts at all times. Nonetheless, they exhibit strong velocity
fluctuations scaling like [DCEP+05, KR17]:

δu = γ̇d
1√
I
, where I = γ̇d

√
ρg/σ (9)

is the inertial number that expresses the ratio between the shear time ts = γ̇−1 and
the inertial time ti = d

√
ρg/σ. As the dense flow regime corresponds to small values

of the inertial number (I � 1), the velocity fluctuations are much larger than the
elementary velocity scale γ̇d.

To complete a random walk vision of grain trajectory in dense flows, one needs to
consider the typical length ε on which grains can move in a free-flight manner. While
the notion of free-flight is probably wrong given that grains are touching their neigh-
bours at all times, the natural length scale for a pseudo-free flight is a particle size
d. This leads to the following scaling for the diffusivity in dense granular flows
[KR17, KR18]:

D ∝ γ̇d2 1√
I
. (10)

It is possible to associate this scaling with a random walk trajectory whereby grains
move a distance at the order of their size d at a frequency γ̇/

√
I much higher than the

shear frequency γ̇ (for the small I’s associated with dense flows). This implies that
within one shear deformation, grains exhibit a succession of fast displacements of the
order of d.

Such trajectories are made possible by the development of transient clusters of jammed
grains in dense granular flows [GRME13, MR19]. These clusters have a size scaling
like `c ∝ d/

√
I and a typical life time tc =

√
ti/γ̇. The diffusivity in Eq. (10) can be

expressed in terms of these time scales: D = `2c/tc.

The connection between granular clusters and shear-induce diffusion is important, as
it shows that the diffusivity in Eq. (10) results from the existence of large structures.
Near solid boundaries (at a distance lower than lc), the size of these structures is
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truncated and the diffusivity is lower than that in similar flow conditions without walls
[MRME13, RMME15].

3.2 Continuum mechanics

Continuum models for mixing in granular flow lump the micro-processes of particle
trajectories into mass fluxes, and build the local budget of those fluxes coming in and
out of an infinitesimal representative volume at any point in the flow, and at any time.
At its simplest, this budget takes the following ‘ diffusion advection equation’ form:

∂tc = ∇ · (D∇c− uc) , (11)

where c refers to the concentration of a single species (for instance, particles with a
certain grainsize s), and ∂tc is its temporal evolution. The first term in the right hand
side is the divergence of the diffusive flux, while the second denotes the advective
flux, D the diffusivity of the given species in the corresponding location, and u the
local velocity.

The second term in the right hand side, which represents advective fluxes, can be
expanded using the chain rule of differentiation to yield:

c̊ = ∇ · (D∇c) + cε̇v, c̊ = ∂tc+ u · ∇c, ε̇v = −∇ · u, (12)

where c̊ is the material time derivative of the concentration, and ε̇v is the volumetric
strain rate that is here defined to be positive in compression, along with the conven-
tional sign convention in geomechanics.

During volumetric compression we have ε̇v > 0, and thus the second term in the first
relation above increases the concentration c. Conversely, volumetric dilation reduces
the concentration. For conciseness, we focus in the following on the diffusive part,
and thus consider zero volumetric strain rates with ε̇v = 0. In this way, the evolution
equation for the concentration reduces to the classical diffusion equation:

c̊ = ∇ · (D∇c) . (13)

If the diffusivity D was spatially invariant, one could take it out of the divergence
operator and this budget becomes: c̊ = D∇2c, which is in agreement with the result
obtained from the stochastic averaging in Eq. (6).

3.2.1 Grainsize mixing

There are numerous open questions regarding the mixing by shear-induced diffusion
in granular materials. Perhaps the most relevant for the current discussion is how
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the grains diffuse in a polydisperse mixture. So far, our knowledge of shear-induce
diffusion is mostly valid for quasi-monodisperse systems. A naı̈ve extension to poly-
dispersed media can follow by replacing c in Eq. 13 with the distribution φ(s) of a
grainsize coordinate s using

φ̊ = ∇ · [D(γ̇, φ)∇φ] , (14)

but at the moment we do not know the precise dependence of the diffusivity D on
the shear rate γ̇ and grainsize distribution φ, when the media is polydispersed. For
example, do all grainsize species diffuse similarly in a mixture? Probably not. Does
the diffusivity of a given species depend only on their own size s or also on the whole
shape of the grainsize distribution φ(s)? If yes, can the mean grainsize s̄ =

∫
φ(s)ds

be taken as the most relevant parameter to capture those characteristics, or should we
consider higher order weighed averages?

At any rate, inspired by Eqs. 8 and 10 we would expect D to depend on the shear
rate γ̇, itself dependent on the position. However, research is still required to quantify
how strongly the diffusivity D depends on the full characteristics of the grainsize
distribution.

4 Segregation

As described above, mixing will cause a system that is initially heterogeneous to be-
come homogeneous. To do the opposite — to create order from disorder — is the
process of segregation. In society, segregation is the outcome of the personal choices
of individuals. Those who wish to live near good schools, or places of worship, or ex-
pensive cafes, tend to cluster geographically [Sch71]. When examining a map of the
demography of a region, it is rare to find homogeneity. This basic observation implies
that housing preferences are not random, and that segregation (which occurs when oc-
cupants move homes) is driven externally towards heterogeneity. For instance, when
one of the authors purchased a home recently, it was partly to be close to work, partly
to be close to shopping, and largely driven by cost. These various external driving
factors are similar to those of his neighbours, who are typically in similar age, salary
and socio-economic brackets.

4.1 Physics at the particle scale

The same segregation processes are observed in both humans and grains. Grains,
while not necessarily having the individual capacity to relocate themselves, are often
forced to do so by external factors such as construction work and earthquakes. When
jostled, these grains transition from being in a stable environment with persistent con-
tact with grains around them, to a more fluid-like state, where they are constantly
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Figure 3: Schematic representation of the segregation process [ME11]. During flow
down an inclined plane, when particles are initially homogeneously mixed, it is com-
mon to observe large particles rising to the free surface while small particles settle
towards the base of the flow.

battering into those grains around them. As described in Section 3, these repeated
collisions in general lead to mixing. If, however, collisions between grains are asym-
metric (e.g. some grains consistently gain more energy than their neighbours), then
such collisions may not in fact lead to mixing, but may cause particles to arrange
themselves geographically.

In reality, particles have been observed to segregate because of differences in at least
size, density, shape, roughness and elasticity [TBT14]. If any of these properties dif-
fers between grains, there is the possibility that the jostling (variously described by
granular temperature, fluiditiy or kinetic stress) will not be shared equally by the par-
ticles and segregation may occur. Physicists call this a breakdown of the equipartition
of energy in granular systems.

4.1.1 Segregation as a stochastic process

In Section 3.1.2 above, we described how diffusion could be represented as a stochas-
tic, random walk process. Similarly, we can describe segregation as a stochastic pro-
cess, but now there is a direction to the walking that depends on the grainsize s, which
can be represented by a segregation velocity û(x, s, t). The effect of this velocity on
the trajectory of one particle in a one-dimensional system could therefore be repre-
sented as:

x(s, t+ ∆t) = x(s, t) + û(x, s, t)∆t. (15)

Therefore, unlike the stochastic Eq. 5 for mixing, here the trajectory of the particles
depend on their grainsize.
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In a ‘bidisperse’ 1D system with only two grainsizes, large sl and small ss, over one
time step ∆t, the flux of small particles which moves out of a point (x, t) is the product
of the segregation velocity at that height û, the amount of that small size present at
that height Φs(x, t) and the available space to move into which is controlled by the
available space in the neighbouring space Φl(x+ ∆x, t) = 1−Φs(x+ ∆x, t). Given
the segregation velocity û at point x, we see small particles trickling down to x−∆x
and large ones surging up to x + ∆x. Expressing the net effect of these motions on
the conservation of the mass of small particles at the RVE at point x over the time step
∆t, we get [ME11]:

[
Φs(x, t+ ∆t)− Φs(x, t)

]
∆x =

[
ûs(x+ 1

2∆x)Φs(x+ ∆x, t) (1− Φs(x, t))

−ûs(x− 1
2∆x)Φs(x, t) (1− Φs(x−∆x, t))

]
∆t,

which in words reads as “the difference in the mass of small particles during ∆t equals
the difference in the flux of small particles from above minus those leaving down over
the small RVE distance ∆x”. Therefore, given the numerical approximations of first
derivatives, this stochastic segregation process takes the following continuum form:

∂tΦs =
∂(ûsΦs(1− Φs))

∂x
, (16)

which could be compared [ME11] to the original segregation theory by Gray & Thorn-
ton [GT05]. This result is indeed limited to systems with only two particle sizes,
though could be extended to polydispersed media. Furthermore, it does not disclose
the structure of the segregation velocity û. This is where the momentum equation of
continuum mechanics becomes very handy.

4.2 Continuum mechanics

Over the past several decades there have been many approaches to describing segre-
gation systems using continuum mechanics. One such approach has been to employ
our models for the mixing of systems, but to use a negative diffusivity (which will
cause de-mixing, rather than mixing). This may contradict thermodynamic laws (see
previous ALERT School), and thus we do not explore this idea further. Others have
used statistical approaches to try to relate the frequency of collisions with material
properties [SL88]. The most common methods, however, follow the continuum ap-
proach with advective forces between the species, and describe the segregation of two
(or more) types of material with a well defined segregation velocity [DU95, GT05].

Typically, models are based around systems of two sizes of particles (large sl and
small ss), which are called ‘bidisperse’. For example, such a system was described

Itai Einav 129

ALERT Doctoral School 2019



Figure 4: Segregation in a rotating square drum filled with a bimixture. Colour repre-
sents the average particle size, with blue being pure large particles, yellow pure small
particles and pink a mixture of the two. Left: Initial sample that is homogeneously
mixed. Right: Partially segregated sample after 50s of rotation.

stochastically using Eq. 16. We are then interested in tracking changes in the local vol-
ume fraction, Φ, of each component Φl = δ(s−sl)φ(s) and Φs = δ(s−ss)φ(s) (with
δ(s) being the Dirac delta function). We then have the requirement that Φs + Φl = 1.
While this may seem to be a reasonable starting point to understand the behaviour of
more complex systems, it has recently been shown that this two-component approach
(and its generalisations to many components) have significant drawbacks [MRE12].
We then turn to a different approach, which requires a complete description of the
grainsize distribution φ(s).

Continuum models for segregation typically begin with some statement of conserva-
tion of mass and momentum for a mixture, largely based on mixture theory, which can
be stated as

∂tρ+∇ · (ρu) = 0, (17)
∂t(ρu) +∇ · (ρu⊗ u) = Fρ, (18)

where ρ(s) = φ(s)(1 − n)ρg is the bulk density of the s species, 1 − n is the solid
fraction given the porosity n, and ρg the intrinsic density of the grains (which is here
assumed similar for all grainsizes). The term Fρ(s) contains all of the physics re-
lated to mixing and segregation, and the choice of this term is largely still open to
intense discussion. Various forms have been proposed, but largely the focus has been
to provide an analytical expression for the segregation velocity. Similarly, dividing by
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φ(s)(1−n), the differential equations for the grainsize distribution φ(s) and grainsize
velocities u(s) become

∂tφ+∇ · (φu) = 0, (19)
∂t(φu) +∇ · (φu⊗ u) = Fφ, (20)

with Fρ = Fφ(1− n)ρg .

A recent work [MED+17] presents the current state of the art in modelling of segre-
gation in polydisperse systems. In this context, the trajectory of a volume-grainsize
element over time is described by

u = ū + û + u′, (21)

where u(s) is the true velocity of species s, ū is the barycentric velocity, û(s) the seg-
regation velocity and u′(s) the fluctuating velocity due to diffusion. The segregation
velocity, û(s), can be related to the particle size s, the bulk density ρ̄ and the kinetic
stress σ̄k as

û =
1− s̄

s

ρ̄η
∇ · σ̄k, (22)

where s̄ is the hyperbolic mean grainsize and η is a single fitting parameter which
sets the rate of segregation. One crucial outstanding issue in this context is a lack of
predictability of the kinetic stress. This term is an additional stress that occurs due to
the jiggling of particles. While there has been significant recent effort for predictions
of this jiggling, a well established general model is yet to be widely accepted.

Recently, such models have begun to be included in numerical solvers for arbitrary
problems, typically using the material point method [ME17b, FSHZ17]. One such
code could be found in [Mar]. With these new capabilities, it is possible to predict
the time evolution of the grainsize distribution in arbitrarily complex geometries. For
example, the evolution of the mean grainsize in a rotating square drum is pictured in
Figure 4.

5 Crushing

Where grainsize dynamics by mixing (Fig. 2) and segregation (Fig. 3) intrinsically
relate to mass transfer through space, it is possible to imagine ‘comminution’ (a term
used specifically for grainsize dynamics by crushing) without notable mass transfer.
This does not mean that one can capture all the problems related to comminution
without considering mass transfer, but that a closed system approach may be a good
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starting point prior to addressing open system problems that involve significant mass
transfers. This is particularly appealing for many geotechnical problems, where the
soil mass only slightly deforms due to the deep-situ, confined ground conditions. In
these cases one may imagine comminution as occurring within idealised insulated
boxes that prevent neighbouring particles to pass through them, as shown in Fig. 5(a).

However, the closed system idealisation seizes to work for large deformation prob-
lems where particles often move preferentially by size (see Figure 5(b)). This is the
case related to the challenge set by Vardoulakis in Fig. 1, as it involves simultaneous
grain crushing, segregation and mixing. In the following we distinguish the physics
of comminution in closed and open systems.

Figure 5: Schematic representation of continuously deforming crushable grains. Up:
In closed-systems the grainsize distribution typically tends towards an ultimate distri-
bution. Down: In open-systems the grainsize distributions do not necessarily tend to
an ultimate state due to the exchange of particles with the surrounding.
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5.1 Physics at the particle scale

Comminution has been studied over many decades, starting with the earlier work of
von Rittinger in mineral processing [vR67] who defined a simple scaling law of com-
minution, which neglects the actual state of the particles as a function of loading and
boundary conditions. The effect of these conditions on comminution was considered
more recently in geomechanics, through the development of constitutive models in
continuum mechanics [Har85, PVO93, Ein07]. The development of constitutive com-
minution models is mostly based on observations from insulated experimental devices
or field conditions that typically prevent large mass flow through them, and are thus
relevant for closed systems.

In closed systems comminution tend to reveal unique deterministic physical properties
that are used in these developments. In particular, in earthquake fault physics research
has motivated the idea that fragments self-organise into self-similar topological con-
figurations that support the notion of a power law grainsize distribution at an ultimate
state [Tur86, SOA+86, SKB87] (or so-called ‘fractal’ configurations). This idea of an
ultimate (typically power law) grainsize distribution after extremely large deforma-
tions in confined conditions has been supported in experimental geomechanics, after
both extreme confined compressive [NHH+01] and shearing conditions [CSBFG04].
Considering the existence of a minimum grainsize smin due to the limit of fracture
mechanics [Ken78] and long-range attraction forces (that bring smaller pieces to co-
alesce), and since there is always a maximum grainsize smax within an RVE, the ulti-
mate power law grainsize distribution takes the form:

φu(s) =
(3− α)s2−α

s3−α
max − s3−α

min

, (23)

where α is the fractal dimension, which was motivated to range between 2.5 and 3
using on different models [SKB87, ME15].

Using idealised closed-system geometrically tessellated models of stochastic subvol-
umes in 2D and 3D [Tur86, SOA+86], the reasons behind the ultimate power law
grainsize distribution were linked to a competition between the crushing strength of
individual particles that is typically larger for smaller particles, and the cushioning of
the larger particles due to a larger number of surrounding contacting grains. Specif-
ically, Mogi [Mog62] proposed to adopt the Weibull’s weakest link distribution the-
ory [W+51] to describe the likelihood of grains to crush as a function of their size
due to growing defects in larger particles. Similar conclusion was recently derived
entirely based on fracture mechanics and non-linear elasticity originating from the
non-linearity of contacts [ZBE15].

Let us return to the notion of a maximum grainsize smax as shown in Eq. 23. Place
many brittle grains within an insulated box with a maximum grainsize smax. Next,
shear and compress that box as much as you want. If we let grain crush, but not grow
the maximum grainsize will never go above smax. In fact, if the box contained many
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grains, the competition mentioned above between Weibull’s smaller-is-stronger and
cushioning bigger-is-stronger will mean that, statistically speaking, particles with a
maximum grainsize smax will always remain in that box.

Next, open the box, get some particles in, put some other particles from another box
nearby. Will the maximum grainsize remain unchanged? Of course not, since we
did not say anything about the neighbouring box. This point is illustrated in Fig. 5,
which explains why the fractal grainsize distribution model in Eq. 23 does not actually
work for comminuting open systems. Indeed, from geological surveys of pyroclastic
flows and dry snow avalanches with brittle grains, we do not normally find power law
distributions, but rather, quite often, log-normal distributions [Sch67, BM09].

5.1.1 Crushing as a stochastic process

How can we capture this difference in the grainsize distributions between closed- and
open systems involving grain crushing? Current treatments of comminution in open
systems rely on stochastic information that goes beyond the deterministic information
gained from the idealised experimental closed system conditions. Similar to mixing
and segregation, comminution could also be described as a stochastic process. In this
case there is no direct effect from advection, only indirect one. For this purpose the
process could be understood without making reference to the continuum location. A
crushing event occurs in a grain of size s at a microstructural position m if its the
tensile stress σm exceeds its crushing strength σcr determined by its own size sm and
its nearest neighbours’ sizes sm−1 and sm+1. This is specified as [ME15, ME17a]:

sm(t+ ∆t) = ζ(sm)sm(t) if σi ≥ σcr(sm−1, sm, sm+1), (24)

where ζ ∈ [0, 1] is an independent random variable pulled from a fragment size distri-
bution ranging from 0 to 1. In reality, when a single grain crushes it turns into many
different sized fragments, but here this is taken stochastically using the variable ζ. A
key point in this model is the use of the microstructural coordinate m that allows to
preserve the information of grainsize of neighbours, which is said before controls the
crushing process.

In isolation, this model [ME15, ME17a] was shown to well explain the emergence of
power law grainsize distributions [ME15, ME17a]. By connecting the grainsize dis-
tribution to available porosities, it could be used to explain the constitutive behaviour
of brittle granular media [GEMC18]. Finally, by combining this model with the two
other stochastic models mentioned before for mixing in Sec. 3.1.2 and segregation
in Sec. 4.1.1, it can also explain why in pyroclastic flows the grainsize distribution
approaches a log-normal function [ME15, ME17a].

In order to describe the grainsize dynamics in this stochastic model one can establish
the population balance. Following [Ram00] and formulating the conservation of mass
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at the {s, t}-RVE (for a fixed point in x) the rate of the grainsize distribution can be
calculated as [ME17a]:

φ̇ = h+(s, t)− h−(s, t), (25)

h+ =

∫ ∞

s

b(s′)P (s|s′)φ(s′, t)ds′, (26)

h− = b(s)φ(s, t) (27)

where h+ is the incoming mass flux from all the s sized fragments originating from
the bigger grains, while h− is the outgoing mass flux representing the loss of mass
from the corresponding RVE by crushing of s particles that become smaller. Here,
P (s′|s) is the conditional probability density function which dictates the probability
of creating grainsize s from crushing a particle of grainsize s, which could be re-
lated directly to the fraction ζ in the stochastic model [GEMC18]. Finally, b(s) is the
breakage rate which governs the frequency at which particles of grainsize s break into
smaller fragments.

5.2 Continuum mechanics

5.2.1 Closed systems

As described earlier, in closed systems during continuous loading the grainsize distri-
bution approaches an ultimate grainsize distribution, which is typically given by the
fractal power law of Eq. 23. Moreover, since in such systems grains can only reduce
in size, the grainsize distribution tend to develop in an almost predictable monotonic
path from initial states towards the ultimate state (see Fig. 5). This idea was adopted
in the breakage mechanics theory [Ein07], with which one can express the evolution
of the grainsize distribution φ using a breakage B internal variable:

φ(s,B) = δ(s− smax)(1−B) + φu(s)B, (28)

where δ(x) is the Dirac’s delta function. In the breakage mechanics theory the rate of
breakage Ḃ is then derived within a thermodynamically consistent description, such
that the grainsize distribution could be updated with φ̇ = (φu(s)− δ(s− smax))Ḃ.

5.2.2 Open systems

There is currently no mathematical solution to transform the stochastic model ex-
pressed in Eqs. 25 into a smooth exact analytic differential equation for the time evo-
lution of the grainsize distribution. For example, we do not currently have an exact

Itai Einav 135

ALERT Doctoral School 2019



analytic form for the birth function b(s) in the population balance representation of the
the stochastic model in Eq. 24, see [ME17a]. Obtaining such a smooth differential
description of stochastic comminution is left for future research.

6 From hierarchicy to heterarchy in multiscale models

As shown in Fig. 6, typical multiscale models are hierarchical, coupling distinctly
different models at different length scales. Take for example the definition of coupled
FEM–DEM models [AT09, NCDD11, GZ14], which replace a constitutive model in a
finite element simulation with a discrete element simulation at each gauss point. Un-
fortunately, this hierarchical approach does not lend itself for open-system processes
such as mixing and segregation, since those erase the resolution required for tracking
grainsize dynamics across the boundaries of neighbouring RVEs due to the scale sep-
aration. For example, considering the hierarchical FEM–DEM approach, the passage
of grainsizes from one Gauss-DEM-point to its neighbouring Gauss-DEM-points and
vice versa cannot be done without information on the exact locations of the particles
on the boundaries of the other Gauss-DEM-points.

Recently, Marks & Einav [ME17a] proposed to resolve this issue using a new paradigm
of multiscale models – a heterarchical model. This stochastic model, in contrast to a
hierarchical one, does not separate between the two scales, as it allows information to
be passed from the microscale within one RVE to another RVE. Put simply, this model
simply integrates the closed-system stochastic crushing model with the open-system
stochastic mixing and segregation models. In so doing, for general comminuting prob-
lems one cannot impose an ultimate grainsize distribution, since there could alway be
a way for neighbouring particles of unknown sizes to flow into the RVE. However,
in closed systems, where that flow is prevented, this model does recover an ultimate
fractal grainsize distribution achieved after much loading.

The disadvantage of this heterarchical multi-scale model is that it is not analytically
described using smooth differential equations due to its stochastic ingredient of grain
crushing, albeit the possible smooth descriptions of the other stochastic ingredients of
mixing and segregation.

7 Conclusions

This Chapter reviewed the particle-scale stochastic physical processes that control the
evolution of grainsize distributions in time and space. These processes include open-
system mixing and segregation linked with mass transfer and closed-system grain
crushing where mass transfer is not required for description. The modelling of each
of these three dynamics is discussed in the context of both stochastic and continuum
mechanics. In the cases of mixing and segregation we demonstrated that the stochastic
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Figure 6: Alternative structures for multiscale models (see [ME17a]). Top left a hier-
archical model, where continuum information is passed between two distinct simula-
tions, each at different length scales. Top right a heterarchical model, where the two
length scales are coupled directly in a simple model that allows discrete information
to pass across scales. Bottom left a typical example of a hierarchical model, where
a constitutive model in a FEM simulation is given by a separate DEM simulation.
Bottom right a heterarchical model where the two scales coexist in the same frame-
work. In all cases, light blue represents the continuum scale, and green represents the
representative volume element scale.

physics at the particle scale could be upscaled to derive smooth differential equations
for continuum model realisations. So far we do not have a good equivalent model for
grain crushing that can homogenise from stochastic to continuum levels.

What is clear, though, is that the complete modelling of grainsize dynamics cannot be
achieved by adopting hierarchical models due to grainsize dependent mass transfers.
The alternative way forward is to adopt an open-system heterarchical approach. With
a homogenised stochastic solution for grain crushing to be derived in the future, we
envisage that the whole spectrum of mixing-segregation-crushing dynamics could be
tracked within a continuum mechanics framework, with one additional microstructural
coordinate to represent transfers through the grainsize scales. In this way, we would
hopefully be able to resolve mathematically the oldest industrial problem in the world,
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and in so doing address the challenge set by Vardoulakis [Var] (Figure 1).
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Hydro-mechanics of porous and granular
material – Poro-elasticity and beyond

Holger Steeb

University of Stuttgart, Institute of Applied Mechanics (CE) &
SimTech, Pfaffenwaldring 7, D-70569 Stuttgart, Germany

We review classical linear poro-elasticity and discuss in detail kinematical assump-
tions, constitutive relations, and the derivation of field equations. It will be pointed
out that for an isotropic homogeneous porous material, Biot’s poro-elastic constitu-
tive equations include three elastic bulk moduli and one shear modulus. The elastic
constitutive equations are complemented by Darcy’s equation resulting from a lin-
ear assumption for the (viscous) momentum exchange. It is shown how the resulting
boundary value problem could be numerically solved, e.g. by means of Finite Element
Methods for various application problems in geomechanics and geophysics. Further,
the quasi-static poro-elastic equations are subsequently extended towards Biot’s set
of equations describing acoustic waves in porous media. We discuss how effective
material properties of heterogeneous porous materials distinguish from properties of
homogeneous media and present various typical examples of heterogeneities in ge-
omechanical and geophysical applications.

1 Introduction

1.1 The matter of scales

The physical behaviour of porous and granular media can be (and is) observed, mod-
elled and numerically simulated on various length (and time) scales. On geological
length scales (km), hydro-mechanical coupling in (fractured) hydro-carbon or geother-
mal reservoirs could lead to phenomena like the well-known Noordbergum effect also
denoted as an inverse pumping effect [Rod89]. Inherent structural properties of the
reservoir rock on the investigated length scale, like single fractures or fracture net-
works, have to be resolved in a discrete way in order to study the above mentioned
phenomenon. Significantly smaller details, like heterogeneities on the meter scale
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are geometrically not resolved in such investigations. Small scale properties are in-
cluded through an inherently made homogenization step and enter into the simula-
tions as effective material properties. On that scale hydro-mechanical coupling ef-
fects could be well desribed by coupled continuum models like (linear) quasi-static
poro-elasticity [Bio41]. Samples with characteristic lengths in the range of 10 cm -
1 m, often found in laboratory investigations of soils/rocks or engineered geostruc-
tures, involve more detailed morphological features. Again, continuum approaches,
like poro-elasticity [Wan00, Che16, Ver10] and models based on continuum mixture
theory [Tru57, Cou10, Ehl02a] are numerically implemented and used in simulations.
On the basis of advanced image-based characterization tools, like X-Ray Computed
Tomography (XRCT), Magnetic Resonance Imaging (MRI), Neutron Tomography
(NT) etc, pore-scale resolved investigations and simulations are getting more and more
popular. Digital Rock Physics (DRP), with resolution on the µm scale [KLM+09] is
a rapidely evolving discipline where effective physical properties like elastic mod-
uli, acoustic wave velocities, intrinsic permeability, electric or thermal conductivity
etc. are numerically calculated on the basis of voxel-based µXRCT scans of the pore
space [SEKS11]. Thus, the morphology of the pore space of a typical reservoir rock
or of a granular packing of poly-disperse particles is inherently taken into account in
simulations. Obviously, this leads to additional demands on simulations tools which
will be briefly mentioned for the calculation of two physical properties:
Effective intrinsic permeability: The effective hydraulical properties of granular or
porous media can be numerically obtained by Direct Numerical Simulations (DNS) of
fluid flow through the pore space of the porous medium. In DRP, the (complex) pore
geometry is described by the post-processed (segmented) voxel data set of the XRCT
scan. On the basis of a binarized data set which consists of a) pore space and b) skele-
ton, computationally demanding flow simulations on the basis of a voxel (cartesian)
grid are performed. Often, this leads to 3-dim simulations for grids with more then
10003 voxels [YMP+15], cf. Stokes simulations in Fig. 1. If we are interested in
the (scalar) intrinsic permeability of a sample, i.e. if the velocities in the pore space
are small and “creeping flow” conditions can be assumed which is related to small
Reynolds numbers1 Re � 1, the flow behaviour can be predicted by Lattice Boltz-
man simulations or by solving the stationary Stokes equations with Finite Differences,
Finite Element or Finite Volume Methods [YMP+15, OURS15]. The effective intrin-
sic permeability ks of the numerically investigated domain is then calculated from
the mean volume fluxes and the effective pressure loss. Obviously, this technique is
very similar to an experimental permeability test in the laboratory. Compared to (all-
ways necessary) experimental investigations, one benefit of DNS simulations based
on XRCT data is the possibility to perform a series of tests with modified boundary
conditions or to avaluate all fluid flow components. This information could be used
for instance to investigate the amount of anisotropy and, if anisotropy is relaevant, to
calculate the diagonal and off-diagonal components of a permeability tensor and its

1Here we use a “multiscale” definition of the Reynolds number. Re := viscous forces / inertia forces
= (ρfR0 ‖w‖ r)/ηfR. ρfR0 is the effective density of the fluid in the initial state, ‖w‖ is the mean bulk
velocity, r is a microscopic length scale (grain or particle size), and ηfR is the effective dynamic viscosity
of the fluid.
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Figure 1: Pore morphology of a highly porous volcanic rock (reticulite) and velocity
magnitudes numerically obtained by high-resolution Stokes simulations from µXRCT
data.

principal axis.
Elastic properties based on coarse-grained granular media: Discrete Elements Meth-
ods (DEM) are one of the most prominent numerical methods taking into account the
“discrete” phenomena of particle-particle interactions [CS79] in a granular medium.
Thus, load- or deformation-dependent local properties of granular packings like “force-
chains” are implicitely taken into account in numerical DEM simulations. Addition-
ally, the non-linear evolution of the granular pore morphology, caused e.g. by local
shear banding, is taken into account by DEM simulations. Unfortunately, due to the
numerical expense of discrete methods, coarse graining of “realistic” (polydisperse)
particle morphologies is often necessary in a pre-processing step. Pore scale resolved
DNS simulations of fluid flow or mechanical DEM investigations are only two exam-
ples of numerical simulations which are taking the discrete or pore structure of porous
media into account. They could give us an insight into the governing physical pro-
cesses on the small (pore) scale and could provide effective material properties which
could be used in subsequent continuum scale investigations.
Porous materials which are fully saturated with a viscous pore fluid can be effec-
tively described on that continuum scale with the theory of poro-elasticity. Histor-
ically, two-phase poro-elastic theories are tracing back to the seminal work of Karl
von Terzaghi [Ter43] establishing the (linear) theory of consolidation and the gener-
alization launched by Maurice Anthony Biot for the quasi-static case [Bio41] and the
case of acoustic waves in porous media [Bio56a, Bio56b]. In the textbook of Reint
de Boer [dB00] one can find a detailed historical discussion about poro-elastic mod-
elling including the tragic dispute of Paul Fillunger and Karl von Terzaghi. It was
Clifford Truesdell [Tru57] who generalized the concepts of so-called super-imposed
continua (and therefore also poro-elastic media) introducing the concept of continuum
mixture theory which was in the last decades further developed and especially adopted
for specific (e.g. non-linear) applications in porous media by de Boer [dB00], Ehlers
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[Ehl02a] and Coussy [Cou95, Cou04].
In the following sections we discuss linear (quasi-static) poro-elasticity in the ex-
tended form of Biot [Bio41]. In these fields, various review articles and books have
been published in the last decades. Only a part of them should be mentioned here:
[RC76, ZSK86, K9̈1, DC93, Wan00, Ver10, Leh11, RS15, Che16, Mer16, SR19] and
[Zim91, Chapter 7.].

The paper is organized as follows: In the next section a brief summary of the basic
concepts of poro-elasticity will be given. We mainly focus on basic assumptions and
their consequences related to kinematics, balance relations, and constitutive assump-
tions. After introducing the set of governing partial differential equations of quasi-
static linear poro-elasticity we extend the model towards the description of acoustic
waves. The paper is closed with a discussion of heterogeneities in porous media, their
physical consequences, and some applications.

2 Linear quasi-static poro-elasticity

From a modelling point of view, the theory of poro-elasticity is a based on the concepts
of superimposed continua. Thus, at the material point P(x, t) (beeing the smallest
mathematical object or pint in a continuum formulation) the fluid phase and the solid
constituent co-exist. Like other well-established continuum theories (cf. the Lamé-
Navier equations for Hookean elastic solids or the Navier-Stokes equations for New-
tonian fluids) poro-elasticity describes processes on a macroscopical scale. In such
classical continuum model approaches, all microscopical details are only taken into
account in in a coarse grained or homogenized (smeared-out) approach. One imma-
nent consequence of that modelling concept is sketched in Fig. 2. We observe that
details of the pore morphology of a porous medium which are for instance the mor-
phological details of the pores or the pore throats are disregared. In poro-elasticity
only porosity, i.e. the (averaged) volume occupied by the fluid phase in a Representa-
tive Volume Element (RVE) is taken into account. Here, a RVE is a well-defined unit
volume which is assumed to be large enough to capture quantities like e.g. porosity or
the volume occuped by solid particles (Fig. 2).

2.1 Concepts, assumptions, definitions and some notations

On the poro-elastic modelling scale (i.e. the continuum scale) the REV is the smallest
modelling unit, called the “material point” P(x, t) where all the local properties like
local volume dv, volume occupied by the solid phase dvs and the fluid phase dvf,
respectively as well as local mass dms of the solid and the fluid phase dmf are at-
tached. Thus, the local mass and volume elements are uniquely split into their phase
contribution

dm = dms + dmf and dv = dvs + dvf. (1)
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Obviously, the material point and therefore the volume elements can also be evaluated
at initial time t = t0. In this reference state, we denote the volume elements as
dv(x, t0) =: dv0, dvs(x, t0) =: dvs0 and dvf(x, t0) =: dvf0. From this geometrical
consideration, we could define field variables on the continuum scale (note that field
variables are locally defined and therefore functions of the current position vector x
and time t). Porosity is such a field variable which is denoted by Coussy [Cou04, p. 5]
as Eulerian porosity2 nf(x, t)

nf :=
dvf

dv
=

dv − dvs

dv
. (2)

It’s a (non-linear) Eulerian quantity as the current volume of the fluid phase dvf is
related to the current volume element dv. Similar, a Lagrangian porosity φ(x, t) could
be introduced. Note that (in contrast to the Eulerian porosity), φ is a linear measure
where only the numerator is evolving in time

φ :=
dvf

dv0
=

dv − dvs

dv0
with φ0 =

dvf0
dv0

. (3)

Here, the current volume of the fluid phase dvf is related to the volume element dv0 in
it’s reference configuration. Have in mind that in linear poro-elasticity the Lagrangian
and the Eulerian porosities are identical if the reference state is strain-free which can
be shown by a formal mathematical linearization step of the Eulerian porosity

lin(nf) = φ. (4)

Consequently, we define further field variables like the effective densities ρsR, ρfR,
the partial densities ρs, ρf and the density of the biphasic mixture ρ

ρsR :=
dms

dvs
and ρfR :=

dmf

dvf
, (5)

ρs :=
dms

dv
and ρf :=

dmf

dv
, (6)

ρ :=
dm

dv
. (7)

These quantities can also be evaluated in the reference configuration at time t0. Fol-
lowing the notation introduced earlier, these initial quantities will be denoted with a
subscript (e.g. for the effective density of the fluid ρfR(x, t0) =: ρfR0 ). If the pore
space is saturated with more then one pore fluid, this set of variables and their nota-
tions could be extended in a straightforward sense.

2In continuum mixture theory, this concept could be generalized by introducing the so-called volume
fractions nα for each constituent ϕα with nα := dvα/dv. We easily observe that a saturation condition∑
α n

α ≡ 1, is fulfilled cf. [Cou04, Ehl02b]. Here, we restrict ourselves to biphasic media, thus we could
imit ourselves to one volume fraction nf ≡ φ.
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Figure 2: The concept of superimposed continua and the properties of constitruents
on the macroscopical scale.

2.2 Kinematics

The displacement of the porous body (skeleton) is described by the displacement vec-
tor us.3. Further, we introduce velocities and accelerations denoted by vs, vf and
as, af. Note that we restrict ourselves here to a linear theory, thus all time derivatives
(“dot” derivatives) are understood as partial derivates 4:

üs = v̇s = as and üf = v̇f = af. (8)

A relative or seepage velocity could be introduce as wf = vf − vs. From the solid
displacement we are able to introduce the solid strains as the symmetric part of the
displacement gradients

εs =
1

2

(
gradus + gradT us

)
. (9)

Further, we know that each (symmetric) second order tensor could be split into a
deviatoric and a volumetric part expressing shear and volumetrical deformations, re-
spectively

εs = dev(εs) + vol(εs) =: γs + es I, (10)

where I = δij ei⊗ej is the second order unity tensor (identity map with a = I ·a) and
δij is the so-called Kronecker delta with properties δij ≡ 1 for i = j and δij ≡ 0 for
i 6= j. It should be noted (details in [SR19, Cou04]) that the linear volumetrical strain

3Here, we use the following notation for subscripts and superscripts: Kinematical quantities have sub-
scripts (−)s,f while all other non-kinematical quantities will be denoted with superscripts (−)s,f, cf. details
in [Ehl02b]

4In continua, the so-called material time derivative of a vectorial field variable Ψα in a mixture is given
by (Ψα)′α = ∂tΨ + gradΨ · vα. The first term is denoted as (linear) local or partial time derivative
while the 2nd term is a convective (non-linear) term which vanishes in linear models.
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Figure 3: Partial motion function of the fluid and the solid constituent in a poro-elastic
medium.

of the solid skeleton es and the one of the fluid phase eg could also be interpreted with
the previously introduced volume elements5

es =
dv − dv0

dv0
and ef =

dvf − dvf0

dvf0
. (11)

A further (linear) “relative” kinematical measure ζ, denoted as the increment of fluid
content and introduced by Biot and Willis [BW57], can be defined as

ζ = φ0 (es − ef). (12)

Please note that, besides the definition of the increment of fluid content given in (12),
we are able to find alternative definitions in the literature, e.g. [Wan00, RC76], which
is leading sometimes to notational confusion.

A simple example: In order to highlight the concept of “deformations” in poro-
elasticity, we discuss the following example sketched in Fig. 5. We assume that the

5These linear strain measures can be obtained from the linearized map of volume elements classically
introduced in continuum mechanics (for mixtures). Here we should have in mind, that the skeleton volume
elements are mapped from the initial configuration to the current configuration with the Jacobian of the
solid phase, i.e. dv = Js dv0 with detFs =: Js while the bulk volumes of the fluid phase are mapped
with the Jacobian of the fluid, i.e. dvf = Jf dv

f
0 and detFf =: Jf. The Jacobian Js links the Eulerian

with the Lagrangian porosity through φ = Js nf. Further, the linearized Jacobian [SR19] is given by
lin(Js) = es + 1 = divus + 1.
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dv0 dv

undeformed configuration at t = t0 deformed configuration at t > t0

consolidation test

us

1

Figure 4: Consolidation test and skeleton deformations

sample is fully undrained and undergoes (elastic) hydrostatic loading, i.e. shear de-
formations are zero and only volumetrical deformations can be observed. Thus, we
could apply the volumetric strain measures introduced in Eqs. 11. Furthermore, we
assume that the observed state of deformation (at time t) is homogeneous. Thus, the
macroscopically “observable” strains of the skeleton and the volumetrical deformation
of the fluid phase (at all fluid volumes in the pores) should be identical. It is shown,
that the introduced strain definitions lead exactly to this result:

es =
dv − dv0

dv0
=

1/2 dv0 − dv0

dv0
= −1

2
,

and

ef =
dvf − dvf0

dvf0
=

1/3 dv − 1/3 dv0

1/3 dv0
=

dv − dv0

dv0
= −1

2

Note that in this experiment we do not allow for any local fluid flow (assumption of
homogeneity). Thus the fluid increment is also zero, ζ ≡ 0. �

2.3 Balance of mass

For the solid and the fluid constituents composing the poro-elastic body B, we could
formulate the global conservation of mass for the constituents composing the body as

Ms =

∫

B
ρs dv =Ms

0 = const. and Mf =

∫

B
ρf dv =Mf

0 = const.. (13)
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Figure 5: Homogeneous deformation of an undrained (with infinitesimal small vol-
ume) poro-elastic sample.

Applying “standard” arguments of continuum mechanics, details can be found in any
textbook of continuum mechanics like [Hau00], we finally obtain the local form of the
balance of mass of she solid constituent which can be expressed as

∂t(n
s ρsR) + div(ns ρsR vs) = 0, (14)

or
ns ∂t(ρ

sR) + ρsR ∂t(n
s) + ns ρ

sR divvs + vs · grad(ns ρsR) = 0. (15)

We should have in mind that Eqs. (14) and (15) include non-linear terms (volume
fractions, effective densities and velocities are field functions evolving in time). Thus,
the partial balance of mass (15) has to be re-formulated (linearized) in order to apply
it in linear poro-elasticity. After the formal linarization step of equation (15) around
the initial state (t = t0), details can be found in [SR19], we obtain the linearized form
of the mass balance (Note again: convective terms are vanishing; the “dot” derivative
is identical to the partial time derivative “∂t”)

ns0 ρ̇
sR + ρsR0 ṅs + ns0 ρ

sR
0 ės = 0. (16)

The mass balance of the solid (16) could also be re-arranged and expressed with re-
spect to porosity change

φ̇ = (1− φ0)
ρ̇sR

ρsR
+ (1− φ0) ės. (17)
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Without showing further details, a similar results could be obtained for the mass bal-
ance of the fluid

φ̇ = −φ0
ρ̇fR

ρfR
− φ0 ėf. (18)

Eqs. (17) and (18) could be time-integrated. These resulting equations are interesting
as they are stating that the field variable porosity φ(x, t) can be replaced by two other
field variables. In the following sections, after introducing constitutive equations, we
will come back to these equations and derive an expression for porosity as a function
of volumetric deformation of the solid and the fluid constituent [SR19]

φ = φ(ρsR, es) = 2φ0 − 1 + (1− φ0)

(
ρsR

ρsR0
+ es

)
, (19)

φ = φ(ρfR, ef) = 2φ0 − φ0
(
ρfR

ρfR0
+ ef

)
. (20)

2.4 Balance of momentum

The second set of balance equations which have to be discussed in linear poro-elasticity
is the set of balances of (linear) momentum. We restrict our discussion to an absolut
minimum and refer to excellent contributions [dB05, Ehl02b, SH09, Cou10] for de-
tailed derivations. One important result from the partial balances of moment of mo-
mentum is the symmetry of Cauchy’s stress tensor of the solid phase σs ≡ σs,T (or in
index notation for the tensor components: σs

ij = σs
ji). The symmetry condition is also

valid for the total stress tensor of the mixture, i.e. σ ≡ σT . For the further discussion,
it is convenient to split the (partial) stress tensor of the solid phase additively into a
volumetric and a deviatoric part

σs = vol(σs) + dev(σs) =
1

3
tr(σs) I + dev(σs) := ss I + τ s. (21)

Note that the shear stress term of the fluid constituent is assumed to be zero τ f = 0 (in
classical linear poro-elasticity viscous shear stresses of the fluid phases are assumed
to vanish [HG87]). Thus, the partial stress tensor of the fluid phase is only composed
by the pore pressure p, i.e. σf = sf I = −p I. The total stress tensor σ = σs + σf of
the mixture is split into the total mean stress σM = ss + sf and the shear stresses of
the solid phase

σ = (ss + sf) I + τ s =: σM I + τ . (22)

The global balance of momentum for the solid constituent for linear poro-elasticity
states that the momentum J s is changed by the sum of the body forces Fs

B, contact

forces Fs
∂B, and interaction forces P̂s

= −P̂f
as

∂

∂t
(J s) = Fs

B + Fs
∂B + P̂s

, (23)
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or in local form
ρs as − divσs = ρs b− p̂f. (24)

Here, ρs b are the body force densities and p̂f is the local momentum interaction term,
i.e. the hydro-mechanical momentum interaction action between the fluid and the solid
phase. Later we observe, that we need constitutive equations for the stress tensor σs

and the momentum interaction p̂f in order to close the set of equations. Additionally,
we obtain the local form of the balance of momentum for the fluid as

ρf af + div(φ p I) = ρf b + p̂f (25)

2.5 Constitutive equations

The boundary value problem of linear poro-elasticity can be formulated when the
model is well-posed. Thus we need as many equations as we have unknowns. This
is achieved by formulating constitutive equations for the equilibrium and the non-
equilibrium case. Equilibrium in this sense is defined as the case when the fluid is at
rest, i.e. when the relative velocities wf (and pore pressure gradients) are vanishing.
In the non-equilibrium case, a non-zero viscous momentum interaction term exists
p̂f
neq 6= 0. This state is characterized by the fact that the porous medium is may be

consolidated or pressure diffusion effects occur. Energy is dissipated by the viscous
momentum interaction.

In this section, we do not discuss a thermodynamically rigorous derivation of the
equilibrium and non-equilibrium contributions of the constitutive equations. To do so,
the structure of constitutive equations have to be obtained by an evaluation procedure
of the entropy inequality following the formalism proposed by Coleman-Noll or Liu-
Müller, cf. details and examples in [Ehl02b, SH09]. Here, the results of a formal
evaluation procedure is shortly summarized. Specific details related to poro-elasticity
can be found in [RS15, SR19].

2.5.1 Equilibrium: fluid phase

In linear poro-elasticity the pore fluid is assumed to be a linear barotropic fluid. Thus,
for every material pointP , the pore pressure p(x, t) is a linear function of the effective
fluid density ρfR(x, t)

p ∝ ρfR or p = Kf

(
ρfR

ρfR0
− 1

)
. (26)

Note that Kf is the bulk modulus of the fluid.
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2.5.2 Equilibrium: solid phase

In the equilibrium case, a linear poro-elastic material could be understood as a simple
elastic composite material. The solid skeleton has a shear and a volumetric stiffness,
respectively while the fluid phase has only a volumetric stiffness. Like for standard
elastic materials, the shear stiffness of the skeleton is taken into account by the shear
modulusG. In Eq. 26 we have allready introduced the bulk modulus of the fluid which
takes into account the volumetric stiffness of the fluid. What remains is a discussion
of the volumetric stiffness of the solid constituent. Let us assume for the beginning
that the material composing the solid skeleton is incompressible ρsR = ρsR0 and,
additionally, the pore space is “empty” (or under vacuum). If we would conduct a
volumtric deformation experiment for that case, we could measure the skeleton stiff-
ness. The related bulk modulus will be introduced as Ks. Besides the assumption of
an incompressible pore fluid expressed by ρfR = ρfR0 exactly this incompressibility
constraint (or assumption) was made in the consolidation theory of Terzaghi [Ter43].
Biot [Bio41] neither assumes an incompressible pore fluid nor an incompressible ma-
terial which is composing the porous skeleton. Thus, he introduced one additional
bulk modulus Ks for the solid material composing the skeleton (it could be under-
stood as the bulk modulus of single particles in case of porous granular media). These
assumptions are the basic differences between linear (quasi-static) poro-elastic theo-
ries of Biot and Terzaghi.

In the following we sketch the basic modelling ideas of Biot’s linear poro-elasticity
and show the special case of Terzaghi. From the thermodynamical evaluation (not
shown) of the entropy inequality, one knows that the total deviatoric and volumetric
stresses and the pore pressure could be obtained from thermodynamical potentials.
Here, we use the strain energy function W = W (γs, es, ζ) which is a function of
the (chosen set of) governing kinematical process variables as the thermodynamical
potential [Sme92, Wan00, Che16, SR19]. Thus we get

τ =
∂W

∂γs

, σM =
∂W

∂es
, p =

∂W

∂ζ
. (27)

It should be noted that the chosen set of process variables here is only one possible
choice out of a many other possible ones. Other combinations of process variables
lead to similar constitutive relations. However, the inherent material parameters will
become different to the one introduced in Eq. (28). Constitutively, these dynamic
variables are well described if the strain energy function is specified. The most gen-
eral formulation of a strain energy function leading to a (material) linear model is a
quadratic function in its arguments. This yields

W = dev(W ) + vol(W ) = Gγs : γs +
1

2
Ku e

2
s − αM es ζ +

1

2
M ζ2. (28)

We observe that linear poro-elasticity is governed by four elastic parameters here in-
troduced asM = (G, Ku, α, M). By means of “Gedankenexperimente”, these pa-
rameters can be expressed as functions of other elastic parameters, e.g. the experimen-
tally observable and well defined parameters M̃ = (G, K, Ks, Kf). Such relations
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can be often found in the literature e.g. [Wan00, MMD09, Che16, SR19] as a start-
ing point. For the (scalar) volumetric quantities, the “stress-strain” relations can be
summarized in a symmetric matrix-like notation

[
σM

p

]
=

[
Ku −αM
−αM M

] [
es
ζ

]
, (29)

or [
σM

ζ

]
=

[
Ku − αM −α

α 1/M

] [
es
p

]
. (30)

It should be noted that an effective stress principle can be observed in Eq. (30)

σM = (Ku − αM) es − αp =: σM,s
E − αp. (31)

This is an important concept of linear poro-elasticity stating that a weighted balance
of mean stress and fluid pressure is loading the solid skeleton and causes volumtric
deformation. The weighting factor is the Biot-Willis parameter with 0 ≤ α ≤ 1. Note
that Eq. (31) includes Terzaghi’s effective stress principle [Ter43] as a special case
for α ≡ 1. Thus, in Terzaghi’s consolidation poro-elastic theory the weighting factor
can not be “adjusted” to the volumetric stiffness of the solid constituent. Additionally,
we have introduced here the undrained bulk modulus Ku which is also denoted as
the Gassmann modulus [Gas51]. The Gassmann modulus could be obtained by a
volumetric experiment under undrained conditions

Ku =
∂σM

∂es

∣∣∣∣∣
ζ=0

. (32)

Further, α is the so-called Biot-Willis parameter and obtained

α =
∂ζ

∂es

∣∣∣∣∣
p=const.

. (33)

The storage modulus M is the inverse of the specific storage capacity ses under con-
stant volumetric deformation of the solid skeleton and can be obtained via

1

M
= ses =

∂ζ

∂p

∣∣∣∣∣
es=const.

. (34)

The mentioned relations to the bulk moduli K, Ks, Kf are given by

α = 1− K

Ks
, Ku = K + α2M,

1

M
=
φ0

Kf
+
α− φ0
Ks

. (35)

If we regard Terzaghi’s consolidation theory as a special case of Biot’s model, we
could observe that in Terzaghi incompressible limit given by Kf →∞ and Kf →∞
these moduli are reducing to

α̃ = 1, K̃u =∞, 1

M̃
= 0. (36)
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In Eq. (36) we observe that one of these parameters (here the undrained bulk modulus
K̃u) is not defined while a second one (1/M̃) is zero. Thus, the number of elastic
parameters is reduced to only two, which are are the shear modulus G and e.g. the
(dry) bulk modulus of the solid skeleton K.

2.5.3 Non-equilibrium

Introducing the partial balance of momentum of the solid and the fluid phase, we have
mentioned that we need constitutive relations for the viscous momentum interaction
term introduced as p̂f = −p̂s. This dynamic variable is split into an equilibrium and
a non-equilibrium term

p̂f = p̂f
eq + p̂f

neq, (37)

with

p̂f
eq = p gradφ and p̂f

neq = −φ
2
0 γ

fR
0

kf
wf = −φ

2
0 η

fR

ks
wf. (38)

In Eq. (38) we have introduced the effective weight of the fluid γfR0 with unit [N/m3],
the effective dynamic viscosity ηfR with unit [Pa s], the hydraulic conductivity or
Darcy permeability kf with unit [m/s], and the intrinsic permeability kf with units
[m2] or Darcy [D]. After formulating the constitutive relation for the momentum in-
teraction, we could insert this equation (38) into the local balance of momentum of the
fluid phase (25) and derive the well-known Darcy relation for the “quasi-static” case
(inertia forces ρf af ≡ 0)

grad p = −φ0 γ
fR
0

kf
wf + ρfR b = −φ0 η

fR

ks
wf + ρfR b. (39)

Obviously, Darcy’s relation expresses the proportionality between the pore pressure
gradient and the seepage velocity. Is has to be remarked, that any extended, e.g. non-
linear, relation between pore pressure gradient and seepage velocity has to be formally
derived through a re-formulation of the constitutive equation (38) and not of (39). One
prominent example is the non-linear Forchheimer relation which could be obtained by
adding a quadratic term β |wf|wf to the linear seepage term in the non-equilibrium
momentum exchange (38). Obviously, the additional constitutive “material” parame-
ter β needs to be determined by higher Re-number experiments.

2.6 The poro-elastic boundary value problem

The set of linear PDEs in Table 1 are formulated in the primary variables {us, p} (note
that the effective stress σs

E = σ + αp I is a function of the solid strains εs which are
itself calculated from the gradients of us). It consists of the quasi-static form of the
balance of momentum of the mixture and the quasi-static balance of momentum of the
fluid phase Eq. (25). For a detailed derivation we refer to [RS15, SR19]. The {us, p}-
formulation can be efficiently solved by numerical techniques like the Finite Element
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Biot’s model Terzaghi’s model

equations in the domain, i.e., ∀x ∈ B

−div (σs
E − αp I) = ρb −div (σs

E − p I) = ρb

ṗ

M
− kf

γfR
div grad p+ α divvs = 0 − kf

γfR
div grad p+ divvs = 0

boundary conditions, i.e. ∀x ∈ ∂B

us = ūs on Γs
D

p = p̄ on Γf
D

σ · n = t̄ on Γs
N

wf · n = w̄f on Γf
N

Table 1: The set of governing Partial Differential Equations (PDEs) of consolidation
for Biot’s [Bio41] and Terzaghi’s [Ter43] formulation of poro-elasticity, cf. [RS15].
We have not inserted the stress tensor σ = σs

E−αp I = 2Gγs +(Ku−αM) es I−
αp I.

Method (FEM). Therefore, the strong form of the equations in Table 1 are multiplied
with a test function and integrated in the domain B (and integration by parts) in the
sense of standard Bubnov-Galerkin approaches. In order to fulfill necessary mathe-
matical conditions for the solution of the mixed set of equations (the LBB condition),
special discrete function spaces have to be chosen for the shape/test functions. The
so-called Taylor-Hood element [Bra97] with quadratic shape functions for the dis-
placements us,h and linear shape functions for the pressure ph is one possible choice
out of many others more sophisticated ones. Further details about Finite Elements for
poro-elastic problems could be found in [ZCP+99].

3 Acoustic waves in linear poro-elasticity

In two seminal contributions by Maurice Biot [Bio56a, Bio56b], linear poro-elasticity
was extended towards acoustic wave propagation. In contrast to quasi-static linear
poro-elasticity the additional contribution takes into account the effect of inertia forces
ρs as and ρf af in the partial balances of linear momentum, cf. Eqs. (24) and (25).
One of the major physical effects which are proposed by Biot’s set of coupled PDEs is
the existence of two dispersive, i.e. frequency-dependent compressional waves (also
called longitudinal- or P-waves) and one frequency-dependent shear wave (also de-
noted as transversal- or S-wave). Within an artificial porous sample made out of sin-
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tered glass beads, Plona discovered the existence of the 2nd P-wave (the slow wave or
Biot’s wave) at ultrasound frequencies and, therefore, experimentally validated Biot’s
theoretical proposal around 25 years later [Plo80]. Further, Biot [Bio56a, Bio56b] ex-
tended the contribution of inertia forces in order to include the effect of tortuosity (or
“added mass”) with densities ρij , cf. Eqs. (43). Additionally, Biot was distinguish-
ing physical effects occuring in the “lower” and the “higher” frequency domain (he
even split his 1956 papers in a low and a high frequency part). In the lower frequency
domain, the velocity profile of the fluid constituent within the pores is assumed to be
parabolic, i.e. it is dominated by viscous momentum interaction (a “viscous boundary
layer”). Above a transition frequency (in the higher frequency domain), the velocity
profile of the fluid is more and more dominated by inertia forces and deviates from a
parabolic shape. Biot took that effect into account making the momentum interaction
frequency dependent. According to the introduced (non-equilibrium part of the) mo-
mentum interaction in Eq. (38), this could be achieved by making the coefficient (e.g.
the Darcy permeability kf or the intrinsic permeability ks) frequency dependent.

3.1 Governing set of equations

In order to derive the governing equations for acoustic waves in poro-elastic media,
we first take into account the inertia forces (acceleration terms) in the partial balances
of momentum (24) and (25). As a result, which is in contrast to the quasi-static field
equations of poro-elasticity, the governing set of PDEs is now given by the partial
balances of momentum. Inerting the derived constitutive equations in Eqs. (24) and
(25) we observe, that both equations are now becoming wave equations (with 2nd
order derivatives in time plus 2nd order derivatives in space) plus a diffusive/dispersive
part which is taking into account the viscous momentum intercation between the fluid
and the solid phase. For the mathematical formulation of the coupled set of PDEs,
we prefer a compact notation which was introduced in [Kel97, Sme05, Ste10]. The
drawback of that compact notation is that we have to introduce another set of material
parameters which could of course be related to the material parameters introduced
in the previous section. An extensive discussion about waves in poro-elastic media,
including effects and detailed derivations, is given in excellent textbooks of [Sto89,
BCZ87, AA09, Car01, MMD09] and others. Here, we present mainly the resulting
equations here and skip (important) technical details:

ρ11 üs + ρ12 üf + b0 F (u̇s − u̇f) = N div gradus + (A+N) grad divus

+Q grad divuf,

ρ12 üs + ρ22 üf − b0 F (u̇s − u̇f) = Q grad divus +R grad divuf.

(40)
Various “new” coefficients have been introduced here and need to be discussed in
further details. We will be able to observe that all the coefficients could be linked to
material parameters introduced in the previous section or phenomena which are newly
introduced. First, a viscous damping factor b0 = ηfR φ20/k

s have been introduced. An
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additional frequency-dependent pre-factor F (ω) appears in the term of the viscous
momentum interaction

F =

√
1 +

1

2
iM ω/ωr. (41)

As allready mentioned, that term takes into account the macroscopical effect of the
frequency dependency of the shape of the velocity profile of the fluid, i.e. the fre-
quency dependent fluid-solid coupling. Here, we use the original notation introduced
in [JKD87] with the shape factor M , usually taken as M ≈ 1, and the critical (or
roll-over / transition) frequency ωcrit.

ωcrit =
ηfR φ0

α∞ ρfR ks
. (42)

We observe that the critical frequency ωcrit (physical unit [1/s]) is a material prop-
erty of the porous medium and separates the low- from the high-frequency domain.
In the lower frequency domain, the coupling between the fluid and the solid phase is
purely viscous and dominated by the viscous skin depth. This results for ideal (e.g.
cylindrical) pores in a parabolic velocity profile. In contrast, inertia becomes more
and more dominant for higher frequencies above the critical one. The shape of the ve-
locity profile become “more-and-more” non-parabolic [KS12]. As a consequence the
introduction of effective material properties, like a dynamic or frequency-dependent
intrinsic permeability was proposed by [JKD87]. Here, the tortuosity α∞ is expressed
by its extreme high frequency limit (ω 7→ ∞), cf. Kelder [Kel97]. An additional
physical consequence of the tortuous pore structure are added mass effects which are
captured by the introduced densities

ρ11 = (1− φ0) ρsR − ρ12, (43)
ρ12 = (1− α∞)φ0 ρ

fR, (44)
ρ22 = α∞ φ0 ρ

fR. (45)

According to Berryman [Ber80], the morphological and material-dependent tortuosity
can be geometrically estimated as

α∞ = 1− r(1− 1/φ0), with r = 1/2. (46)

The parameters A, Q, R, and P introduced in the field equations (40) are related
to the parameter of “quasi-static” poro-elasticity introduced in the previous section
[BW57, Gas51]:

N = G, (47)
A = K − 2N/3 +Kf(1− φ0 −K/Ks)2/φR0 , (48)
Q = φ0K

f(1− φ0 −K/Ks)/φR0 , (49)
R = φ20K

f/φR0 , (50)
P = A+ 2N. (51)

In Eqs. (48)-(50) we have additionally introduced the so-called effective porosity φR0
with φR0 = φ0 +Kf/Ks(1− φ0 −K/Ks). Having discussed modelling aspects and
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the notation of the field equations (40), we could discuss in the next step the frequency
dependent properties of these equations.

3.2 Dispersion relations

3.2.1 Shear waves

Using a classical harmonic ansatz for the displacement fields (technical details can be
found in [Ste10]), we end up in the dispersion relation for transversal wave modes, i.e.
shear waves or S-waves. Here, we present the dispersion relation for the wave number
squared (ξ = k2), where k(ω) is the complex wave number

ξ =
ρ̃11 ρ̃22 − ρ̃212

N ρ̃22
. (52)

For notational purposes, it is convinient to introduce the frequency-dependent densi-
ties

ρ̃12 = ρ12 + i b0 F/ω, (53)
ρ̃11 = ρ11 − i b0 F/ω, (54)
ρ̃22 = ρ22 − i b0 F/ω. (55)

3.2.2 Compressional waves

The dispersion relation for compressional waves, i.e. P-waves, have two physical
solutions. Using again the wave number squared introduced as ξ, we get

ξ1,2 =
∆±

√
∆2 − 4 (P R−Q2)(ρ̃11 ρ̃22 − ρ̃12 ρ̃12)

2 (P R−Q2)
, (56)

where we have introduced ∆ = P ρ̃22 +R ρ̃11 −Q ρ̃12.

For a typical reservoir sandstone (Berea, [Wan00, Table C.1]), we plot now the frequen-
cy-dependent phase velocities as well as the intrinsic attenuation captured by the so-
called quality factor. The inverse quality factor is defined as 1/Q = 2 |Im(k)/Re(k)|.
The phase velocity is calculated from the real part of the complex wave number
c = 1/Re(k). For the calculation of the disprsive wave properties we use the ma-
terial data listed in Table 2 supplemented by the effective density of the solid skeleton
ρfR0 = 2650 kg/m3 and the effective density of the fluid phase ρfR0 = 1000 kg/m3.
We did not take into account tortuosity effects (α∞ = 1) and did not apply any fre-
quency correction (F = 1). In Fig. 6 we show the typical behaviour of shear waves
in a porous medium. The phase velocities are only “slightly” dispersive. Thus, devia-
tions from the low-frequency limit of the shear wave velocities given by vs =

√
N/ρ

are small. Also the predicted intrinsic attenuation 1/Q of shear wave is small. The
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Figure 6: Left: Phase velocity cs of shear wave as function of frequency. Right: In-
trinsic attenuation of shear wave 1/Q as function of frequency. Phase velocity is nor-
malized by the low-frequency limit of vs =

√
N/ρ with ρ = ρs − ρf. The frequency

domain is normalized with the critical (roll-over) frequency ωcrit, cf. Eq. (42).

maximum attenuation is observed at the transition from the low to the high frequency
domain predicted by ωcrit. Besides the low frequency limit of shear waves we also
observe that a high frequency limit is predicted by Biot’s equations.
We do not show phase velocitiy and attenuation curves for the 1st and the 2nd P-wave.
Especially the 2nd P-wave is strongly frequency-dependent. In the low frequency
regime ω < ωcrit, it is a diffusive ‘wave” mode while for ω > ωcrit travelling waves
could be observed. Not that even in the low frequency range, the 2nd P-wave is highly
attenuated. For ω →∞, the phase velocity is reaching again a high frequency limit.

3.3 Discussion

Discussing the intrinsic attenuation depicted with the inverse quality factor 1/Q for
S- and P-waves, we observe that attenuation in porous media predicted by a (homo-
geneous) poro-elastic model is small for seismic frequencies of around ω ≈ 100 1/s
or lower, cf. Fig. 7. This is in contrast to field observations where a significant higher
amount of attenuation is observed [MMD09]. What is obviously neglected in the
present discussion of attenuation in poro-elastic media is the allways inherent hetero-
geneity of geological structures like faults, sedimentary layers etc. If a wave is hitting
the interface of two layers with different material properties, part of the wave is re-
flected and part of the wave is transmitted. For highly dispersive wave modes, such as
the 2nd P-wave, this leads to a significant internal loss of energy.
To be more precise, the inherent attenuation mechanism in poro-elasticity is most pro-
nounced around the critical frequency which is in the MHz-regime, cf. the comparison
in Fig. 7 or the models discussed in the Rock Physics Handbook [MMD09]. Thus, in
order to model attenuation in porous media in a more realistic way, we have to take
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Figure 7: Attenuation/dissipation in fluid-saturated granular rocks, modified after
[MMD09]. The critical frequency is evaulated based on typical material properties
(e.g. {ηfR, ks}) of reservoir rocks. Have in mind that these critical parameters in
general depend also on characteristic length scales (e.g. L).

heterogeneities in our models or simulations implicitely or explicitely into account. In
the last years, various scientific approaches have been published for the investigation
of that topic, especially in a geopyhsical context. In the following section, we are
aiming to give a short insight into some approaches concentrating on effects on the
seismic frequency range where the 2nd wave mode is diffusive and inertia effects play
a minor role regarding effective properties of the porous media.

4 The role of heterogeneities - observations and conse-
quences

4.1 Consolidation again

Let us first discuss a configuration which could be understood as a prototype prob-
lem of a heterogeneous poro-elastic medium. We could call it a setup of internal
or local “consolidation”. In the geopyhsical context such problems are also denoted
as patchy-saturation, interlayer flow, or meso-scopic loss depending on the choice of
inherent material properties and configurations. In contrast to Terzaghi’s [Ter43] orig-
inal formulation of consolidation, we apply the quasi-static poro-elastic equations of

162 Hydro-mechanics of porous and granular material - Poroelasticity and beyond

ALERT Doctoral School 2019



Biot [Bio41] introduced in the previous sections. Inertia terms are neglected. Note that
also for Biots’s [Bio41] formulation an analytical solution exists for the homogenous
consolidation test which could be used to validate numerical (FEM) implementations,
e.g. [Ver10]. The Boundary Value Problem (BVP) is depicted in Fig. 8. On the left and
in the middle, Terzaghi‘s classical consolidation problem is sketched. In that classical
1-dim consolidation formulation, the poro-elastic domain is assumed to be homoge-
neous. Thus, at all material points P(x, t), the introduced material parameters used
in linear poro-elasticity are identical. Through the choice of the boundary conditions
(the sample is loaded with a total surface force (t = t̄) acting on the solid skeleton
and the fluid phase) including a drained boundary (p̄ = 0) condition, the pore fluid
is “squeezed out” of the sample. Viscous dissipation (“intrinsic attenuation” in terms
of acoustics) occurs. It is caused by the viscous momentum interaction between the
pore fluid and the solid skeleton. In the right sketch of Fig. 8, we slightly modified
the consolidation problem. Compared to the orgiginal BVP (Fig. 8, middle), we have
chosen undrained boundary conditions (w̄f = 0) at the top and the bottom of the sam-
ple. Further, we assumed that the upper half of the sample has material properties (A)
while the lower part has properties (B). Obviously, this makes the problem heteroge-
neous. If this sample is loaded, the deformation field, and thus also the pressure field
according to the effective stress principle, is heterogeneous for t < t∞. The pressure
gradients lead to fluid flow and, therefore again, dissipation (“intrinsic attenuation”)
occurs. Not that this would not happen if the sample would be homogeneous (com-
pare the discussed homogeneous “Gedankenexperiment” in the previous section). In
Fig. 12 we show a set of numerical solutions for the heterogeneous boundary value
problem of “internal consoldation”. Basically, we depict the numerical solution for
the solid displacement components in vertical direction u ≡ us, the pore pressure
p, the fluxes q = φ0 wf (with vertical component of the seepage velocity wf), the
total and the effective stress components in vertical direction (σy and σEy ) and an ef-
fective (locally determined) pseudo Skempton coefficient B?. It could be observed
that shortly after applying the vertical load (which is applied in one single step as a
Heaviside function) at time t0, the pore pressure gradients have a maximum value at
the material interface. Thus, viscous momentum interaction (and flow) is also maxi-
mized. If time is elapsing (e.g. for t1 and t2), the pore pressure gradients are spatially
smeared out and are decreasing; the fluxes are getting smaller and attenuation is also
getting lower. At time t3 we are close to a new equilibrium state p̂neq ≈ 0; the
pressure gradients and the fluid fluxes are vanishing. Note that we are able to calcu-
late local material properties which are, due to the evolving response of the material
(e.g. p(x, t)), effective material properties which are also time dependent quantities.
Often, these effective material properties are calculated for a heterogeneous unit cell
which is representative for the considered medium. Such unit cell are denoted as
Representative Volume Elements or RVEs. Still, the obtainable material properties
are effective, i.e. time-dependent quantities which are sometimes transformed to the
frequency domain by means of a FFT. A detailed discussion, about geopyhsical appli-
cations, configurations and various numerical solutions schmemes could be found e.g.
in [QSFS11, QSF+12, QCHS19].
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BA BA
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BA

heterogeneous “internal” consolidation testclassical consolidation test

1Figure 8: The homogeneous and the heterogeneous (internal) consolidation test.

K Ks Kf G φ γfR ηfR ks

BA 8.0 GPa 36.0 GPa 2.2 GPa 6.0 GPa 0.19 9.81 kN/m3 1 mPas 160 mD

BB 1.6 GPa 7.2 GPa 2.2 GPa 1.2 GPa 0.19 9.81 kN/m3 1 mPas 32 mD

Table 2: Material parameters used in the heterogeneous consolidation problem, cf.
Figs. 8 and 12. A is the top/bottom part of the sample; B is the middle part.

4.2 More heterogeneities

It should be noted here, that various types of heterogeneities are found in porous ma-
terials. In the previous paragraph, we basically discuss the effect of layered media.
Often the pore morphology is inherent heterogeneous two. Micro- or meso-fractures
and/or pores exists leading potentially to local pore pressure gradients if the material
is mechanically loaded (or if a wave is passing through). Especially a physical-based
understanding of the role of fractures on all kind of scales on effective material proper-
ties (like phase velocities/attenuation) is of great interest for geomaterials like porous
reservoir rocks. We do not discuss any distinct physical problem in detail here but aim
to show some fundamental effects caused by fractures.
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Figure 9: Prototype problem of two intersecting fractures in a porous matrix. Here, the
boundary value problem consists of vertically and horizontally undrained boundaries
conditions. The problem is vertically loaded with a total force t̄.

4.3 Hydro-mechanics of fractures

In Fig. 9 we show a simple configuration of two intersecting fractures in a porous
medium. Intersected fractures often occur in geothermal or petroleum applications,
e.g. in crystalline or sedimentary rocks after a hydraulic stimulation process. If the
stress state of such a configuration is disturbed, e.g. by a passing P-wave or a mechan-
ical load as depicted in the sketch, pore pressure gradients are invoked. Interestingely,
two superimposed physical effects could be observed which are caused by the hy-
drodynamical interaction of the fluid-filled fractures and the fluid-saturated porous
matrix. Due to the deformation of the fracture, pressure gradients in direction of the
fractures are evolving. Thus, pressure diffusion in direction of the fractures could be
observed, cf. bold blue arrows in Fig. 9. This diffusion process is fast and the charac-
teristic diffusion time of the process is characteried by the length scale and effective
hydro-mechanical properties of the system. A typical characteristic frequency could
be numerically determined by solving an appropriate quasi-static poro-elastic bound-
ary value problem and transfering the result to frequency domain. In Fig. 10, the blue
curve is the characteristic attenuation response of pressure diffusion within the frac-
ture. On top of pressure diffusion within the fracture, we could also observe pressure
gradients perpendicular to the fracture-matrix interfaces. These pressure gradient are
the driving forces for a slower (smaller frequencies) leak-off process which is sketched
with the red curves in Fig. 10. Obviously, in such fractured systems both physical pro-
cesses occur simultaniously leading to attenuation with two characteristic frequency
peaks (dashed cruve), cf. details in [VRS14]. More complex hydro-mechanical cou-
pled scenarios like porous media with inherent fracture networks could be studied in
order to investigate the effect of heterogeneous fracture distributions on effective prop-
erties in further detail, cf. the 2-dim fracture network shown in Fig. 11. Efficient nu-
merical solutions schemes for such complex fracture networks are still challenging. If
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Figure 10: Attenuation in intersecting fractures embedded in a porous matrix, after
[VRS14].

Finite Element Methods are applied, one reason for the complexity is meshing of high
aspect ratio fractures. Therefore more sophisticated numerical schemes have been de-
veloped for such problems. One promising solution strategy is the use of an hybrid
dimensional discretization approach. Therein, the 2-dim matrix is discretizized by 2-
dim elements while the fractures are embedded 1-dim objects. Even weak-coupling
schemes between the 1- and the 2-dim elements can then be applied allowing for very
efficient non-conformal FE meshes [SS19]
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(and thus leak-off) are dominating.
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ular assemblies. Géotechnique, 29:47–65, 1979.

[dB00] R. de Boer. Theory of porous media. Springer-Verlag, Berlin, 2000.

[dB05] R. de Boer. Trends in Continuum Mechanics of Porous Media. Springer-
Verlag, Berlin, 2005.

[DC93] E. Detournay and A. H.-D. Cheng. Fundamentals of poroelasticity. In
C. Fairhurst, editor, Comprehensive Rock Engineering: Principles, Prac-
tice and Projects, Analysis and Design Method, volume 2, chapter 5,
pages 113–171. Pergamon Press, 1993.

[Ehl02a] W. Ehlers. Foundations of multiphasic and porous materials. In W. Ehlers
and J. Bluhm, editors, Porous Media: Theory, Experiments and Numeri-
cal Applications, pages 3–86. Springer-Verlag, Berlin, 2002.

[Ehl02b] W. Ehlers. Foundations of multiphasic and porous materials. In W. Ehlers
and J. Bluhm, editors, Theory, Experiments and Numerical Applications.
Springer, 2002.
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Figure 12: Numerical result of the internal or heterogeneous (internal) consolidation
test depicted in Fig. 8. Here we use the material parameters for Berea sandstone
[Wan00].
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