30<sup>th</sup> ALERT Doctoral School, The legacy of Ioannis Vardoulakis to Geomechanics Aussois FR, 02-04 October 2019

## **Petroleum Geomechanics**

### BOREHOLE STABILITY DURING DRILLING SOLIDS PRODUCTION

Prof. Euripides Papamichos

Aristotle University of Thessaloniki, Greece, <u>epapamic@civil.auth.gr</u> SINTEF Petroleum Research, Trondheim, Norway, <u>euripides.papamichos@sintef.no</u>



ALERT School 2006: Geomechanical and Structural Issues in Energy Production

# Sand-production and sand internal erosion: Continuum modeling

**Ioannis Vardoulakis NTUA** 



### **Recommended textbook**

*Fjær et al (2008). Petroleum related rock* mechanics. Developments in petroleum science 53, 2<sup>nd</sup> ed, Elsevier.

**DEVELOPMENTS IN** PETROLEUM SCIENCE

### PETROLEUM RELATED **ROCK MECHANICS 2ND EDITION**

E. FJÆR, R.M. HOLT, P. HORSRUD, A.M. RAAEN & R. RISNES





#### 11<sup>th</sup> Alert Olek Zienkiewicz course



#### Petroleum Geomechanics

28-31 October 2019 Ecole des Ponts ParisTech, France

#### *Register at:*

https://11alertozcourse.sciencesconf.org/







ParisTech

ARISTOTLE UNIVERSITY OF THESSALONIKI

#### 28-31 October 2019 **Ecole des Ponts ParisTech, France**





11alertozcourse.sciencesconf.org

11<sup>th</sup> Alert Olek Zienkiewicz course



**Reservoir** geology Yves Leroy, Total, France

In-situ stresses and their determination Arne M. Raaen, Sintef, Norway

Mechanical behaviour of porous rocks Siavash Ghabezloo, Ecole des Ponts ParisTech, France

**Drilling Mechanics and Completion Technologies** Panos Papanastasiou, University of Cyprus, Cyprus

Analytical solutions for poro-elastic reservoirs Yves Leroy, Total, France

Hydraulic fracturing and exploitation of unconventional reservoirs Panos Papanastasiou, University of Cyprus, Cyprus



Elastic wave propagation in rocks for log and seismic interpretation Rune Holt, Norwegian Univ. of Science and Technology, Norway

Borehole stresses and wellbore stability analysis Erling Fjær, Sintef, Norway

Sand/solids production Euripides Papamichos, Aristotle Univ. of Tessaloniki, Greece

Seismic monitoring of reservoir exploitation Patrick Rasolofosaon, IFP Energies Nouvelles, France



P. Rasolofos





















P. Papanastasiou

### Green....

- EGS Enhanced geothermal systems
- CCS Carbon Capture and storage/CO2 geological storage
- Waste disposal through injection into the ground
- Nuclear waste disposal underground depositories



### Drilling, stimulation and production of hydrocarbons





### Underground in situ stresses

- Three principal stresses and pore fluid pressure (pressure of fluid in the pores of the sedimentary rocks)
  - Sedimentary basins: Vertical stress  $\sigma_v$  is major principal stress
  - Areas of tectonic activity: Principal stresses can be rotated and often a horizontal stress is a major principal stress
  - Near surface: Stresses influenced by surface topology







### Stresses and faults

- Normal fault is typical
  - $\sigma_v > \sigma_H \ge \sigma_h \implies \text{dip} > 45^\circ (\sim 60^\circ)$
- Thrust fault in tectonic areas
  - $\sigma_H \ge \sigma_h > \sigma_v \implies \text{dip} < 45^\circ (\sim 30^\circ)$
  - E.g. Cuisiana field in Colombia (Andes)
- Strike-slip fault in tectonic areas
  - $\sigma_{\rm H} > \sigma_{\rm v} > \sigma_{\rm h} \implies {\rm dip} < 10^\circ$









### World Stress Map

- Administered GFZ Potsdam
- <u>www.world-stress-map.org</u>
- Ref: Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeß, D. and Müller, B., The World Stress Map database release 2008, doi:10.1594/GFZ.WSM.Rel2008, 2008
- Horizontal stress orientations
  - Hydraulic tests (LOT, XLOT)
  - Earthquake focal mechanisms





### Mechanical collapse of borehole

- Borehole drilled into the ground to reach the reservoir formation is exposed to the underground earth stresses
- During drilling, mud inside the borehole provides the support needed to avoid failure
- Mud is specially designed for each application with a certain specific weight







### Causes of borehole instability

| Causes of Wellbore Instability            |                                         |
|-------------------------------------------|-----------------------------------------|
| Uncontrollable (Natural) Factors          | Controllable Factors                    |
| Naturally Fractured or Faulted Formations | Bottom Hole Pressure (Mud Density)      |
| Tectonically Stressed Formations          | Well Inclination and Azimuth            |
| High In-situ Stresses                     | Transient Pore Pressures                |
| Mobile Formations                         | Physico/chemical Rock-Fluid Interaction |
| Unconsolidated Formations                 | Drill String Vibrations                 |
| Naturally Over-Pressured Shale Collapse   | Erosion                                 |
| Induced Over-Pressured Shale Collapse     | Temperature                             |

Pasic et al 2007



### **Natural factors**

- Naturally fractured formations
  - Broken formation plugs the well



Figure 1 Drilling through naturally fractured or faulted formations

- Tectonically stressed formations
- Borehole collapse
- High in situ stresses
  - Near salt domes
  - Near faults



Figure 2 Drilling through tectonically stressed formations



- Mobile formations
  - Formation behaves plastically

Unconsolidated formations



Figure 3 Drilling through mobile formations



Figure 4 Drilling through unconsolidated formations



- Over-pressured formations
  - Naturally
    - Under compaction
    - Up lift
  - Induced
    - Equilibrium with higher well pressure and lowering of well pressure



Figure 5 Drilling through a naturally over-pressured shale



### **Borehole Stability Problems**

- Tight hole / Stuck pipe incidents
  - Responsible for 5-10% of drilling time
  - Most frequently occurring in shale
  - Often high pore pressure and in presence of swelling clay minerals (e.g. smectite)
  - Often in deviated wells
- Lost circulation / Mud losses
  - May lead to kick / blow-out
  - Caused by fluid lost into natural fractures or by new generated fractures



Fig. 9.1. Stability problems during drilling (after Bradley, 1979; with permission from J



### Lost circulation / Mu

- Consequences
  - Operational problem
    - Costs of mud
    - Limited mud on rig
    - Possible pressure drop
  - Dangerous situation espe gas, a major safety issue (
  - Risk of life and equipmen
- Solutions
  - Overall well design i.e.
    - Casing program
    - Mud weight
    - Lost circulation material (LCM)

The Lucas Gusher at Spindletop Hill, TX, 1901



#### Deepwater Horizon, GOM, 2010



### **Borehole Stress Analysis**

- Stresses from elastic or elastoplastic analysis
- Drilling mud:
  - Prevent flow of pore fluid
  - Prevent hole failure
  - Transport drill cuttings to surface and cool drill-bit
- Mud pressure  $p_w$  is controlled by mud density  $\rho_w$

 $- p_w = \rho_w g D$ 

- Drilling language refers to mud weight in density units  $\rho_w$  (SG) and gradients of stress or pressure  $\rho_w g$  (MPa/km)
- Equivalent Circulating Density (ECD): Effective mud pressure is 5-10% higher than the static mud pressure (due to friction in the annulus during flow)



#### • Drilling of borehole

• Unloading at the hole  $\Rightarrow$  Stress redistribution  $\Rightarrow$  Failure at the hole?



- Stresses around a borehole essential for any borehole related problem
  - Drilling, production, hydraulic fracturing, water injection, waste disposal, CO<sub>2</sub> injection, etc.



### Stresses in cylindrical coordinates

- 3 normal stresses: Radial  $\sigma_r$ , tangential  $\sigma_{\theta}$  and axial  $\sigma_z$
- 3 shear stresses:  $\sigma_{r\theta}$  (or  $\tau_{r\theta}$ ),  $\sigma_{\theta z}$  (or  $\tau_{\theta z}$ ),  $\sigma_{rz}$  (or  $\tau_{rz}$ )

$$\sigma_r = \frac{1}{2}(\sigma_x + \sigma_y) + \frac{1}{2}(\sigma_x - \sigma_y)\cos 2\theta + \tau_{xy}\sin 2\theta$$
$$\sigma_\theta = \frac{1}{2}(\sigma_x + \sigma_y) - \frac{1}{2}(\sigma_x - \sigma_y)\cos 2\theta - \tau_{xy}\sin 2\theta$$
$$\sigma_z = \sigma_z$$
$$\tau_{r\theta} = \frac{1}{2}(\sigma_y - \sigma_x)\sin 2\theta + \tau_{xy}\cos 2\theta$$
$$\tau_{rz} = \tau_{xz}\cos \theta + \tau_{yz}\sin \theta$$
$$\tau_{\theta z} = \tau_{yz}\cos \theta - \tau_{xz}\sin \theta$$



Compression positive



### Strains in cylindrical coordinates

- 3 normal strains: Radial  $\varepsilon_r$ , tangential  $\varepsilon_{\theta}$  and axial  $\varepsilon_z$
- 3 shear strains:  $\varepsilon_{r\theta}$ ,  $\varepsilon_{\theta z}$ ,  $\varepsilon_{rz}$

$$\varepsilon_{r} = \frac{1}{2}(\varepsilon_{x} + \varepsilon_{y}) + \frac{1}{2}(\varepsilon_{x} - \varepsilon_{y})\cos 2\theta + \varepsilon_{xy}\sin 2\theta$$
  

$$\varepsilon_{\theta} = \frac{1}{2}(\varepsilon_{x} + \varepsilon_{y}) - \frac{1}{2}(\varepsilon_{x} - \varepsilon_{y})\cos 2\theta - \varepsilon_{xy}\sin 2\theta$$
  

$$\varepsilon_{z} = \varepsilon_{z}$$
  

$$\varepsilon_{r\theta} = \frac{1}{2}(\varepsilon_{y} - \varepsilon_{x})\sin 2\theta + \varepsilon_{xy}\cos 2\theta$$
  

$$\varepsilon_{\theta z} = \varepsilon_{yz}\cos \theta - \varepsilon_{zx}\sin \theta$$
  

$$\varepsilon_{zr} = \varepsilon_{xz}\cos \theta + \varepsilon_{yz}\sin \theta$$



### **Relations between strains and displacements**

- u (or u<sub>r</sub>) = radial displacement
- $\upsilon$  (or  $u_{\theta}$ ) = tangential displacement
- w (or u<sub>z</sub>) = axial displacement

$$\varepsilon_r = \frac{\partial u}{\partial r}$$
$$\varepsilon_\theta = \frac{u}{r} + \frac{1}{r} \frac{\partial v}{\partial \theta}$$
$$\varepsilon_z = \frac{\partial w}{\partial z}$$



$$\begin{split} & \varepsilon_{r\theta} = \frac{1}{2r} \left( \frac{\partial u_r}{\partial \theta} - u_{\theta} \right) + \frac{1}{2} \frac{\partial u_{\theta}}{\partial r} \\ & \varepsilon_{\theta z} = \frac{1}{2} \left( \frac{\partial u_z}{r \partial \theta} + \frac{\partial u_{\theta}}{\partial z} \right) \\ & \varepsilon_{zr} = \frac{1}{2} \left( \frac{\partial u_z}{\partial r} + \frac{\partial u_r}{\partial z} \right) \end{split}$$



### Linear thermo-poro-elasticity

- Stress-strain relations
  - For effective stresses  $\sigma'_{ij} = \sigma_{ij} \alpha p_f \delta_{ij}$
  - Compression positive

- Equilibrium equations
  - For total stresses  $\sigma_{ij}$

$$\begin{aligned} \sigma_r' &= \frac{E}{(1+\nu)(1-2\nu)} \Big[ (1-\nu)\varepsilon_r + \nu(\varepsilon_\theta + \varepsilon_z) \Big] + \frac{a_T E}{1-2\nu} (T-T_o) \\ \sigma_\theta' &= \frac{E}{(1+\nu)(1-2\nu)} \Big[ (1-\nu)\varepsilon_\theta + \nu(\varepsilon_r + \varepsilon_z) \Big] + \frac{a_T E}{1-2\nu} (T-T_o) \\ \sigma_z' &= \frac{E}{(1+\nu)(1-2\nu)} \Big[ (1-\nu)\varepsilon_z + \nu(\varepsilon_r + \varepsilon_\theta) \Big] + \frac{a_T E}{1-2\nu} (T-T_o) \\ \sigma_{r\theta} &= 2G\varepsilon_{r\theta} \\ \sigma_{\theta z} &= 2G\varepsilon_{\theta z} \\ \sigma_{zr} &= 2G\varepsilon_{zr} \end{aligned}$$

$$\frac{\partial \sigma_r}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{\theta r}}{\partial \theta} + \frac{\partial \sigma_{rz}}{\partial z} + \frac{\sigma_r - \sigma_{\theta}}{r} + f_r = 0$$
$$\frac{\partial \sigma_{r\theta}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{\theta}}{\partial \theta} + \frac{\partial \sigma_{\theta z}}{\partial z} + \frac{2\sigma_{r\theta}}{r} + f_{\theta} = 0$$
$$\frac{\partial \sigma_{rz}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{\theta z}}{\partial \theta} + \frac{\partial \sigma_z}{\partial z} + \frac{\sigma_{rz}}{r} + f_z = 0$$



### Axisymmetric problems

Examples

1. Drilling of a vertical borehole under isotropic in situ horizontal stresses



2. Hollow Cylinder (HC) test







### Hollow cylinder test with fluid flow

(Papamichos et al. 2001)

- Typical system (SINTEF Industry, Norway)
  - Specimen size:
     o.d. 10/20 cm, i.d. 2/5 cm
  - Isotropic confining stress up to 100 MPa
  - Oil / Water flow up to 4 L/min or 40 MPa fluid pressure
  - Gas flow
  - Temperature up to 80°C
  - Axial, internal and external diametrical deformations
  - Continuous sand production measurements
  - Radial permeability measurements





### Simplifications due to axisymmetry

• 
$$u_{\theta} = 0$$

• 
$$\sigma_{r\theta} = \sigma_{\theta z} = 0$$

 $\varepsilon_{r\theta} = \varepsilon_{\theta z} = 0$ 

$$\varepsilon_{r} = \frac{\partial u_{r}}{\partial r}, \qquad \varepsilon_{\theta} = \frac{u_{r}}{r}$$
$$\varepsilon_{z} = \frac{\partial u_{z}}{\partial z}, \qquad \varepsilon_{rz} = \frac{1}{2} \left( \frac{\partial u_{r}}{\partial z} + \frac{\partial u_{z}}{\partial r} \right)$$



• Equilibrium equations

$$\frac{\partial \sigma_r}{\partial r} + \frac{\partial \sigma_{rz}}{\partial z} + \frac{\sigma_r - \sigma_{\theta}}{r} + f_r = 0$$
$$\frac{\partial \sigma_{rz}}{\partial r} + \frac{\partial \sigma_z}{\partial z} + \frac{\sigma_{rz}}{r} + f_z = 0$$

Strains and stresses involved in the analysis of axisymmetric solids.



### further...

- Usually in our problems (drilling, HC, HF, ....)
- No shear :  $\sigma_{rz} = \varepsilon_{rz} = 0$
- Body forces due to gravity: e.g. in a vertical hole:  $f_r = 0, f_z = \rho g$ 
  - $\Rightarrow$  equilibrium equations decouple and can be solved independently

$$\frac{\partial \sigma_r}{\partial r} + \frac{\partial \varkappa_{r_z}}{\partial z} + \frac{\sigma_r - \sigma_{\theta}}{r} + \chi = 0 \qquad \implies \qquad \frac{\partial \sigma_r}{\partial r} + \frac{\sigma_r - \sigma_{\theta}}{r} = 0$$

$$\frac{\partial \varkappa_{r_z}}{\partial r} + \frac{\partial \sigma_z}{\partial z} + \frac{\varkappa_{r_z}}{r} + f_z = 0 \qquad \implies \qquad \frac{\partial \sigma_z}{\partial z} + \rho g = 0$$



### Elastic solution for HC problem

• Substitution of  $\sigma$  -  $\varepsilon$  and  $\varepsilon$  –  $u_r$  eqs in equilibrium eqs

$$\frac{\partial \sigma_r}{\partial r} + \frac{\sigma_r - \sigma_\theta}{r} = 0 \quad \Rightarrow \quad \frac{d^2 u_r}{dr^2} + \frac{1}{r} \frac{du_r}{dr} - \frac{u_r}{r^2} + \frac{\alpha}{E'} \frac{dp_f}{dr} = 0 \qquad \qquad E' = \frac{(1 - \nu)E}{(1 + \nu)(1 - 2\nu)}$$

- Two unknowns  $u_r$  and  $p_f$
- 1 additional equation is needed





### Continuity equation for the fluid in cylindrical coords

• In cylindrical coords

$$divq_{i} = \frac{\partial q_{r}}{\partial r} + \frac{q_{r}}{r} + \frac{1}{r}\frac{\partial q_{\theta}}{\partial \theta} + \frac{\partial q_{z}}{\partial z} = 0$$

- In axisymmetric problems  $q_{\theta} = 0$
- For radial flow only  $q_z = 0$
- Continuity eqn becomes

$$\frac{dq_r}{dr} + \frac{q_r}{r} = 0$$

- Direct integration gives
  - B.c.  $q_r(r=r_e) = q_{re}$

$$q_r = \frac{r_e}{r} q_{re}$$







### Fluid flux radial profile

• Normalized fluid flux  $q_r/q_{re}$  vs.  $r/r_i$ 

$$\frac{q_r}{q_{re}} = \frac{r_e}{r}$$

- And  $\frac{q_{ri}}{q_{re}} = \frac{r_e}{r_i}$
- Because the same volume of fluid has to pass through a smaller crosssection







### Solution for pore pressure $p_f$

- Darcy's law for fluid flow
  - *k* = permeability [D or m<sup>2</sup>]
  - $\eta$  = viscosity [cP or Pa·s]
- Continuity equation becomes
  - Constant k, η
  - B.c.

 $r\frac{dq_r}{dr} + q_r = 0 \implies r\frac{d^2p_f}{dr^2} + \frac{dp_f}{dr} = \frac{d}{dr}\left(r\frac{dp_f}{dr}\right) = 0$  $p_f\left(r = r_i\right) = p_{fi}, \qquad p_f\left(r = r_e\right) = p_{fe}$ 

 $q_r = -\frac{k}{n} \frac{dp_f}{dr}$ 

With solution

$$p_{f} = p_{fi} + (p_{fe} - p_{fi}) \frac{\ln r/r_{i}}{\ln r_{e}/r_{i}} = p_{fe} - (p_{fe} - p_{fi}) \frac{\ln r/r_{e}}{\ln r_{i}/r_{e}}$$



1 D = 0.9869233×10<sup>-12</sup> m<sup>2</sup> 1 cP = 10<sup>-3</sup> Pa·s

### Pore pressure radial profile

Normalized pore pressure vs. r/r<sub>i</sub>

$$\frac{p_f}{p_{fe} - p_{fi}} = \frac{p_{fi}}{p_{fe} - p_{fi}} + \frac{\ln r/r_i}{\ln r_e/r_i}$$

- Logarithmic profile
- Higher pore pressure drop is necessary to drive the same volume of fluid through a smaller crosssection
- Note: Independent of material properties



6

r/ri

1 0.9 0.8

0.7 0.6

0.5

0.4

0.3

0.2

0.1

0

0

2

Pore pressure pf / Apf [ - ]



10

8

### Elastic solution for HC problem

• Equilibrium eqn in terms of displacement  $u_r$ 

$$\frac{d^2 u_r}{dr^2} + \frac{1}{r} \frac{du_r}{\partial r} - \frac{u_r}{r^2} + \frac{\alpha}{E'} \frac{dp_f}{dr} = 0 \implies \frac{d}{dr} \left( \frac{du_r}{dr} + \frac{u_r}{r} \right) = \frac{d}{dr} \left[ \frac{1}{r} \frac{d}{dr} (ru_r) \right] = -\frac{\alpha}{E'} \frac{dp_f}{dr}$$

• Direct integration 2 times gives

$$u_{r} = c_{1}r + \frac{c_{2}}{r} - \frac{\alpha}{2E'} \left[ p_{fi} + \left( p_{fe} - p_{fi} \right) \frac{1 + 2\ln r/r_{i}}{2\ln r_{i}/r_{e}} \right] r$$

•  $c_1$  and  $c_2$  are integration constants to be solved from the b.c.

$$\sigma_r(r=r_i)=\sigma_{ri}, \qquad \sigma_r(r=r_e)=\sigma_{re}$$









### Elastic solution for HC problem

• Displacement  $u_r$  and strains  $\varepsilon_r$  and  $\varepsilon_{\theta}$ 

$$\varepsilon_{r} = \frac{1-2\nu}{2G} \left(\sigma_{ri} - \alpha p_{fi}\right) + \frac{\sigma_{re} - \sigma_{ri}}{2G} \frac{1-2\nu - r_{i}^{2}/r^{2}}{1-r_{i}^{2}/r_{e}^{2}} - \frac{p_{fe} - p_{fi}}{2G} \frac{\alpha(1-2\nu)}{2(1-\nu)} \left(\frac{1-2\nu - r_{i}^{2}/r^{2}}{1-r_{i}^{2}/r_{e}^{2}} + \frac{\ln r_{i}/r - \nu}{\ln r_{i}/r_{e}}\right) - \nu\varepsilon_{z}$$

$$\varepsilon_{\theta} = \frac{u_{r}}{r} = \frac{1-2\nu}{2G} \left(\sigma_{ri} - \alpha p_{fi}\right) + \frac{\sigma_{re} - \sigma_{ri}}{2G} \frac{1-2\nu + r_{i}^{2}/r^{2}}{1-r_{i}^{2}/r_{e}^{2}} - \frac{p_{fe} - p_{fi}}{2G} \frac{\alpha(1-2\nu)}{2(1-\nu)} \left(\frac{1-2\nu + r_{i}^{2}/r^{2}}{1-r_{i}^{2}/r_{e}^{2}} + \frac{\ln r_{i}/r + 1-\nu}{\ln r_{i}/r_{e}}\right) - \nu\varepsilon_{z}$$

• Stresses  $\sigma_r$ ,  $\sigma_{\theta}$ ,  $\sigma_z$ 

$$\begin{aligned} \sigma_{r} &= \sigma_{ri} + \left(\sigma_{re} - \sigma_{ri}\right) \frac{1 - r_{i}^{2}/r^{2}}{1 - r_{i}^{2}/r_{e}^{2}} - \left(p_{fe} - p_{fi}\right) \frac{\alpha(1 - 2\nu)}{2(1 - \nu)} \left(\frac{1 - r_{i}^{2}/r^{2}}{1 - r_{i}^{2}/r_{e}^{2}} - \frac{\ln r_{i}/r}{\ln r_{i}/r_{e}}\right) \\ \sigma_{\theta} &= \sigma_{ri} + \left(\sigma_{re} - \sigma_{ri}\right) \frac{1 + r_{i}^{2}/r^{2}}{1 - r_{i}^{2}/r_{e}^{2}} - \left(p_{fe} - p_{fi}\right) \frac{\alpha(1 - 2\nu)}{2(1 - \nu)} \left(\frac{1 + r_{i}^{2}/r^{2}}{1 - r_{i}^{2}/r_{e}^{2}} + \frac{1 - \ln r_{i}/r}{\ln r_{i}/r_{e}}\right) \\ \sigma_{z} &= \nu \left(\sigma_{r} + \sigma_{\theta}\right) + \alpha \left(1 - 2\nu\right) p_{f} + E\varepsilon_{z} = \\ &= 2\nu\sigma_{ri} + \alpha \left(1 - 2\nu\right) p_{fi} + \left(\sigma_{re} - \sigma_{ri}\right) \frac{2\nu}{1 - r_{i}^{2}/r_{e}^{2}} - \left(p_{fe} - p_{fi}\right) \frac{\alpha(1 - 2\nu)}{2(1 - \nu)} \left(\frac{2\nu}{1 - r_{i}^{2}/r_{e}^{2}} + \frac{\nu - 2\ln r_{i}/r}{\ln r_{i}/r_{e}}\right) + E\varepsilon_{z} \end{aligned}$$



### Borehole problem (drilling in balance)

- Example: Vertical well, reservoir section, drilling in balance  $(p_w = p_{fm})$
- INITIAL STATE = In situ stresses  $\sigma_v$ ,  $\sigma_H = \sigma_h$  and formation pressure  $\rho_{fm}$ 
  - $\sigma_z = \sigma_v$
  - $\sigma_{re} = \sigma_{ri} = \sigma_H = \sigma_h$
  - $p_{fe} = p_{fi} = p_{fm}$
- After DRILLING
  - $\varepsilon_z = 0 \qquad \qquad \Rightarrow \quad \Delta \varepsilon_z = 0$
  - $\sigma_{re} = \sigma_H = \sigma_h \implies \Delta \sigma_{re} = 0$
  - $p_{fe} = p_{fm} \implies \Delta p_{fe} = 0$
  - $\sigma_{ri} = \rho_w = \rho_{fm}$
- $\Rightarrow \Delta \sigma_{ri} = \rho_{fm} \sigma_H < 0$
- $p_{fi} = p_w = p_{fm} \implies \Delta p_{fi} = 0$





### Borehole problem (production)

- **During PRODUCTION** 
  - $\varepsilon_{z} = 0 \implies \Delta \varepsilon_{z} = 0$
  - $\sigma_{re} = \sigma_H = \sigma_h \implies \Delta \sigma_{re} = 0$
  - $\sigma_{ri} = \rho_w \implies \Delta \sigma_{ri} = \rho_w \rho_{fm} < 0$

  - $p_{fe} = p_{fm} \implies \Delta p_{fe} = 0$   $p_{fi} = p_w \implies \Delta p_{fi} = p_w p_{fm} < 0$



- NOTE on b.c. at well:
  - Permeable wall :  $\sigma_{ri} = \rho_{fi} = \rho_w$
  - Impermeable wall:  $\sigma_{ri} = \rho_w$ ,  $p_{fi} = \rho_{fm}$
- Equations for HC are still valid for stress and pore pressure changes
  - FINAL stresses are found by adding:
    - Initial stresses + Stress changes (drilling) + Stress changes (production) + Etc.
  - Super-position principle applies

### In situ stresses and pore pressure

- Total vertical stress gradient = 20.3 MPa/km
  - From integration of density log
- Total horizontal stress gradient = 17.6 MPa/km
  - From closure stress of initial part of fracturing stimulations
- Pore pressure gradient = 16.1 MPa/km

| Table 1: Valhall Field, pertinent data sheet               |              |
|------------------------------------------------------------|--------------|
| Discovery                                                  | 1975         |
| First Production                                           | October 1982 |
| Water depth, (m)                                           | 69           |
| Reservoir depth, (m)                                       | 2400-2600    |
| Initial Reservoir Pressure (psi)                           | 6550         |
| Reservoir Temperature (deg C)                              | 90           |
| Oil gravity, (API)                                         | 36           |
| Oil viscosity, (cp)                                        | 0.40         |
| Original oil-in-place, (MM stb)                            | 2600         |
| Cumulative oil production jan 2003,                        | 472          |
| MM stb)                                                    |              |
| Average thickness, (m)                                     | 25           |
| Matrix Permeability range, (mD)                            | 1-10         |
| Total Permeability range, (mD)                             | 1-300        |
| Connate water saturation, (%)                              | 5            |
| Porosity, (%)                                              | 35-50        |
| Bubble point pressure, (psi)                               | 3000-4000    |
| Solution GOR (scf/stb)                                     | 800-1400     |
| Rock Compressibility (10 <sup>-6</sup> psi <sup>-1</sup> ) | 10-100       |



Figure 8. Plot of total vertical stress, total minimum horizontal stress and pore pressure versus depth for chalk reservoirs in the Valhall Field before production.


#### Valhall field North Sea

| Material propert                 | ties    |       |
|----------------------------------|---------|-------|
| Young's modulus [MPa]            | E =     | 5500  |
| Poisson's ratio [ - ]            | nu =    | 0.15  |
| Biot's eff. stress coeff. [ - ]  | alfa =  | 1     |
| Geometry                         |         |       |
| Internal radius [m]              | ri =    | 0.1   |
| External radius [m]              | re =    | 100   |
| Initial stresses + pore pressure |         |       |
| Radial stress [MPa]              | SigRo = | -43.1 |
| Axial stress [MPa]               | SigZo = | -49.7 |
| Pore pressure [MPa]              | pfo =   | 39.4  |

 $\Delta \epsilon_z = 0$ 

σ<sub>H</sub>

 $\mathbf{p}_{res}$ 

 $\sigma_{\rm H}$ 

 $\sigma_{v}$ 

σ<sub>Η</sub>

| Final stresses + pore pressure |         |       |  |
|--------------------------------|---------|-------|--|
| Internal radial stress [MPa]   | SigRi = | -29.4 |  |
| External radial stress [MPa]   | SigRe = | -43.1 |  |
| Internal pore pressure [MPa]   | pfi =   | 29.4  |  |
| External pore pressure [MPa]   | pfe =   | 39.4  |  |

#### Production



| Final stresses + pore pressure |         |       |  |
|--------------------------------|---------|-------|--|
| Internal radial stress [MPa]   | SigRi = | -39.4 |  |
| External radial stress [MPa]   | SigRe = | -43.1 |  |
| Internal pore pressure [MPa]   | pfi =   | 39.4  |  |
| External pore pressure [MPa]   | pfe =   | 39.4  |  |

# Drilling (no flow)



r [m]

 $\sigma_v + \Delta \sigma_v$ 

 $\mathbf{p}_{res}$ 

 $\sigma_{\rm H}$ 

σ<sub>ri</sub> p<sub>w</sub>

#### Effects of temperature changes

- Temperatures at the well may differ from formation temperatures, e.g. during
  - Drilling: Drilling mud may be cooler than formation
  - Hydraulic fracturing: Injected fluid is cooler
  - Water injection for pressure maintenance: Injected fluid is cooler
  - CO<sub>2</sub> or waste injection: Injected fluid is cooler
- Cooling causes shrinkage of the formation and lower compressive stresses
- Heat flows through
  - Conduction
  - Convection (heat carried by the flowing fluid)



#### Anisotropic lateral loading

#### Superposition of

- 1. Isotropic loading  $\sigma_{re}$ ,  $\sigma_{ri}$  + pore pressure  $p_{fe}$ ,  $p_{fi}$  + axial strain  $\varepsilon_z$
- 2. Anisotropic loading  $\sigma_{Re}$   $\sigma_{re}$  ,  $\sigma_{ri} = p_{fe} = p_{fi} = \varepsilon_z = 0$
- 3. (Eventually temperature loading  $\Delta T_e$ ,  $\Delta T_i$  w/ again boundary stresses and pore pressures and vertical strain = 0)





## Coordinate systems for deviated (inclined) wells

- 1. H-, h-, v-axes Cartesian coordinate system of in situ stresses
- 2. x-, y-, z-axes Cartesian coordinate system of a deviated wellbore
  - *z*-axis points along the axis of the hole
  - *x*-axis points towards the lowermost radial direction of the hole
  - y-axis is horizontal
  - For vertical hole: x-axis points towards the direction of the major horizontal stress  $\sigma_{H}$
- 3. Polar coordinate system (r,  $\theta$ , z) associated with the wellbore
  - *z*-axis along the axis of the hole
  - *r*-axis along the *x*-axis
  - Angle  $\theta$  is measured anticlockwise from the *r*-axis







## **Deviated wellbore**

#### Drilling and production =

- = coordinate transform +
- + superposition of 2 plane strain loadings
- 1. Coordinate transform to well coordinate system
- Make radial and shear stresses at wellbore = 0 (solution by *Hiramatsu and Oka* 1962, 1968)
- 3. Make radial stress at wellbore =  $\sigma_{ri} = \rho_w$
- 4. If permeable wellbore, make pore pressure at well  $p_{fi} = p_w$  (else  $p_f$  remains  $p_{fm}$ )
- 5. (Eventually cooling of the wellbore)

Hiramatsu Y, Oka Y (1962). Stress around a shaft or level excavated in ground with a three-dimensional stress state. Mem. Fac. Eng. Kyotu Univ. 24, 56–76.
Hiramatsu Y, Oka Y (1968). Determination of the stress in rock unaffected by boreholes or drifts, from measured strains or deformations. Intl J Rock Mechanics Mining Science 5, 337–353.





### Poro-elastic time dependent effects

- Time effects because pore pressure changes are transient, i.e. not immediate but take time to reach steady-state conditions
  - Relevant for low permeability formations
    - Shales, Chalks
- Poro-elastic time dependent effects
  - Pore pressure change due to production or invasion of wellbore fluid
    - If wellbore is sealed then no pore pressure changes (e.g. filter cake during drilling)
  - Pore pressure change due to volumetric strain as a result of changes in applied stress
    - C.f. Terzaghi's consolidation problem
- Paper by Detournay E, Cheng AHD (1988). Poroelastic response of a borehole in a non-hydrostatic stress field. Intl J Rock Mechanics Mining Sciences & Geomechanics Abstracts 25, 171–182.
- Detournay E, Cheng AHD (1993). Fundamentals of poroelasticity. Chapter 5 in Comprehensive Rock Engineering: Principles, Practice and Projects, Vol. II, Analysis and Design Method, ed. C Fairhurst, Pergamon Press, 113-171.



## Solution of transient problems

- No analytical solutions
  - Numerical methods
  - Laplace transforms



#### **Borehole Stress Analysis**

1. Stresses at vertical <u>impermeable</u> borehole wall (based on linearly elastic rock and <u>isotropic</u> horizontal stresses): Case <u>a</u>:  $\sigma_a > \sigma_z > \sigma_z$ 





#### **Borehole Stress Analysis**





#### **M-C** failure criterion

- Borehole stresses + Mohr-Coulomb failure criterion  $\Rightarrow$
- Minimum permitted well pressure to prevent shear failure at borehole wall (hole collapse)







### Borehole shear failure – Complete set of solutions

| Case | $\sigma_1 \geq \sigma_2 \geq \sigma_3$         | Borehole failure occurs if                                                                                                                      |                            | - / <u>· e</u> /                            |
|------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------|
| a    | $\sigma_{\theta} \geq \sigma_z \geq \sigma_r$  | $p_{\rm w} \leq p_{\rm f} + \frac{2(\sigma_{\rm h} - p_{\rm f}) - C_0}{1 + \tan^2 \beta}$                                                       | $p_{\rm w}/\sigma_{\rm v}$ | Le mit                                      |
| b    | $\sigma_z \geq \sigma_\theta \geq \sigma_r$    | $p_{\mathbf{w}} \le p_{\mathbf{f}} + \frac{\sigma_{\mathbf{v}} - p_{\mathbf{f}} - C_0}{\tan^2 \beta}$                                           |                            |                                             |
| с    | $\sigma_z \geq \sigma_\tau \geq \sigma_\theta$ | $p_{\mathbf{w}} \ge p_{\mathbf{f}} + 2(\sigma_{\mathbf{h}} - p_{\mathbf{f}}) - \frac{\sigma_{\mathbf{v}} - p_{\mathbf{f}} - C_0}{\tan^2 \beta}$ | 1.                         | $\sigma_r = \sigma_z$ Horizontal fracturing |
| d    | $\sigma_r \geq \sigma_z \geq \sigma_\theta$    | $p_{\rm w} \ge p_{\rm f} + \frac{2(\sigma_{\rm h} - p_{\rm f})\tan^2\beta + C_0}{1 + \tan^2\beta}$                                              |                            | c a                                         |
| е    | $\sigma_r \geq \sigma_\theta \geq \sigma_z$    | $p_{\rm w} \ge p_{\rm f} + (\sigma_{\rm v} - p_{\rm f}) \tan^2 \beta + C_0$                                                                     |                            | 6 <sup>4</sup> 6 <sup>4</sup>               |
| f    | $\sigma_\theta \geq \sigma_\tau \geq \sigma_z$ | $p_{\mathrm{w}} \leq p_{\mathrm{f}} + 2(\sigma_{\mathrm{h}} - p_{\mathrm{f}}) - (\sigma_{\mathrm{v}} - p_{\mathrm{f}}) \tan^2 \beta - C_0$      | 0                          | $\sigma_{\rm h}/\sigma_{\rm v}$             |



#### Borehole shear failure modes

• Maury and Guenot 1987

May use cavings shape to diagnose failure mechanism





#### Borehole Failure Analysis – Tensile failure

May occur at <u>low</u> well pressure (underbalanced drilling <u>p<sub>w</sub> < p<sub>fm</sub>):</u>



wall



10

 $\sigma_h \rightarrow$ 

9

8

r/R

#### Borehole Failure Analysis – Tensile failure

May occur at <u>high</u> well pressure (hydraulic fracturing):

$$\sigma'_{\theta} = -T_s \qquad \Rightarrow \qquad p^{frac}_{w,\max} = 2\sigma_h - p_{fm} + T_s$$





## Tensile failure types

| Failure type                                                                           | Geometry and Orientation                                                                                                                                                                                                              | Figure               |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| <b>Tensile Failure Cylindrical</b><br>σ <sub>r</sub> ≤-T <sub>o</sub>                  | This failure is concentric with<br>the borehole. A low mud weight<br>would favor the failure due to the<br>magnitude of $\sigma_r$ being lower.                                                                                       | Radial<br>stress     |
|                                                                                        |                                                                                                                                                                                                                                       |                      |
| <b>Not likely in</b><br><b>Tensile Failure Horizontal</b><br>$\sigma_a \leq -T_o$      | <b>vertical wells</b><br>This failure creates horizontal<br>fractures.                                                                                                                                                                | Axial<br>stress      |
| Tensile Failure Vertical $\boldsymbol{\sigma}_t\!\leq\!\boldsymbol{-}\boldsymbol{T_o}$ | This failure creates a vertical<br>fracture parallel with the<br>maximum horizontal stress<br>direction. This is because, this<br>orientation is the tangential stress<br>has to overcome the smallest<br>formation tensile strength. | Tangential<br>stress |



#### The Mud Weight Window

- Minimum mud weight
  - Hole collapse in shale (shear failure case (a) or (b))
  - Radial tensile failure in shale
  - Pore pressure (in case underbalanced drilling is prohibited)
- Maximum mud weight
  - $-\sigma_h$  (minimum horizontal stress) in case of preexisting natural fractures
  - Fracturing of borehole wall



#### or

$$p_{w,\min}^{(b)} = \frac{\sigma_v - UCS + (m-1)p_{fm}}{m}$$

$$p_{w,\min}^{rad,tens} = p_{fm} - T_s$$

$$p_{w,\min}^{underbal} = p_{fm}$$

$$p_{w,\max}^{existfrac} = \sigma_h$$

$$p_{w,\max}^{frac} = 2\sigma_h - p_{fm} + T_s$$



### Effect of mud weight and safe mud window



Hawkes and McLellan 1997



#### Vertical borehole in anisotropic horizontal stress field



$$\sigma_{r} = p_{w}$$
  

$$\sigma_{\theta} = \sigma_{H} + \sigma_{h} - 2(\sigma_{H} - \sigma_{h})\cos 2\theta - p_{w}$$
  

$$\sigma_{z} = \sigma_{v} - 2\nu(\sigma_{H} - \sigma_{h})\cos 2\theta$$





Hυ

#### **General comments**

- If hole axis is parallel to a principal stress, then we can use the borehole stresses for a vertical hole also for horizontal holes, but we need to rotate the coordinate system first
- In general: Holes are most stable towards shear failure initiation when drilled along a direction with low stress anisotropy and with low stress level in the plane perpendicular to it
  - E.g. Drill horizontal well along  $\underline{\sigma}_h$  direction
  - Avoid drilling along  $\sigma_{H}$  direction
- Deviated holes are usually less stable because of shear stresses at the borehole wall



#### Stability vs. Hole angle





From Bradley 1979: Impossible to pass 60°?

Illustration of stability analysis for a deviated wellbore at 1500 m depth, with vertical stress 30 MPa, isotropic horizontal stresses 25 MPa, and pore pressure 15.5 MPa. The unconfined strength is set to 10 MPa, the friction angle is 30°, the Biot coefficient 1, and Poisson's ratio 0.25. Also included is a case with anisotropic horizontal stresses, where all parameters are kept the same as above, except the maximum horizontal stress 28 MPa.

Maximum mud weight =  $\sigma_h$  = 25 MPa ->  $\rho_w$  = 1.7 g/cm<sup>3</sup>



## Effect of Rock Anisotropy

- Shales are anisotropic which leads to strength anisotropy
- The bedding plane is a weak plane







#### **Borehole Stability**

## ... so far elastic behavior + brittle failure

- But: Note the following field observations:
  - Boreholes are often stronger than predicted by elastic + brittle theory
  - Hole collapse is often time-delayed (~ days) with respect to drill-out
  - Oil-based mud gives better stability than water-based mud
  - Addition of salt (in particular K+) may improve stability



#### **Borehole Stability: Plasticity**





- Plastic zone around a borehole
  - Leads to yield/plastified zone around the hole, but may serve as a support to rock behind



- Borehole failure criterion can be specified by:
  - A critical amount of plastic strain, or
  - A critical extent of a plastic zone
- Use of the elastic-brittle equations with an up-scaled strength may give acceptable results ...
- Stresses around a borehole with a plastic zone, according to the Tresca model. Parameters are C<sub>0</sub> = 0.5σ<sub>h</sub>, p<sub>w</sub> = 0.25σ<sub>h</sub>.



#### Borehole Stability: Time-delayed borehole failure

- Initial drilling is stable but tight hole/stuck pipe during tripping or running logging tools
- Mechanisms:
  - Creep
  - Consolidation
  - Cooling
  - Chemistry

#### • Creep

- Thermally activated process on atomic / molecular level
- Rocks may creep to failure





# SAND PRODUCTION





# Sand production = An unwanted byproduct of hydrocarbon production

- Why sand production is a problem:
- 1. Erosion of the production equipment
- 2. Instability of production cavities and well
- 3. Large amounts of polluted sand





#### TYPES OF SAND CONTROL COMPLETIONS





#### Sand production due to screen failure North Sea field





# Massive sand production in a field in Indonesia





## Solids production in chalk

- Chalk fragment
- <u>Chalk influx or l</u>
  - High porosity
    - Pore colla
  - Low permeal
    - Decreases
  - Pore pressure
  - Tensile radial







#### Sand production regimes



- Initiation
  - When sand will be produced ?
  - Critical stress for failure
- Sand production
  - How much sand will be produced over time ?
  - Sand rate Vs. flow rate, stress, 2 or 3 phase flow (water/gas), etc.

Collapse

 What are the critical conditions for massive sand production ?



Sand production sequence from X-Ray CT scans of tested specimens

- 1. Applied stresses fail the rock
- 2. Fluid flow removes / erodes failed rock
- Hydrodynamic forces too weak to erode intact rock (not the same as in cohesion-less sand). Even capillary cohesion may be sufficient to prevent sand erosion





# Hollow cylinder test with fluid flow

Typical test for studying erosion in petroleum engineering Laboratory Sand production tests





# Sand production experiments





#### Loading cell

Instrumented jacketed specimen

Photographs SINTEF Petroleum Research, Norway



#### Cavity deformations

- The deviation of the 2 measurements indicates cavity failure
- AE location and borescope data confirm this


#### Various phases of development of

- (a) Slit failure in Class A brittle sandstones
- (b) Breakout failure in Class B ductile sandstones
- (c) Uniform failure in Class C compactive sandstones





# Sand rate vs. normalized stress

$$\sigma_{N} = \frac{\sigma - \sigma_{S}}{\sigma_{S}}$$

100-, 200-mm specimen









## Hydro-mechanical erosion model for rocks

(Vardoulakis et al. 1996, Papamichos and Stavropoulou 1998, Stavropoulou et al. 1998, Papamichos et al. 2000, Vardoulakis et al. 2001, Papamichos and Malmanger 2001, Vardoulakis and Papamichos 2003, Papamichos and Vardoulakis 2004)

- 1. Porous rock as a three-phase medium
- 2. Mass balance
- 3. Erosion constitutive law
- 4. Coupled hydro-mechanical erosion model
- 5. Finite element implementation



## 1 Porous rock as a three-phase medium

- Representative Volume Element V:
  - V<sub>s</sub> Solid grains s volume
  - $V_f$  Fluid f volume
  - $V_{fs}$  Fluidized grains fs volume
- $\phi$  Porosity
- c Concentration of fluidized solids in the fluid

$$\phi = \frac{V_{v}}{V} = \frac{V_{f} + V_{fs}}{V} \qquad c = \frac{V_{fs}}{V_{v}} = \frac{V_{fs}}{V_{f} + V_{fs}}$$







## **Densities**

Partial densities for the 3 phases (1), (2) and (3)

$$\rho^{(1)} = \frac{m_s}{V} = \rho_s \frac{V_s}{V} = \rho_s \frac{V - V_v}{V} = (1 - \phi) \rho_s$$
$$\rho^{(2)} = \frac{m_f}{V} = \rho_f \frac{V_f}{V} = \rho_f \frac{\phi V - V_{fs}}{V} = (1 - c) \phi \rho_f$$

$$\rho^{(3)} = \frac{m_{fs}}{V} = \rho_s \frac{V_{fs}}{V} = \rho_s \frac{c\phi V}{V} = c\phi\rho_s$$

•  $\rho$  Total density of the mixture

$$\rho = \frac{m}{V} = \frac{m_s + m_f + m_{fs}}{V} = \rho^{(1)} + \rho^{(2)} + \rho^{(3)} = (1 - \phi)\rho_s + \phi\rho_f + c\phi\rho_s$$

### **Fluxes**

Flow rate volumes per unit surface

$$\begin{aligned} q_i^{(1)} &= \frac{dV_s}{dS_i dt}, \ v_i^{(1)} = \frac{dV_s}{(1-\phi) dS_i dt} \implies q_i^{(1)} = (1-\phi) v_i^{(1)} = 0 \\ q_i^{(2)} &= \frac{dV_f}{dS_i dt}, \ v_i^{(2)} = \frac{dV_f}{(1-c) \phi dS_i dt} \implies q_i^{(2)} = (1-c) \phi v_i^{(2)} \\ q_i^{(3)} &= \frac{dV_{fs}}{dS_i dt}, \ v_i^{(3)} = \frac{dV_{fs}}{c\phi dS_i dt} \implies q_i^{(3)} = c\phi v_i^{(3)} = c\phi v_i^{(2)} = cq_i^{(2)} / (1-c) \end{aligned}$$

Relative (to the solid) specific flux  $q_i$  of the fluid-particle mixture

$$q_i = \phi \left( v_i^{(2)} - v_i^{(1)} \right) = \phi v_i^{(2)} = q_i^{(2)} / (1 - c)$$



#### Summary of 3 mass balance equations for 3-phase medium



1<sup>st</sup> mass balance eqn.

$$\frac{\partial (1-c)\phi}{\partial t} = div(cq_i)$$

2<sup>nd</sup> mass balance eqn.

 $divq_i = 0$ 

3<sup>rd</sup> mass balance eqn.

- 6 unknowns
  - porosity  $\phi$
  - concentration c
  - **rate of produced mass per unit volume**  $j^{(1)}$
  - 3 fluid fluxes  $q_i$



**3 Constitutive laws** 

Darcy's law for fluid-particle flow



Unknowns reduce to 4

- $k, \eta$  not constant
  - $k = k(\phi)$  e.g. Carman-Kozeny  $k = k_c \frac{\phi^3}{(1-\phi)^2}$

$$\eta = \underline{\rho}(c) \eta_k \qquad \underline{\rho} = \rho_f + c \left( \rho_s - \rho_f \right)$$

For erosion in rocks  $c{<<}1 \Rightarrow \eta pprox$  constant



#### Erosion constitutive law

Laws inspired by theories of filtration of fines through a coarse solid matrix (Einstein 1937, Sakthivadivel and Irmay 1966, Iwasaki 1937)

 $\frac{j^{(3)}}{\rho_s} = \lambda (1 - \phi) c \| q_i \|$  $\frac{j^{(3)}}{\rho_s} = \lambda \left(1 - \phi\right) c \left(1 - \frac{c}{c_{cr}}\right) \|q_i\|$  $\frac{j^{(3)}}{2} = \lambda \phi c^n \left\| q_i \right\|$ 

$$\frac{j^{(3)}}{\rho_s} = \lambda (1 - \phi) \| q_i \|$$
$$\frac{j^{(3)}}{\rho_s} = \lambda \frac{\partial^2 \phi}{\partial s}$$

 $\partial X_i^2$ 

(Vardoulakis et al. 1996, Papamichos and Stavropoulou 1998, Stavropoulou et al. 1998, Vardoulakis et al. 2001, Wan et al. 2002, Wang et al. 2004)

(Vardoulakis and Papamichos 2003)

(Papamichos et al. 2001)

(Vardoulakis and Papamichos 2003)





 $\rho_{s}$ 

Law with erosion driven by the pore pressure gradient (Papamichos 2004)

$$\begin{split} \frac{j^{(3)}}{\rho_{s}} &= \lambda \left\langle \left\| p_{,i} \right\| - p_{gcr} \right\rangle \\ \left\langle \left\| p_{,i} \right\| - p_{gcr} \right\rangle &= \begin{cases} \left\| p_{,i} \right\| - p_{gcr} & \text{if } \| p_{,i} \| - p_{gcr} > 0 \\ 0 & \text{if } \| p_{,i} \| - p_{gcr} \le 0 \end{cases} \end{split}$$

or w/ 1<sup>st</sup> mass balance eqn.

$$\frac{\partial \phi}{\partial t} = \lambda \left\langle \left\| p_{,i} \right\| - p_{gcr} \right\rangle$$



Law based on the physics of sand erosion in rocks

Forces on a grain driving erosion

- $F_p$  pressure component  $\sim \Delta p$
- $\textbf{F}_{s}~$  shear (drag) component  $~\sim\eta q$



In continuum sense the force per unit volume

#### Summary of equations for 3-phase medium



3<sup>rd</sup> mass balance eqn.

Darcy's law

$$\frac{\partial \phi}{\partial t} = \lambda \left\langle \left\| p_{,i} \right\| - p_{gcr} \right\rangle$$

Erosion law + 1<sup>st</sup> mass balance eqn.

$$\frac{\partial (1-c)\phi}{\partial t} = div(cq_i)$$

(<u>2<sup>nd</sup> mass balance eqn.</u>)

- 3 (or 2) independent unknowns
- porosity  $\phi$
- pore pressure p
- (concentration *c*)

#### Summary of equations for 3-phase medium



3<sup>rd</sup> mass balance eqn.

Darcy's law

$$\frac{\partial \phi}{\partial t} = \lambda \left\langle \left\| p_{,i} \right\| - p_{gcr} \right\rangle$$

Erosion law + 1<sup>st</sup> mass balance eqn.

$$\frac{\partial (1-c)\phi}{\partial t} = div(cq_i)$$

(<u>2<sup>nd</sup> mass balance eqn.</u>)

- 3 (or 2) independent unknowns
- porosity  $\phi$
- pore pressure p
- (concentration *c*)

## 4 Coupled hydro-mechanical erosion model

- Poro-mechanical behavior of the solid-fluid system
  - Steady-state poro-elastoplasticity
- Erosion of solid matrix
  - Theory of erodable rocks

$$\sigma_{ij,j} = 0 \qquad T_c = T_c(\phi)$$

$$d\sigma_{ij} = C_{ijkl}^{ep} d\varepsilon_{kl} + \alpha dp \delta_{ij} - C_{ij}^{poro} d\phi$$

$$divq_i = 0$$

$$q_i = -\frac{k}{\eta} p_{,i}$$

$$\frac{\partial \phi}{\partial t} = \lambda \left\langle \left\| p_{,i} \right\| - p_{gcr} \right\rangle \qquad \lambda = \lambda \left( \gamma^p \right)$$

$$k = k_c \frac{\phi^3}{\left(1 - \phi\right)^2}$$

2 additional material parameter
 Sand coefficient λ [m<sup>2</sup>s/kg]
 Critical pressure gradient p<sub>acr</sub> [MPa/m]

#### Equilibrium eqns.

Constitutive eqns. of elastoplasticity

Continuity eqn. for fluid-particle mixture

Darcy's law

Erosion law + 1<sup>st</sup> mass balance eqn.

Permeability law



Rock has to fail or weaken before it can be eroded i.e. mechanical behavior influences erosion



**Plastic strain** 

$$\lambda(\gamma^{p}) = \begin{cases} 0 & \text{if } \gamma^{p} \leq \gamma_{peak}^{p} \\ \lambda_{1}(\gamma^{p} - \gamma_{peak}^{p}) & \text{if } \gamma_{peak}^{p} \leq \gamma^{p} \leq \gamma_{peak}^{p} + \lambda_{2}/\lambda_{1} \\ \lambda_{2} & \text{if } \gamma_{peak}^{p} + \lambda_{2}/\lambda_{1} \leq \gamma^{p} \end{cases}$$



### Rock weakens when eroded i.e. erosion influences mechanical behavior





# Analysis of sand erosion in the hollow cylinder test

#### **Boundary conditions**







Non linear, transient problem **Finite element solution** 

$$\int_{V} \sigma_{ij} \delta \varepsilon_{ij} dV = \int_{\partial V_{\sigma}} t_{i} \delta u_{i} dS$$
$$q_{i,i} = 0$$
$$\frac{\partial \phi}{\partial t} - \lambda \left\langle \left\| \left\{ p_{,i} \right\} \right\| - p_{gcr} \right\rangle = 0$$

Galerkin space discretization

$$\int_{V} \left[B\right]^{T} \left\{\sigma\right\} dV - \int_{\partial V_{\sigma}} \left\{N\right\} \left\{t\right\} dS = 0$$
$$- \int_{V} \left[\nabla N\right] \left\{q\right\} dV + \int_{\partial V_{q}} \left\{N\right\} q^{b} dS = 0$$
$$\int_{V} \left\{N\right\} \left(\frac{\partial \phi}{\partial t} - \lambda \left\langle \left\|\left\{p_{,i}\right\}\right\| - p_{gcr}\right\rangle\right) dV = 0$$



$$\Omega = \theta \Omega_{n+1} + (1 - \theta) \Omega_n, \qquad \frac{\partial \Omega}{\partial t} = \frac{\Omega_{n+1} - \Omega_n}{\Delta t} \qquad \text{Time discretization}$$

$$\begin{split} \Psi^{U} &= \int_{V} \left[ B \right]^{T} \left( \left\{ \sigma \right\}_{n+1} + \frac{1-\theta}{\theta} \left\{ \sigma \right\}_{n} \right) dV - \int_{\partial V_{\sigma}} \left\{ N \right\} \left( \left\{ t \right\}_{n+1} + \frac{1-\theta}{\theta} \left\{ t \right\}_{n} \right) dS = 0 \\ \Psi^{P} &= -\int_{V} \left[ \nabla N \right] \left( \left\{ q \right\}_{n+1} + \frac{1-\theta}{\theta} \left\{ q \right\}_{n} \right) dV + \int_{\partial V_{q}} \left\{ N \right\} \left( q_{n+1}^{b} + \frac{1-\theta}{\theta} q_{n}^{b} \right) dS = 0 \\ \Psi^{\Phi} &= \int_{V} \left\{ N \right\} \left[ \frac{\phi_{n+1} - \phi_{n}}{\theta \Delta t} - \lambda_{n+1} \left\langle \left\| \left\{ p_{,i} \right\}_{n+1} \right\| - p_{gcr} \right\rangle - \frac{1-\theta}{\theta} \lambda_{n} \left\langle \left\| \left\{ p_{,i} \right\}_{n} \right\| - p_{gcr} \right\rangle \right] dV = 0 \end{split}$$



. . . . . .

#### Sand mass and rate vs. time





Aristotle University of Thessaloniki



Fluid flux



#### Pore pressure gradient

Q



## Sand production in a perforated well (Wang et al. 2004)







Fig. 4 Plastic yielded zones developed after open-hole completion and perforations (before drawdown).

### **Fluidized sand**



Fig. 5 Fluidized sand saturation profile at time t=0.3 day.



Fig. 6 Fluidized sand saturation profile at time t=0.6 day.





Q

# Discrete element modeling of sand erosion in the sand production test

- Investigate how material properties affect HC failure pattern
- Discrete element simulations with **bonded** particles (*PFC2D*, Itasca)
  - Smaller particles near the hole
  - Different stresses can be applied in the two directions, here  $\sigma_v/\sigma_h = 1$
  - Increase stresses and flow rate/pore pressure step-wise
  - Measure produced sand





### (Li and Papamichos 2006)



# Discrete element modeling of sand erosion in the sand production test

- Investigate how material properties affect HC failure pattern
- Discrete element simulations with **bonded** particles (*PFC2D*, Itasca)





(Li and Papamichos 2006)



## Mesh for flow calculation





## Flow-induced forces to particles

Force on a particle due to fluid pressure and shear drag

$$F_i = \frac{\pi d_g^2 \mu q_i}{6k\left(1 - \phi\right)}$$





## Particle failure criterion

Particle, depending by the stress in it, fails in

- Tension
- Shear
- Shear-enhanced compaction
- Compaction (independent of shear stresses; only if normal stress exceeds certain limit)
- Post-failure behavior
  - All particle bonds removed
  - Size of particle is reduced if it simulates rock which is liable to compaction and subject to compaction failure















## Movie Sand\_I2





