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Preface

The ALERT Doctoral School 2020 on “Point based numerical methods in geome-
chanics” has been initially foreseen to take place as usual in Aussois. But due to the
COVID-19 pandemic developing since early 2020, and after careful consideration, the
Bureau and the BoD finally decided to cancel the ALERT workshop in 2020 but not
the Doctoral School, the PhD Prize as well as the Invited Lecture.

Hopefully, the two organizers of the school, Pr. Manolo Pastor (Universidad Politécnica
de Madrid) and Pr. Wei Wu (BOKU Vienna), accepted immediately to set up the first
doctoral E-School of our ALERT network. I sincerely thank the organizers and all
the contributors to the school for their effort! The organizers of the school decided to
cover the following methods like SPH, MPM, PFEM or LBM-DEM. The underlying
theory will of course be described, but the authors will also focus on the applications
of these methods in geomechanics. A special emphasis is proposed on fast granular
flow, fast landslides or snow avalanches. The fundamental coupling between the solid
and the fluid phase will be also tackled in the frame of particle based method.

It has to be pointed out that the school will run remotely every morning over four
days. In the last day, PhD students will have the possibility to present their research
on particle based numerical methods. I hope that our students will take the opportunity
that is offered to them, ALERT Geomaterials is definitely a forum where new ideas
may appear, discussions take place between all the members of our community.

On behalf of the ALERT Board of Directors I wish all participants a successful ALERT
Doctoral E-School 2020!

Frédéric Collin
Director of ALERT Geomaterials
University of Liege
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Foreword

Analysis and design in geomechanics are much dominated by the mesh-based nu-
merical methods such as FEM. However, the mesh-based methods suffer from se-
vere mesh distortion for problems with large deformation. Moreover, the mesh-based
methods are not well suited for free surface flow and problems with discontinuities.
Recently, there is increasing interest in the geomechanics community to apply the
particle-based continuum methods to the problems with free surface flow, large de-
formation and discontinuous deformation. The last decades saw rapid development
of numerous particle-based methods in computational mechanics, e.g. SPH (Smooth
Particle Hydrodynamics) and MPM (Material Particle Method). Geomechanics with
complex material behaviour and problem setting offers an excellent playground for
meshfree methods. The lectures in this workshop offer an overview of some widely
used particle-based numerical methods in geomechanics. Both mathematical funda-
mentals and application examples are provided.

After a first introduction of the course, the first four lectures deal with SPH methods.
The material covers an introduction to SPH in geomechanics (H.Bui), constitutive
modelling in SPH of fast granular flows (W.Wu), applications of SPH in geomechan-
ics (H.Bui), and depth integrated SPH models for fast landslides (M.Pastor) MPM
techniques and their application to snow will be addressed next (J.Gaume). The two
last lectures will focus on PFEM, covering implicit MPM and coupled MPM-FEM ap-
proaches in geomechanics and their application to engineering (A.Larese) and Lattice
Boltzmann coupled to DEM methods (S.Sun). Time has been allocated in the course
for participants’ own research, followed by a table ronde where we hope animated
discussion will take place.

Wei Wu
Manuel Pastor
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Smoothed particle hydrodynamics (SPH) 

and its applications in geomechanicsi 

Ha H. Bui1 & Giang D. Nguyen2 

 
1Department of Civil Engineering, Monash University, Melbourne 

VIC 3800, Australia. 
2School of Civil, Environmental & Mining Engineering, University 

of Adelaide, Adelaide SA. 5005, Australia. 
____________________________________________________________________ 

In this lecture note, we present the fundamental concepts of SPH and its applications 

in geomechanics and geotechnical engineering. In the first part of the lecture note, 

we will focus on establishing fundamental SPH equations and discussing how they 

are applied in solving partial differential equations in geomechanics. Through this 

process, we hope to provide readers with a better understanding of SPH formulations 

to avoid misuse or misinterpretation of its capacity and limitation. Discussions on 

several outstanding issues and recommendations for further developments will also 

be presented. The second part of the lecture will focus on demonstrating the applica-

tions of SPH in the fields of geomechanics and geotechnical engineering through var-

ious examples, ranging from the most fundamental to more complex applications in-

volving multiphase flows. We hope this lecture note will provide readers with a better 

understanding of SPH and its potential in solving problems in geomechanics and ge-

otechnical engineering. 

 Introduction 

Robust numerical methods for solving complex problems involving multi-phase 

multi-physical processes are crucial and also an increasing trend in recent years in the 

                                                           

 

 
iThis review is distributed as a lecture note to participants attending the ALERT GEOMATERIALS 

Doctoral School 2020. It should not be considered as a publication by any mean. The lecture note 

contains materials and ongoing work developed mainly in Ha H. Bui’s group at Monash University, 

some of which are through collaboration with Giang D. Nguyen’s group at the University of Ade-

laide. 1Email address: ha.bui@monash.edu (Ha H. Bui) 

Bui & Nguyen 3

ALERT Doctoral School 2020



 

 

 

 

field of computational geomechanics. The key reason is because most popular existing 

computational tools for field scale-application are still heavily relied on the traditional 

finite element method (FEM), which is a continuum mesh-based method and is well-

known for suffering from mesh-distortion issues associated with large deformation of 

geomaterials. Alternative to FEM is continuum point-based methods, which offer 

great capacity for solving field-scale applications involving large-deformation and 

post-failure of geomaterials. Among several existing point-based methods, SPH is the 

only numerical method that is completely mesh-free and requires no background 

mesh. The method was originally developed for astrophysics applications [1, 2], but 

soon becoming a popular method for various engineering applications [3-30]. The 

fundamental difference between SPH and other point-based FEM methods is that SPH 

solve the governing PDE equations in strong form. Since there is no need to go 

through the weak forms, it is more straightforward to incorporate SPH approximation 

of a new PDE describing a new physical phenomenon in an exisiting SPH framework. 

Nevertheless, there exists common misinterpretations in the literature on the capacity 

and limitation of SPH, which simply refer to SPH as a numerical method that is suf-

fered from numerical instability and inaccuracy, without acknowledging its true ca-

pacity and potential. Interestingly, most of these interpretations came from experts in 

mesh-based methods or from misuses of fundamental SPH kernel approximation [31]. 

In this note, we will attempt to provide readers with a better understanding of SPH 

and its true capacity and performance. To achieve this, we will present a comprehen-

sive review of the fundamental concepts of SPH. We acknowledge that there exists 

many excellent SPH reviews literature [32-35], but to the best of our knowledge, there 

is no comprehensive SPH review dedicated to geomechanics applications. 

 The fundamentals of SPH 

There are many different ways to approach the fundamental of SPH in the literature, 

many of which simply refer to the method as an interpolation procedure, which can 

be used to approximate a field quantity or its spatial derivatives. We have been work-

ing on this method for many years, with a particular focus on advancing its applica-

tions to solve challenging problems in the geomechanics field. In our view, SPH is 

more than a numerical method since the foundation of SPH and its governing equa-

tions can be naturally derived from considerations of several fundamental physical 

processes [36], which makes SPH more appealing for solving physical problems.  

2.1 Basic SPH formulations from fundamental physics 

Let we first establish the basic SPH formulation. Consider a continuum field repre-

sented by a collection of point masses (or particles), each occupies a certain volume 

of the continuum domain and carries the corresponding mass of the occupying vol-

ume, as shown in Figure 1.  
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Figure 1. Different approaches used to compute the continuous density field at a par-

ticular point in a continuum field represented by a collection of points or particle 

masses (after [32]). 

 

One of the most simplest, but interesting, questions would raise from this considera-

tion is: How do I calculate the continuous density field at a particular point from this 

collection of particles? Perhaps, the most common answer to the above question is to 

consider a local sampling volume of mass distribution, assuming spherical volume in 

3D and circular area in 2D as shown in Figure 1. The continuous density field at the 

central point of the sampling volume can be then computed by taking the total mass 

of particles located within the sampling volume and dividing by the sampling volume: 

𝜌(𝐱𝑖) =
1

𝑉𝑠𝑝
∑𝑚𝑗

𝑁

𝑗=1

 (1) 

where 𝜌(𝐱𝑖) is the continuous density field at the central point of the sampling volume 

𝐱𝑖; 𝑁 is the total number of “neighbouring” particles located within the sampling vol-

ume 𝑉𝑠𝑝; 𝑚𝑗 is the mass of a particle 𝑗 located within the sampling volume.  

The immediate issue that arises from this approach is that the estimated continuous 

density field would be significantly affected by the distribution of particles, i.e. clus-

tered/spare regions of particle mass distribution. Although this issue can be fixed by 

adjusting the sampling volume (𝑉𝑠𝑝) following a certain criterion, a small adjust-

ment/variation of the sampling volume would significantly affect the calculation re-

sult (e.g. it can either include or exclude a particle mass from the calculation). Ac-

cordingly, the estimated continuous density field would be highly sensitive to the sam-

pling volume and thus leading to a very noise density field estimation. A simple solu-

tion1 to improve the estimated density field is to adopt a weighted average approach, 

in which particles close to the centre of the sampling volume participate more to the 

                                                           

 

 
1 There exists alternative methods (such as mesh-based methods) which can be used to estimate the 

continuous density field from the collection of point masses. These are however beyond the scope of 

this note. 
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computation, while those located away from the centre have less contribution. This 

idea can be mathematically formulated using the following equation [32-34, 37]:  

𝜌(𝐱𝑖) = ∑𝑚𝑗𝑊(𝐱𝑖 − 𝐱𝑗, ℎ)

𝑁

𝑗=1

 (2) 

where 𝑊(𝐱𝑖 − 𝐱𝑗, ℎ) is a weighting function, which has a dimension of inversed vol-

ume (~𝑉𝑠𝑝
−1) and is dependent on the particle distance (𝐱𝑖 − 𝐱𝑗) and a scalar parameter 

ℎ (to be defined later). The reader can see that the accuracy of the above density esti-

mation rests on the choice of the weighting function 𝑊(𝐱𝑖 − 𝐱𝑗, ℎ). For instance, to 

fix the issue associated with the use of Equation (1), the weighting function 𝑊(𝐱𝑖 −
𝐱𝑗, ℎ) needs to have the following properties: 

1. It should be defined in such a way that its magnitude reaches a peak value at 

the centre of the sampling volume and gradually reduces and asymptotically 

approaches zero as the distance from a particle mass to the centre of the sam-

pling volume increases (Figure 1). This can be achieved by defining the 

weighting function 𝑊 as a function of particle spacing (𝐱𝑖 − 𝐱𝑗) and a scalar 

parameter (ℎ) defining the rate of falling-off of 𝑊. 

2. It should be positive and symmetric with respect to the particle distance. This 

guarantees particles with the same distance from the centre of the sampling 

volume will have equal contributions to the density estimation. 

3. The conservation of total mass ∫ 𝜌𝑑𝑉 = ∑ 𝑚𝑗
𝑁
𝑗=1  requires the following con-

dition of the weighting function: 

∫𝑊(𝐱𝑖 − 𝐱𝑗, ℎ)𝑑𝑉 = 1 (3) 

There exists a number of weighting functions in the literature that satisfies the above 

requirements. We will come back to this topic later with an in-deep discussion on the 

selection of a proper weighting function. Finally, if Equation (2) is rewritten as: 

𝜌(𝐱𝑖) =∑
𝑚𝑗

𝜌(𝐱𝑗)
𝜌(𝐱𝑗)𝑊(𝐱𝑖 − 𝐱𝑗, ℎ)

𝑁

𝑗=1

 (4) 

one can immediately see that the above equation can be generalised in the following 

form for an arbitrary function 𝑓(𝐱𝑖): 

𝑓(𝐱𝑖) =∑
𝑚𝑗

𝜌𝑗
𝑓(𝐱𝑗)𝑊(𝐱𝑖 − 𝐱𝑗, ℎ)

𝑁

𝑗=1

 (5) 

Equation (5) is the basic SPH formula, which is commonly reported in the literature. 

It forms the basis of all existing SPH formalisms. The reader can immediately see 

that, by choosing 𝑓 = 𝜌, Equation (5) will return to Equation (2) for the SPH density 

approximation. Alternatively, if we choose 𝑓 to be a random field variable, such as 

temperature 𝑓 = 𝑇, Equation (5) can be used to estimate the temperature at the central 

of the sampling volume as follows: 
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𝑇(𝐱𝑖) =∑
𝑚𝑗

𝜌𝑗
𝑇(𝐱𝑗)𝑊(𝐱𝑖 − 𝐱𝑗, ℎ)

𝑁

𝑗=1

 (6) 

This suggests that Equation (5) is a general SPH approximation equation, which can 

be used to estimate any field variable in the continuum space. Finally, to close this 

section, one would need to define the SPH approximation for the spatial derivative of 

a field function. This can be achieved by replacing the function 𝑓(𝐱) in Equation (5) 

by its spatial derivative 𝜕𝑓(𝐱)/𝜕𝐱, leading to: 

𝜕𝑓(𝐱𝑖)

𝜕𝐱𝑖
=∑

𝑚𝑗

𝜌𝑗

𝜕𝑓(𝐱𝑗)

𝜕𝐱𝑗
𝑊(𝐱𝑖 − 𝐱𝑗, ℎ)

𝑁

𝑗=1

 

=∑
𝑚𝑗

𝜌𝑗
[
𝜕[𝑓(𝐱𝑗)𝑊(𝐱𝑖 − 𝐱𝑗, ℎ)]

𝜕𝐱𝑗
− 𝑓(𝐱𝑗)

𝜕𝑊(𝐱𝑖 − 𝐱𝑗, ℎ)

𝜕𝐱𝑗
]

𝑁

𝑗=1

 

(7) 

The first term on the left-hand side of Equation (7) is the summation approximation 

of the volume integral of the gradient of [𝑓(𝐱𝑗)𝑊(𝐱𝑖 − 𝐱𝑗 , ℎ)]: 

∑
𝑚𝑗

𝜌𝑗

𝜕[𝑓(𝐱𝑗)𝑊(𝐱𝑖 − 𝐱𝑗, ℎ)]

𝜕𝐱𝑗

𝑁

𝑗=1

= ∫
𝜕[𝑓(𝐱𝑗)𝑊(𝐱𝑖 − 𝐱𝑗, ℎ)]

𝜕𝐱𝑗
𝑑𝑉

𝑉

 (8) 

where we have replaced 𝑑𝑉 with 𝑚𝑗/𝜌𝑗. By applying the Gaussian theorem to convert 

the volume integral to the surface integral, we have: 

∫
𝜕𝑓(𝐱𝑗)

𝜕𝐱𝑗
𝑊(𝐱𝑖 − 𝐱𝑗, ℎ)𝑑𝑉 = ∫ 𝑓(𝐱𝑗)𝑊(𝐱𝑖 − 𝐱𝑗, ℎ)�⃗� ∙ 𝑑𝑆

𝑆𝑉

 (9) 

where �⃗�  is the unit normal vector of the surface 𝑆. For a symmetric and positive 

weighting function, the above surface integral vanishes and thus the SPH approxima-

tion formulation for the spatial derivative of a field function can be simplified to: 

𝜕𝑓(𝐱𝑖)

𝜕𝐱𝑖
=∑

𝑚𝑗

𝜌𝑗
𝑓(𝐱𝑗)

𝜕𝑊(𝐱𝑖 − 𝐱𝑗 , ℎ)

𝜕𝐱𝑖

𝑁

𝑗=1

 (10) 

This equation suggests that the SPH approximation of the spatial gradient of a function 

can be achieved without requiring to calculate the spatial derivative of the function 

itself, but instead through the spatial derivative of the weight function. Accordingly, 

an additional condition is required for choosing a suitable weighting function for SPH, 

that the weighting function must have smooth derivatives. A similar approach can be 

applied to derive the SPH approximation for higher-order derivatives of a function, 

but this will be further explored in the subsequent section in a more mathematical 

sense. 

Upon this point, the reader should have seen that Equation (5) is the fundamental SPH 

formulation, which forms the basis of all existing SPH formalisms. It is worth to re-

mind that this equation was derived from the fundamental question related to how a 

continuous physical quantity is estimated from the continuum field consisting of a 

collection of particle masses. Therefore, in this note, we argue that the fundamental 
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SPH formulation established in Equation (5) is not just a mathematical equation, but 

having more physical senses.  

2.2 SPH formulations from interpolant theory 

In the above section, we have taken a slightly different approach to derive the funda-

mental SPH formula to demonstrate that SPH is more than a numerical method. In 

this section, we will present the conventional way to derive the fundamental SPH for-

mulations based on the kernel interpolation theory, which was originally developed 

by Gingold and Monaghan [1] and Lucy [2] for astrophysical applications. This will 

allow us to have a more rigorous way to evaluate the accuracy as well as numerical 

errors produced by SPH formula. 

2.2.1 Basics SPH formulation and its derivatives 

The heart of SPH is based on the interpolation theory, which consists of two key steps: 

integral representation and particle approximation. The integral representation step 

involves the expression of a scalar function 𝑓(𝐱) using the following identity: 

𝑓(𝐱) = ∫𝑓(𝐱′)𝛿(𝐱 − 𝐱′) 𝑑𝐱′ (11) 

where 𝛿(𝐱 − 𝐱′) is the Dirac delta function, which is zero everywhere but infinite at 

𝐱 = 𝐱′. To make effective use of Equation (11), one needs to replace the Dirac delta 

function 𝛿 by a finite function, which is computable. For instance, if we replace the 

Dirac delta function 𝛿 by a weighting function 𝑊(𝐱 − 𝐱′, ℎ), which is a function of 

the distance (𝐱 − 𝐱′) and a characteristic length ℎ such that: 

lim
h→0

𝑊(𝐱 − 𝐱′, ℎ) = 𝛿(𝐱 − 𝐱′) (12) 

Equation (11) can be rewritten as follows: 

𝑓(𝐱) ≈ ∫𝑓(𝐱′)𝑊(𝐱 − 𝐱′, ℎ) 𝑑𝐱′ (13) 

The choice of the weighting function (hereafter called kernel function) decides the 

accuracy of the above integral approximation. The reader can see from Equation (13) 

that, for 𝐱 ≡ 𝐱′, the following condition of the kernel function is required 

∫𝑊(𝐱 − 𝐱′, ℎ) 𝑑𝐱′ = 1, which is similar to the condition expressed in Equation (3) 

as discussed in Section 2.1. Several other key requirements for the selection of suitable 

kernel function are discussed in Section 2.1, and thus will not be repeated here. To 

obtain the final form of SPH formulation, one needs to discretise Equation (13) onto 

a set of point masses (or particles) representing a continuum field, as shown in Figure 

1 (i.e. particle approximation step). This can be achieved by replacing the integral in 

Equation (13) with the summation over a set of particles, each of which has a volume 

of 𝑑𝐱′ = 𝑚/𝜌: 
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𝑓(𝐱𝑖) ≈ ∑
𝑚𝑗

𝜌𝑗
𝑓(𝐱𝑗)𝑊(𝐱𝑖 − 𝐱𝑗, ℎ)

𝑁

𝑗=1

 (14) 

Equation (14) is commonly known as the SPH summation equation, and together with 

Equation (13), form the basic of all existing SPH formalisms. It states that the value 

of a scalar function at particle 𝑖 can be approximated using the weighting average of 

its values at “neighbouring” particles located within the influence domain of the ker-

nel function characterised by the characteristic length ℎ. It is noted that Equation (14) 

is exactly similar to Equation (5), which was derived in Section 2.1, although the ap-

proaches taken to derive these equations are different. The interpolant approach offers 

a more rigorous way (in the mathematical sense) to derive SPH approximation equa-

tions for higher-order gradient terms. For instance, the gradient of function 𝑓(𝐱) can 

be straightforwardly derived by taking derivative of Equation (13) and subsequently 

discretising the resulting equation onto particles, gives: 

∇𝑓(𝐱𝑖) =∑
𝑚𝑗

𝜌𝑗
𝑓(𝐱𝑗)∇𝑖𝑊(𝐱𝑖 − 𝐱𝑗, ℎ)

𝑁

𝑗=1

 (15) 

Similarly, the SPH approximation of a vector quantity 𝐟(𝐱) and its divergence can be 

straightforwardly obtained using the same approach, which can be immediately writ-

ten as follows, respectively: 

𝐟(𝐱𝑖) =∑
𝑚𝑗

𝜌𝑗
𝐟(𝐱𝑗)𝑊(𝐱𝑖 − 𝐱𝑗, ℎ)

𝑁

𝑗=1

 (16) 

∇ ∙ 𝐟(𝐱𝑖) =∑
𝑚𝑗

𝜌𝑗
𝐟(𝐱𝑗) ∙ ∇𝑖𝑊(𝐱𝑖 − 𝐱𝑗, ℎ)

𝑁

𝑗=1

 (17) 

Unfortunately, these SPH approximations do not always achieve satisfaction results 

and often results in very poor gradient estimations. For instance, the use of Equation 

(15) does not ensure the gradient of a constant field variable vanishes, which is trou-

blesome when being used to estimate the strain rate or the gradient of the velocity 

field for computational fluid or solid mechanics. These issues have led to several al-

ternative SPH formulations in the literature, which will be discussed in the subsequent 

section. 

2.2.2 Alternative SPH formulations for its first derivatives 

As discussed in the above section, the use of SPH formulations presented in Section 

2.2.1 often results in poor results. To have a better understanding of issues caused by 

these formulations, let’s consider the source of errors associated with these formula-

tions. For instance, the errors introduced by the SPH approximation for the gradient 

of a scalar function in Equation (15) can be obtained by applying Taylor-series to 

expand 𝑓(𝐱𝑗) around 𝐱𝑖, leading to: 
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∇𝑓𝑖 =∑
𝑚𝑗

𝜌𝑗
𝑓𝑗∇𝑖𝑊𝑖𝑗

𝑁

𝑗=1

=∑
𝑚𝑗

𝜌𝑗
[𝑓𝑖 +

𝜕𝑓𝑖
𝜕𝐱𝛼

(𝐱𝑗 − 𝐱𝑖) + 𝑂(ℎ
2)] ∇𝑖𝑊𝑖𝑗

𝑁

𝑗=1

 

= 𝑓𝑖∑
𝑚𝑗

𝜌𝑗
∇𝑖𝑊𝑖𝑗

𝑁

𝑗=1

+
𝜕𝑓𝑖
𝜕𝐱𝛼

∑
𝑚𝑗

𝜌𝑗
(𝐱𝑗 − 𝐱𝑖)∇𝑖𝑊𝑖𝑗

𝑁

𝑗=1

+ 𝑂(ℎ2) 

(18) 

where to simplify our expression, we have replaced 𝑓(𝐱𝑗) ≡ 𝑓𝑗, ∇𝑊(𝐱𝑖 − 𝐱𝑗, ℎ) ≡

∇𝑊𝑖𝑗, and 𝛼 is the index denoting coordinate direction with repeated indices implying 

summation. 

Equation (18) indicates that the errors introduced by Equation (15) is controlled by 

the first and second terms in the second line of Equation (18), that is how well the 

SPH approximations for these terms hold: 

∑
𝑚𝑗

𝜌𝑗
∇𝑖𝑊𝑖𝑗

𝑁

𝑗=1

≈ 0 and ∑
𝑚𝑗

𝜌𝑗
(𝐱𝑗 − 𝐱𝑖)∇𝑖𝑊𝑖𝑗

𝑁

𝑗=1

≈ 𝛿𝛼𝛽 (19) 

A straightforward way to mitigate these errors is to subtract the first term in the second 

in the second line of Equation (18) from Equation (15), which results in the following 

alternative SPH approximation for the gradient of function 𝑓(𝐱𝑖): 

∇𝑓(𝐱𝑖) = ∑
𝑚𝑗

𝜌𝑗
[𝑓(𝐱𝑗) − 𝑓(𝐱𝑖)]∇𝑖𝑊(𝐱𝑖 − 𝐱𝑗, ℎ)

𝑁

𝑗=1

 (20) 

It is noted that Equation (20) can also be derived from the following consideration: 

∇𝑓 = ∇𝑓 − 𝑓(∇1) and is commonly used in the literature. Although this alternative 

formulation exactly guarantees the vanishing of SPH approximation of the gradient 

of a constant function, its numerical errors is still controlled by the errors associated 

with the second term in the second line of Equation (18). To completely eliminate 

these errors (i.e. up to second-order accuracy), one can divide Equation (20) by the 

second term in the second line of Equation (18), leading to the following normalised 

SPH formulation for the kernel derivative: 

∇𝑓(𝐱𝑖) =

∑
𝑚𝑗

𝜌𝑗
[𝑓(𝐱𝑗) − 𝑓(𝐱𝑖)]∇𝑖𝑊(𝐱𝑖 − 𝐱𝑗, ℎ)

𝑁
𝑗=1

∑
𝑚𝑗

𝜌𝑗
(𝐱𝑗 − 𝐱𝑖)∇𝑖𝑊𝑖𝑗

𝑁
𝑗=1

 (21) 

Figure 2 illustrates the accuracy of Equation (21) when being applied to evaluate the 

gradient of a linear function for a random particle distribution. It can see that the equa-

tion exactly reproduces the gradient of the linear field function and is completely free 

from the kernel truncation errors at the boundary.  
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Figure 2. SPH approximations for the gradient of a linear function f(x, y) = x + y 

 

An alternative SPH approximation formulation for the gradient of a function at parti-

cle 𝑖 can also be derived by considering the following arrangement: 

∇𝑓|𝑖 =
[∇(𝜌𝑓) − 𝑓∇𝜌]

𝜌
|
𝑖

=
1

𝜌𝑖
∑𝑚𝑗[𝑓𝑗 − 𝑓𝑖]∇𝑖𝑊𝑖𝑗

𝑁

𝑗=1

 (22) 

which again gurantees the vanishing of SPH approximation of the gradient of a con-

stant function and can be equally used as an alternative to Equation (20). The reader 

can apply the same Taylor series expansion approach to evaluate the errors associated 

with this equation as well as to improve the accuracy of this equation as done for 

Equation (20). We will not repeat this process here.  

Finally, it is worth to mention the following well-known SPH gradient operators, 

which are commonly used to evaluate the gradient of the pressure or stress in the 

momentum equation (to be discussed later). These SPH gradient operators can be de-

rived from the following considerations: 

∇𝑓|𝑖 = 𝜌 [
𝑓

𝜌2
∇𝜌 + ∇ (

𝑓

𝜌
)]
𝑖

= 𝜌𝑖∑𝑚𝑗 [
𝑓𝑖

𝜌𝑖
2 +

𝑓𝑗

𝜌𝑗
2] ∇𝑖𝑊𝑖𝑗

𝑁

𝑗=1

 (23) 

And  

∇𝑓|𝑖 = ∇𝑓 + 𝑓(∇1)|𝑖 =∑𝑚𝑗 [
𝑓𝑖 + 𝑓𝑗

𝜌𝑗
] ∇𝑖𝑊𝑖𝑗

𝑁

𝑗=1

 (24) 

The reader can see that the above SPH operators do not guarantee the gradient ap-

proximation of a constant field function vanished, but instead they result in an opera-

tor that produces a sort of pair-wise contribution from both particles 𝑖 and 𝑗 for a given 

pair of interaction. This SPH approximation property is particularly useful when being 

applied to discretise the momentum equation of a continuum system, which strictly 

requires the conservations of both linear and angular momenta. Although we can elim-

inate numerical errors associated with the above SPH operators (i.e. using the Taylor 

series), we prefer not to do so because the exact conservation of momentum equation 

requires these errors and these are one of several interesting features of the SPH 

method. We will go back to this issue later. Finally, the same methodology discussed 
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above can be applied to obtain the SPH approximation of the gradient of a vector field, 

and thus will not be repeated. 

2.2.3 SPH formulation for second derivatives 

The SPH approximation for the second derivatives of a scalar function or vector quan-

tities can be obtained in a way similar to the approximation of the first derivatives. By 

taking derivatives of Equation (14) and applying Taylor series expansion, one could 

derive the following SPH operator2: 

∇2𝑓 ≈∑
𝑚𝑗

𝜌𝑗
(𝑓𝑗 − 𝑓𝑖)∇𝑖

2𝑊𝑖𝑗

𝑁

𝑗=1

 (25) 

which guarantees the vanishing of gradients of both constant and linear field func-

tions. The remaining errors associated with this SPH operator (up to the third order of 

accuracy) are: 

𝜕𝑓𝑖
𝜕𝐱𝛼

∑
𝑚𝑗

𝜌𝑗
𝐱𝑗𝑖
𝛼∇𝑖

2𝑊𝑖𝑗

𝑁

𝑗=1

+
1

2

𝜕

𝜕𝐱𝛼
(
𝜕𝑓𝑖

𝜕𝐱𝛽
)∑

𝑚𝑗

𝜌𝑗
𝐱𝑗𝑖
𝛼𝐱𝑗𝑖

𝛽
∇𝑖
2𝑊𝑖𝑗

𝑁

𝑗=1

+ 𝑂(ℎ3) 

(26) 

which again relies on how well the SPH approximations for these terms hold: 

∑
𝑚𝑗

𝜌𝑗
∇𝑖
2𝑊𝑖𝑗

𝑁

𝑗=1

≈ 0 and ∑
𝑚𝑗

𝜌𝑗
𝐱𝑗𝑖
𝛼𝐱𝑗𝑖

𝛽
∇𝑖
2𝑊𝑖𝑗

𝑁

𝑗=1

≈ 𝛿𝛼𝛽 (27) 

Note that one can completely eliminate these errors in a way similar to the case of the 

first derivative. However, the issue associated with the above SPH operator for the 

second derivatives, i.e. Equation (25), is that it involves the second derivatives of the 

kernel function. Unfortunately, for most existing kernel functions, their second deriv-

atives changes sign within the kernel influence domain, as shown in Figure 3 for the 

two most popular Gaussian and Cubic-spline kernel functions. This makes the condi-

tions in Equation (27) to be extremely hard to be satisfied. Therefore, for practical 

SPH applications, it is recommended to avoid the use of the second derivatives of the 

kernel function. Accordingly, a different way to approximate the second derivatives 

of a function by SPH is needed. 

Perhaps, the simplest method to get away from the second derivative of the kernel 

function is to apply Taylor series expansion of a function 𝑓𝑗 around 𝐱𝑖 up to the sec-

ond-order of accuracy, giving: 

𝑓𝑗 = 𝑓𝑖 +
𝜕𝑓𝑖
𝜕𝐱𝛼

𝐱𝑗𝑖
𝛼 +

1

2

𝜕2𝑓𝑖

𝜕𝐱𝛼𝜕𝐱𝛽
𝐱𝑗𝑖
𝛼𝐱𝑗𝑖

𝛽
+ 𝑂(ℎ3) (28) 

                                                           

 

 
2 An alternative way to derive this SPH operator is to replace the function 𝑓 in Equation (13) by ∇2𝑓 

and applying the Gaussian theorem as done for the first derivative. 

12 Smoothed particle hydrodynamics (SPH) and its applications in geomechanics

ALERT Doctoral School 2020



 

 

 

 

Next, multiply Equation (28) by 𝐱𝑗𝑖∇𝑖𝑊𝑖𝑗/|𝐱𝑗𝑖|
2
 and taking the integral of the equation 

over the entire domain results: 

∫
(𝑓𝑗 − 𝑓𝑖)𝐱𝑗𝑖∇𝑖𝑊𝑖𝑗

|𝐱𝑗𝑖|
2 𝑑𝐱𝑗 (29) 

=
𝜕𝑓𝑖
𝜕𝐱𝛼

∫𝐱𝑗𝑖
𝛼
𝐱𝑗𝑖∇𝑖𝑊𝑖𝑗

|𝐱𝑗𝑖|
2 𝑑𝐱𝑗 +

1

2

𝜕2𝑓𝑖

𝜕𝐱𝛼𝜕𝐱𝛽
∫𝐱𝑗𝑖

𝛼𝐱𝑗𝑖
𝛽 𝐱𝑗𝑖∇𝑖𝑊𝑖𝑗

|𝐱𝑗𝑖|
2 𝑑𝐱𝑗  

From the integral theory, the first term on the right-hand side of Equation (29) is van-

ished for a symmetric kernel function 𝑊, while the second term should result in a 

delta function, 𝛿𝛼𝛽, which ultimately gives 1
2
∇2𝑓𝑖. Accordingly, by rearranging Equa-

tion (29), we have: 

∇2𝑓𝑖 = 2∫
(𝑓𝑗 − 𝑓𝑖)𝐱𝑗𝑖∇𝑖𝑊𝑖𝑗

|𝐱𝑗𝑖|
2 𝑑𝐱𝑗 (30) 

Finally, by discretising the above integral onto a finite set of particles, the following 

SPH operator for the second derivative of a function can be obtained: 

∇2𝑓𝑖 = 2∑
𝑚𝑗

𝜌𝑗

(𝑓𝑗 − 𝑓𝑖)𝐱𝑗𝑖∇𝑖𝑊𝑖𝑗

|𝐱𝑗𝑖|
2

𝑁

𝑗=1

 (31) 

which only involves the first derivative of the kernel function, and thus in principle, 

could produce better accuracy compared to the SPH operator in Equation (25). We 

acknowledge that in the derivation of the above SPH operator for the second deriva-

tive of a function, we have ignored the error introduced by the interpolation theory, 

and this will be discussed in due course. 

 

 
Figure 3. Gaussian and Cubic-spline kernel functions and its derivatives, respectively. 
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2.3 Selection of kernel functions and associated issues 

The selection of appropriate kernel function in SPH will directly affect the accuracy, 

efficiency and the stability of the SPH algorithm. As discussed in Section 2.1, a good 

kernel function needs to satisfy several key requirements, which are summarised be-

low: 

1. The kernel function must be positive, symmetric with respect to particle dis-

tance and have smooth first and second derivatives.  

2. It should have a compact domain and smoothly reduces as the distance from 

the centre of the kernel function increases. 

3. It must satisfy the normalised condition, which requires ∫𝑊(𝐱𝑖 −
𝐱𝑗, ℎ)𝑑𝑉 = 1 

Most exiting kernel functions in the literature satisfy the above requirements, and the 

two most popular kernel functions are the Gaussian kernel function and cubic-spline 

function. For the Gaussian kernel function: 

𝑊(𝑞, ℎ) = 𝛼𝑑 exp[−𝑞
2] (32) 

where 𝑞 = |𝐱𝑖𝑗|/ℎ is the ratio between the distance between two particles and the 

smoothing length ℎ, which defines the rate of falling-off of 𝑊 or the area of the kernel 

influence domain; and 𝛼𝑑 is the normalisation factor given as 𝛼𝑑 = [1/ℎ√𝜋,

1/𝜋ℎ2 ,1/(ℎ2𝜋√𝜋)] for one-, two- and three-dimensions, respectively. The cubic-

spline function takes the following form: 

𝑊(𝑞, ℎ) = 𝛼𝑑  

{
 
 

 
 
2

3
− 𝑞2 +

1

2
𝑞3           0 ≤ 𝑞 < 1

1

6
(2 − 𝑞)3                1 ≤ 𝑞 < 2

0                                 𝑞 ≥ 2         

 (33) 

where 𝛼𝑑 is the dimensional normalising factor defined by 𝛼𝑑 = [1/ℎ, 15/7𝜋ℎ2,
3/2𝜋ℎ2] for one-, two- and three-dimensions, respectively. The graphical representa-

tion of these kernel functions and its derivatives were shown in Figure 3. Compared 

to the cubic-spline function, the Gaussian kernel function does not have a compact 

domain3, so all particles will make contribution to the SPH approximation in the com-

putation, resulting in an extremely unnecessary large computational cost, i.e. in the 

order of 𝑂(𝑁2) with 𝑁 being the total number of particles in the system. In contrast, 

the cubic-spline function drops quickly and approaches zero as 𝑞 = 2 and thus allow-

ing to reduce the calculation to a sum over closely neighbouring particles, which dra-

matically reduces the cost to 𝑂(𝑛𝑁) with 𝑛 being the number of contributing neigh-

bours, although there is an additional cost of finding the neighbouring particles.  

In addition to the computational issue, the selection of kernel function will have a 

direct impact on the stability of SPH simulation. For instance, in the areas of compu-

                                                           

 

 
3 Note that the plot of Gaussian kernel function and its derivatives in Figure 3 are truncated at 𝑞 = 3 
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tational fluid mechanics or astrophysics, the SPH estimation of density is very im-

portant as this quantity is subsequently used to compute the pressure, which governs 

the motion of the entire system. The SPH kernel approximation controls the accuracy 

of density calculation and thus has a direct influence on the numerical stability of the 

application. An earlier study conducted by Dehnen and Aly [38] on the stability of 

SPH concluded that the misuse of Gaussian and Cubic-spline kernel functions would 

facilitate the so-call pairing instability for a randomly disordered particle system, in 

which particles tend to form a clump in the numerical simulations. It is noted that the 

paring instability is different from the tensile instability, which is caused by negative 

stresses/pressures. Dehnen and Aly [38] argues that the paring issue in SPH is mainly 

caused by the SPH density estimator error resulted from the misuse of kernel estima-

tions. In particular, each kernel function has a compacted domain, which can accom-

modate a limited number of “neighbouring” particles in the kernel estimation. When 

the number of “neighbouring” particles within the kernel domain exceed a certain 

threshold (i.e. in a highly disordered system or chaotic system), the kernel estimation 

would result in significant errors. One way to mitigate these estimation errors, as well 

as to repair the pairing instability issue, is to use the Wendland C2 kernel function, 

which takes the following form for 1D condition: 

𝑊(𝑞, ℎ) = 𝛼𝑑 {
(1 − 0.5𝑞)3(1.5𝑞 + 1)         0 ≤ 𝑞 ≤ 2
0                                                 𝑞 > 2       

 (34) 

and the following form for 2D & 3D conditions 

𝑊(𝑞, ℎ) = 𝛼𝑑 {
(1 − 0.5𝑞)4(2𝑞 + 1)         0 ≤ 𝑞 ≤ 2
0                                                 𝑞 > 2       

 (35) 

where 𝛼𝑑 is the dimensional normalising factor defined by 𝛼𝑑 = [5/8ℎ, 7/4𝜋ℎ2,
21/2𝜋ℎ2] for one-, two- and three-dimensions, respectively.  

 

 
Figure 4. Comparison of Wendland C2 kernel function and its first derivatives 

against the Gaussian and Cubic-spline kernel function 

Figure 4 shows the comparison between Wendland C2 kernel function against the 

other two popular ones. It can see that, similar to the Cubic-spline function, the 
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Wendland C2 kernel function also features a compact support domain. Furthermore, 

it is obvious from the figure that the Wendland C2 kernel function can slightly accom-

modate more “neighbouring particles” that the Cubic-spline function. All three kernel 

functions also feature the so-called inflection point (i.e. the zero gradient point at peak 

of the kernel function), which was attributed to the source of the pairing instability 

[38] because particles located near the inflection point would not gain enough repul-

sive force due to the kernel gradient. It is important to note that this pairing instability 

only occurs in a situation where there are more neighbouring particles in the influ-

ence domain that a kernel function can accommodate. Nevertheless, even with the 

presence of the inflection point, the Wendland C2 kernel function does not show any 

sign of pairing instability. This can be demonstrated by conducting a simple numerical 

test, consisting of an initially random distribution of SPH particles in a square box. 

The initial velocity of all particles are set to zero, and to avoid the tensile instability 

issue caused by negative pressure, a positive background pressure was assigned to all 

particles. To facilitate the pairing instability, we have intentionally designed the tests 

in such a way that both Gaussian and Cubic-spline functions will have more neigh-

bouring particles than the standard number of particles that these kernels can accom-

modate. The simulations were then run for a long period of time (again to facilitate 

the pairing instability), and the results are shown in Figure 5. The particle system in 

the Cubic-spline kernel function suffers the paring instability the most and the situa-

tion is getting worse as the number of neighbouring particles is increased, i.e. 

𝑘ℎ/∆𝑥 = 5.7 with ∆𝑥 being the initial distance between particle and 𝑘 being a scalar 

parameter, together with ℎ defining the influence domain of the kernel function. This 

is not surprising because in both tests we have intentionally forced the kernel function 

to take more neighbouring particles than the actual number of particles that it can 

accommodate, which is around 𝑘ℎ/∆𝑥 = 2.4. The Gaussian kernel function works 

better when the number of neighbouring particles is sufficiently small, which can be 

attributed to the fact that the Gaussian kernel function can accommodate more neigh-

bouring particles due to the infinite kernel domain, but still show pairing instability 

when the number of neighbouring particles increases to an excessive number (i.e. 

𝑘ℎ/∆𝑥 = 5.7). In contrast, the Wendland C2 kernel function was able to maintain the 

relatively good particle distributions throughout the numerical test, and this can be 

theoretically explained by the linear stability analysis for conservative SPH in spatial 

dimensions [38]. In particular, Dehnen and Aly [38] demonstrated that SPH kernel 

functions whose Fourier transform is negative for some wave vector will inevitably 

trigger the SPH paring instability at sufficient large number of neighbouring particles, 

which are the cases for the Gaussian and Cubic-spline functions. To sufficiently use 

these kernel functions, a number of neighbouring particle needs to be sufficiently 

maintained to not exceed a certain threshold, which depend on specific applications. 

In contrast, the Wendland C2 kernel function shown non-negative Fourier transform 

and demonstrated a remarkable feature in removing the paring instability. This sug-

gests that the Wendland C2 kernel function is a good candidate for dealing with prob-

lems involved highly disordered particles. Nevertheless, the drawback of Wendland 

C2 kernel function is that it suffers comparably large errors when the number of neigh-

bouring particles is low. Thus, when using Wendland C2 kernel function, it is im-

portant to maintain a good number of neighbouring particles. 
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Figure 5. Misuses of kernel functions causing pairing instability in SPH. 

2.4 Choosing smoothing length for kernel function 

In SPH simulations, each particle is assigned with a smoothing length, which controls 

the size of the kernel supporting domain and thus the number of neighbouring parti-

cles. In addition, depending on specific kernel functions, the smoothing length should 

be set to maximise its benefit. For example, the recommended smoothing length for 

the Cubic-spline function is within 𝑘ℎ/∆𝑥 = 2.0 − 2.6 and that for the Gaussian ker-

nel functions is 2.0-3.0. Failure to maintain these numbers will facilitate the paring 

stability issue, as shown in Figure 5. Furthermore, in early SPH applications, the 

smoothing length of each particle was often kept constant, but gradually found to be 

no longer suitable for applications involved highly disordered particles such as com-

plex free-surface flows or debris flows. In such applications, SPH particles might con-

centrate at some regions, while scattering at others within the computational domain. 

Keeping the constant smoothing length will result in less number of neighbouring 

particles in the scatter regions and thus losing the accuracy of SPH kernel estimation. 

In contrast, the number of neighbouring particles would be too large in the concen-

trated areas, causing pairing instability as discussed in the previous section. Therefore, 
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it is generally a good practice to design an adaptive smoothing length, which can au-

tomatically adjust depending on the level of particle concentration or density.  

A simple approach is to link the variable smoothing length to the density is to take the 

time derivative of Equation (2), which leads to: 

𝑑𝜌𝑖
𝑑𝑡

=
𝑑

𝑑𝑡
∑𝑚𝑗𝑊(𝐱𝑖 − 𝐱𝑗, ℎ𝑖)

𝑁

𝑗=1

 

=∑𝑚𝑗

𝜕𝑊(𝐱𝑖 − 𝐱𝑗, ℎ𝑖)

𝜕𝐫𝑖𝑗

𝑁

𝑗=1

∙
𝑑𝐫𝑖𝑗

𝑑𝑡
+∑𝑚𝑗

𝜕𝑊(𝐱𝑖 − 𝐱𝑗 , ℎ𝑖)

𝜕ℎ𝑖

𝑁

𝑗=1

∙
𝑑ℎ𝑖
𝑑𝑡

 

=∑𝑚𝑗(𝐯𝑖 − 𝐯𝑗)
𝜕𝑊(𝐱𝑖 − 𝐱𝑗, ℎ)

𝜕𝐫𝑖𝑗
+∑𝑚𝑗

𝜕𝑊(𝐱𝑖 − 𝐱𝑗, ℎ)

𝜕ℎ𝑖

𝑁

𝑗=1

∙
𝑑ℎ𝑖
𝑑𝑡

𝑁

𝑗=1

 

(36) 

 

The rearrangement of the above equation leads to the following interesting time-de-

pendent smoothing length equation, which can be evolved with the particle density:  

𝑑ℎ𝑖
𝑑𝑡

=

𝑑𝜌𝑖
𝑑𝑡

− ∑ 𝑚𝑗(𝐯𝑖 − 𝐯𝑗)
𝜕𝑊(𝐱𝑖 − 𝐱𝑗 , ℎ)

𝜕𝐫𝑖𝑗
𝑁
𝑗=1

∑ 𝑚𝑗

𝜕𝑊(𝐱𝑖 − 𝐱𝑗, ℎ)
𝜕ℎ𝑖

𝑁
𝑗=1

 
(37) 

 

It is noted that we have not tested the above equation. However, one can see that the 

mathematical derivation of the equation is conceptually correct and, indeed, it links 

the rate of change of the smoothing length to the change of the rate of change of the 

density, rather than the rate of change of the density. Alternatively, the reader can use 

the following equation to link the smoothing length to the rate of change of the density 

[39, 40]: 

𝑑ℎ

𝑑𝑡
= −

1

𝜈

ℎ

𝜌
 
𝑑𝜌

𝑑𝑡
 (38) 

Since each particle now has its own smoothing length, the kernel influence domain of 

particle i might cover particle j but not necessarily vice versa. Therefore, it is possible 

for particle i to exert a force on particle j without j exerting the same corresponding 

reaction on particle i. As a result, the momentum equation will not conserve exactly. 

To overcome this problem, some measures must be taken to preserve the symmetric 

of particle interactions. One simple approach to preserve the symmetry of particle 

interaction is to modify the smoothing length by taking the arithmetic mean or the 

average of the smoothing length of a pair of interacting particles [39]: 

ℎ𝑖𝑗 =
ℎ𝑖 + ℎ𝑗

2
  (39) 

Other ways can also be used to get the symmetric smoothing length using the geomet-

ric mean of the smoothing lengths of the pair of the interaction particles: 

ℎ𝑖𝑗 =
2ℎ𝑖ℎ𝑗

ℎ𝑖 + ℎ𝑗
  (40) 
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Alternatively, one can take the maximum value of the smoothing lengths ℎ𝑖𝑗 =

max(ℎ𝑖 , ℎ𝑗) or minimum of the smoothing lengths ℎ𝑖𝑗 = min(ℎ𝑖 , ℎ𝑗). The kernel 

function can then be obtained by using the symmetric smoothing length 𝑊𝑖𝑗 =

𝑊(𝐱𝑖 − 𝐱𝑗 , ℎ𝑖𝑗). It is noted that there are some advantages and disadvantages associ-

ated with each of the above approaches to average the smoothing length. For example, 

taking the arithmetic mean or maximum smoothing length tends to use more neigh-

bouring particles and sometimes may overly smooth out the interaction with surround-

ing particles. Taking geometric of minimum smoothing length, on the other hand, 

tends to possess less neighbouring particles. Another approach to preserve the sym-

metry of particle interaction is to directly use the average of kernel function values 

without using a symmetric smoothing length [39, 41]: 

𝑊𝑖𝑗 =
𝑊(𝐫𝑖𝑗 , ℎ𝑖) +𝑊(𝐫𝑖𝑗 , ℎ𝑗)

2
  

(41) 

Finally, it is noted that, while it is preferable to use the variable smoothing length, 

many SPH applications in geotechnical engineering areas does not require this update, 

but still achieving reasonable results. Readers who are new to SPH is strongly recom-

mended to start with a constant smoothing length. Nevertheless, the use of symmetric 

smoothing length or symmetric kernel average is very important to guarantee the con-

servation of momentum equation, which controls the stability and accuracy of SPH. 

 General SPH framework for geomechanics applica-

tions 

The reader at this point should have developed some basic understanding of the key 

concepts of the SPH method. The next question would be how these concepts can be 

applied to solve geotechnical problems and in what capacity the method can produce 

results comparable to those by existing numerical methods, besides its advantages in 

some specifics areas. Before we start this discussion, it is important to remind the 

reader that, in SPH, the computational domain is represented by a set of moving par-

ticles (or material points), each of which occupies a given volume in the continuum 

space and carries field variables. Therefore, SPH is a continuum-based numerical 

method, which is very similar to FEM, although SPH does not require any background 

mesh and solve the strong-form governing diffential equations, unlike FEM solving 

weak-form differential equations. We will first establish the continuum governing 

equations for a single-phase system of general geomaterials (assuming isothermal). 

We will then present some potential applications of SPH in this area and discussed 

potential issues associated with these applications as well as with SPH in general.  

3.1 SPH approximation of governing equations 

The governing equations for solving general geomechanics and geotechnical engi-

neering problems consist of the continuity and momentum balance equations. The 
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continuity equation describes the change of material density, and thus void ratio, dur-

ing the deformation process, while the momentum equation describes how the mate-

rials undergo deformation under external loads. These two equations are written as 

follows [42], respectively: 

𝑑𝜌𝑖
𝑑𝑡

= −𝜌∇ ∙ 𝐯|𝑖 =∑𝑚𝑗(𝐯𝑖 − 𝐯𝑗)∇𝑖𝑊𝑖𝑗

𝑁

𝑗=1

 (42) 

𝑑𝐯𝑖
𝑑𝑡

=
1

𝜌
∇ ∙ 𝛔 + 𝐠|

𝑖

=∑𝑚𝑗 (
𝛔𝑖

𝜌𝑖
2 +

𝛔𝑗

𝜌𝑗
2) ∙ ∇𝑖𝑊𝑖𝑗

𝑁

𝑗=1

+ 𝐠 (43) 

where 𝛔 is the stress tensor, which will be defined later, and g is the acceleration due 

to the gravity.  

The reader will have immediately noticed that Equation (42) can be achieved by 

adopting the following simple transformation [−𝜌∇ ∙ 𝐯 = ∇ ∙ (𝜌𝐯) − 𝐯∇𝜌] then ap-

plying Equations (15) and (16), or simply applying the SPH operator in Equation (20) 

to the ∇ ∙ 𝐯  term, which also results in a slightly different version of the continuity 

density equation. Alternatively, the continuity equation can be also derived by taking 

derivative of Equation (2), leading to the following continuity equations:  

𝑑𝜌𝑖
𝑑𝑡

=
1

𝜗𝑖
∑𝑚𝑗(𝐯𝑖 − 𝐯𝑗) ∙ ∇𝑖𝑊𝑖𝑗

𝑁

𝑗=1

 (44) 

where 𝜗𝑖 is an extra term introduced to the continuity equation as a result of the spatial 

derivative of the smoothing length and is defined as follows: 

𝜗𝑖 = [1 −
𝜕ℎ𝑖
𝜕𝜌𝑖

∑𝑚𝑗

𝜕𝑊(𝐱𝑖 − 𝐱𝑗, ℎ)

𝜕ℎ𝑖

𝑁

𝑗=1

] (45) 

For a constant smoothing length, Equation (44) simply returns to Equation (42), sug-

gesting that the SPH continuity equation can be simply derived from the SPH estima-

tion of density, which was discussed in Section 2.1. On the other hand, the SPH mo-

mentum equation4 was obtained by applying the symmetric SPH operator, i.e. Equa-

tion (23), to the ∇ ∙ 𝛔  term. The reader will have wondered why we apply the “bad” 

SPH operator, which has poor results of SPH approximation for the gradient of a con-

stant function, to approximate the momentum equation, instead of using a “good” SPH 

operator such as Equation (20) or Equation (21). Indeed, this is one of the interesting 

features of SPH as it appears that the “good” SPH operators do not reproduce the SPH 

momentum equation, which exactly conserves both the total linear and angular mo-

menta, while the “bad” SPH operator does well in this aspect. The conservation of the 

                                                           

 

 
4 Note that an alternative popular SPH momentum equation can be also derived by applying the SPH 

operator (24). Both approaches similar results and thus here we only focus on one of the two popular 

SPH equations for the momentum balance. 
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total linear momentum of the above governing equation can be straightforwardly 

proved by taking derivative of the total momentum of the entire system [32]:  

𝑑

𝑑𝑡
∑𝑚𝑖𝐯𝑖
𝑖

=∑∑𝑚𝑖𝑚𝑗 (
𝛔𝑖

𝜌𝑖
2 +

𝛔𝑗

𝜌𝑗
2) ∙ ∇𝑖𝑊𝑖𝑗

𝑗𝑖

= 0 (46) 

where the double summation is equal to zero because ∇𝑖𝑊𝑖𝑗 = −∇𝑗𝑊𝑖𝑗. Similarly, the 

conservation of the total angular momentum can also be proven in a similar manner 

by: 

𝑑

𝑑𝑡
∑ 𝐱𝑖 ×𝑚𝑖𝐯𝑖
𝑖

=∑ 𝑚𝑖 (
𝑑𝐱𝑖
𝑑𝑡

× 𝐯𝑖)

𝑖

+∑ 𝑚𝑖 (𝐱𝑖 ×
𝑑𝐯𝑖
𝑑𝑡
)

𝑖

 

=∑∑𝑚𝑖𝑚𝑗 {𝐱𝑖 × [(
𝛔𝑖

𝜌𝑖
2 +

𝛔𝑗

𝜌𝑗
2) ∙ ∇𝑖𝑊𝑖𝑗]}

𝑗𝑖

= 0 

 

 

 

(47) 

which again equals to zero because of the symmetric features of the kernel function. 

On the other hand, if one prefers to use a “good” SPH operator such as Equation (20), 

the following momentum equation can be obtained: 

𝑑𝐯𝑖
𝑑𝑡

=∑𝑚𝑗 (
𝛔𝑖 − 𝛔𝑗

𝜌𝑖𝜌𝑗
) ∙ ∇𝑖𝑊𝑖𝑗

𝑗

= 0 (48) 

which guarantees the vanishing of gradient of a constant stress field. Unfortunately, 

the above equation does not exactly conserve both linear and angular momentums and 

thus failing to maintain the stability of numerical simulations. To the best of our 

knowledge, we have not yet achieved an SPH formulation for the momentum equation 

that exactly conserves both linear and angular momentum, while maintaining exact 

derivatives. And this conclusion extends to all existing particle numerical methods. 

3.2 Material constitutive models 

One of the most interesting features of SPH is its capability to simulate both fluid-like 

materials and solid-like materials undergoing extremely large deformation and flow 

behaviour. Early SPH applications in the field of geomechanics [43-45] explored the 

traditional SPH approach developed for computational fluid mechanics and elastic 

solid [46-48], hereafter referred to as CFD approach. In this approach, the total stress 

tensor (𝛔) was decomposed into the hydrostatic pressure (𝑝) and shear stress (𝝉), 

which can be computed using equation of state (EoS) and rheological type of consti-

tutive model, respectively. A more rigorous approach was subsequently developed [8, 

42, 49], in which advanced constitutive models based on the plasticity theory were 

adopted and successfully simulate a range of applications in geomechanics [4, 5, 50-

58]. In this section, we will provide a brief description of these two approaches. For 

the CFD approach, we will present the visco-plastic 𝜇(𝐼) model [59], which can be 

thought of as an extension of the Bingham fluid model with pressure and friction de-

pendent yield stress for application to dense granular flows. As for the more rigorous 

approach, we will first present a general elastoplastic constitutive model following the 
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Drucker-Prager yield criterion [50]. This will follow by an advanced scale-dependent 

constitutive model, capable of capturing localised failure of general geomaterials [60-

63]. 

3.2.1 CFD approach – 𝝁(𝑰) rheological constitutive model 

The 𝜇(𝐼) rheological model was developed to capture the inertial effects of granular 

materials in the dense regime [64]. It assumes the granular material behaves as a visco-

plastic fluid, following Drucker-Prager like yielding condition. The material does not 

flow when the stress state of the material is beneath the yielding stress, but above 

which material flows like a non-Newtonian fluid. The stress tensor in the 𝜇(𝐼) model 

was decomposed into the pressure and shear stress tensor: 𝛔 = 𝑝𝐈 + 𝛕 with 𝐈 being 

the unit tensor. The following equation of state can be used to compute the isotropic 

pressure: 

 𝑝 = 𝑐2(𝜌 − 𝜌0), (49) 

where 𝑐 is the speed of sound, 𝜌 is the density of an SPH particle, and 𝜌0 is the refer-

ence density of the material. The shear stress tensor is determined by, 

 𝛕 = 2𝜂�̇�, (50) 

 𝜂 =
𝜇𝑝

√𝛆 ̇ : �̇�𝑇
 (51) 

 𝜇 = 𝜇𝑠 +
𝜇𝑝 − 𝜇𝑠

𝐼0 𝐼𝑖⁄ + 1
 (52) 

where 𝜂 is an apparent viscosity; �̇� is the strain-rate tensor; 𝜇 is a frictional function 

dependent on the inertial number  𝐼𝑖 = 𝑑√�̇�: �̇�/√𝑝 𝜌0⁄  with 𝑑 being the real grain di-

ameter and 𝜇𝑠, 𝜇𝑝, and 𝐼0 being materials constants. The model includes a Drucker 

Prager-like yield criterion such that no flow occurs when [59]: 

√
𝟏

𝟐
𝛕 ∶ 𝛕 ≤ 𝜇𝑠𝑝  

(53) 

To avoid unphysical behaviour, the shear component of the stress tensor is assumed 

to be 0 when the pressure is negative, and the strain rate tensor is initialised as 10−7 

as zero strain rates can result in mathematically undefined behaviour.  

3.2.2 General elasto-plastic constitutive model 

While the CFD approach derives the stress tensor from instantaneous density and 

strain-rate, while the general elasto-plastic approach evolves the stress tensor over 

time using a stress-strain relationship that relates the stress-increment to the strain-

increment. Plasticity theory dictates that for an elastoplastic material, the total strain-

rate tensor is decomposed into elastic and plastic components: 

 �̇� = �̇�e + �̇�𝑝 (54)  

The stress is then calculated from the generalized Hooke’s Law:  

 �̇� = 𝐃e ∶ (�̇�−�̇�p) (55)  
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where 𝐃e is the elastic stiffness matrix [50]. The plastic strain rate can be computed 

using the general plastic flow rule: 

 
�̇�𝑝 = �̇�

𝜕𝑔

𝜕𝛔
 (56)  

where �̇� is the rate of the change of the plastic-multiplier and 𝑔 is the plastic potential 

function.  

Plastic deformation occurs when the yield criterion is satisfied. In principle, any ex-

isting elasto-plastic constitutive models developed for FEM can be implemented in 

SPH. Herein, we present the simplest case for an elasto-plastic constitutive model that 

follows the Drucker-Prager criterion, which takes the following general form: 

 𝑓(𝐼1 , 𝐽2,𝜅) = 𝛼𝜙𝐼1 +√𝐽2 − 𝛽𝜙𝑐(𝜅) = 0 (57)  

where 𝐼1 and 𝐽2 are the first and second invariants of the stress tensor; 𝛼𝜙 and 𝛽𝜙 are 

Drucker-Prager constants related to the Coulomb internal friction angle (𝜙); and 𝑐(𝜅) 
is related to soil cohesion and is assumed to be a function of plastic strain.  

In three-dimensional condition, 𝛼𝜙 and 𝑘𝑐 are calculated as, respectively: 

𝛼𝜙 =
2 sin𝜙

√3(3 − sin𝜙)
 and 𝑘𝑐 =

6𝑐 × cos 𝜙

√3(3 − sin 𝜙)
 (58) 

And the following non-linear softening law is adopted to describe the cohesion reduc-

tion process during the post-failure process: 

𝑐(𝜅) = 𝑐0 − 𝑐0 ∙ 𝑎(1 − 𝑒
−𝑏𝜅) 

𝑑𝜅 = √
3

2
𝑑𝛆𝑝: 𝑑𝛆𝑝 

(59) 

where 𝑐0 is the initial cohesion and 𝑎 and 𝑏 are constants. The plastic flow 

function can be simply defined as follow: 

 𝑔 = 𝛼𝜓𝐼1 + √𝐽2 (60)  

where 𝛼𝜓 is a Drucker-Prager constant and is determined the same as Equation (58) 

where 𝜙 is substituted for the dilation angle, 𝜓. It is well-known that the value of 

dilation angle in granular materials evolves with the material state and tends to vanish 

at a critical state corresponding to zero volume change with material deformation [65]. 

To reproduce the evolution of dilation towards the critical state in this SPH frame-

work, the dilation angle  is related to the development of accumulated plastic dis-

placement by a presumed exponential function as follows: 

 𝜓 = 𝜓0𝑒
𝑠𝑓|𝛆

𝑝| (61)  

where 𝜓0 is the initial dilation angle and 𝑠𝑓 is the scale factor. Equation (61) implies 

that  = 
0
 at the initial state and gradually approaches zero as the accumulated plas-

tic strain develops, which corresponds to the progressive failure of granular columns. 

The rate of change of  toward zero is controlled by the scale factor 𝑠𝑓. 

To solve the above constitutive equation for the stress update, it is preferable to adopt 

an advanced stress-return mapping algorithm [58].On the other hand, the fully explicit 

solution of the above constitutive model takes the following form: 
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�̇� =

(

 𝐃e: −
𝐃e:

𝜕𝑔
𝜕𝛔

∶
𝜕𝑓𝑇

𝜕𝛔
:𝐃e

𝜕𝑓𝑇

𝜕𝛔
:𝐃e:

𝜕𝑔
𝜕𝛔

+
𝜕𝑓
𝜕𝜅

√3
2
𝜕𝑔
𝜕𝛔

:
𝜕𝑔𝑇

𝜕𝛔 )

 : �̇� (62) 

For large deformation analyses, an invariant stress rate with respect to rigid-body ro-

tation must be enforced to the stress-strain relation. Therefore, the Jaumann stress-

rate formulation is often adopted: 

�̇� 𝐽 = �̇� − 𝛚 ∙ �̇� − �̇� ∙ 𝛚T (63) 
where �̇� is the spin-rate tensor. Finally, the above stress-strain relation is discretised 

onto SPH particles and updated for every particle each time increment following the 

same procedure presented in [50].  

3.2.3 Capturing pre- and post-localisation behaviour at particle level: a double 

scale approach to constitutive modelling 

Classical continuum constitutive models can be written for a unit volume element, 

thanks to the assumption of homogeneous deformation, and hence can be used for a 

volume element of any size. In relation to the SPH, the particle size does not affect 

the behaviour of the constitutive model it uses, given homogenous deformation over 

the volume of the particle is the implicit assumption. However, localised failure in the 

form of fracture or localisation band makes the assumption of homogeneous defor-

mation that continuum constitutive models are based on invalid. The deformation and 

nonlinear processes inside the localisation band dominate the inelastic response of the 

material, while the material outside this band usually undergoes elastic or negligible 

inelastic deformation. In such cases of localised failure, the behaviour of the volume 

element crossed by the localisation band is governed by behaviour of the localisation 

band, its size and orientation, in addition to the size and behaviour of the zone outside 

the band. A length scale related to the thickness of the localisation band is involved 

in the behaviour. Classical continuum models do not possess such a length scale and 

hence fails to correctly describe post-localisation behaviour. In the analysis of Bound-

ary Value Problems involving localised failure, the material stability in such cases is 

lost, leading to the dependence of numerical solutions on the discretisation. Without 

enhancements, these classical continuum models cannot give correct and converging 

numerical solutions upon refinement of the discretisation and this is a common issue 

with any numerical method, including the SPH. A range of available different en-

hancements can be selected, such as higher-order theories [66-70], or simply artificial 

scaling of constitutive behaviour using smeared crack/deformation approach [71-73]. 

However, they are not always suitable in terms of versatility, simplicity and compu-

tational efficiency for SPH simulations of complex failure processes that usually in-

volve the activation and deactivation of several cracks or localisation bands [60, 61].  

A generic and systematic enrichment based on the mechanism of localised failure that 

can be applied to any existing constitutive model and particularly suitable for SPH is 

presented in this sub-section, based on our earlier developments [60, 61]. The struc-
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ture of constitutive model is enriched to accommodate mesoscale details of the local-

isation band, including its orientation, thickness and behaviour. Given the fact that the 

localisation band thickness is usually very small, it is physically reasonable and com-

putationally efficient to consider the case of a volume element represented by an SPH 

particle crossed by a localisation band. 

 

 
Figure 6. An SPH particle crossed by a localisation band of thickness ℎ. 

 

The strain rate inside the band �̇�i can take the following form [74]: 

�̇�i = �̇�o +
1

ℎ
(𝐧⊗ �̇�)sym = �̇�o +

1

2ℎ
(𝐧⊗ �̇� + �̇�⊗ 𝐧) (64) 

where 𝐧 is the normal vector of the band, �̇� the velocity jump across the localisation 

band and �̇�o the strain rate outside the localization band. It is noted that all rate terms 

in this sub-section are pseudo rates, as all equations can be written in incremental 

forms. Rate forms are used just for the sake of simplicity in the presentation. 

The volume averaged strain rate �̇� is: 

�̇� = 𝑓�̇�i + (1 − 𝑓)�̇�o (65) 

where 𝑓 is the volume fraction of the localization zone. If an effective size 𝐻 of the 

particle can be defined as 𝐻 =
𝑉

𝑆
, where 𝑉 is the volume of the particle and 𝑆 the 

surface area of the localization zone (Figure 6), then the volume fraction 𝑓 can be 

expressed as the ratio between the thickness of the localization band and the particle 

size 𝐻: 

𝑓 =
𝑆ℎ

𝑉
=

𝑆ℎ

𝑆𝐻
=

ℎ

𝐻
  (66) 

Equations (64) and (65) can be used to obtain strain rates �̇�i, and �̇�o in terms of the 

macro strain rate �̇� and velocity jump �̇�: 

�̇�o = �̇� −
𝑓

ℎ
(𝐧⊗ �̇�)sym  (67) 

In the same way, the strain rate inside the band can also be expressed in terms of �̇� 

and �̇�, as: 

�̇�i = �̇� +
1 − 𝑓

ℎ
(𝐧 ⊗ �̇�)sym (68) 

Equations (67) and (68) indicate different strain rates outside and inside the localiza-

tion zone, generated by the macro strain rate and the velocity jump between two sur-

faces of the localization band and reflecting the discontinuity of strain rates due to 

 

𝑆

ℎ
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localization. Associated with these strain rates are corresponding stress tensors out-

side and inside the localization band, denoted as 𝛔o and 𝛔i, and different constitutive 

responses outside and inside the band. The relationships between macro stress 𝛔 and 

stresses outside (𝛔o) and inside (𝛔i) the localization band can be obtained using the 

virtual work equation, expressed as: 

𝛔: �̇� = 𝑓𝛔i: �̇�i + (1 − 𝑓)𝛔o: �̇�o (69) 

Substituting equations (89)-(90) into the above expression of the virtual work and 

rearranging the obtained expression, we obtain: 

1−𝑓

𝐻
(𝐭o − 𝐭i) ∙ �̇� + [𝛔 − 𝑓𝛔i − (1 − 𝑓)𝛔o]: �̇�o = 0  (70) 

where 𝐭 = 𝛔 ∙ 𝐧, 𝐭i = 𝛔i ∙ 𝐧 and 𝐭i = 𝛔o ∙ 𝐧 are the tractions associated with macro 

stress 𝛔, stress 𝛔i inside and stress 𝛔o outside the localisation zone, respectively. Since 

condition (70) must be met for any arbitrary rates �̇�, and �̇�o, the following relation-

ships are obtained: 

𝐭o = 𝐭i  (71) 

𝛔 = 𝑓𝛔i + (1 − 𝑓)𝛔o  (72) 

It can be proved that the above two relationships also lead to 𝐭 = 𝐭o as continuity of 

traction across the whole volume element. As can be seen, there are three stress-strain 

relationships associated with the macro behaviour and the responses inside and out-

side the localisation band. While the macro strain rate exhibits a jump across the lo-

calization band, it is reasonable to assume homogeneous deformation inside and out-

side the localization band, and corresponding constitutive relationships in the follow-

ing generic forms: 

�̇�o = 𝐃o: �̇�o = 𝐃o: [�̇� −
𝑓

ℎ
(𝐧⊗ �̇�)sym] (73) 

�̇�i = 𝐃i: �̇�i = 𝐃i: [�̇� +
1−𝑓

ℎ
(𝐧⊗ �̇�)sym]  (74) 

in which 𝐃o and 𝐃i are the tangent stiffnesses outside and inside the localization band, 

respectively. 

Equations (71)-(74) can be used to obtain the macro stress – macro strain relationship 

as functions of constitutive responses inside and outside the localization band and the 

geometrical properties of the band (thickness and orientation). Substituting the rate 

constitutive equations (73) and (74) into the rate form of volume averaged stress, we 

obtain the macro stress: 

�̇� = 𝑓𝐃i: [�̇� +
1−𝑓

ℎ
(𝐧⊗ �̇�)sym] + (1 − 𝑓)𝐃o: [�̇� −

𝑓

ℎ
(𝐧 ⊗ �̇�)sym]  (75) 

It can be seen that the velocity jump �̇� is needed for the calculation of the macro stress 

rate in the above equation, given macro strain rate �̇� as the input at the particle (or 

constitutive) level from the numerical methods for the solution of BVPs. The traction 

continuity 𝐭i = 𝐭o in rate form is used for the determination of �̇�. From the condition 

�̇�i = �̇�o and constitutive relationships (73) and (74), we can write: 

𝐃i: [�̇� +
1−𝑓

ℎ
(𝐧 ⊗ �̇�)sym] ∙ 𝐧 = 𝐃o: [�̇� −

𝑓

ℎ
(𝐧⊗ �̇�)sym] ∙ 𝐧  (76) 
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The above can be rearranged to obtain the velocity jump �̇� in term of macro strain rate 

�̇�: 

�̇� = [
1−𝑓

ℎ
(𝐧 ∙ 𝐃i ∙ 𝐧) +

𝑓

ℎ
(𝐧 ∙ 𝐃o ∙ 𝐧)]

−1

∙ (𝐃o − 𝐃i): �̇� ∙ 𝐧  (77) 

 

The described algorithm is an explicit stress return algorithm, based on the rate form 

of traction continuity, �̇�i = �̇�o. This is also used to obtain the tangent stiffness of the 

volume element crossed by a shear band. The readers can refer to Nguyen et al. [60] 

and Nguyen & Bui [61] for details and examples on an implicit stress return algorithm. 

The approach presented can be used with any existing constitutive models, given the 

generic forms (73) and (74) for constitutive responses outside and inside the localiza-

tion zone, respectively. As can be seen in equations (75) and (77), the size 𝐻 of the 

volume element, thickness ℎ of the localization band, its orientation and constitutive 

responses of two separate regions (the band and the outside zone) appear in the con-

stitutive structure. Models derived from this approach automatically possess a length 

scale ℎ that is invariant with the discretization and can be considered as an intrinsic 

material property, and behavior at the mesoscale of the localization band. Therefore 

they can describe and correctly capture both pre- and post-localization responses at 

the constitutive (or particle) level [60, 61]. As a result, no ad hoc regularization is 

needed in the analysis of BVPs. This approach is suitable for any numerical methods 

for the solution of BVPs, and particularly the SPH, given it does not require any mod-

ification beyond the constitutive level, and can be used straightforwardly for an SPH 

particle. This also forms the basis for more advanced ones, with both elastic and ine-

lastic responses outside the localisation band associated with the activation and deac-

tivation of more than one localisation bands [75], or evolution of localisation band 

thickness associated with the transition from diffuse to localised failure [61]. From 

this general approach, simplified ones can be derived using assumption on the thick-

ness of the localization band in relation to the size of the volume element containing 

it. 

For localisation zone of very small thickness, if this thickness is also very small com-

pared to the size of the volume element (or SPH particle) considered then the volume 

fraction 𝑓 is very small: 𝑓 = ℎ

𝐻
≪ 1. Therefore �̇�i in equation (68) can be approxi-

mated as [61-63]: 

�̇�i = �̇� +
1−𝑓

ℎ
(𝐧⊗ �̇�)sym ≈

1

ℎ
(𝐧 ⊗ �̇�)sym  (78) 

The strain rate outside the localization zone can be rewritten as:  

�̇�o = �̇� −
𝑓

ℎ
(𝐧⊗ �̇�)sym = �̇� −

1

𝐻
(𝐧 ⊗ �̇�)sym  (79) 

Examples that are suitable for the above simplification include, but are not limited to, 

localised failure of geomaterials such as rocks, concrete under tension or shearing 

under sufficiently low confining pressures. In such cases, given very small physical 

thickness of the localization band, its responses can be described by a cohesive-fric-

tional model for an idealised zero-thickness interface, using traction 𝐭i and displace-

ment jump 𝐮. Therefore the stress 𝛔i and strain 𝛆i are no longer needed. This cohesive-

frictional interface model can be described in the following incremental form: 
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�̇�i = 𝐊i�̇�  (80) 

where 𝐭i = 𝛔i𝐧 is the traction and 𝐊i the corresponding tangent stiffness of the inter-

face.  

For 𝑓 → 0, the macro stress 𝛔 coincides with the stress 𝛔o for the zone outside the 

localisation band: 

𝛔 = 𝑓𝛔i + (1 − 𝑓)𝛔o ≈ 𝛔o  (81) 

and the traction continuity (71) is expressed in the following form: 

𝛔o𝐧 − 𝐭i = 𝟎  (82) 

As traction and displacement jump are used to describe the behaviour inside the lo-

calisation zone, the simplified system now contains the following three key relation-

ships: 

𝛔 = 𝛔o = 𝐃o: �̇�o = 𝐃o: [�̇� −
1

𝐻
(𝐧 ⊗ �̇�)sym]  (83) 

�̇�i = 𝐊i�̇�  
(84) 

𝛔o𝐧 − 𝐭i = 𝟎  
(85) 

This simplified model, with the effects of thickness ℎ of the localization band lumped 

into the fracture behaviour of the cohesive-frictional model (via fracture energies in 

both pure and mixed modes) has been extensively used in our groups for modelling 

geomaterial failure using the SPH [54, 57, 58], MPM [60-63, 76], and also the Finite 

Element Method (FEM; [77-79]).  

 

   

(a) SPH: 𝛺 is the 

area of the SPH 

particle [54] 

(b) MPM: 𝛺 is the area of the 

element (1 or 4 MP particles) 

[63] 

(c) FEM: 𝛺 is the area of the 

element [78] 

Figure 7. Determination of size 𝐻 for 2D applications using SPH (a), MPM (b) and 

FEM (c). 

 

The length 𝐻, as an effective size of an SPH particle, naturally appears in the structure 

of the constitutive model (Equations (83)-(85)) and allows scaling of the constitutive 

behavior of the SPH particle to correctly describe post-localization stage of failure. 

This is particularly an appealing characteristic for SPH, a truly mesh-free numerical 

method, as everything required for the proposed approach can be accessed at the par-

ticle level and interaction between constitutive models derived from the proposed ap-

proach and the SPH-based discretization is through the effective size 𝐻 of the SPH 

particle, which is also the resolution of the discretization (Figure 11). This is different 

from FEM [77-79] and MPM applications [60-63, 76] in which involvement of ele-

ment size in interfacing models derived from this approach with mesh-based methods 

𝐧

 

ℎ

𝐻 =
 

 

L
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is required, given the resolution of the discretization is governed by the element size, 

not the size of the integration (or material) point (Figure 11). 

 

 
Figure 8. SPH simulation of three-point bending fracture [58]. 

 

The results of our SPH simulation of failure of a notched beam under three-point 

bending test in Figure 8a shows the insensitiveness of the numerical solution with 

respect to the resolution of the SPH discretization (Figure 8a), and damage contour at 

different stages of failure (Figure 8b). The constitutive behaviour for SPH in that sim-

ulation is based on the approach described above Equations (83)-(85), in combination 

with a mixed-mode cohesive-frictional model to describe the behaviour of the locali-

zation band idealized as a zero-thickness surface and embedded in the SPH particle. 

The behaviour of the fracturing SPH particle in such cases automatically scales with 

its size, thanks to the appearance of its size 𝐻 in the constitutive equation. 

3.2.4 How do I test the constitutive models implemented in SPH? 

Once a particular constitutive model is implemented in SPH, it is important to ensure 

the SPH code can correctly reproduce the constitutive response. The reader would 

have noticed that it is not straightforward in SPH to perform an element test, like 

FEM. Thus, an alternative approach should be used. In our view, one of the first SPH 

tests that needs to pass to ensure the SPH code can correctly reproduce the constitutive 

response is to conduct the simple shear test [56, 80]. The geometry and setting of this 

test are shown in Figure 9. In this test, a representative soil element, which is formed 

by a group of SPH particles, is placed at the centrally located area and surrounded by 

boundary areas which are also modelled by a set of SPH particles with the same prop-

erties. Particles within the central area are allowed to move freely, while those located 

within the boundary area are enforced by a constant velocity field defined by: 

 

𝑣𝑥𝑖 = 𝜁𝑦𝑖  and 𝑣𝑦𝑖 = 0 (86) 

 

where 𝑣𝑥𝑖  and 𝑣𝑦𝑖 is the horizontal velocity of particles within the boundary area, 

respectively; and 𝜁  is a constant parameter defining the loading rate, which can be 

taken to be 0.01 [56]. 

SPH simulation, dx=2mm
Experiment

SPH simulation, dx=3mm
SPH simulation, dx=4mm

Deflection (mm)

Fo
rc

e 
(N

)

Damage process

(a) (b)
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Figure 9. Setting of simple shear test for SPH simulations. 

 

The responses of a constitutive model in SPH can be then checked by calculating the 

averaged normal and shear stresses of all SPH particles located within the central area, 

and comparing these results against those obtained from a single-element test using 

standard stress-updating algorithms. Figure 10 illustrates the performance of the 

MCG-SPH code5 for an advanced critical state-based constitutive model for sandy 

materials [81] through the simple shear tests for three different states of materials, i.e. 

dense, medium and loose sands. It can be seen that, under the current setting condi-

tions, the simple test represents the undrained simple shear test conditions. The results 

indicate that the SPH method could reproduce well the stress-strain relationship and 

stress loading path of an advanced constitute model. 

 

 
Figure 10. SPH modelling of simple shear test for SIMSAND model. 

                                                           

 

 
5 MCG-SPH code refers to the SPH code developed by the Monash Computational Geomechanics 

(MCG) Lab at Monash University, Australia. 
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3.3 Dissipated terms in SPH 

The reader may have noticed that the SPH motion equation formulated in Section 3.1 

is a fully dynamic equation6, i.e. Equation (43). In the absence of any dissipated terms, 

particles are subjected to free oscillations due to unbalanced forces, part of which is 

contributed by the errors introduced by the symmetric SPH operator such as Equation 

(23) and the rest is attributed by the zero-energy mode produced by the anti-symmetric 

kernel function with zero kernel gradient. Missing these dissipated terms can ulti-

mately lead to the complete termination of the SPH computational process. I ti snoted 

that this is a common issue in dynamic simulations using numerical methods. A com-

mon way to suppress this numerical oscillations in SPH is to introduce the artificial 

viscosity term, which was originally proposed by Monaghan and Gingold [82]: 

𝐃𝑑𝑖𝑠𝑝|𝑖 =∑𝑚𝑗

𝑁

𝑗=1

(
𝛼𝑑𝑐𝑖𝑗𝜋𝑖𝑗 + 𝛽𝑑𝜋𝑖𝑗

2

𝜌𝑖𝑗
) ∙ ∇𝑖𝑊𝑖𝑗 

(87) 

with 𝜋𝑖𝑗 =
ℎ𝑖𝑗𝐯𝑖𝑗 ∙ 𝒓𝑖𝑗

|𝒓𝑖𝑗| + 𝜖ℎ𝑖𝑗
2

 

where 𝛼𝑑 and 𝛽𝑑 are two unknown constants, which are usually taken to be unity [40] 

or equal to 0.01 and 0 for granular materials [42], respectively; 𝜌𝑖𝑗 and ℎ𝑖𝑗 are the 

mean density and smoothing length; 𝜖 = 0.01 is a numerical parameter introduced to 

prevent numerical divergences; and 𝑐𝑖𝑗  is the sound velocity, which for solid materials 

is computed by 𝑐𝑖 = √𝐸𝑖/𝜌𝑖 with 𝐸𝑖 is the material elastic modulus. The artificial 

viscosity is added to the motion equation as follows: 

𝑑𝐯𝑖
𝑑𝑡

=
1

𝜌
∇ ∙ 𝛔 + 𝐠|

𝑖

=∑𝑚𝑗 (
𝛔𝑖

𝜌𝑖
2 +

𝛔𝑗

𝜌𝑗
2) ∙ ∇𝑖𝑊𝑖𝑗

𝑁

𝑗=1

− 𝐃𝑑𝑖𝑠𝑝|𝑖 + 𝐠 (88) 

The introduction of the artificial viscosity to the momentum equation not only helps 

to suppress the numerical oscillations, but also mitigates issues related to pairing in-

stability between SPH particles. However, the main drawback of this approach is that 

it introduces a large amount of dissipated energy to the system when a high value of 

𝛼𝑑 is adopted. Therefore, it is preferable to minimise the influence of this dissipated 

term in SPH simulations by setting these unknown parameters as small as possible.  

Bui et al. [42], through the investigation of the influenced of this dissipated term on 

the granular flow, suggested that the second term involved 𝛽𝑑 does not have strong 

influence on the behaviour of granular materials. They suggested that, for SPH appli-

cations adopting Cubic-spline function with ℎ = 1.2∆𝑥,  𝛼𝑑 = 0.1 seems to be suita-

ble to most cases. 

In view of the dissipated mechanism, an alternative approach was to replace the arti-

ficial viscosity with a viscous damping force per unit mass defined by [52]: 

                                                           

 

 
6 Dissipation due to plastic deformation is different from the dissipation discussed in this section. 

This raises an interesting question if visco-plastic constitutive models would help to suppress these 

numerical oscillations, which could be an interesting topic for future investigations of SPH.  
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𝐃𝑑|𝑖 = 𝑐𝑑𝐯𝑖 (89) 
 

where 𝑐𝑑 is a damping coefficient, which can be computed by 𝑐𝑑 = 𝜉√𝐸/𝜌ℎ2 [10] 

with 𝜉 being a non-dimensional damping coefficient that requires calibrations for dif-

ferent applications.  

It is argued that the above viscous damping force has more physical meaning com-

pared to the artificial viscosity because the damping coefficient is directly linked to 

material properties. Thus, once the non-dimensional parameter is calibrated for a cer-

tain type of material, the damping coefficient will purely depend on the material prop-

erties, unlike the artificial viscosity. Nevertheless, this viscous damping force needs 

to use together with the stress regularisation to avoid the inherent short-length-scale 

noise in the stress profile of SPH simulations [52]. 

3.4 Tensile instability issue in SPH 

Different from the paring instability discussed in Section 2.3, which is mainly caused 

by the misuse of the kernel function, the SPH tensile instability is caused by negative 

pressures/stresses, resulting in the attraction force between a pair of SPH particles 

causing particles to move closely to each other (i.e. clumping). This instability was 

originally studied by Swegle et al. [31], who related it to the sign of the stress and the 

second derivative of the interpolating kernel. However, they did not recognise the 

mechanism of pairing instability caused by the misuse of the kernel function, and thus 

incorrectly described both instability mechanisms using the same criterion. Further-

more, the cubic-spline kernel function used in their study appears to be suffered the 

most from pairing instability, as demonstrated in Section 2.3. There have been several 

attempts to remove this instability using different approaches [83, 84]. However, in 

our view, the most effective and successful has been the artificial pressure/stress 

method proposed by Monaghan [85] for fluids and was subsequently generalised by 

Gray & Monaghan [47] for elastic solid. The key idea of this method is to introduce a 

small repulsive force between a pair of neighbouring particles by using an artificial 

stress term to prevent them from getting closer when two particles are in a state of 

tensile stress.  

Within the context of geomechanics applications, Bui et al. [42] was the first who 

demonstrated that, for non-cohesive granular materials, tensile instability issues is al-

most unrecognised and can be completely removed by adopting a tension cracking 

treatment, which removes undesirable negative stresses from the numerical simula-

tion. This treatment is physically correct for non-cohesive granular materials as these 

materials in principle cannot carry any tensile stress, unless they are under unsaturated 
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conditions, which is out of the scope of this discussion. On the other hand, for cohe-

sive frictional granular materials, it is inevitable to avoid the possibility of tensile in-

stability in SPH simulations because there always exists a tension zone in the yield 

surface space of these materials, which is corresponding to the negative stress zone.  

 

 
Figure 11. The tensile instability in cohesive-frictional granular materials was re-

moved by the artificial stress method. The exponent 𝑛 was kept constant at 2.55 [42]. 

 

To mitigate this issue, the artificial stress method can be adopted and is defined as 

follows [47]: 

𝐅𝜎|𝑖 =∑𝑚𝑗

𝑁

𝑗=1

𝑓𝑖𝑗
𝑛(𝐑𝑖 + 𝐑𝑗) ∙ ∇𝑖𝑊𝑖𝑗 with 𝑓𝑖𝑗 =

𝑊𝑖𝑗(𝐱𝑖𝑗, ℎ)

𝑊(∆𝑥, ℎ)
 (90) 

where n is the exponential factor depended on the smoothing kernel, which can be 

chosen from the dispersion equation analysis [47]; and ∆𝑥 is the initial particle spac-

ing. For the cubic-spline kernel function, the ratio 𝑊𝑖𝑗/𝑊(∆𝑥, ℎ) has the value 4 if 

ℎ = ∆𝑥, and if ℎ = 1.2∆𝑥 (the typical ℎ for the cubic-spline function), the ratio is 

about 2.55. Gray and Monaghan [47] suggested the best choice of 𝑛 when applying 

SPH for elastic solid is 4. However, Bui et al. [42] found that this choice cannot be 

used for cohesive-frictional soil as 𝑓𝑖𝑗 will increase by a factor of about 42 as |𝐱𝑖𝑗| 

decreases from ∆𝑥 to zero. This may sometimes lead to numerical instability. For most 

of general SPH applications to simulate cohesive-frictional granular materials, the ex-

 

0 = 0 

0 = 0.5 

0 = 0.3 

0 = 0.7 

Tensile instability 
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ponential factor 𝑛 should be chosen to be 2.55, and therefore for ℎ = 1.2∆𝑥, 𝑓𝑖𝑗 in-

creases by a factor of about 11 as |𝐱𝑖𝑗| decreases from ∆𝑥 to 0; while this force 

decreases rapidly according to (|𝐱𝑖𝑗| − 2ℎ)
3𝑛

 in the domain ℎ ≤ |𝐱𝑖𝑗| ≤ 2ℎ. This en-

sures that the effect of the artificial stress is confined to nearest neighboring particles.  

The effectiveness of the artificial stress method in removing the tensile instability in 

non-cohesive frictional granular materials was demonstrated in Bui et al. [42], as 

shown in Figure 11 for different value of constant parameter ε0. The recommended 

value was ε0 = 0.5 for SPH simulations adopting the cubic-spline kernel function 

with the smoothing length of ℎ = 1.2∆𝑥. It is noted that although this is the recom-

mended value for cohesive granular materials, sensitive studies are required for dif-

ferent kernel functions with a different range of interpolation domain. Also, when 

investigating the tensile instability issue, it is important to distinguish this issue from 

the pairing stability, which is mainly caused by the misuse of smoothing length of a 

particular kernel function. 

 

Here, we further present the procedure to extend this artificial stress method to 3D 

condition. The artificial stress tensor 𝐑𝑖 for particle 𝑖 is calculated according to the 

following procedure: 

�̂�𝑖 = −ε0
〈�̂�𝑖〉

𝜌𝑖
2  (91) 

where 〈∙〉 indicates the Macaulay brackets; �̂�𝑖 is the diagonal component of the artifi-

cial stress tensor 𝐑𝑖; ε0 is a constant parameter ranging from 0 to 1, though the rec-

ommended value for granular materials is 0.5 [42]; and �̂�𝑖 is the diagonal stress tensor 

of the particle 𝑖, with non-diagonal component of �̂�𝑖 being zero; and the hat indicates 

that the tensors are taken in coordinate where 𝛔𝑖 is a diagonal. Consequently, the pro-

cedure to obtain 𝐑𝑖 is as follows: 

1. �̂�𝑖 is obtained by diagonalising 𝛔𝑖 

2. �̂�𝑖 is calculated from �̂�𝑖 

3. 𝐑𝑖 is obtained by rotating �̂�𝑖 back to the original coordinate system 

Given 𝛔𝑖 is a symmetric matrix, we have 𝛔𝑖 = 𝐐𝑖: �̂�𝑖: 𝐐𝑖
𝑇, where �̂�𝑖 is a diagonal ma-

trix containing the eigenvalues of 𝛔𝑖 and the columns of 𝐐𝑖 corresponding eigenvec-

tors. The eigenvalue  (3 × 3) matrix are the zeros of the polynomial of degree 3, and 

thus can be computed by direct methods, i.e. by Cardano’s formula and the eigenvec-

tors by vector cross product [86]. However, if the eigenvalues differ very much in 

size, this method computes the small eigenvalues with a low relative accuracy due to 

rounding errors. Therefore, one can use the hybrid method defined in [86]: Cardano’s 

formula is used as the default method, but if an error estimate indicates that the result-

ing eigenvalue may be inaccurate, the eigenvalues are calculated iteratively by the QL 
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algorithm, where 𝛔𝑖  is decomposed into an orthogonal matrix 𝐐𝑖 and a lower triangu-

lar matrix 𝐋 by a sequence of plane rotations and using implicit shifting to accelerate 

the convergence. Once evaluated, the artificial stress 𝐅𝜎|𝑖 can be simply added to the 

momentum equation, we have:  

 

𝑑𝐯𝑖
𝑑𝑡

=
1

𝜌
∇ ∙ 𝛔 + 𝐠|

𝑖

=∑𝑚𝑗 (
𝛔𝑖

𝜌𝑖
2 +

𝛔𝑗

𝜌𝑗
2) ∙ ∇𝑖𝑊𝑖𝑗

𝑁

𝑗=1

− 𝐃𝑑𝑖𝑠𝑝|𝑖 + 𝐅𝜎|𝑖  + 𝐠 (92) 

 

Figure 12. Distribution of horizontal stress in an oscillating elastic beam shown at 

maximum deformation and the time evolution of the end bar (AS=Artificial Stress)7. 

 

The robustness of the artificial stress method in removing the tensile instability under 

3D conditions is shown in Figure 12. In this test, an elastic beam with a rectangular 

cross-section of (𝑏 × 𝑑) = (0.2 × 0.1)𝑚 and length of  = 2𝑚 is fixed at one end 

                                                           

 

 
7 This result was a part of the collaborative works (unpublished) between MCG Lab and Prof. D. 

Roose from KU Leuven University. The work was conducted by Y.R. Lopez under the supervision 

or Bui and Roose in 2014. 
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and free at the other end. Initially, the beam is excited by an initial velocity field, 

following its natural frequency. The elastic material properties of the beam are set to 

the shear modulus of 𝐺 = 0.22𝜌𝑐2 and Poisson’s ratio 𝜈 = 0.3. The results are then 

compared to the standard analytical solution for an elastic beam oscillation. With the 

help of the artificial stress method, the stress profile shown in Figure 12 does not show 

any sign of tensile instability (i.e. particle separation and stress noise). Furthermore, 

the oscillation of the free-end shows a reasonable agreement with the analytical solu-

tion. The difference in the frequency was attributed to the dissipated term, which can 

be further fine-tuning to match the analytical solution.  

3.5 Boundary conditions in SPH 

Like any other numerical methods, the treatment of boundary conditions in SPH is 

required to facilitate its applications to a wide range of engineering problems. Several 

specific boundary conditions that are commonly encountered when applying SPH to 

the geotechnical engineering field are discussed below. 

3.5.1 Solid boundary conditions  

Fully-fixed and free-slip (or free-roller) conditions are two typical boundary condi-

tions commonly encountered in geotechnical applications. In FEM and other numeri-

cal methods, these boundary conditions can be straightforwardly imposed by specify-

ing specific conditions on material nodes/points on the solid interface. In SPH, alt-

hough it is possible to directly impose such prescribed boundary values to particles, 

there exist issues associated with particles close to the solid boundary. For example, 

when an SPH particle approaches the solid boundary, the kernel interpolation domain 

of the particle will be truncated by the boundary and resulting in the low accuracy of 

SPH interpolation. Two typical methods, which are the root of all existing boundary 

treatment methods, have been developed to deal with these type of SPH solid bound-

ary conditions, including the ghost-particle approach [87] and virtual-particle ap-

proach [88, 89]. The former approach is more suitable for free-slip (or symmetric) 

boundary conditions, while the latter one is suitable for modelling fully-fixed bound-

ary conditions. While the ghost-particle approach [87] can be directly used to replicate 

the free-slip boundary conditions suitable for most geotechnical problems [42], the 

virtual-particle approach [88, 89] required further improvement to accommodate 

stress boundary conditions suitable for wider geomechanics applications. This was 

achieved in the work of Bui et al. [42] and thus will not be repeated here.  
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Figure 13. Arrangement of boundary and real particles in SPH. 

 

Alternative to the combined approach that requires to create ghost- and virtual-parti-

cles to model to the free- and fully fixed-boundary conditions, respectively, a simpler 

approach which makes use one set of particles (namely fixed boundary particles), can 

be used to replicate both boundary conditions [49, 90]. Figure 13 outlines the setup 

for this type of boundary condition. In this approach, three or four layers of fixed 

boundary particles (depending on extend of the kernel interpolation domain) are used 

to represent the solid boundary, with the first layer placed at a distance of 0.5∆𝑥 away 

from the boundary in the normal direction. These boundary particles carry all essential 

information as required for material particles, but their properties are directly interpo-

lated from adjacent material particles [49, 90]. For fully fixed boundary condition, the 

following conditions are imposed to fixed boundary particles: 

𝐯𝑎 = −∑
𝑚𝑏

𝜌𝑏
𝐯𝑏 �̃�𝑖𝑗

𝑗

 and 𝛔𝑎 =∑
𝑚𝑏

𝜌𝑏
𝛔𝑏 �̃�𝑎𝑏

𝑗

          (93) 

For free-slip boundary condition, the following conditions are imposed to fixed 

boundary particles: 

𝐯𝑎,𝑛 =∑
𝑚𝑏

𝜌𝑏
(𝐯𝑎,𝑛 − 2𝐯𝑏,𝑛) �̃�𝑎𝑏

𝑏

 and 𝐯𝑎,𝑡 =∑𝐯𝑏,𝑡  �̃�𝑎𝑏

𝑏

 (94) 

𝜎𝑎
𝛼𝛽
=

{
 
 

 
    ∑

𝑚𝑏

𝜌𝑏
𝜎𝑏
𝛼𝛽
 �̃�𝑎𝑏

𝑏

𝛼 = 𝛽

−∑
𝑚𝑏

𝜌𝑏
𝜎𝑏
𝛼𝛽
 �̃�𝑎𝑏

𝑏

𝛼 ≠ 𝛽
 (95) 

where 𝛼 and 𝛽 represent the Cartesian coordinate; �̃�𝑎𝑏 = 𝑊𝑎𝑏 (∑ 𝑚𝑏/𝜌𝑏𝑊𝑎𝑏𝑏 )⁄  is 

the normalised kernel operator; 𝐯𝑎,𝑛 and 𝐯𝑎,𝑡  are the normal and shear velocity com-

ponents with respect to the boundary surface of material particle 𝑏; and 𝜎𝑎 is the stress 

tensor of boundary particle 𝑎. 
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3.5.2 Flexible confined stress boundary 

While the solid boundary conditions can be reasonably well modelled using either 

ghost or virtual particles, it is not straightforward to extend this approach to model 

flexible confining stress boundaries. One of the key reasons is because this type of 

boundary condition often involves complex moving surface boundary, making it dif-

ficult to create a required number of boundary layers of ghost/virtual particles. There-

fore, it is desirable to develop a robust approach that does not require creating 

ghost/virtual particles, while can still impose the required confining stress to flexible 

boundaries. Such an approach was recently proposed in [56] by making use of kernel 

truncation properties of SPH kernel approximations near boundaries [10]. The key 

idea behind this approach is illustrated in Figure 14. Consider a continuum body   of 

arbitrary shape represented by a set of SPH particles. If one wants to automatically 

impose a constant confining pressure 𝛔𝑐 on the interface of the continuum domain, all 

they need to do is to assign a constant pressure field to all SPH particles representing 

the body  , and adding the following confining stress term to the momentum equation 

of each SPH particle:  

𝐏𝜎𝑐|𝑖
=∑

𝑚𝑗

𝜌𝑖𝜌𝑗
(𝛔𝑐𝑖 + 𝛔𝑐𝑗) ∙ ∇𝑖𝑊𝑖𝑗

𝑁

𝑗=1

 (96) 

The reader would have wondered why the above additional term produces the constant 

confining stress 𝝈𝑐 on the surface S of the continuum body  , while not altering the 

internal forces acting on SPH particles located inside the interface (i.e. particle repre-

sents an element 𝑑𝑉). To demonstrate this concept, let us rewrite Equation (96) in the 

following kernel integral form: 

𝐏𝜎𝑐|𝑖
=∑

𝑚𝑗

𝜌𝑖𝜌𝑗
(𝛔𝑐𝑖 + 𝛔𝑐𝑗)∇𝑖𝑊𝑖𝑗

𝑁

𝑗=1

=
1

𝜌𝑖
∫(𝛔𝑐𝑖 + 𝛔𝑐𝑗)
Ω

∇𝑖𝑊𝑖𝑗𝑑𝑉𝑗  (97) 

where 𝑑𝑉𝑗 is the volume of particle j or a volume element j. The above kernel integral 

can be further extended as follows: 
1

𝜌𝑖
∫(𝛔𝑐𝑖 + 𝛔𝑐𝑗)
Ω

∇𝑖𝑊𝑖𝑗𝑑𝑉𝑗 (98) 

=
1

𝜌𝑖
∫(𝛔𝑐𝑗 − 𝛔𝑐𝑖)
Ω

∇𝑖𝑊𝑖𝑗𝑑𝑉𝑗 +
1

𝜌𝑖
∫(2𝛔𝑐𝑖)
Ω

∇𝑖𝑊𝑖𝑗𝑑𝑉𝑗  

Because the confining pressure is constant everywhere on the domain  , the first term 

on the right-hand side of Equation (98) vanishes for every particle representing  . The 

remaining term can be further analysed by applying the divergence theorem, which 

converts the volume integral to the surface integral, we have: 

1

𝜌𝑖
∫(2𝛔𝑐𝑖)
Ω

∇𝑖𝑊𝑖𝑗𝑑𝑉𝑗 = −
2𝜎𝑐𝑖
𝜌𝑖

(∫𝑊𝑖𝑗�⃗� 𝑑𝑠
S

) (99) 

where S is the surface of the volume   and �⃗�  is unit vector normal to 𝑆. The above 

surface integral is zero everywhere within  , such as for SPH particle 𝑖 representing 

element 𝑑𝑉 in Figure 14, which can be attributed to the symmetric property of the 

kernel function 𝑊𝑖𝑗. In order words, if the kernel interpolation domain of a particle 
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representing   is closed or not truncated, its surface integral will theoretically vanish8. 

However, this is not the case for particle representing element 𝑑𝑉′, which located 

close to the surface boundary S of the domain  . In this case, the above surface inte-

gral can be written as follows: 

−
2𝜎𝑐𝑖
𝜌𝑖

(∫ 𝑊𝑖𝑗�⃗� 𝑑𝑠
𝑆′

) = −
2𝜎𝑐𝑖
𝜌𝑖

∫ 𝑊𝑖𝑗𝑛2⃗⃗⃗⃗ 𝑑𝑠
𝑎𝑐

−
2𝜎𝑐𝑖
𝜌𝑖

∫ 𝑊𝑖𝑗𝑛3⃗⃗⃗⃗ 𝑑𝑠
𝑎𝑏𝑐

 (100) 

 

where 𝑛2⃗⃗⃗⃗  and 𝑛3⃗⃗⃗⃗  are unit vectors normal to surface sections 𝑎𝑐 and 𝑎𝑏𝑐 as shown in 

Figure 14, respectively. The reader can immediately see that the last term in Equation 

(100) is again vanished due to the closed surface 𝑎𝑏𝑐, while the first term is indeed 

the surface integral of the confining stress over the surface 𝑎𝑐. This results in the 

confining force acting on the element 𝑑𝑉′ in the direction opposite to the normal vec-

tor 𝑛2⃗⃗⃗⃗ . As a result, the additional confining stress term in Equation (96) is simplified 

to: 

𝐏𝜎𝑐|𝑖
=∑

𝑚𝑗

𝜌𝑖𝜌𝑗
(𝛔𝑐𝑖 + 𝛔𝑐𝑗)∇𝑖𝑊𝑖𝑗

𝑁

𝑗=1

= −
2𝜎𝑐𝑖
𝜌𝑖

∫𝑊𝑖𝑗�⃗� 𝑑𝑠
𝑆

 (101) 

  

 

Figure 14. Illustration of the proposed confining boundary condition [56]. 

 

Equation (101) indicates that the confining stress term only works on particles located 

close to the interface surface of the domain  , and thus can be used to impose the 

confining stress to the surface of the domain  . At this point, the reader may have 

noticed that the above confining stress is multiplied by 2 and wonders if the above 

equation exactly reproduces a constant confining stress 𝛔𝑐 on the surface of the do-

main  . Our numerical investigation [56] has confirmed that this multiplication is 

required to exactly reproduce the desirable confining stress. Finally, since all we need 

in this approach is the locations of particles and a constant confining stress 𝛔𝑐 assigned 

to all SPH particles, the above method can be applied to any complex and moving 

surface interfaces without any difficulty. However, in practical applications of SPH, 

                                                           

 

 
8 Here we have ignored the interpolation error. 
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it is recommended that the above confining stress term is only applied to particles 

located close on the surface area to avoid numerical errors introduced by the errors 

associated with the SPH kernel estimation. This involves an additional step to specify 

those particles located close to the confining stress boundary. A straightforward ap-

proach to specify these SPH particles is to again make use of the SPH kernel trunca-

tion, which results in the following empirical criteria [56]: 

𝑓𝑖 = {
≤ 0.55     in     2𝐷
≤ 0.70     in     3𝐷

 (102) 

where 𝑓𝑖 is an index parameter calculated by 𝑓𝑖 = ∑ 𝑚𝑗/𝜌𝑗𝑊𝑖𝑗
𝑁
𝑗=1 . 

 

 
Figure 15. Deformation of soil specimens in triaxial shear tests under a) 50kPa con-

fining stress b) 100kPa confining stress [56]9; 

 

 
Figure 16. Stress loading paths in the triaxial test [56]. 

                                                           

 

 
9 Details of model setting and material properties for simulations presented in this section can be 

found S. Zhao, H. H. Bui, V. Lemiale, G. D. Nguyen, and F. Darve, "A generic approach to modelling 

flexible confined boundary conditions in SPH and its application," International Journal for 

Numerical and Analytical Methods in Geomechanics, vol. 43, no. 5, pp. 1005-1031, 2019. 
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The effectiveness of this approach in capturing a complex moving interface subjected 

to a constant confining stress can be demonstrated in SPH simulations of a triaxial test 

shown in Figure 15 [56]. In this test, a cylinder soil specimen with a dimension of 

25mm in diameter and 100mm in height was subjected to shearing under a constant 

confining stress of 50kPa. The soil was modelled by the general elasto-plastic consti-

tutive model with the Mohr-Coulomb yielding criterion. The confining stress was fa-

cilitated by the constant confining pressure to all SPH particles at the beginning of the 

simulation and kept constant throughout the simulation. Thanks to SPH kernel ap-

proximation features, the confining stress was automatically enforced to all particles 

located close to the membrane boundary and automatically updated as the sample de-

formed (Figure 15). The reader would have noticed that this method does not require 

any extra computational efforts to determine normal vectors of the confining curvature 

boundary, which are commonly required in other numerical methods to enforce the 

confining stress boundary. The loading path was well maintained until the structural 

failure of the soil specimens occurred (i.e. localised failure) where the stress loading 

path was slightly off the expected loading path. Nevertheless, it was well maintained 

under the three-dimensional space as shown in Figure 16.  

3.6 Time integrations 

The SPH governing equations written in the form of time-dependent ordinary differ-

ential equations can be integrated using standard numerical techniques such as the 

second-order accurate leapfrog (LF), predictor-corrector and Runge-Kutta (RK) 

schemes. In practice, the leapfrog algorithm is very popular for its low memory stor-

age required in the computation and the efficiency for one force per step and hence it 

is used in all applications presented in this note. In the LF scheme, field variables (𝐀) 

such as velocities, density and stresses are advanced at mid time-steps, while the po-

sitions (𝐱) are advanced in a full time-steps: 

𝐀𝑡+∆𝑡/2 = 𝐀𝑡+∆𝑡/2 + ∆𝑡 (
𝑑𝐀

𝑑𝑡
)
𝑡+∆𝑡/2

 (103) 

𝐱𝑡+1 = 𝐱𝑡 + ∆𝑡 (
𝑑𝐯

𝑑𝑡
)
𝑡+∆𝑡/2

 (104) 

The stability of the LF time integration scheme is governed by the so-called CFL 

(Courant-Friedrichs-Levy) condition, which results in a time-step proportional to the 

smoothing length:  

∆𝑡 ≤ 𝐶𝐶𝐹𝐿ℎ/𝑐 with 𝑐 = √𝐸/𝜌 (105) 

where 𝑐 is the sound speed of the material; 𝐸 is the elastic modulus of the material; 

and 𝐶𝐶𝐹𝐿  is a constant, which is typically taken to be 0.1. 

3.7 Parallel computing with SPH 

One of the key advantages of SPH in geotechnical applications is its capability to 

handle large deformation and flow failure behaviour of geomaterials. However, 
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because of the mesh-free nature, the method generally leads to more computational 

cost and becomes very expensive for large-scale applications. In such case, it is 

desirable to develop a scalable parallel computing SPH code to broaden its use cases. 

Of many existing parallelisation approaches which can be used to speed up an SPH 

code, we are interested in developing distributed-memory parallelism using the Mes-

sage Passing Interface (MPI). The choice of MPI is common for short-range interac-

tion particle methods such as SPH as it is relatively straightforward to parallelise, 

allows us to access more computational resources, and can be extendable to hybrid 

MPI-GPU approaches (reserved for future work). The readers are referred to our re-

cent publication in [90] for the detailed algorithm. Here, we only summary key steps 

required to develop an MPI code and demonstrate the performance of our high-per-

formance MCG-SPH code suitable for large scale geophysical applications. The key 

steps required to develop a scalable parallel SPH code include: 

1. Domain participation: We adopted the Orthogonal Recursive Bisection 

(ORB) algorithm, which subdivides the domain into bounding boxes whose 

faces/edges are co-axial with the Cartesian axes and each MPI process is 

assigned a box (Figure 17). The boundaries of these domains are updated 

occasionally, depending on the motion of the particles in the simulation. 

2. Physical particle distribution: This step, which occurs every time-step, in-

volves the redistribution of real SPH particles that have crossed subdomain 

boundaries. 

3. Hallo distribution: The step involves the redistribution of halo particle in-

formation, which also occurs every time-step. The halo particles are copies 

of real particles that are located within a kernel radius of another subdomain 

boundary (Figure 17. Halo particles are necessary for ensuring that real par-

ticles within subdomains have the necessary particle neighbours to perform 

SPH interpolations. In some cases, where SPH particles’ stress tensor is up-

dated based on strain-rate, a second exchange of information is required to 

update halo particles’ stress tensor. 

4.  

 
Figure 17. Computational domain participation strategy in SPH 

 

Figure 18 demonstrates the efficiency of the code for a test case of 32 million real 

SPH particles, the parallel scheme obtains a speedup of more than 900 times (~90% 
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efficiency) at 1,024 CPU cores. A demonstration of a use case is the simulation of the 

Mt St Helens debris flow event that occurred in 1980, which involved 2.9 billion cubic 

meters of deposit over 62 million square meters and over $3 billion in damages (USD, 

inflation adjusted) and 57 lives lost.  

 

 

 
Figure 18. Computing efficiency and application of SPH to simulate field-scale ap-

plications 

 Some specific applications in geomechanics 

4.1 Traditional geomechanics applications, basic tests 

When it comes to assessing a new numerical method, the first question we would ask 

is: how is the new method compared with the existing ones? The finite element method 

(FEM) is well-known for its capability to predict high-accurate solutions for small 

deformation problems. Therefore, it is a good idea to benchmark SPH against FEM 

for small deformation problems such as the bearing capacity and slope stability prob-

lems. Figure 19 shows a comparison between SPH and FEM (Plaxis) for the predic-

tion of load-bearing capacity and shear-banding development in the soil, which was 
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previously reported in [91]. In both models, the soil was simulated using an elastic-

perfectly plastic model following the Drucker-Prager yield criterion. The FEM anal-

ysis was conducted using Plaxis with two different FEM elements (6-node and 15-

node elements). It can see that the SPH code could reproduce very well both the load-

displacement curve and the shear band development in the model predicted by FEM. 

The SPH result was even closer to the FEM result using high-accuracy elements (i.e. 

15-node).  

 

 
Figure 19. Comparison between SPH and FEM for bearing capacity problems 

 

 
Figure 20. Comparison between SPH and FEM for slope stability problems 
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Figure 21 shows the comparison between SPH and FEM for the slope stability prob-

lem. In both methods, a simple cut-slope was analysed using the Mohr-Coulomb 

elasto-plastic constitutive model with a fiction of 31.2deg and cohesion of 0.55kPa. 

FEM (Plaxis) used 8109 nodes to represent the slope, while SPH only utilised 1215 

particles. The slope was subjected to gravity load and the shear strength reduction 

method [92] was applied to bring the slope to failure. It can see that SPH can exactly 

reproduce the potential failure surface predicted by FEM. Both methods result in the 

same factor of safety of FOS = 1.23. However, the FEM could not simulate the post-

failure process of the slope, as shown in Figure 21, while SPH can simulate the entire 

failure process. This suggests that SPH could reproduce similar results to FEM for 

small deformation problem, while having advantages in predicting large deformation 

and flow-failure problems, which will be demonstrated in subsequent section. 

 

 
Figure 21. Progressive failure of a cut-slope predicted by SPH. 

4.2 SPH applications to model granular flows10 

One of the attractive features of SPH is its capability to simulate large deformation 

and post-failure behaviour of geomaterials. In this section, the capability of SPH in 

simulating granular flows is demonstrated by simulating column collapse of non-co-

hesive frictional granular materials, and numerical results are benchmarked against 

experimental data. First, the 2D progressive collapse and deposit morphologies of 

granular columns predicted by SPH simulations are compared with the 2D flow ex-

periment of aluminium bars reported in [12] for two initial aspect ratios 𝑎 of 0.5 and 

1.0 (i.e. the ratio of column high to column width). The granular material is modelled 

using the general elasto-plastic constitutive model following the Drucker-Prager 

                                                           

 

 
10 Details of model setting and material properties for simulations presented in this section can be 

found in N.H.T. Nguyen, H.H. Bui and G.D. Nguyen, "Effects of material properties on the mobility 

of granular flow," Granular Matter, vol. 22, p. 59, 2020. 
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yielding criterion described in Section 3.2.2. Figure 22 presents a comparison between 

SPH simulations and the 2D experiments for the progressive collapse of granular col-

umns with the initial aspect ratios 𝑎 of 0.5 and 1, respectively. The SPH model can 

predict fairly well the collapse process of the granular columns in both experiments, 

both in term of the evolution of surface morphology and the run-out distance. To fur-

ther demonstrate the capability of SPH in predicting the run-out distance of granular 

flows, a series of SPH simulations of granular collapse test was conducted for a ar-

range of initial aspect ratios (from 0.25 to 10), and the results are compared with data 

obtained from the 2D experiments [12] and the literature, as shown in Figure 23. The 

SPH results (red squares) agree well with their experimental counterparts (blue dia-

monds) when the initial aspect ratio 𝑎 ranges from 0.25 to 10, and falling well within 

a range of data collected in the literature. This suggests that SPH with the Ducker-

Prager elasto-plastic constitutive model can predict well the behaviour of granular 

flows under the plane-strain condition. 

 

 

 
Figure 22. Progressive failure of 2D granular column with the initial aspect ratio 𝑎 = 

0.5 and 1.0. Blue line represents free surface extracted from the SPH simulation [93]. 
 

The capability of SPH in modelling 3D granular column collapse was also demon-

strated in Figure 24, where the results of SPH simulation of a cylinder granular column 

collapse experiment are compared with the experimental data reported by Lube et al. 

[94]. Excellent agreements between SPH and the experiment are obtained for both the 

surface morphology and final run-out distance. The undisturbed zone observed on the 

top surface of the material sample in the experiment was well captured by SPH. Fur-

thermore, a smooth distribution of the vertical stress profile at large deformation was 

also achieved, thanks to the stress regularisation technique [52]. 
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Figure 23. Comparison of the final run-out distances of 2D granular flow with dif-

ferent aspect ratios obtained from experiments and simulations. 

  

 
Figure 24. Comparisons between 3D SPH simulation11and experiment for the 

granular columns collapse. 

                                                           

 

 
11 Details of model setting and material properties for simulations can be found in H. H. Bui and G. 

D. Nguyen, "Numerical predictions of post-flow behaviour of granular materials using an improved 
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4.3 SPH applications to model soil-structure interactions 

Soil-structure interaction is an interesting topic which has been extensively investi-

gated in the literature. Given the capability of SPH in predicting large deformation 

and flow failure of granular materials, as demonstrated in the earlier section, it is in-

teresting to discuss how SPH can be extended to model soil-structure interactions. We 

will first present our latest development of SPH for large-scale simulations of the in-

teraction between the granular flows and control structures [95]. Figure 25 shows the 

application of the high-performance computing MCG-SPH code [42, 90] to investi-

gate the interaction of granular flows against check-dams and baffles [95], which are 

commonly used as the control structures to slow down debris flows. In the model, the 

debris flow was modelled using the μ(I) rheological constitutive model described in 

Section 3.2.1, the validation of which has been previously reported in [90] and demon-

strated to be suitable for this type of problem. The simulations involve more than 3 

millions material particles and over 800 thousand boundary particles and are simu-

lated on using 192 CPU cores on NCI-Gadi or Pawsey Magnus of the National Com-

puting Infrastructure (NCI), Australia. The reader can immediately see from Figure 

25 that the high-performance computing model can be effectively used to assess the 

performance of different control structures without involving substantial costs re-

quired to conduct large-scale experiments. For example, the SPH simulation results 

in Figure 25 demonstrated that the taller baffle system appears to be more efficient 

than the shorter system and there exists a critical height above which the baffle system 

does not gain more benefit. The check dams appear to be better in slowing down the 

debris flows. However, if one looks at the total forces acting on the check dams, it is 

an order of magnitude lager than the individual baffle of the same height as the dam 

experiences [95].  

At this point, the reader would have asked what if we have a deformable or moving 

rigid structures and how one can extend the current SPH model to simulate such a 

system. First, we will discuss how SPH can be extended to model the interaction be-

tween soil and rigid structures, as in the segmental retaining wall system, which is 

commonly used in practice to reinforce soil slopes due to its capability to tolerate 

minor ground movement and settlement without causing damage the retaining wall 

structure. To model this type of problems, one would need to find a way to represent 

the retaining wall blocks in SPH as well as to describe their rigid body motions in 

SPH. Such a model has been developed by Bui et al. [51], which was dated back to 

the original work by Monaghan [96], and will be briefly summarised this model here. 

In their SPH model, the retaining wall blocks (or rigid structures) are simulated by 

placing SPH boundary particles on the surface boundary of each wall block, as shown 

                                                           

 

 
SPH model," in CIGOS 2019, Innovation for Sustainable Infrastructure: Springer, 2020, pp. 895-

900. 
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in Figure 26. The dynamic motions of retaining wall blocks can be then described 

through the motion of their central mass, which obeys Newton’s second law. The 

translational and rotational motion equations for the centre of mass of a block can be 

written as follows, respectively: 

 

 
 

Figure 25. Large-scale simulation12 of the interaction between SPH and protective 

structures [95]. 

 

                                                           

 

 
12 Details of model setting and material properties for simulations can be found in E. Yang, H. H. 

Bui, H. De Sterck, G. D. Nguyen, and A. Bouazza, "Numerical investigation of the mechanism of 

granular flow impact on rigid control structures," Acta Geotechnica, (Under review), 2020 
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Figure 26. Representation of wall blocks in SPH and their interactions with soil and 

other blocks [51]. 

 

𝑀𝑘

𝑑𝐕𝑘
𝑑𝑡

= ∑ 𝐟𝑖
𝒊∈𝑆𝑘

 (106) 

𝐼𝑘
𝑑𝛀𝑘

𝑑𝑡
= ∑(𝐫𝒊 − 𝑹𝑘) × 𝒇𝑖  

𝒊∈𝑆𝑘

 (107) 

where 𝑀𝑘 and 𝐕𝑘 are the central mass and velocity of block 𝑘; 𝐼𝑘 and 𝛀𝑘 are the 

inertial moment and angular velocity about the centre of mass of block 𝑘; 𝐟𝑖 is the 

force vector acting on boundary particle 𝑖 representing the block; and 𝐫𝒊 and 𝑹𝑘 are 

vector coordinates of boundary particle 𝑖 and the centre of mass of block 𝑘, respec-

tively. To complete the model, one needs to adopt a contact model to describe the 

interaction between soil and block or block and block, which was discussed at length 

in Bui et al. [51]. Finally, once such a contact model is selected, and the velocity and 

rotation of the central are specified, the motion of boundary particles on each block 

can be updated as follows: 

 
𝑑𝐫𝒊
𝑑𝑡

= 𝐕𝑘 + 𝛀𝑘 × (𝐫𝒊 − 𝑹𝑘) (108) 

 

 
Figure 27. SPH simulation of the progressive collapse of the retaining wall system 

consisting of six rigid wall blocks and its comparison against experiment 
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The application13 of this SPH framework to model the progressive collapse of a re-

taining wall system consisting of six retaining wall bocks and its comparison against 

experiment is shown in Figure 27. It can see that the model can capture well the dy-

namic movement of each retaining wall block and very good agreement with experi-

ment was achieved [51]. Further application of this model to a high retaining wall 

structure consisting of multiple blocks is illustrated in Figure 28, showing the capa-

bility of SPH in modelling a highly complex soil-structure interaction system. 

 

    
Figure 28. Progressive failure of a high retaining system consisting of multiple wall 

blocks reinforced at the base. 

4.4 SPH applications to fracturing in geomechanics14 

The capability of SPH in modelling complex fracturing problems in geomechanics is 

demonstrated in this section. Two typical rock fracturing tests, namely semi-circular 

bending test and circular ring test, undergoing mixed-mode fractures are simulated by 

using SPH combined with the novel two-scale constitutive model, and numerical re-

sults are compared against experimental data available in the literature. The detailed 

                                                           

 

 
13 Details of model setting and material properties for simulations can be found H. H. Bui, J. K. 

Kodikara, A. Bouazza, A. Haque, and P. G. Ranjith, "A novel computational approach for large 

deformation and post-failure analyses of segmental retaining wall systems,", International Journal 

for Numerical and Analytical Methods in Geomechanics, vol. 38, pp. 1321-1340. 
14 Details of model setting and material properties for simulations presented in this section can be 

found in Y. Wang, H. T. Tran, G. D. Nguyen, P. G. Ranjith, and H. H. Bui, "Simulation of mixed‐

mode fracture using SPH particles with an embedded fracture process zone," International Journal 

for Numerical and Analytical Methods in Geomechanics, 2020. 
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model setting, SPH boundary conditions and material properties required for the two-

scale model were documented in [58] and thus will not be repeated here. We will only 

provide some key results obtained from our latest SPH developments in this section. 

Figure 29 illustrates the progressive development of fracture and the horizontal veloc-

ity profile at the failure stage for the semi-circular specimen with the notch inclination 

angle of 30°. As expected, the damage process initiated at particles near the notch tip 

and propagated toward the loading point.  

 

 

 
Figure 29. Fracture pattern for notch inclination angle of 30° in the semi-circular 

bending test:(a-e) fracture development and (f) horizontal velocity for final fracture 

pattern [58]. 

 

 
Figure 30. Comparison of final fracture pattern between experimental and numerical 

results in the semi-circular bending test for various notch angles [58]. 
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Figure 30 shows a comparison of mixed-mode fracture envelope between experiments 

and SPH simulations for different notch inclination angles 𝛼𝑛 = 0°, 15°, 30°, 45°, 50° 
and 60°. The SPH simulations (i.e. red lines) match well with the experimental results 

(i.e. black lines). Finally, the comparison of peak loads between experiments and sim-

ulations for the notch inclination angles varying from 0° to 60° with an internal incre-

ment of 5° is plotted in Figure 31. Again, the SPH simulations can well capture the 

increasing trend of the peak load with the increasing notch angles in the experiment. 

This suggests that the combination of SPH and the two-scale constitutive model with 

an embed fracture process zone could accurately predict the mixed-mode fracture be-

haviour of rocks. 

 

Figure 32 shows a comparison between SPH and experiment for fracture development 

in circular ring specimens with different inner-to-outer diameter ratios (d/D). The re-

sults again demonstrate the capability of SPH in capturing the complex fracturing pat-

tern developed in rock materials. For the inner-to-outer diameter ratio of less than 0.3 

(i.e. d/D ≤ 0.2), both SPH simulations and experiments show a single crack (i.e. pri-

mary crack) initiated from the inner ring along the central loading line and propagated 

toward the loading zones on the top and bottom of the specimen. As the inner-to-outer 

diameter ratio increases beyond 0.3 (i.e. d/D ≥ 0.3), the secondary crack developed in 

both SPH simulations and experiments, forming in the direction perpendicular to the 

loading line. In contrast to the primary crack, the secondary crack is initiated from the 

outer ring and propagated toward the inner ring, but always lagging behinds the pri-

mary crack. Overall, the results show good agreements between SPH simulation and 

experiment, suggesting that the combination of SPH with the two-scale constitutive 

model with an embedded fracture process zone could capture well the fracture devel-

opments in rocks or rock-like materials. 

 

 
Figure 31. Comparison between SPH and experiment for the predictions of peak 

force and fracture toughness in the semi-circular bending test [58]. 
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Figure 32. Comparison of final fracture pattern between experiments and SPH simu-

lations for the final fracture patterns developed in circular ring tests with different 

diameter ratios (d/D) 

4.5 Modelling of coupled multiphase flow and geomechanics in po-

rous media by SPH 

In this section, we will demonstrate the capability of SPH in the coupled behaviour of 

fluid and solid in a deformable porous medium. To achieve this, the SPH governing 

equations described in Section 3.1 will be generalised to accommodate the interaction 

among phases in the porous medium. In general, the governing equations of the fluid-

solid mixture consists of the mass and momentum balance equations, which can be 

written as follows [4]:  

𝑑𝛼�̅�𝛼
𝑑𝑡

+ �̅�𝛼∇ ⋅ 𝐯𝛼 = 0 (109) 

�̅�𝛼
𝑑𝛼𝐯𝛼
𝑑𝑡

= ∇ ∙ �̅�𝛼 + �̅�𝛼𝐛 − ∑𝑹𝛼𝛽 (110) 
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where 𝐯𝛼 is the velocity vectors of phase 𝛼 in the mixture; �̅�𝛼 = 𝑛𝛼𝜌𝛼 is the partial 

density of phase components in the mixture corresponding to the volume fraction 𝑛𝛼; 

�̅�𝛼 is the partial stress 𝑛𝛼𝛔𝛼 of each phase; and (𝑑𝛼/𝑑𝑡) denotes the material deriva-

tive of a field quantity (𝜋) on phase 𝛼, which can be written in a general form as 

follows: 

𝑑𝛼𝜋

𝑑𝑡
=
∂𝜋

∂𝑡
+ 𝐯𝛼 ⋅ ∇𝜋 (111) 

To solve the above equations by SPH, one needs to discretise these equations onto 

SPH particles using suitable SPH operators, as discussed in Section 2. This forms the 

basics of two existing SPH approaches to solve multiphase flow problems in geome-

chanics, as outlined in Figure 24. In the first approach (i.e. single-layer approach), a 

single set of SPH particles is used to represent the multiphase porous media, which in 

general consists of air, water and solid. Each SPH particle then carries the information 

of three phases and the fully coupled governing equations of these phases are solved 

in this single set of SPH particles [8, 97]. In the second approach (i.e. multiple-layers 

approach), two or three sets of SPH particles are used to represent the porous media 

[4, 43-45, 98]. The governing equations of each phase are then solved separately on 

each set of SPH particles. The interactions among phases are then considered through 

several coupled physical processes [4]. 

 

 
Figure 33. Different strategies to solve multiphase flow problems in SPH. 

 

 

Here, we will illustrate the multi-layers SPH approach, which was previously devel-

oped by Bui and Nguyen [4] for solving fully coupled fluid-solid problem. In our 

view, this is one of the most rigorous multi-layer SPH models for multiphase flow 

through deformable porous media, considering the fully coupled hydro-mechanical 
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processes. The governing equations for water and soil phases in a fully saturated po-

rous system can be derived from the above general mixture theory. For the water 

phase, the following governing equations hold [4]15:  

 

𝑛𝑤
𝑑𝑤(𝜌𝑤)

𝑑𝑡
= −𝜌𝑤∇ ∙ (𝑛𝑠𝐯𝑠 + 𝑛𝑤𝐯𝑤) 

�̅�𝑤
𝑑𝑤(𝐯𝑤)

𝑑𝑡
= −∇(𝑛𝑤𝑝w) + �̅�𝑤𝐠 + 𝑹𝑤𝑠 

 

(112) 

 

And the governing equations for soil phase are: 
𝑑𝑠𝑛𝑠
𝑑𝑡

= −𝑛𝑠(∇ ∙ 𝐯𝑠) 

�̅�𝑠
𝑑𝑠(𝐯𝑠)

𝑑𝑡
= ∇ ∙ (𝛔′ − 𝑛𝑠𝑝w𝐈) + �̅�𝑠𝐠 − 𝑹𝑤𝑠 

(113) 

 

where 𝛔′ is the effective soil stress 𝑹𝑤𝑠 is the seepage force. The reader is referred to 

Bui and Nguyen [4] for a more detailed descriptions of mathematical models and nu-

merical conditions required for simulations shown in this section.  

 

The above governing equations are then solved separately for water and soil phases. 

Figure 34 and Figure 35 show the progressive development of seepage flow through 

a rock-field dam experiment [99], which is assumed to be rigid. The two-phase SPH 

model [4] was able to capture a smooth and stable pressure profile of water flow for 

a very long physical time of testing (i.e. >300s), which is not a straightforward task 

for many existing SPH codes. Furthermore, the model was able to capture well the 

phreatic surface and the pore-water pressure measured in the experimental data re-

ported in [99]. Figure 36 shows the application of the two-phase SPH model to predict 

the progressive failure of an embankment as compared against experiments. The SPH 

model could capture the overall failure mechanism of the embankment, though further 

work still required to include more advanced constitutive model and take into consid-

eration of unsaturated soils. 

 

 

                                                           

 

 
15 Note that Equation (112) can be further simplified if the spatial gradient of the porosity is assume 

to be constant, which returns to the simplified form as in Bui and Nguyen (2017). 
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Figure 34. Modelling of seepage flow through rock-filled dam using the two-layer 

SPH framework 

 

 
Figure 35. Modelling of seepage flow through rock-filled dam using the two-layer 

SPH framework 

 

 
Figure 36. Modelling of progressive failure of slope embankment by the two-layer 

SPH framework 
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 Conclusions 

Fundamentals and applications of SPH have been presented with sufficient details 

covering a range of problems in geomechanics. Misconceptions on tensile instability 

and challenges inherent to the method (such as numerical accuracy, pairing instability 

and stress boundary conditions) have been addressed and solutions discussed to pro-

vide readers insights into SPH, in addition to the fundamentals and applications. Other 

issues that are not intrinsic to SPH, but are essential for the applications of the method 

have also been given attentions. They include parallelisation to tackle field-scale ap-

plications, and material models for SPH. The latter is central to geomechanics appli-

cations and provides the readers with a range of constitutive models suitable for dif-

ferent applications involving solid deformation and flow of both fluid and granular 

materials. Along this line, of interest is our recent developments of a double-scale 

approach to tackle material instability issues related to softening and localization that 

is particularly suitable for SPH applications in geomechanics, thanks to the truly 

meshfree nature of the method. The presented examples provide a wide spectrum of 

problems in geomechanics, illustrating great capacity, versatility and potential of the 

method for geomechanics applications. 
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Constitutive modelling for fast granular flow

Wei Wu, Shun Wang, Mohammadjavad Alipour

Institut für Geotechnik, Universität für Bodenkultur Wien, Austria

Granular material may behave like solid, liquid or gas. We present a unified consti-
tutive theory for the solid-, fluid- and gas-like behaviour. The theory is formulated
in rate form by decomposing the total stress into a frictional (inviscid) stress and a
collisional (viscous) stress. This decomposition applies to both the stress and its rate.
We make use of the hypoplastic constitutive model for the frictional stress by replac-
ing the total stress with the frictional stress. The viscous stress rate is obtained by
time-differentiating a non-Newtonian model, which gives rise to a strain acceleration
tensor. Our theory shows a smooth transition between solid and fluid. We demonstrate
the model performance by considering simple shear under constant normal stress.

1 Introduction

We consider cohesionless granular material like pure sand and confine ourselves to a
purely phenomenological approach without resort to the micromechanical aspect. The
study of constitutive models depends on observations from the so-called element tests.
An element test is characterized by uniform stress and strain. The study of granular
material at low and high strain rate have been developed along different lines.

The solid-like behaviour with flow deformation has been the domain of soil mechan-
ics. Here, we are in a lucky position to have quite some element tests at disposal, e.g.
isotropic compression, oedometer compression, triaxial test, plane strain, true triax-
ial and simple shear test. The experimental observations are well documented, which
helps to develop the constitutive models. Some salient features of the solid-like be-
haviour are irreversible deformation, dilatancy, Coulomb failure mechanism and rate
independence. A major contribution is the introduction of critical state, which is char-
acterized by the friction angle in a critical state and the pressure. Granular material
approaches the critical state under large deformation. Many constitutive models have
been proposed with the majority being elastic-plastic theory. We will make use of
the hypoplastic model, which is based on non-linear tensor functions and does not
decompose the deformation into elastic and plastic part. This offers some advantage
to deal with fast granulation flow. The study of fast granular flow was initiated by the
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pioneer experimental work of Bagnold [Bag84]. Bagnold carried out shear tests in a
Couette cell using naturally buoyant particles in fluid. He found out that fast flowing
granular materials behave like a non-Newtonian fluid. His work ignited relevant re-
search in the following decades. Sometimes differentiation is made between fast and
very fast flow, or between dense and dilute flow. The fluid-like and gas-like behaviour
is usually considered as non-Newtonian fluid, where the stress is related to the strain
rate. The material behaviour is mainly characterized by rate dependence and viscosity,
which depends on density and strain rate. Until now granular material in slow flow
(solid-like) and fast flow (fluid-like) has been developed along different lines. We try
to bring these two lines together in a unified framework by considering the salient
features of granular materials in slow and fast flow.

Fast flow: difficulty in testing Because of the large deformation, the only feasible
element test is the simple shear. Such test can be conducted either under constant nor-
mal stress or constant volume. The latter is known as undrained test in soil mechan-
ics. In soil mechanics lab there are two kinds of simple shear devices after Norwegian
Geotechnical Institute and Cambridge. However, these devices allow only limited de-
formation. For fast granular flow, there are two kinds of devices, i.e. the Couette cell
[Sav84, Han85] and the ring shear device [Boy11]. Neither of them is element test
because the strain is not uniform. Another difficulty in testing is the gravity. Because
the stress level is extremely low, particles tend to settle under gravity. This difficulty
can be circumvented by using materials with the same density as the interstitial fluid
[Bag84]. Often the tests gave no information about the deformation distribution in the
specimen, and the formation of shear zones is suspected. Such tests represent bound-
ary value problems and are not very useful for constitutive modelling. In all, the data
are rather scarce. An alternative is to do numerical simulations with Discrete element
method (DEM). With the help of periodic boundary conditions, granular material is
subjected to virtually unlimited deformation in simple shear. Moreover, gravity can
be switched off in such simulations. Most calculations assume spherical particles and
simple contact laws. In spite of the simplicity, however, the numerical simulations
reveal some major features of fast granular flow, i.e. fast granular flow is viscous and
the viscosity depends on the density [Chi12, Nes15]

T = η (D)D (1)

Fast flow: dilute vs. dense Following Bagnold [Bag84] and inspired by the similarity
between molecules and granular materials, kinetic theory has been developed for fast
granular flow. The theory is developed for dilute granular flow with spherical and
elastic particles without gravity. In analogy to molecules, granular temperature was
introduced. A constitutive equation relating stress with strain rate can be derived. The
dependence of stress on the square of strain rate is reminiscent of the experimental
finding of Bagnold [Bag84]

T ∝ D2 (2)

However, fast and dilute granular flows are but rare. Flying particles with pure elas-
tic collisions free from gravity can be hardly found in the real world. Recently, the
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research on granular materials has been more focused on dense granular flow with
enduring contacts among the particles [Gdr04, Jop06].

Fast flow: how fast? We have been using the term “fast flow” without further spec-
ification. We now recapitulate the various numbers to differentiate between slow, fast
and very fast flow. A well-known number in fluid dynamics is the Reynold number
Re, which is defined by the ratio between inertial force and viscous force in fluid
flow. Reynold number is used to discriminate between laminar and turbulent flow.
For Re < 2300 laminar flow was observed, and for Re > 2900 turbulent flow was
observed. Note that there is no clear demarcation between laminar and turbulent flow.
Some colleagues in the UK were able to raise the critical Reynold number substan-
tially by more carefully repeating the test of Reynold using the same device. Bagnold
introduced a dimensionless number to characterize the ratio between collisional and
viscous stresses.

Bagnold number The Bagnold numberBa is the ratio between the stress due to grain
collisions and the viscous stress for granular flow with interstitial Newtonian fluid:

NB =
Tcollision

Tviscous stress
=
ρd2λ1/2γ̇

µ
(3)

where Tcollision and Tviscous denote the stress caused by collision of grains and vis-
cous response of the granular flow, respectively. The linear concentration is defined
by

λ =
1

(
φmax

φ

)1/3
− 1

(4)

The collision stress is Tcollision = ρv2 (dimension consideration). The particle veloc-
ity v can be assumed equal to dγ̇ with the viscous stress being equal to µγ̇.

2 Behaviours of fast granular flow

2.1 Experimental observations
Simple shear is the only feasible motion for element tests. However, the devices in
soil mechanics lab allow only limited deformation. Therefore, most observations were
made with Couette cell [Bag84, Han85]or ring shear device [Sav84]. Figure 1 shows
the test data reported by Bagnold [Bag84] in a Couette cell. The tests were carried out
by submerging granular material in fluid (water and glycerine). The data show two
distinct regimes, which are called the macro-viscous regime (fast flow) and the grain
inertia regime (very fast flow). In the macro-viscous regime withNB < 40, the flow is
dominated by the viscous stress and the stress due to grain collisions is negligible. The
granular flow in the macro-viscous regime can be described as Newtonian fluid with
the stress proportional to the strain rate. In the grain-inertia regime with NB > 450
the stress due to grain collisions is much larger than the viscous stress, and the stress
is proportional to the square of the strain rate.
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Figure 1: Experimental shear and normal stresses as reported by Bagnold [Bag84]
for linear different linear concentrations (from Hunt et al. 2020 [Hun02])

Note that the different solid fractions are only feasible in suspended granular materials
with neutral buoyancy in a fluid. In air, the particles would settle to the bottom. A
closer look at the test data shows that the behaviour depends only weakly on the solid
fraction when it is under some threshold. Obviously, the particles are so dilute that
the collisions do not affect the overall behaviour. Recently, improved testing showed
that the exponent in the grain inertia regime is not 2 but about 1.5 at high strain rate
[Hun02]. Note further that both the shear and normal stresses increase the strain rate.
This normal stress effect is also known as shear thickening, which is well known for
non-Newtonian fluids. The opposite is called shear thinning. Moreover, the ratio
between the shear stress and the normal stress mimics granular materials under quasi-
static loading (Figure 1).

Figure 2: Experimental data for 1.32 mm mean diameter spherical polystyrene beads
(Savage and Sayed 1984 [Sav84])
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Fast flow of dry granular materials was studied in an annular shear device (ring shear
device) by Savage and Sayed [Sav84]. Obviously the Couette cell is not suitable for
dry granular materials due to gravity. The major findings are summarized below. At
lower solid concentration, the stress depends linearly on the solid fraction and quadrat-
ically on the shear rate, which agrees well with Bagnold’s observation on suspended
granular materials. Both dry and suspended granular materials seem to follow the
same dependence. At high concentration, however, the exponent is less than 2, which
agrees with the refined tests by Hunt et al. [Hun02]. Figure 2 shows that the ratio
increases with the rate and approaches an asymptote at high shear rate [Sav84].

It is extremely difficult to generate uniform deformation in the presence of gravity.
The displacement profiles often show stagnation zones near the fixed bottom so that
the test cannot be regarded as an element test. This means that the strain rate is of-
ten underestimated. Moreover, the density variation over the specimen height due to
gravity was not provided.

Hanes and Inman [Han85] reported tests on glass spheres in a Couette shear cell sim-
ilar to Bagnold [Bag84]. The observations by Bagnold was confirmed. The viscosity
is dependent on the solid fraction, which agrees fairly well with the kinetic theories.

2.2 Observations from DEM simulations
It is extremely difficult to realize element tests for fast granular flow in laboratory.
An alternative is to perform numerical simulations (numerical tests). Such tests can
be performed under ideal conditions, i.e. simple shear without gravity. There are
many such tests reported in the literature. We select two publications by Chialvo et
al. [Chi12] for dry granular flow and by Ness and Sun [Nes15] for wet granular flow.
Their results are summarized by Vescovi et al. [Ves20] and given in Figure 3. The
DEM simulations were carried out with spherical particles and simple contact laws.
The simple shear tests were performed using periodic boundary conditions under con-
stant normal stress without considering gravity. Obviously, both dry and wet granular
material show viscous behaviour at high shear rate. The viscous behaviour depends
strongly on the solid fraction. The observations by Bagnold [Bag84] are confirmed
for low solid fraction. For very high shear rate the shear stress curves of all densities
collapse to a single curve. Obviously, the simulation for low density would not be
possible under gravity, since the particles would sink to the bottom.

2.3 Viscosity and solid fraction
The viscosity of granular materials is known to depend on the solid fraction. The
following relationship by Krieger and Dougherty [Kri59] for suspended granular ma-
terials is often used.

η = α

(
1− φ

φm

)−β
(5)

where α and β are fitting parameters and φm is the maximum solid fraction.
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Figure 3: Scaled shear stress over scaled shear rate with kn: normal stiffness between
particles, d: particle diameter, ρp: particle density

2.4 Recent work by Gdr MiDi
Recently, the French group Gdr MiDi has carried out intensive research on fast gran-
ular flows. Their work was first focused on dry granular flow [Gdr04, Jop06, For08]
and later was extended to suspended granular flow [Boy11, Gua18]. They introduced
the following dimensionless number to characterize the ratio between the inertial force
and external force.

2.5 Inertial number
The inertia number I was introduced by the Gdr MiDi-group in France and quantifies
the significance of dynamic effects in a granular material. It measures the ratio of
inertial forces of grains to imposed external forces. A small value corresponds to
the quasi-static state, while a high value corresponds to the inertial state or even the
“dynamic” state

I =
Inertial force

External force
=

γ̇d√
P/ρ

(6)

The flow regimes according to I are (i) quasi static flow with I < 10−3, (ii) dense
flow (fast) with 10−3 < I < 10−1 and (iii) collisional flow (very fast) with I > 10−1.
The inertia number is equal to the square root of the Savage number. This inertia
number was proposed for dry granular materials. Recently it is modified to consider
saturated granular material [Gua18]. Consider fast flow in simple shear. The solid
fraction depends only on the inertial number and the relationship between the shear
stress and normal stress obeys a Coulomb-like friction law, i.e.,

τ = µ (I) p and φ = φ(I) (7)

where p is the normal stress; µ is the friction coefficient. The above relationships can
be shown graphically as follows:
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(a) (b)

Figure 4: Friction law and volume fraction law against inertial number I (Forterre
and Pouliquen 2008 [For08])

Note that the friction coefficient starts from the quasi-static state and increases with the
inertial number to approach asymptotically a limit at high shear rate. The relationships
are obtained based on two dimensional DEM simulations and later three dimensional
DEM simulations. The Gdr MiDi model has been applied to several boundary value
problems such as Couette cell, vertical silo, flow down inclined plane, heap flow,
rotating drum.

2.6 Jamming and critical state
For both dry and suspended granular materials, the shear stress increases with the
solid fraction (density) until the jamming point, which is supposed to mark the turn-
ing point from fluid to solid. However, jamming is usually studied in a Couette cell
with constant volume. Obviously, jamming is not expected in simple shear under con-
stant normal stress, because the dilatancy is not completely confined. This has some
resemblance with the critical state with constant stresses and constant volume. Once
a critical state is reached, granular material may further deform without inducing any
change in stress and density. It is not yet quite clear how jamming is related to the
critical state. We believe that the boundary conditions play an important role.

2.7 Why do we need a new model?
Gdr MiDi model can describe the salient behaviour of granular materials during fast
flow. However, it does not consider the initiation of flow. Nor can it describe the
behaviour during a shear reversal [Gua18].

Consider the following gedanken experiment of a simple shear under constant normal
stress. A specimen with an initial density subjected to simple shear will either dilate
or contract depending on the initial density relative to the critical state. For continuing
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deformation, the density will approach the critical density, which depends on the nor-
mal stress (not on the initial density). Once the critical state is reached and the shear
rate is further elevated, the material changes from solid-like behaviour to the fluid-
like behaviour. The Gdr MiDi model can be used to describe the steady state of the
fluid-like behaviour at high shear rate. Fast granular flow can be maintained at certain
shear rate. This is a steady state characterized by constant stresses and constant solid
fraction. Note that acceleration is needed to move from one steady state to the other
steady state. Obviously, the Gdr MiDi model cannot describe the initiation of flow,
which is an unsteady process.

Now let us consider a shear reversal from a steady shear flow. We need first to de-
celerate to reduce the shear rate to zero and then accelerate in the opposite direction
to reach fast flow. Obviously, the Gdr MiDi model cannot account for this process
either. Do we need to account for the unsteady processes? To answer this question,
let us have a look at the development of debris flows. A debris flow usually starts as a
result of slope failure (landslide). The slope failure is mainly dictated by the soil-like
behaviour. Afterwards, the failure soil mass slides down the slope and accelerate to
reach fast flow, which is dictated by the fluid-like behaviour. Upon reaching the plane
at the toe of the slope, the soil mass decelerates, spreads out and changes back to the
solid state.

Whereas slope stability has been modelled mainly in the realm of soil mechanics
(solid-like), the modelling of debris flows has been developed mainly along the line
of fluid mechanics (fluid-like). It is desirable for a unified modelling of landslides and
debris flows within one single consistent numerical model. Such a numerical model
requires a constitutive model for both the solid-like and the fluid-like behaviour, i.e.
both unsteady and steady processes.

3 Constitutive model for fast granular flow

3.1 Model framework
In order to describe the the steady and unsteady processes in one single framework,
we make the fundamental assumption, as in previous studies [Peng16, Wang18, Xu16,
Wu06], that the inviscid and the viscous stresses coexist in granular flows i.e.

T = Ti + Tv (8)

in which Ti and Tv denote the inviscid and viscous stress, representing the frictional
behaviour between the particles and the viscous behaviour due to grain collision dur-
ing fast granular flows, respectively. To obtain a concrete formulation, some funda-
mental restrictions should be imposed on equation (8). Firstly, the proposed constitu-
tive model should be able to capture the salient behaviours of granular material in a
steady state, such as frictional behaviour, dilatancy, and critical state. Secondly, the
formulation of the viscous part should consider the influence of strain acceleration
and strain history. Thirdly, the proposed model should be able to describe the whole
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process of granular flow from initiation to fast flow in a unified way, which is realised
by the coupled evolution of the two stress components. To this end, we make use of a
critical state enhanced hypoplastic constitutive model and non-newtonian rheology to
formulate the new constitutive model. The rate form of the new model is expressed as
follows:

T̊ = T̊i + T̊v (9)

where T̊, T̊i and T̊v denote the Cauchy, inviscid, and viscous stress rates, respec-
tively. An important assumption is that the inviscid stress and the viscous stress are
accumulated separately according to the respective constitutive equations. The sum
of these two stresses gives rise to the total stress, which enters into the equilibrium
condition.

3.2 Hypoplastic model with critical state for inviscid behaviour
Hypoplasticity is a nonlinear rate-form constitutive theory that has long been used
for analysing mechanical behaviours and other boundary value problems in granular
material. In the framework of hypoplasticity, the constitutive equation is written in
two parts, representing reversible and irreversible behaviours of soils. According to
Kolymbas and Wu [Wu90], the hypoplastic rate constitutive equation can be written
as the sum of linear and nonlinear terms of the strain rate D:

T̊ = L(T) : D + N(T)‖D‖ (10)

where the tensorial functions L and N are of the 4th and 2nd order, respectively. The
colon : denotes an inner product between two tensors. T is the Cauchy stress tensor,
which can be used to replace the inviscid stress in equation (8), and D is the stretching
tensor. ‖D‖ stands for the Euclidean norm of the stretching tensor. The Jaumann
stress rate tensor T̊ is defined in terms of the material time-derivative of the Cauchy
stress tensor Ṫi and the spin tensor W:

T̊ = Ṫ + TW−WT (11)

The stretching and spin tensors are related to the velocity gradient tensor through

D =
1

2

[
∇ẋ + (∇ẋ)T

]
, W =

1

2

[
∇ẋ− (∇ẋ)T

]
(12)

where ẋ is the velocity and ∇ is the gradient operator.

The functions L and N must be isotropic to remain invariant under rigid body rota-
tions. Since L is independent of D, constitutive equations in the form of equation (10)
are necessarily rate independent. This can be easily ascertained by the fact that equa-
tion (10) is positively homogeneous of the first degree in strain rate D. To show this,
we can write equation (10) in the following form by making use of Euler’s theorem
for homogeneous functions.
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T̊ = [L + N⊗ ~D] : D (13)

where ~D = D/‖D‖ is the direction of strain rate and ⊗ stands for the dyadic prod-
uct. The term in the square brackets in equation (13) is the directional stiffness ten-
sor, which can be viewed as the counterpart of the tangential stiffness of elastoplastic
models. Obviously, the directional stiffness tensor depends on the direction of strain
rate ~D. Therefore, loading and unloading in the hypoplastic model (13) are implicitly
stated without additional loading criterion. This is different from elastoplastic models,
where two stiffness tensors, one for loading and the other for unloading, are used. Fur-
thermore, elastoplastic models need explicit loading criterion to decide which stiffness
shall be used.

Although not defined a priori as in elastoplastic models, a failure criterion can be
obtained from equation (10) by searching for the pair of stress and strain rates that
produces a vanishing stress rate. By using the fact that ~D : ~D = 1 , the failure
criterion can be derived:

f(T) = NT : (LT)−1 : L−1 : N− 1 = 0 (14)

Details of the derivation of the failure criterion can be found in Wu and Niemunis
[Wu96].

Based on the above concept, a simple hypoplastic constitutive equation for granular
materials was proposed by by Wu and Bauer [Wu94]. The model is able to capture
the main behaviour of granular material in the quasi-static regime. The constitutive
model is formulated as follows:

T̊ = C1(trT)D + C2
tr(TD)T

trT
+
(
C3

T2

trT
+ C4

T∗2

trT

)
‖D‖ (15)

where Cj(j = 1, ..., 4) are dimensionless material parameters; T∗ is the stress devia-
tor expressed by

T∗ = T− 1

3
(trT)1 (16)

with 1 being the second order unit tensor. The hypoplastic model (15) possesses
simple mathematical formulation and contains only four material parameters. These
parameters can be related to some well-established parameters in soil mechanics To
calibrate these parameters, two stress states, i.e., the initial hydrostatic and the state at
failure, are considered based on a single drained triaxial compression test with con-
stant confining pressure [Wu94]. To this end, the following parameters are introduced:

• the stress ratio: R = T(1, 1)/T(3, 3)

• the initial tangent modulus: Ei = (Ṫi(1, 1)− Ṫi(3, 3))/D(1, 1)

• the initial Poisson’s ratio: νi = [D(3, 3)/D(1, 1)]R=1

• the failure stress ratio: Rf = [T(1, 1)/T(3, 3)]max
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• the failure Poisson’s ratio: νf = [D(3, 3)/D(1, 1)]R=Rf

Note that the failure stress ratio Rf and the failure Poisson’s ratio νf are related to
the friction angle φc and the dilatancy angle ψ, respectively, through the following
relations: 17

Rf =
1 + sinφc
1− sinφc

(17)

and
υf =

1 + tanψ

2
(18)

Taking the four material constants C1, C2, C3 and C4 as unknowns, a system of four
linear equations can be obtained by substituting the corresponded stress and strain
rate of the two stress states into the model (15). Therefore, the material constants
are related to the initial tangent modulus Ei, the initial Poisson’s ratio νi, the friction
angle φc and the dilatancy angle ψ. It should be pointed out that these parameters
are obtained under a specific confining pressure, e.g., T(3, 3) = 100 kPa. Bering in
mind that the model (15) is homogeneous in stress tensor T, the calibrated parameters
can be used at arbitrary confining pressures. In addition, the deviatoric loading in the
initial hydrostatic state can be considered to be zero, i.e., the initial Poisson’s ratio
νi = 0.

Now, we consider a granular flow in the quasi-static regime. The evolution of solid
fraction has a major influence on the stress behaviour before it reaches the critical
state. To account for the effects of void ratio, the following density function was
introduced into the nonlinear part of model (15) by Wu et al. [Wu96].

fd = (a− 1)Dc + 1 (19)

where a is a material parameter related to the stress level and

Dc =
ecrt − e

ecrt − emin
(20)

is the modified relative density; e is the void ratio; emin and ecrt are the minimum
and the critical void ratio, respectively. The effect of void ratio and stress level on the
behaviour of granular materials is taken into account by using the following expres-
sions:

ecrt = p1 + p2exp
(
p3|trT|

)
(21)

and
a = q1 + q2exp

(
q3|trT|

)
(22)

where pj(j = 1, ..., 3) and qj(j = 1, ..., 3) are material parameters and can be deter-
mined by fitting the experimental data at the critical state situation; and | · | denotes
absolute value. About the material parameters pi(i = 1, ..., 3) and qi(i = 1, ..., 3),
some theoretical and experimental analysis are presented in [Wu96]. p1 is the critical
void ratio when the confining pressure approaches infinity, since p3 is negative. The
value of p1 should be close to the minimum void ratio under a high confining pressure.
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For the case of zero confining pressure, the critical void ratio is equal to p1 +p2 which
may close to the maximum void ratio measured with very low confining pressure. q1 is
assumed to be always equal to 1 and q3 is a negative value. For the case of trT→∞,
the difference between dense and loose packing tends to disappear since the parameter
a→ 1. Based on the numerical parametric study [Wu96], q2 is suggested to lie in the
range (-0.4, 0.0). p3 and q3 for quartz sand are assumed to be -0.0001 kPa. In the
case of very low confining pressure, such as the state of liquefaction, relatively higher
values of q2, p3 and q3 may be needed to keep the sensitivity of fd to the stress level.

Then the constitutive model representing the inviscid stress rate can be written as
follows:

T̊i = C1(trTi)D + C2
tr(TiD)Ti

trTi
+ fd

(
C3

T2
i

trTi
+ C4

T∗2
i

trTi

)
‖D‖ (23)

with the critical state function fd and inviscid stress rate Ti in equation (15). The in-
clusion of the critical state function makes the hypoplastic model an attractive choice
for describing the rate-independent behaviours of granular material with density de-
pendent softening and hardening features. Note that the candidate for the frictional
part is not limited by the equation (23). Some updated hypoplastic models for gran-
ular materials, such as the models in [Her04, Von96, Wang18], can serve the same
purpose.

3.3 Acceleration-based formulation for viscous behaviour
The description of the viscous behaviour has been developed independently of the
theories for the inviscid behaviour. One is tempted to treat granular flow as a non-
Newtonian fluid with a single viscosity,i.e.

Tv = ηD (24)

where η is the viscosity coefficient.

Most viscous models proposed until now are based on a relationship between stress
and strain rate. Such models cannot account for the different behaviour for loading and
unloading which requires constitutive models formulated in rates [Wu06]. Therefore,
the viscous part has to be formulated in rate form as well. Note further that the viscous
part is assumed to be dependent on stress, which is supported by some experiments
[Jop06]. Moreover, a higher order derivative of strain rate included in the constitutive
equations may be able to model the acceleration effect of granular materials. To this
end, the equation for the viscous part can be rewritten formally as follows:

T̊v = H(T,D, D̊) (25)

where the T is total stress tensor, D̊ is the Jaumann stretching-rate tensor, and can be
obtained according the scheme in equation (12) defined as:

D̊ = Ḋ + DW−WD (26)
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in which Ḋ is the second time-derivation of strain rate expressed as

Ḋ =
1

2

[
∇ẍ + (∇ẍ)T

]
(27)

with ẍ being the second time-derivation of displacement.

By using the representation theorem for isotropic functions [Wang70] and considering
stress dependence, the following terms can be used to compile a workable constitutive
equation:

T̊v = η1D̊ + η2(TD̊ + D̊T
)

+ η3D̊
2 (28)

The last two terms are included to describe the so-called normal-stress effect. In order
to see this, let us consider an undrained simple shear motion with constant volume
(the constitutive equations for simple shear tests can be found in Section 4.1). To
make it simple, we confine ourselves to the material time differentiation and write out
the terms Ḋ, TḊ + ḊT and Ḋ2 in matrices as follows:

Ḋ =




0 γ̈ 0
γ̈ 0 0
0 0 0


 , TḊ+ḊT =




2τ γ̈ p̄γ̈ 0
p̄γ̈ 2τ γ̈ 0
0 0 0


 , Ḋ2 =



γ̈2 0 0
0 γ̈2 0
0 0 0


 (29)

where γ̈ and τ are the shear acceleration and shear stress, respectively, in the simple
shear test; p̄ denotes the sum of normal stress and lateral stress during shearing. The
stress p̄ can be obtained by p̄ = (1 + K0)Pn with K0 ≈ 1 − sinφ and Pn being the
earth pressure at rest and the normal stress, respectively.

It is clear that the first and last two terms give rise to only shear and normal stresses,
respectively. The second term leads to both normal and shear stress effect. Therefore,
we take the second term to describe the viscous behaviour during fast granular flows,
and the following simple formula is proposed for the viscous part:

T̊v = η
(
TD̊ + D̊T

)
(30)

As might be expected, the viscosity coefficient η may depend on the strain rate D, the
solid fraction φ, and the gradient of volume fraction in granular flow [Wang01]. In
some recent models for dense granular flows, the viscosity coefficient is allowed to
depend on the normal stress Pn [Jop06]

η = η̃(ID, IID, IIID, φ, gradv, Pn...) (31)

where ID, IID and IIID are the three invariants of the stretching tensor D given by
ID = tr(D), IID = [tr(D)2 − tr(D2)]/2 and IIID = detD.

Since the effect of stress level has been included in equation (30), in this work, we
propose the following simple expression for the viscosity:

η = A
√
m1 +m2‖D‖2 (32)
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in whichA,m1 andm2 are the material parameters to be determined by fitting experi-
mental data. The above expression describes fairly well the dependence of viscosity on
shear rate in granular flow, namely linear dependence at low shear rate and quadratic
dependence at high shear rate.

3.4 The complete constitutive model for granular flow
Combining equations (23), (30) and (32), the complete form of the new model is
obtained:

T̊ = C1(trTi)D + C2
tr(TiD)Ti

trTi
+ fd

(
C3

T2
i

trTi
+ C4

T∗2
i

trTi

)
‖D‖

+A
√
m1 +m2‖D‖2

(
TD̊ + D̊T

) (33)

The above constitutive equation applies to the entire process from solid-like to fluid-
like behaviour. Unlike most conventional models, where constitutive equations for
the statical and dynamical regimes are formulated and applied separately, the above
constitutive equation makes no distinction between them. Rather, the transition from
solid-like to fluid-like behaviour turns out as an outcome.

To explain the above mechanism, let us consider planar granular flow with infinite
length down an inclined plane. The granular flow is initiated by increasing the incli-
nation of the plane. Initially, the granular material is in the quasi-static regime with
friction dominating the behaviour. The collision between grains is negligible. Along
with increasing inclination, the granular material will start to move towards fully de-
veloped flow. The inviscid stress increases along with increase of the flow rate. With
further increasing the plane angle, the intergranular collision increases leading to the
increase of the viscous stress. Meanwhile, the interplay between particles gives rise
to mutually repulsion, resulting in reduction of the grains friction and inviscid stress
until a critical point is achieve, where the inviscid stress decreases and the viscous
stress becomes dominant.

4 Model Performance in simulating fast flow

The performance of the proposed model is examined by simulating simple shear under
a constant normal stress. This type of test has been long utilized to study the fast gran-
ular flow since the 1960s. For simulating boundary value problems, the constitutive
model can be combined with some advanced numerical methods, such as smooth par-
ticle hydrodynamic method (SPH) and particle finite element method (PFEM). This
is beyond the scope of our lecture. For simulating debris flow and the creep of ge-
omaterials with a similar framework, the readers may refer to our previous works
[Peng16, Guo16, Wang18, Xu16].
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4.1 Constitutive equation for simple shear test
The simple shear test is commonly performed on cohesive and granular soils in order
to study various soil characteristics. The specimen in simple shear apparatus is later-
ally confined and placed between two rigid plates, with one on the top and other at
the bottom. While the plates remain parallel, the upper one moves horizontally and
causes shear deformation in the sample. The sketch for a simple shear test is shown in
Figure 5.

Pn

τ
1

2

3

Figure 5: Sketch of a simple shear test, Pn and τ are the normal and shear stresses

Then the stress, strain rate and spin tensors for such a test can be expressed in the
following matrix form:

T =

(
T11 T12 0
T12 T22 0
0 0 T33

)
D =

(
0 D12 0

D12 D22 0
0 0 0

)
W =

(
0 W12 0

W12 0 0
0 0 0

)
(34)

The motion and displacement in a simple shear test can described as follows:

x1 = X1 + X2f1

x2 = X2 + X2f2

x3 = X3

(35)

where f1 and f2 represent functions of the shear displacement and volume change,
respectively. According to equation (12), the strain rate and spin tensors in the simple
shear tests are:

D =
1

2(1 + f2)




0 ḟ1 0

ḟ1 2ḟ2 0
0 0 0


 , W =

1

2(1 + f2)




0 ḟ1 0

−ḟ1 0 0
0 0 0


 (36)

By making use of equations (26), (35) and (36), the Jaumann rate of the stretching
tensor can be derived as:

D̊ =
1

2(1 + f2)




0 f̈1 0

f̈1 2f̈2 0
0 0 0


+

1

2(1 + f2)2



−ḟ1

2 −ḟ1ḟ2 0

−ḟ1ḟ2 ḟ21 0
0 0 0


 (37)
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where f̈1 and f̈2 are the accelerations along the coordinate 1 and 2, respectively. The
first coordinate stands for the shear component and the second for the dilatancy com-
ponent. Note that the second part of equation (37) has negligible influence on a simple
shear tests, leaving only the first part, which denotes the material time-derivation of
strain rate Ḋ. This is because the shear rate is usually rather low and the higher order
terms need not be considered.

4.2 Numerical simulation
In the laboratory, a simple shear test can be performed either drained or undrained.
The undrained condition is simulated by continuously adjusting the vertical stress so
that the specimen height is kept constant (thereby keeping constant volume). The
change in vertical stress is assumed to be equal to the change in pore water pressure
that would have occurred during a truly undrained test. On the other hand, a drained
test can be performed by applying a constant normal stress to the shear plane. During
the shearing, the normal stress is kept constant to allow volume change. To show the
evolution of solid fraction during the granular flow in a simple shear test, we confine
our attention on the drained condition with a constant normal stress (see Figure 5).
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Figure 6: (a) the stress path in the drained simple shear test and (b) inviscid normal
stress Pni versus critical state void ratio ec

Simple shear tests are usually carried out under constant shear rate. Usually, no state-
ment is made as to how this shear rate is reached (acceleration). Since our constitutive
model includes the acceleration, we need to specify how a strain rate changes with
time. To be more exact, when a test machine is turned out to reach a certain strain
rate. The speed of the machine will increase from zero until a given value is reached.
Afterwards, the machine will move with this speed till the test end. This is simulated
by defining the displacement function f1 with a positive acceleration. As shown in
Figure 6a, at the onset of the test, the material is shear under a low shear rate. The
material is in a quasi-static regime and its behaviour is predominated by the friction
between grains. This frictional behaviour is described by the rate independent model
(33) with an accumulation of the inviscid stress (shear stress). With increasing shear
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rate, the viscous stress is continuously accumulated and the viscous part begins to take
effect. Since the normal stress is constant, the inviscid part of the normal stress begins
to decrease while the viscous normal and shear stress increase. It is interesting to note
that the critical state of the frictional behaviour is still existing during the shearing.
After reaching the critical state, the inviscid stresses will decrease along the critical
state line. Another important mechanism is the increase of the void ratio (or decrease
of the solid fraction) during fast shearing. The increase of the shear rate gives rise to
increasing viscous stresses, which in turn leads to decreasing inviscid stresses. The
critical state line relates the critical void ratio with the pressure of the inviscid stress.
As shown in Figure 6b, the critical void ratio increases with decreasing pressure. This
means that higher shear rate is related with larger void ratio (smaller solid fraction).

Table 1: Parameters for simulating the simple shear test

C1 C2 C3 C4 p1 p2 p3
[-] [-] [-] [-] [-] [-] [kPa−1]

-1.70 -283.4 -283.4 2419.3 0.5 0.5 -0.0005
q1 q2 q3 A m1 m2 ei
[-] [-] [kPa−1] [s] [s] [s2] [-]

1.0 -0.4 -0.0001 -0.0008 0.5 0.001 0.2
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Figure 7: Comparison between model prediction and DEM simulation of fast
granular flow in the simple shear test: (a) inertial number I versus solid volume

fraction Φ (b) inertial number I versus stress ratio τ/Pn

To examine the above mechanism, we simulate the drained simple shear tests and com-
pare the model prediction with DEM simulations from the literature [Gdr04, Cru03,
Cru04a, Cruz04b]. The parameters used in this simulation are given in Table 1, and the
comparison between model prediction and DEM simulation is shown in Figure 7. Ob-
viously the solid volume fraction decreases with the shear rate, denoted by the inertial
number I (Figure 7a). Moreover, the DEM simulation suggests that the ratio between
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normal and shear stress increases with the inertial number I (Figure 7b). Generally,
the variation of solid fraction and shear stress ratio are well captured by our model.
Note that the parameters for the viscous part listed in Table 1 are constant during the
granular flow in the test. Since these parameters may vary with solid fraction, a better
prediction might be expected by properly linking these parameters with solid fraction.

5 Conclusions

A new approach to fast granular flow is presented. The main assumption is the decom-
position of stress into a frictional (inviscid) stress and a collisional (viscous) stress and
the formulation of the constitutive model in rate form. For the inviscid stress rate we
make use of our rate independent hypoplastic constitutive equation. The viscous stress
rate is obtained by time differentiating the non-newtonian viscous fluid, which leads to
the strain acceleration. We show that our model may reproduce some salient features
of fast granular flow. More phenomena in fast granular flow are to be explored, e.g.
the effect of various accelerations, the transient behaviour from a constant shear rate
to zero shear rate, and the behaviour of unloading and reloading.

A further interesting area is the numerical implementation of our model. Most FEM
codes use stress and strain rates, while most SPH codes use stress. Our model requires
the acceleration in addition to the strain rate.
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Once that readers are familiar with fundamentals of SPH modeling and how this tech-
nique can be applied to model geotechnical problems involving large deformations,
we will address a special technique which can be applied to a special group of prob-
lems, where one dimension - depth, for instance- is much smaller than the other two.
This technique consists on integrate the partial differential equations describing the
3D problem along depth, and thus, reducing the problem to 2D. This technique pro-
vides a reasonable compromise between cost and efficiency and has been extensively
used in other areas such as open channel hydraulics and coastal, harbor and ocean
engineering. Its application to fast fluidized landslides is relatively new in comparison
with the other areas. This Chapter is devoted to describing depth integrated models
for landslide propagation.

1 Introduction

Fundamental aspects of SPH and its application to geomechanical problems have been
described in previous chapters of this book. There, SPH has been shown to be a
method able to cope with large deformation problems without the need of expensive
remeshing operations.

SPH is a technique suitable for both solids and fluids, and for problems where there are
transitions from solid to fluid. This is the case of fast catastrophic landslides, where
an initial solid mass of soil becomes a fluid which propagates with large velocity, until
it comes to rest again, coming back to the solid-state.

Engineers are concerned with predicting the behavior of geostructures before a failure
happens, obtaining information on deformations, and also on how far are the service
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conditions from failure, which is usually described by a factor of safety. Knowing
failure conditions, the design can be improved, or the structure reinforced.

In other cases, such as large landslides, the scale of the involved geostructures and
the large forces acting on them make it difficult to avoid failure. Such is the case
of earthquakes in mountainous regions, volcanic eruptions, etc. This is the case of
large landslides that, once triggered, propagate long distances downhill, runouts being
sometimes of the order of tens of kilometers.

The objective of the analysis in these cases is to study the consequences of such fail-
ures, assessing their risks and designing protection and mitigation measures.

Of course, a detailed 3D coupled analysis using meshless methods such as SPH would
be the optimal solution. However, this can be extremely expensive in terms of the
time of computations. The situation is much the same as that of coastal and ocean
engineering, where 3D formulations are available, even though not used because of
the cost. The method used there is based on using depth integrated equations, which
provide a good compromise between cost and accuracy.

The method we propose consists of (i) using full 3D models for triggering ad at singu-
lar points where the 3D structure of the flow is needed, and (ii) using depth integrated
models to analyze propagation. Therefore, the method is based on using a series of
models, the resulting accuracy being limited by that of the weakest link in the chain.
This is the reason for devoting effort to develop depth integrated models based on
sound coupled mathematical models, using suitable constitutive/rheological laws, dis-
cretized with the SPH method.

One important feature of the models we will describe here is the use of (i) two sets of
SPH nodes for solid and fluid phases, together with finite difference meshes associated
to SPH nodes where the evolution of pore water pressure (pwp) is studied.

The two phase / two layer approach has been applied to (i) debris flow problems, and
(ii) waves entering a reservoir. In the former, nodes represent solid and fluid phases,
while in the latter, they represent two layers, the solid avalanche and the water in the
reservoir.

As this Chapter deals with depth integrated models for fast landslide propagation, the
material is arranged as follows:

(i) After this introductory section, we will provide a short description of depth
integrated models, focusing on the nature of the system of hyperbolic equations.

(ii) The third Section will be devoted to describing the general mathematical model,
and how some interesting simplifying assumptions lead to simpler models.

(iii) Material behavior plays a paramount role in the propagation of landslide. Here,
we will provide an overview of the models describing it, including frictional,
viscous and cohesive models.
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(iv) SPH has already been described in the preceding Chapters, so we will concen-
trate here on specific features of depth integrated models.

(v) Finally, we have chosen a set of examples, including some different types of
fast landslides which will be presented in the last Section.

2 Hyperbolic PDEs and systems: basic aspects

Depth integrated models are a convenient simplification of 3D models, providing an
acceptable compromise between computational cost and accuracy. They have been
extensively used in the fields of coastal, harbor, oceanographic and hydraulics engi-
neering since the work of Barré de Saint Venant [SV71] in 1871.

Let us start by showing the eulerian form of shallow water equations written in a
reference system OX1X2X3, which for simplicity can be assumed to coincide with
two axes on a horizontal plane OX1 and OX2.

∂φ

∂t
+ div F = D + S (1)

where φ, D, S are the vector of unknowns, D a vector of diffusive terms and S a
vector of sources. F = (F1, F2) is a matrix of flux vectors along axes 1 and 2. In a
1D case, the equation simplifies to:

∂φ

∂t
+
∂F1

∂x1
= D + S (2)

We will come back later to this equation, but what matters so far is the structure of the
PDE (partial differential equation), where we can observe 4 terms:

(i) A partial derivative with respect to time of a vector which includes the unknowns
of our problem, which is the rate of change of the unknowns at a fixed point in space,
(ii) the divergence of a flux vector, and (iii) two terms including diffusive and source
terms. The former includes second order derivatives with respect to space, hence the
name of diffusive.

The problem we are considering is a system of first order hyperbolic equations. In
order to better understand the nature of depth integrated equations, we will consider
first some ”toy” or ”model” equation.

2.1 The 1D scalar convection equation
Let us consider the convective transport along a 1D channel or pipe of magnitude with
a concentration given by φ (x, t). In Figure 1, we describe the balance of the concen-
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tration in a control section of length dx. We will further assume that the convective
velocity u is constant.

Figure 1: Convection of a scalar magnitude.

The equation describing the balance of mass (concentration) is

∂φ

∂t
+ u

∂φ

∂x
= 0 (3)

which is known as primitive variable formulation.

If we introduce the flux F as F = uφ, the equation can be written in its conservative
form:

∂φ

∂t
+
∂F

∂x
= 0 (4)

We can compare now this equation with the general form, and observe the physical
meaning of the flux term F .

This is the simplest PDE in 1D. Its solutions are functions (waves) of the form:

φ = f (x− u t) (5)

which are waves propagating to the right. The shape of the function does not change.

Regarding the conditions for this type of problem being well-posed, and for a domain
(0,L) we need to add:

(i) An initial condition φ (x, t = 0) = h0(x) 0 < x < L
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(ii) Only one boundary condition at the boundary where the information enters the
domain, which is x = 0: φ (x = 0, t) = g(t) 0 < t < T and no boundary
condition at x = L.

A general 1D scalar equation can be written as:

a
∂φ

∂t
+ b

∂φ

∂x
= c (6)

When al the coefficients a, b and c are either constants or depend only on x,t, the
equation is said to be linear. A particular case of the nonlinear equations where the
coefficients may depend on the unknown but not on its derivatives x,t is called quasi-
linear.

Any discontinuity present on the initial shape will not be damped. We can think that
the general model includes this wave propagation property, in some cases the solution
being a wave which propagates without changing its amplitude. Moreover, if we want
to develop a new model for depth integrated equations, it is advisable to assess its
performance with this simple toy model. Diffusive terms for this equation would
describe, for instance, molecular diffusion, the equation being written as:

∂φ

∂t
+
∂F

∂x
= D

∂2φ

∂x2
(7)

where D is the diffusion coefficient. Now the propagating wave will be damped, the
nature of the solution depending on the relative importance of diffusion and convec-
tion.

Finally, source terms describe how the concentration increases or decreases along
time. One possible form for the contribution of the source term is −sφ which de-
scribes a negative source (sink) proportional to the concentration. It can represent,
for instance, the decrease rate of a bacteria population. Source terms acting with con-
vection without diffusion, result only on a change of the propagating wave amplitude.
The resulting equation is:

∂φ

∂t
+
∂F

∂x
= D

∂2φ

∂x2
− sφ (8)

This simple equation includes all the terms shown in the general equation but has
the limitation of being linear, while in most cases we will be interested in nonlinear
phenomena.

So far, we have considered the eulerian formulation. The lagrangian formulation is
obtained by considering the material derivative (or derivative following a particle).
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d

dt
φ (x, t) =

∂φ

∂t
+
∂φ

∂x

∂x

∂t
=
∂φ

∂t
+ u

∂φ

∂x
(9)

From here, we can write the lagrangian form of the 1D convective transport equation
as:

dφ

dt
= D

∂2φ

∂x2
+ S (10)

We have to remember that this is the description of how a magnitude changes for an
observer traveling with the moving material at the same speed. In case no diffusive
nor source terms exist, the equation results on:

dφ

dt
= 0 (11)

which describes how for our traveling observer the concentration at a material point
does not change.

2.2 The quasi linear equation. Burgers equation
So far we have assumed a simple 1D linear model describing convection of a mag-
nitude φ with a velocity u. If we recall now a typical fluid dynamics equation, we
will find terms of the form ∂u

∂t + u∂u∂x + .... = .... where we find a similitude with
the 1D hyperbolic equation studied in the preceding subsection. The difference is that
this equation is nonlinear. The simplest nonlinear 1D hyperbolic PDE is the Burgers
equation, given by:

∂φ

∂t
+ φ

∂φ

∂x
= 0 (12)

The interest of this equation is that the shape of the propagating function can change,
featuring shock waves or rarefaction waves. The primitive variables form can be easily
transformed into the conservative form by introducing the flux F = 1

2φ
2.

∂φ

∂t
+
∂F

∂x
= 0 (13)
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2.3 1D systems of hyperbolic equations
We will consider now a simplified form of the 1D nonlinear shallow water equations,

∂

∂t

(
h
uh

)
+

∂

∂x

(
uh

u2h+ 1
2 gh2

)
=

(
0

−gh∂Z∂x + 1
ρτbx

)
(14)

where we have introduced the depth averaged velocity (ū):

u =
1

h

∫ h

z

udx3 (15)

The coordinate system is sketched in Figure 2 below.

Figure 2: Sketch of the reference axes and main magnitudes.

The unknowns vector, flux, and source terms are:

φ =

(
h
uh

)
F =

(
uh

u2h+ 1
2 gh2

)
S =

(
0

−gh∂Z∂x + 1
ρτbx

)
(16)

The above equations are the depth integrated equations obtained from integrating
along depth balance of mass and balance of momentum equations. They can be ap-
plied to a variety of problems, such as:
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(i) long wave propagation in coastal regions,

(ii) transients in open channels,

(iii) fast landslides and avalanches, and

(iv) flood waves resulting from breaking of dams, just to mention a few.

The above equation is the eulerian, conservation form. The primitive variables formu-
lation is

∂φ

∂t
+A

∂φ

∂x
= S A =

(
0 1

gh− ū2 2ū

)
(17)

This formulation, though not convenient for discretization, provides valuable infor-
mation regarding the possible wave speeds, the characteristic lines and the Riemann
invariants which characterize the two existing waves allowing to develop boundary
conditions of absorbing type, for instance.

In our case, the discretization method that we will use is the SPH, which requires a
lagrangian formulation. To obtain it, we begin by writing separately balance of mass
and momentum equations as:

∂h

∂t
+

∂

∂x
ūh = 0

∂

∂t
ūh+

∂

∂x

(
ū2h+ 1

2 gh2
)

= −gh∂Z∂x + 1
ρτbx

(18)

From the balance of mass, and taking into account the definition of the material deriva-
tive, we obtain:

∂h

∂t
+ ū

∂h

∂x
+ h

∂ū

∂x
= 0 (19)

from where it follows:

dh

dt
+ h

∂ū

∂x
= 0 (20)

Regarding the balance of momentum, we expand the left-hand side term as:
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∂

∂t
ūh+

∂

∂x

(
ū2h+ 1

2 gh2
)

=

ū
∂h

∂t
+ h

∂ū

∂t
+ ū

∂

∂x
(ūh) + ūh

∂ū

∂x
+

∂

∂x

(
1

2
gh2

)

ū

(
∂h

∂t
+

∂

∂x
(ūh)

)
+ h

(
∂ū

∂t
+ ū

∂ū

∂x

)
+

∂

∂x

(
1

2
gh2

)
(21)

The first term is the balance of mass equation, hence it is zero, and the second contains
the material derivative of the velocity. We obtain:

h
dū

dt
= − ∂

∂x
p− gh∂Z∂x + 1

ρτbx where p =

(
1

2
gh2

)
(22)

The lagrangian form of the depth integrated equations is, therefore:

dh

dt
+ h

∂ū

∂x
= 0

h
dū

dt
= −∂p

∂x
− gh∂Z∂x + 1

ρτbx

(23)

3 Two-phase depth integrated mathematical models in-
cluding pwp for landslide propagation

3.1 Introduction
So far, we have presented hyperbolic PDEs and systems, of which shallow water (or
depth integrated) equations are a particular case. These models can be obtained from
the 3D continuum models describing the flow of fluids, and describe a variety of
problems for which the depth is small in comparison with length and width. They
have been extensively used in the fields of coastal, harbour, oceanographic and hy-
draulics engineering since the work of Barré de Saint Venant in 1871[SV71]. In the
case of avalanche dynamics, Savage and Hutter [SH89, SH91] proposed their much-
celebrated 1D lagrangian model, where a simple Mohr-Coulomb model allowed a
description of the granular material behaviour. This work was extended to 2D and
more complex terrains in Hutter et al. [HSSN93], Gray et al. [GWH99]. It has been
applied by Laigle and Coussot [LC97], Mc Dougall and Hungr [MH04], Pastor et
al. [PQM+02, PBP09] and Quecedo et al. [QPH04]. Concerning limitations of the
model, Hutter et al. [HWP05] provide a detailed discussion, being worth mentioning
the textbook by Pudasaini and Hutter [PH07].
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In many cases, there is an important coupling of pore water and air with the solid
grains. As soil skeleton dilates (or contracts), pore pressures change, and so do ef-
fective stresses. In consequence, basal friction and mobility of the soil mass will be
much affected. The first models addressing this issue are those of Hutchinson [Hut86],
who proposed a simple sliding-consolidation mechanism for a block, Iverson [Ive97],
Iverson and Denlinger [ID01]. A more general approach was proposed by Wang and
Hutter [WH99], based on mixture theory.

These models are limited in the sense that they consider only a one phase fluid, while
in many problems, such as debris flows there exists an important mobility of one phase
relative to the other. Porosity can change and the fluid, in some cases, can abandon
the solid skeleton.

3.2 Assumptions, equations and relevant magnitudes
We will recall here equations and magnitudes defined in preceding Chapters devoted to
3D modeling of multiphase problems. The general formulation which can be applied
to describe debris flows was proposed by Zienkiewicz and Shiomi [ZS84], following
previous work by Biot [Bio41]. It is important to notice that in the area of granular me-
dia, Anderson and Jackson [AJ67] proposed a similar model which has been applied
to industrial problems such as fluidized beds. Pitman and Le [PL05], and Pudasaini
[Pud12] have proposed two phase models for debris flows.

Regarding the 3D coupled model, the basic magnitudes and concepts are:

(i) the porosity n,

(ii) the phase densities for solid and fluid, which depend on the porosity and on the
densities of soil grains ρs nd pore fluid ρw as:

ρ(s) = (1− n) ρs

ρ(w) = nρw
(24)

(iii) The material derivatives for soil and water phases are used:

d(s)

dt
=

∂

∂t
+ vs

T .grad

d(w)

dt
=

∂

∂t
+ vw

T .grad

(25)

where vs and vs are the velocities of solid and fluid particles. They are related
by:

d(w)

dt
=
d(s)

dt
+ (vw − vs)T .grad (26)
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(iv) Regarding the stresses, the total stress acting on the mixture is decomposed as:

σ = (1− n) σs + nσw = σ(s) + σ(w) (27)

where the partial stresses σ(s) and σ(w) have been introduced as:

σ(s) = (1− n) σs σ(w) = nσw (28)

The stress in the fluid can be decomposed as:

σ(w) = −npwI + n τw (29)

where pw is the total pressure in the fluid (hydrostatic plus excess pore water
pressure) and τw characterizes viscous behavior. We will neglect it in what
follows.

The effective stress can be written as

σ′ = σ + pwI = (1− n) (σs + pwI) (30)

From here, partial stresses result on:

σ(s) = σ′ − (1− n) pwI

σ(w) = −npwI
(31)

(v) Balance of mass equations for fluid and solid phases can be cast as:

− d(s)n

dt
+ (1− n) divvs = 0

1

Q

d(w)pw
dt

+
d(w)n

dt
+n divvw = 0

(32)

where the mixed volumetric stiffness (Q) depends on volumetric stiffnesses of
solid grains and water as:

1

Q
=

(1− n)

Ks
+

n

Kw
≈ n

Kw
(33)
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(vi) Balance of momentum for solid and fluid phases:

nρw
d(w)vw
dt

= {−n grad pw} + nρwb−R

(1− n) ρs
d(s)vs
dt

= divσ′ − (1− n) grad pw + (1− n) ρsb+R

(34)

where b is the gravity acceleration,R is the interaction solid-fluid forces,

R = −nRw = (1− n)Rs (35)

, andR(α) that acting on phase (α).

Regarding interaction laws, for a Darcy flow,R is given by:

R = n2kw
−1 (vw − vs) = nkw

−1w (36)

where kw is the permeability tensor. Other alternatives, such as that used by
Pitman and Le [PL05] (see Anderson and Jackson [AJ67]), can be used for a
wider range of porosities, and when the relative velocity is larger:

R =
n (1− n)

VTnm
(ρs − ρw) g (vw − vs) (37)

where VT is the terminal velocity of solid particles falling in the fluid, g the
acceleration of gravity and m a constant.

It is convenient to express the interaction term as:

R = Cd (vw − vs) (38)

where Cd is:

Cd = n2k−1
w (Darcy) (39)

or

Cd =
n (1− n)

VTnm
(ρs − ρw) g (Anderson) (40)
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3.3 Depth integrated equations for two phase flows
We will use the reference system with axes {x1, x2, x3} sketched in Figure 2. Z will
denote the basal surface elevation, and h the depth of flowing mass. Velocities will be
denoted as {v1, v2, v3}, and sub-indexes s and w will refer to solid and fluid phases.

An overbar over a magnitude indicates it is a depth averaged value. For instance:

θ̄ =
1

h

∫ Z+h

Z

θ (x1, x2, x3) dx3 (41)

We will define the mixture averaged velocity (v̄) as:

v̄ = (1− n̄)v̄s + n̄ v̄w (42)

and the “quasi material derivative” as:

d̄

dt
=

∂

∂t
+ v̄j

∂

∂xj
j = 1, 2 (43)

Depth integration is performed taking into account Leibnitz’s rule:

∫ b

a

∂

∂s
F (r, s) dr =

∂

∂s

∫ b

a

F (r, s) dr − F (b, s)
∂b

∂s
+ F (a, s)

∂a

∂s
(44)

We will introduce next two auxiliary variables hs and hw which characterize the solid
and fluid contents in a column of total height (h) (see Figure 3).

h = hs + hw

hs = (1− n)h hw = nh
(45)

After applying Leibnitz’s rule to balance of mass equations, we obtain the balance of
mass equations for both phases solid (s) and fluid (w) as:

d̄(α)

dt
(hα) + hα div v̄α = n̄α eR

where α = {s, w} hα = n̄αh and n̄s = (1− n̄) n̄w = n̄

(46)
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Figure 3: Definition of auxiliary variables hs and hw.

In above equations, α refers to the phase, d̄(α)

dt is the derivative following phase α,
n̄α the volume fraction, h the depth of the flow, v̄α the depth averaged velocity and
eRthe erosion rate, defined as the increment of height of the moving soil per unit time.
There are laws such as that proposed by Hungr et al. [?], which relate it to the depth
averaged velocity of the flowing material.

Regarding the balance of momentum equations for both phases, after integrating
along depth (local x3 axis), we arrive to:

ρshs
d̄(s)v̄s
dt

= div
(
h σ̄(s)

)
− h p̄w grad n̄

− τ (s)
b + ρshsb+ hs R̄s − (1− n̄) ρs

(
v̄s − v̄(b)

s

)
eR

ρwhw
d̄(w)v̄w
dt

= − grad (h p̄w) + h p̄wgrad n̄

− τ (w)
b + ρwhwb+ hw R̄w − n̄ ρw

(
v̄w − v̄(b)

w

)
eR

(47)

where we have introduced the shear basal stresses of the solid and fluid phases as:

τ
(s)
b i = −σ(s)

i 3

∣∣∣
Z

τ
(w)
b i = −σ(w)

i 3

∣∣∣
Z

(48)

The terms v̄(b)
s and v̄(b)

w denote the basal slip velocities of solid and water phases.

The depth averaged pore pressure (p̄w) will be decomposed as described when pre-
senting the 3D mathematical model into a hydrostatic part and an excess pore pressure
as:
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p̄w = p̄w, hydr + ∆p̄w (49)

One special case of particular interest is where the stresses in the solid phase can be
considered as hydrostatic, the pore fluid being inviscid.

σii = ((1− n) ρs + nρw) b3 (h− x3) i = 1..3

σ
(w)
ii = nρwb3 (h− x3)− n∆pw

(50)

from where we obtain:

σ
(s)
ii = (1− n) ρsb3 (h− x3) + n∆pw i=1..3

σ′ii = (1− n) (ρs − ρw) b3 (h− x3) + ∆pw i=1..3

(51)

The depth integrated equations are then:

ρshs
d̄(s)v̄s
dt

= grad
{

1

2
(1− n̄) ρsh

2b3

}
+ grad (n̄ h∆p̄w)

+
1

2
ρwh

2b3 grad n̄− h∆p̄wgrad n̄

− τ (s)
b + ρsbhs + hs R̄s − (1− n̄) ρs

(
v̄s − v̄(b)

s

)
eR

(52)

for the solid phase, and

ρwhw
d(w)vw
dt

= grad
{

1

2
n̄ρwh

2b3

}
− grad (hw ∆p̄w)

− 1

2
ρwh

2b3 grad n̄+ h∆p̄wgrad n̄

− τ
(w)
b + ρwbhw + hw R̄w − n̄ ρw

(
v̄w − v̄(b)

w

)
eR

(53)

for the fluid.

Above equations can be written in a more compact manner by introducing
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(i) the pressure terms Ps and Pw defined as:

Ps =

{
−1

2
(1− n̄)h2b3 −

1

ρs
n̄ h∆p̄w

}

Pw =

{
−1

2
n̄ h2b3 +

1

ρw
n̄ h∆p̄w

} (54)

(ii) Fs and Fw:

Fs =

{
1

2

ρw
ρs
h2b3 − h

1

ρs
∆p̄w

}

Fw =

{
1

2
h2b3 + h

1

ρw
∆p̄w

} (55)

(iii) and the source terms:

Ss =
1

ρshs

{
τ

(s)
b + ρsbhs + hsR̄s − (1− n̄) ρs

(
v̄s − vbs

)
eR

}

Sw =
1

ρwhw

{
τ

(w)
b + ρwbhw + hwR̄w − n̄ρw

(
v̄w − vbw

)
eR

} (56)

The balance of momentum equations are now written as:

d̄(s)v̄s
dt

=
1

hs
gradPs +

1

hs
Fs grad n̄ + Ss

d̄(w)v̄w
dt

=
1

hw
gradPw +

1

hw
Fw grad n̄+ Sw

(57)

From the above equations we can obtain those proposed by Pitman and Le [PL05] just
by assuming that excess pore pressures (∆p̄w) are zero.

For convenience, from now on, we will drop the overbar, all magnitudes being depth
integrated unless otherwise stated.

Regarding the excess pore pressure evolution, it is given by:

d(s)∆pw
dt

= −ρ′b3
d(s)h

dt

(
1− x3

h

)

+
Kv

α

∂

∂x3

(
n

C̄d

∂∆pw
∂x3

)
− Kv

α

1

1− n̄
d(s)n̄

dt

(58)
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where Kv = E
3(1−2ν) is the volumetric stiffness of soil skeleton, E the Young’s mod-

ulus, ν the Poisson’s ratio, α being a constitutive parameter and C̄d = Cd
n . If the state

of stress is purely hydrostatic, α = 1, while under an state of stress (k0σ1, k0 σ1, σ3)
α = k0.

It consists of three terms:

(i) the increment of excess pore pressure caused by an increase of the debris flow
height (see Figure 4).

(ii) the consolidation along x3, and

(iii) the changes of averaged porosity obtained in the depth integrated equations.

Figure 4: Deformation of a soil column.

4 A short note on constitutive and rheological model-
ing

4.1 Introduction
Rheology describes the relations between stress and rate of deformation in fluids,
while constitutive relations provide suitable relations between stress, rate of stress,
and rate of strain. Landslide triggering is usually modeled with constitutive equations,
while the propagation of fluidized material is described by rheological laws. One
possible solution has been explored by Pastor et al. [PBH+15] and applied to both
flowslides and rock avalanches.
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4.2 Pure cohesive viscoplastic fluid: Bingham model
Bingham model includes two material parameters, the yield stress below which the
material does not flow, and the viscosity. The expression for the Bingham model is
written as:

τ = τy + µ

(
∂v1

∂x3

)
(59)

where τy is the yield stress.

Depending on the fluid phase viscosity, mudflows, lahars and debris flow can be mod-
eled as viscoplastic fluids with Bingham-like models. Considering a Bingham fluid
initially at rest and increasing the shear stress, the fluid will start moving only when
the shear stress reaches. This behavior creates what is generally called a ”plug” or a
zone where the velocity is constant and the rate of deformation is zero.

Concerning the bottom friction, it is assumed that it can be approximated under the
hypothesis of simple shear flow conditions. The shear stress at the bottom can be
related to the depth-averaged velocity with the following expression:

v =
τbh

6µ

(
1− τy

τb

)2(
2 +

τy
τb

)
(60)

In order to obtain the basal shear stress, a third-order polynomial has to be solved at
every material node and time step. A possible solution was proposed by Pastor et al.
[PQG+04b]. It consists on obtaining the best second-order polynomial approximating
a third-order one.

4.3 Frictional and viscous-frictional fluids
Frictional viscoplastic fluids are used to model fast landslides where friction is im-
portant. If the cohesion is assumed to be zero, and the shear behavior is described
by:

τ(z)− s(z) = µ

(
∂v1

∂x3

)m
(61)

from where the basal shear stress becomes:

τb = sb +

(
1 + 2m

m

)m
1

hm
µvm (62)
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where sb is the shear strength at the bottom. In the case, m = 2, the above expression
reduces to:

τb = sb +
25

4

1

h2
µv2 (63)

It is interesting to note the similarity with Voellmy’s law:

τb =

{
ρgh cos θ tanϕ+ ρg

v̄2

ς

}
(64)

The difference with the proposed model consists on the Voellmy coefficient being
dependent on h.

5 SPH discretization

In previous Chapters the fundamentals of SPH, together with the discretization of two
phase, coupled, geotechnical problems have been described. Here, we will focus on
depth integrated modeling for two phase materials.

SPH based depth averaged models for landslide propagation have been used by Rodriguez-
Paz and Bonet [RPB05], McDougall and Hungr [MH04] and Pastor et al. [PBP09].
An improved method for pore pressure dissipation based on combining the SPH nodes
with finite difference (FD) 1D meshes associated to them has been recently proposed
by Pastor et al. [PBH+15].

Pastor et al. [PYS+18] proposed a two phase SPH depth integrated model, which was
basically the one proposed in 2005 by Pitman and Le [PL05], the originality being
its formulation using a SPH model. The model has been recently extended to include
excess pore water dissipation (Tayyebi [Tay19], Tayyebi et al. [TPY+20])

The depth integrated mathematical model which we have chosen to describe these
phenomena consists of a set of five equations dealing with the balance of mass and
momentum for both phases and pore pressures. The unknowns are solid and fluid
heights and velocities, depending upon position and time, i.e.

hα (x1, x2, t) , v̄α (x1, x2, t) α = s, w (65)

and pore pressures in excess to hydrostatic:

∆pw (x1, x2, x3, t) (66)
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which will depend on x3 too. This general model can be hierarchically simplified
to obtain most of depth integrated models which are currently applied to landslide
propagation problems.

Following the procedure outlined in previous Sections we will introduce:

(i) two sets of nodes {xα K} with K = 1..Nα where Ns and Nw are the number
of SPH nodes in the solid and fluid phases, and,

(ii) the nodal variables:

hαI heights of phases at node I ,

v̄α I depth averaged, 2D velocities, and

τ
(α)
bI shear stress at the bottom,

In Figure 5, we sketch the SPH soil and water nodes together with the finite difference
meshes associated to each solid point to describe pore pressure evolution.

Figure 5: SPH nodes with FD meshes at solid nodes.

If the 2D area associated to a general fluid or solid node I is ΩI , we will introduce for
convenience, a fictitious volume mI with dimensions L3 moving with this node:
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mI = ΩIhI (67)

The SPH approximation of the balance of mass equation for both phases is built from:

〈
d̄hα
dt

+ hα div v̄α

〉
= 〈n̄αeR〉 (68)

from which:

d̄

dt
〈hα〉+ 〈hα〉 〈div v̄α〉 = 〈n̄αeR〉 (69)

From now on, when possible, we will drop the sub-indexes for the sake of simplicity.
The equation is written at node I as:

d̄

dt
hI + hI〈div v̄〉I = 〈n̄ eR〉I (70)

where the divergence term is approximated as:

div v̄I = −
∑

J

ΩJvJ gradWIJ (71)

or

div vI = −
∑

J

mJ

hJ
vJ gradWIJ (72)

The discretized balance of mass equation is written as:

d̄hI
dt

= −hI
∑

J

mJ

hJ
vJ gradWIJ + 〈n̄ eR〉I (Basic form)

d̄hI
dt

=
∑

J

mJvIJ gradWIJ + 〈n̄ eR〉I (1st form)

d̄hI
dt

= hI
∑

J

mJ

hJ
vIJ gradWIJ + 〈n̄ eR〉I (3rd form)

(73)
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where we have introduced (vIJ ):

vIJ = vI − vJ (74)

Alternatively, the height can be obtained once the position of the nodes is known as:

hI = 〈h (xI)〉 =
∑

J

hJΩJWIJ =
∑

J

mJWIJ (75)

The height can be normalized, which allows improving the approximation close to the
boundary nodes:

hI =

∑
J

mJWIJ

∑
J

(
mJ
hJ

)
WIJ

(76)

Next, we will discretize the balance of linear momentum equation. We will recall here
for convenience the momentum equations, writing them in a more compact form as:

d̄(α)v̄α
dt

=
1

hα
gradPα +

1

hα
Fα grad n̄ + Sα α = {s, w} (77)

where the pressure terms are:

Ps =

{
−1

2
(1− n̄)h2b3 −

1

ρs
n̄ h∆p̄w

}

Pw =

{
−1

2
n̄ h2b3 +

1

ρw
n̄ h∆p̄w

} (78)

and

Fs =

{
1

2

ρw
ρs
h2b3 − h

1

ρs
∆p̄w

}

Fw =

{
1

2
h2b3 + h

1

ρw
∆p̄w

} (79)
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Finally, the source terms are:

Ss =
1

ρshs

{
τ

(s)
b + ρsbhs + hsR̄s − (1− n̄) ρs

(
v̄s − vbs

)
eR

}

Sw =
1

ρwhw

{
τ

(w)
b + ρwbhw + hwR̄w − n̄ρw

(
v̄w − vbw

)
eR

} (80)

We will consider next how to discretize each of the three terms gradPα, 1
hα
Fα grad n̄ and

Sα.

Regarding the gradient terms, we will write only one of the symmetrized forms, (see
Monaghan [MG83, Mon00, Mon92]):

1

haI
gradPαI = −

Nαh∑

1

mJ

(
PαI
h2
αI

+
PαJ
h2
αJ

)

1

haI
grad n̄αI = −

Nαh∑

1

mJ

(
n̄αI
h2
αI

+
n̄αJ
h2
αJ

) (81)

which results on:

d̄(α)

dt
v̄αI =

∑

J

mJ

(
PαI
h2
I

+
PαJ
h2
J

)
gradWIJ

+ FαI
∑

J

mJ

(
nαI
h2
I

+
nαJ
h2
J

)
gradWIJ + SαI

(82)

The scheme is explicit, and we use a time step limit given by the CFL condition:

∆tSPH ≤
hmin(

max
(√
ghI + |vI |

)) (83)

In above equations, there is a term describing basal excess pore pressure (∆pwbI )
at node I which has to be obtained at each node and time step. One alternative is
to use simple shape functions fulfilling boundary conditions at the surface and the
basal surface. This has been used by Iverson and Denlinger [ID01], Pastor et al.
[PQM+02, PQG+04a, PSD+15] and Quecedo et al. [QPH04]. This approach presents
the limitation of not being able to model changes of boundary conditions at the bottom.
For instance, when a landslide runs over a very permeable basal layer -or a rack- pore
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pressure becomes zero there, while in the body of the landslide is not zero. If a single
shape function is used, once the basal value is set to zero, the pressure becomes zero
in the whole depth.

To overcome this limitation, we have proposed to introduce FD meshes associated to
each SPH solid node [PBH+15]. Figure 5 provides a sketch of the SPH nodes and
FD meshes layout. Pastor et al. [PYS+18] has been extended the model, proposed for
1-phase modeling of flowslides, to 2-phase modeling of debris flows.

The analysis of excess pore pressure evolution is based on equation 58, which is a clas-
sical parabolic partial differential equations which include two source terms related to
variations of height and porosity.

Initial conditions describe the excess pore pressure distribution in all FD meshes.
Here, we have assumed simple linear laws with values of zero at the top and ∆p

(b)
wp,0

at the basal surface. The latter has to be estimated, either from field data or from
the results of a model describing triggering of the landslide. This initial condition
plays a fundamental role in debris flow propagation characteristics. When no data are
available, it has to be estimated.

Concerning boundary conditions, we have assumed a zero value at the top, while at the
base it is usual to assume an impermeable boundary (zero flow). However, these are
the situations where the debris flow arrives to mitigation structures such as basal grids,
where total pore pressure will be dissipated and become equal to the atmospheric. This
makes the flow to slow down or even to stop, as basal friction will increase. Once the
flow exits the grid, the flux is made zero again. Here, we have boundary conditions
which depend on the position of the nodes on the terrain.

A variable smoothing length formula proposed by Benz [Ben90] is considered in the
present work.

hIh
NDIM
SMLI = const (84)

where hSMLI denotes the smoothing length at node I .

The algorithm is explicit and less accurate than the approach proposed by Bonet et al.
[BKRPP04], where both the mass conservation and balance of momentum equations
were solved using a Newton Raphson algorithm.

The resulting equations are ODEs which can be integrated in time using a scheme
such as Leap Frog or Runge Kutta (2nd or 4th order).

One important issue is the representation of the terrain over which the avalanche
moves, as it greatly influences the results. If we denote the height of the terrain by
ZI at node I , we have to obtain (i) its gradient (gradZI ), and (ii) the radius of curva-
ture along the tangent to the node path, which can be obtained from the second-order
derivatives of Z.
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In the case of fast landslides, the terrain information is given on a digital terrain model
(DTM), which consists of a series of values (xk, yk, zk) at the nodes of a structured
grid. From here we can obtain both gradients and second derivatives at the grid nodes
using a classical nodal recovery technique on a finite element mesh which nodes are
those of the DTM grid.

Concerning the neighbor search, we have used an auxiliary structured grid covering
the part of the terrain where the SPH particles are. Spacing is taken as the minimum
smoothing length. For a given SPH node, the search is restricted to the cell it belongs
and its neighbors. This temporary grid is valid only for a given time step. In cases
where the flow is elongated, the grid can be oriented automatically following the main
inertia axes of the set of SPH nodes on the plane.

6 Benchmarks and applications

Finally, we have selected some benchmarks which illustrate the behavior of the models
described in this Chapter.

6.1 Shocks and expansion waves
The first example we will study is illustrated in Figure 6 (Yagüe [Her18], Pastor et al.
[PYS+18]). It consists of a domain enclosed by two walls located at x = −10m and
x = 10m filled with two masses having different heights and porosities:

hL = 1.04 hsL = 0.32 hwL = 0.72 nL = 0.69

hR = 1.38 hsR = 0.84 hwR = 0.54 nR = 0.39
(85)

We have depicted in the profile, the total height h = hs + hw and the height of the
solid fraction hs. The solid is assumed to have no strength, with particles of density
ρs = 2000 Kg/m3 the water being inviscid. The interaction forces are given by
Anderson formula,

R = −nRw = (1− n)Rs

R = Cd (vw − vs)

Cd =
n (1− n)

VTnm
(ρs − ρw) g

(86)

where we have chosen VT = 1.e− 3 m/s and m = 1.

This test has been used in Pelanti et al. [PBM08] to show the complex pattern of
rarefaction and shock waves in both solid and fluid phases. Debris flows having two
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Figure 6: Two phase dam break problem.

phases with important relative mobility present a rich structure of shocks and rar-
efaction waves, which has to be properly modeled. Otherwise, the model will have
numerical damping or dispersion.

At time zero, the wall separating both masses is removed. as soil and water have
different heights, a complex pattern of shocks and rarefaction waves is produced. This
is depicted in Figure 7, where we show the profiles of total height and soil fraction at
times 0.5, 1.0, 1.5, 2.0, 3.5 and 6s.

Finally, we depict in Figure 8 the profiles of porosity at times 0 and 2s.

6.2 Dambreak of a frictional fluid over a dry horizontal plane
We have chosen a 1D dam break problem to assess factors upon which runout and
propagation depend. It consists of the dam sketched in Figure 9, with a initial height
of the material equal to 10m. and a length of 10m.

The dam is filled with a saturated loose granular material with densities of solid parti-
cles and fluid ρs = 2500Kg/m3 ρw = 2500Kg/m3 and an initial porosity of 0.4,
for which the mixture density is ρ = 2050Kg/m3 .

The material is contained by two walls, and at time 0s, the wall on the right is re-
moved, which causes the material to liquefy. Then, the debris flow propagates along
the horizontal plane.

It is interesting to note, when analyzing the results we are presenting, that:

(i) the runout of a dry material with the same friction angle and porosity is 11.80
m, the flow coming to rest at time 1.75s, and

(ii) in case the material is fully saturated, one-phase models predict a runout of
24.5m, with a stopping time close to 3s.
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Figure 7: Profiles of hs and hs + hw at times 0.5, 1.0, 1.5, 2.0, 3.5 and 6s.

Figure 8: Profiles of porosity at times 0 and 2s.
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Figure 9: The 1D dam break problem.

In order to assess the predictions of the proposed model, we have selected a con-
trol case having similar consolidation and propagation times. The model describ-
ing the interaction between phases is that of Anderson and Jackson [AJ67], with
VT = 1.e − 3m/s and exponent m = 1. This corresponds to a darcy’s permeability
of 8.57 10−5 m/s with a consolidation coefficient CV = 2.92m2/s for h = 5m.

We depict in Figure 10 the profiles of the fluidized material at times 0, 0.5, 1.0, 2.0,
3.0, and 4.0s. We have followed the convention described in Section 5 to characterize
solid and fluid fractions, solid being the darker shade of green. We can see in the
figure how solid and fluid components travel with the same speed.

Figure 10: Dam break problem: profiles of debris flow height at times 0, 0.5, 1.0, 2.0,
3.0, and 4.0s. Dark and light shades describe the phases, darker being the solid.
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One way to characterize propagation is by plotting the position along time of the
front. In this case, we depict in Figure 11 the coordinate x of the leading soil and fluid
particles along time.

Figure 11: Runout of solid and fluid leading nodes.

We can observe how at 3.5s approximately the flow has stopped, the runout being
31.6m, much larger than those of one-phase or dry materials, the reason being the
basal pore pressures.

Next, we will consider the evolution on this reference case of the pore pressures (in
excess of hydrostatic). We plot in Figure 12 the profiles of pore-water pressure super-
imposed on the deformed mass of fluidized soil at times 0.5, 1, 2 , 3 and 4s.

We can observe how basal pore pressure decrease along time, reaching values close
to zero at 3s approximately. In addition to pore pressure dissipation, the effect of the
decreasing height of the debris flow contributes to decreasing the pressure.

In order to study this effect, we depict in Figure 13 the evolution of basal pore pres-
sure and height as node 501, located at the middle of the reservoir, along time. We
have made to coincide the vertical scales of debris flow height and excess pore-water
pressure, the latter being measured in m. When the pwp has a value h, the material is
in a liquefied state.

Analyzing both curves, we can observe a first period of 0.5s with a value of height
which has not changed as the rarefaction wave has not reached this point. At this
period, pore-water pressure changes are only caused by consolidation. Later, the soil
node we are considering starts moving, its height decreasing as time increases. This
results on an additional decrease of the excess pore-water pressure. Finally, at time
3.2s approximately, the pore-water pressure is fully dissipated and the height is con-
stant.
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Figure 12: Excess pore pressure profiles along time, depicted on the deformed geom-
etry.

We recall here that the profiles of pore-water pressure have been obtained from the
finite difference meshes associated to SPH solid nodes, which move with them. In
this way, the profiles of pore-water pressure correspond to a material point.

Figure 13: Pore pressure evolution along time at node 501, located initially at the
middle of the reservoir.
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In order to assess the effect of pwp on the runout, we compare in Figure 14 the runout
of 2 phases debris flows with and without pore water pressure. Both arrive to equilib-
rium, but the case without pwp stops before, its runout being smaller.

Figure 14: Comparison of the runouts of 2 phase debris flow models with and without
pore-water pressure.

6.3 Yu Tung road debris flow
On 7 June 2008, an intense rainstorm triggered a debris flow on the natural hillside in
Lantau Island, Hong Kong (Figure 15).

Figure 15: Aerial View of the debris flow event after the landslide incident.
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Over 3000m3 of debris ran down the hillside and traveled 510m at an apparent travel
angle of 17◦ to the Yu Tung Road which resulted in significant entrainment and depo-
sition along the debris path and serious road blockage.

For the analysis, we have used the debris flow two phase model including pore wa-
ter pressure evolution. We provide in Figure 16, a topographical map showing the
landslide path and positions of the flowing mass from initial to final deposition. The
rheological parameters of the basal friction angle of 40◦ with a Voellmy coefficient
equal to 600 m/s2 has been considered.

Figure 16: Results sequence of the debris flow simulation at different positions.

The velocity distribution at different times is shown in Figure 17. The frontal velocity
of the debris was computed to be about 12m/s at the time of 4s and a distance of
100m from the source location. Then, the debris flow traveled at a higher speed with
an average velocity of about 17m/s at propagation time of 13s and a distance of
350m. Finally, it slows down to 11m/s at the time of 23s.

Field mapping revealed that significant entrainment of loose materials and erosion
of the side slopes had occurred. It is estimated that the active volume increased to
about 3400m3 which implies that the bed entrainment was a key aspect in effecting
the dynamics of the moving mass.

The model takes into account bed entrainment along the landslide path and decreasing
of the ground surface elevation consistently over time. Figure 18 shows the amount of
erosion. We have used Hungr’s erosion law [Hun95], with an entrainment coefficient
of 0.0011ms−1.
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Figure 17: Computed velocities at times 7s, 15s and 25s.

Figure 18: Final erosion depths at time 40s.
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Debris flow velocities were estimated at various locations along the flow path by using
super-elevation data and a video record which captured the whole debris flow process.
Figure 19 shows the observed frontal velocities (shown in red dots) along chainage
and the profile of frontal velocities computed by the proposed model.

Figure 19: Comparison between observed and computed frontal velocities.

7 Conclusions

Depth integrated models are a suitable complement of 3D techniques. They can cope
with complex two flows where relative mobility of the phases is large and where water
pressure evolution inside the flowing mass control its behavior. There exist different
alternative formulations -eulerian, lagrangian, finite elements, SPH, etc- of which we
have chosen SPH within a lagrangian framework. SPH models such as the one de-
scribed here can use a double set of nodes to represent both fluid and solid phases.
Moreover, pore water pressure evolution can be deal with a set of finite difference
meshes associated to each SPH node.

In our opinion, this class of models can be used together with a full 3D approximation,
the latter dealing with triggering and particular parts of the flow, where knowing its
3D structure is necessary.

We would like to close the Chapter by stating that models have to be validated against
(i) problems having a known analytical solution (ii) laboratory flume small scale tests,
and (iii) real cases for which consistent data is available.
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[WH99] Y. Wang and K. Hutter. A constitutive theory of fluid-saturated gran-
ular materials and its application in gravitational flows. Rheol. Acta,
38(3):214–223, aug 1999.

[ZS84] O. C. Zienkiewicz and T. Shiomi. Dynamic behaviour of saturated
porous media; The generalized Biot formulation and its numerical so-
lution. Int. J. Numer. Anal. Methods Geomech., 8(1):71–96, jan 1984.

Pastor et al 125

ALERT Doctoral School 2020





Modeling snow and avalanches
with the Material Point Method
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Snow is a complex and fascinating material which can sustain stresses like a solid or
flow like a fluid depending upon the load it is subjected to. The transition from solid
to fluid state can lead to catastrophic snow slab avalanches. Modeling large deforma-
tions, compaction, fractures and contacts involved in snow and avalanche mechanics
requires both suitable constitutive models and an appropriate numerical framework.
Recently, the Material Point Method (MPM), a hybrid Eulerian-Lagrangian contin-
uum approach, has shown great promise in modeling complex processes involved in
snow avalanche release and flow in a unified manner. This includes compaction hard-
ening, anticrack nucleation and propagation during slab avalanche release and flow
regime transition reported in avalanche dynamics. In this Chapter, we first introduce
the state of the art in snow and avalanche mechanics as well as related modeling chal-
lenges. Second, we recall finite strain elastoplasticity theory and the MPM algorithm.
Third, we describe different constitutive snow models based on damage or critical
state soil mechanics. Finally, we show the application of MPM to snow microstruc-
ture compression, anticrack propagation in avalanche release as well as avalanche
dynamics.

1 Introduction

Snow is one of nature’s most fascinating and complex material which can behave like
a solid or flow like a fluid depending on the applied loading. Snow complexity arises
from i) its porous character, as it is made of ice, air and possibly water and ii) the
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Figure 1: A snow slab avalanche triggered by a snowboarder in Haines, Alaska. ©Oli Gagnon.

fact that it is a ‘hot’ material, i.e. exists close to its melting point. The solid-to-fluid
transition in snow can have dramatic consequences, such as snow avalanches (Fig. 1).

A lot of progress has been made in snow and avalanche mechanics over the past
decade. Science barriers have been pushed by modern experimental methods coupled
with multiscale models, which are encouraged by the fast increase of computational
capabilities. In particular, some researchers have characterize the important and com-
plex role of snow microstructural network on snow mechanics [e.g. HCN15, SCMP16,
WGF15, KS14, GLTT17] while others have helped in better understanding how snow
mechanical behavior affects crack propagation and slab avalanche release at the slope
scale [HGZ08, vHH09, vHSH10, MKC10, GvHC+15, GvHC+17].

Concerning snow failure, recent laboratory experiments highlighted that failure ini-
tiation in typical weak snow layers is not in pure shear as previously assumed but
mixed-mode (shear and compression) [RGS15, CSM15] with lower strengths in shear
than in compression [RS10]. With respect to crack propagation, the development
of the Propagation Saw Test (PST) [SS07, GJ08] highlighted the importance of the
structural collapse of the weak layer after failure as well as the crucial influence of
slab elasticity and strength on crack propagation propensity [vHGB+16].

While the yield surface of snow is now better characterized, the post-peak behavior
is usually oversimplified, assuming either brittle or quasi-brittle behavior. Yet, snow
has a more complex plastic behavior with hardening in compression, promoting irre-
versible compaction (compressibility) and softening in shear and tension, facilitating
fracture. In addition, most models neglect the volumetric collapse of the weak layer
and thus fail in reproducing field observations. In classical continuum methods for
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fracture (standard mesh-based discretization schemes) as well as in standard mate-
rials, the concept of collapse under compressive stresses (or anticrack) is physically
impossible due to mesh or material inter-penetration induced by volume loss. So far,
no standalone continuum constitutive model exists for anticrack types of fractures to
simulate dynamic crack propagation in porous cohesive materials.

Each of the processes required for the release of a slab avalanche has been inves-
tigated using different numerical approaches. Failure initiation and crack propaga-
tion are classically modeled using the Finite Element Method [GCEN13, GSvH+14,
MJ08, MKC10], the Fiber Bundle Model [RSDH09] or Cellular Automata [FLG04,
FZ07]. More recently the Discrete Element Method has enabled the simulation of both
avalanche release [initiation and propagation, GvHC+15, GvHC+17, GR17] and flow
processes [snow granulation, SGH+15]. However, due to the high computational cost,
this method is used only for relatively small scales. Popular classical numerical tools
developed for avalanche dynamics simulation primarily apply two-dimensional (2D)
depth-averaged methods based on shallow water theory [NDEC13, RKHF18], which
fail to capture important flow characteristics along the surface-normal direction such
as velocity distribution [EYZ20]. Hence, a unified and continuum approach to sim-
ulate both avalanche release and flow at the slope scale accounting for all important
mechanical processes is necessary.

In this Chapter, we will describe the Material Point Method [MPM, SZS95, see § 3],
a numerical framework capable of integrating all essential physical ingredients men-
tioned above into a single framework. MPM has recently gained interest in com-
putational mechanics, geotechnics [e.g. BBS00, ASB13, SAY+15, BFL16, VWH17]
and graphics [e.g. NGL10, SSC+13, DBD16, JST+16, KGP+16, TGK+17]. MPM
is a continuum and hybrid Eulerian-Lagrangian method which has the particular and
major advantage of dissociating Lagrangian material particles and Eulerian calcula-
tion points allowing it to be an ideal numerical framework for simulating fractures,
collisions and coexistence between solid- and fluid-like behaviors. The recent de-
velopments of MPM has allowed to overcome a critical science barrier in snow and
avalanche research, namely simulating the whole avalanche process, from quasi-static
snow failure to dynamic fracture propagation and flow at the slope scale in a unified
and multiscale physically-based framework using constitutive models based on critical
state soil mechanics.

2 Finite Strain Elastoplasticity

This section gives a brief introduction to continuum mechanics in the framework of
finite strain elastoplasticity, and its content is to a large extent based on the textbooks
of [BW08], [GS08] and [Mal69], as well as [JST+16]. The reader is referred to these
references for more details.

At the core of continuum mechanics, we make the assumption that a material body
can be modeled as a continuum. A separation is made between (initial) undeformed
material body, which is described by a set of material coordinatesX , and the deformed
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material body, which is described by a set of spatial coordinates x. These are referred
to as the Lagrangian and Eulerian descriptions of the body, respectively.

2.1 Strains and stresses
A deformation of a body over a time t is described by the mapping φ which takes
a Lagrangian coordinate X to an Eulerian coordinate x = φ(X, t). The strain ex-
perienced by a body under deformation can be quantified through the deformation
gradient, which is a second-order tensor defined as

F (X, t) =
∂φ(X, t)

∂X
. (1)

The determinant of the deformation gradient J ≡ det(F ) quantifies the body’s (in-
finitesimal) volume change such that J = 1 represents no volume change, J < 1
represents volume decrease and J > 1 represents volume increase. We remark that
for a deformation to be admissible one must require the mapping φ to be one-to-one
and J > 0. Thus, F is invertible.

Several strain measures can be defined. For example, the Green tensor is defined as

E =
1

2
(F TF − I) (2)

and can be interpreted as the finite strain version of the small strain tensor

Es =
1

2
(∇u+∇uT ) (3)

where u is the displacement field. Another strain measure is the Hencky strain tensor,
defined as

ε =
1

2
lnFF T (4)

which can be interpreted as an extension of the natural (logarithmic) strain measure in
small strain theory to the finite strain context.

As with strain, there exist several definitions of stress measures, e.g., the familiar
Cauchy stress defined by the second-order tensor σ which measures the force on the
body per unit deformed area. In finite strain theory, it is common to work with the first
Piola-Kirchhoff stress tensor

P (X, t) = J(X, t)σ(X, t)F (X, t)−T (5)

which, unlike the Cauchy stress, measures the force per unit undeformed area. Note
that we made no symbolic distinction between the Cauchy stress in Eulerian σ(x, t)
and Lagrangian σ(X, t) description. The reader should be able to distinguish them
based on the context (in particular, from its arguments). Moreover, the second Piola-
Kirchhoff stress tensor is given by S(X, t) = F (X, t)P (X, t). Finally, we mention
the Kirchhoff stress tensor

τ (X, t) = J(X, t)σ(X, t). (6)
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The Lagrangian velocity V and accelerationA are defined through

V (X, t) =
∂φ(X, t)

∂t
(7)

A(X, t) =
∂V (X, t)

∂t
(8)

respectively. We note the difference compared to the Eulerian acceleration a,

a(x, t) =
Dv(x, t)

Dt
(9)

which is given by the material derivative (D/Dt = ∂/∂t + v · ∇x) of the Eulerian
velocity v(x, t).

2.2 Balance laws
In our context, the governing balance laws of interest are conservation of mass and
conservation of momentum. We state them here without derivation. In the Eulerian
description under the assumption of no external body forces other than that resulting
from gravity g, the balance law for mass and linear momentum are respectively given
by

Dρ(x, t)

Dt
+ ρ(x, t)∇x · v(x, t) = 0 (10)

ρ(x, t)
Dv(x, t)

Dt
= ∇x · σ(x, t) + ρ(x, t)g (11)

where ρ is the mass density. Equivalently, in the Lagrangian description, these equa-
tions are given by

ρ(X, t)J(X, t) = ρ(X, 0) (12)

ρ(X, 0)
∂V (X, t)

∂t
= ∇X · P (X, t) + ρ(x, 0)g (13)

where no symbolic distinction between the Eulerian and Lagrangian mass density ρ
has been made.

Furthermore, conservation of angular momentum require the Cauchy stress to be sym-
metrical, i.e., σ = σT . In the Lagrangian view, this corresponds to symmetry of the
second Piola-Kirchhoff tensor, i.e., S = ST . Thus, we have in total 9 unknowns
(3 velocity components and 6 stress components). However, the above equations for
conservation of mass and linear momentum, Eq. (10)-(13), represent only 6 equations.
We need constitutive equations in order to close the system. These equations must ful-
fill material frame-indifference, i.e., invariance under rigid body transformations. In
other words, if we view the same configuration from a rotated point of view, the stress
must transform by the same rotation.
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2.3 Elasticity
Here, we present constitutive models for elastic materials. Common to all elastic
materials is that the stress at one point of the material depends only on the current
strain at that point, in particular σ(X, t) = σ̂(F (X, t),X), where σ̂ denotes the
stress response function. Notably, it does not depend on past deformation history
or the rate at which deformation is applied. If the elastic material is homogeneous,
which will be the assumption in the following, then σ = σ̂(F ). Moreover, frame-
indifference implies that the stress must depend on the deformation through the right
Cauchy-Green strain tensor C = F TF . Furthermore, the elastic material is isotropic
if σ̂(F ) = σ̂(FQ) for all rotation tensors Q. In fact, it can be shown that the stress
response function for a frame-indifferent isotropic elastic material can be completely
defined through the principal invariants of C.

An elastic material is said to be hyperelastic if the first Piola-Kirchhoff stress can be
derived from a strain energy density function Ψ(F ) through

P (F ) =
∂Ψ(F )

∂F
. (14)

An example of a frame-indifferent isotropic hyperelastic constitutive model is the
St. Venant-Kirchhoff model,

Ψ =
1

2
λ(trE)2 + µtr(E2) (15)

where λ and µ are the two Lamé parameters and E is the Green finite strain tensor
introduced earlier. The latter model results in the second Piola-Kirchhoff tensor on
the form

S = C : E = λ(trE)I + 2µE (16)

which highlights the analogy with the well-known (small strain) linear isotropic elas-
ticity,

σ = C : Es = λ(trEs)I + 2µEs (17)

where C is a fourth-order tensor defined as C = 2µI + λ11T . A variant of the
St. Venant-Kirchhoff model can be expressed in terms of Hencky strain ε, making
several numerical aspects more convenient,

Ψ =
1

2
λ(trε)2 + µtr(ε2) (18)

which results in the Kirchhoff stress τ on the familiar form

τ = C : ε = λ(trε)I + 2µε. (19)

This elastic model has been successfully used in various publications on material point
method modeling [Mas13, KGP+16, GGT+18].
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2.4 Plasticity
We separate between elastic and plastic, i.e, permanent/non-reversible, deformations.
The finite strain equivalent of the additive decomposition of elastic and plastic strain in
the small deformation theory, is the multiplicative decomposition of the deformation
gradient,

F = FEFP (20)

where FE refers to the deformation arising from the elastic forces, while FP is the
permanent, plastic, component. It is important to note that stress due to the elastic
forces discussed in the previous section, is only a result of the elastic deformation FE .
Thus, in many equations presented in Section 2.3 we must replace F with FE to be
consistent. In particular, the hyperelastic strain energy density is only a function of
FE , e.g.,

Ψ(FE) =
1

2
λ
(
trεE

)2
+ µtr

(
(εE)

2
)

(21)

the St. Venant-Kirchhoff model. Here, εE = 1
2 ln

(
FE(FE)

T
)
. Moreover, the Kirch-

hoff, Cauchy and first Piola-Kirchhoff stress tensor can be written

τ =
∂Ψ(FE)

∂FE

(
FE
)T

, (22)

σ =
1

J
τ =

1

J

∂Ψ(FE)

∂FE

(
FE
)T

, (23)

P = τF−T =
∂Ψ(FE)

∂FE

(
FE
)T
F−T =

∂Ψ(FE)

∂FE

(
FP
)−T

, (24)

respectively.

The onset of plastic deformations is characterized by a yield function y which depends
on the stress state and possible hardening parameters. Conventionally, y < 0 defines
admissible states, and y > 0 is said to be non-admissible. The yield surface y = 0
defines the limit where deformations are no longer elastic. Thus, plastic deformations
can only occur on the yield surface.

An elastoplastic model is not complete without a flow rule. Let us define the elastic
right Cauchy-Green strain tensor CE and the elastic left Cauchy-Green strain ten-
sor bE as CE = (FE)

T
FE and bE = FE(FE)

T [BW08]. Furthermore, CP =

(FP )
T
FP denotes the plastic right Cauchy-Green strain tensor. The associative plas-

tic flow rule is given by [Sim92] and [SM93]

− 1

2
LvbE = γ̇

∂y

∂τ
bE , (25)

γ̇ ≥ 0, y ≤ 0, γ̇y = 0, (26)

where LvbE = F ∂
∂t (CP )

−1
FT is the Lie derivative of bE , γ̇ is the plastic con-

sistency parameter and Eq. (26) are the Kuhn-Tucker conditions. The associativity
corresponds to the direction choice of ∂y

∂τ . This choice is also known as the principle
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of maximum plastic dissipation [BW08], leading to a plastic flow that maximizes the
plastic dissipation rate. We refer to the derivation by [KGP+16] for more detailed dis-
cussion of the associative flow rule and non-associative flow rule. More details about
the derivation of Eq. (25) can be found in [GGT+18].

3 MPM Algorithm

Given a continuous material, MPM discretizes it into a set of particles (material points)
to track mass, position, momentum and deformation gradient as shown in Fig. 2. Since
the mass of each Lagrangian particle is constant in time, the mass conservation is
naturally fulfilled. The position, momentum and deformation gradient of the particles
are solved and updated with a background Eulerian grid. Both implicit and explicit
formulations of MPM can be used to solve the system [KGP+16]. We follow the
explicit MPM algorithm in [SSC+13]. Various basis functions can be implemented
for the grid, such as quadratic splines. Here, we take the dyadic products of one-
dimensional cubic B-splines in [SSC+13] as an example.

Figure 2: A continuous material described with Lagrangian particles and an Eulerian grid.

Nh
i (xp) = N(

1

h
(xp − ih))N(

1

h
(yp − jh))N(

1

h
(zp − kh)) (27)

where h is the grid spacing, i = (i, j, k) is the grid index, xp = (xp, yp, zp) is the
evaluation position, and the interpolation function N(x) is

N(x) =





1
2 |x|

3 − x2 + 2
3 , 0 ≤ |x| < 1

− 1
6 |x|

3
+ x2 − 2 |x|+ 4

3 , 1 ≤ |x| < 2

0, otherwise
(28)

The interpolating weights and their gradients can then be obtained as wip = Nh
i (xp)

and ∇wip = ∇Nh
i (xp), respectively. These weighting functions are needed in the

information transfer between the particles and the grid. The detailed procedure of
updating the particle states is presented in Fig. 3 and interpreted in the following.

1. Transfer particle states to the grid

The mass and velocity of the particles are transferred to the grid nodes to obtain
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Figure 3: Overview of the MPM algorithm. Modified based on [GGT+18, SSC+13].

the grid mass and velocities according to the following expressions

mn
i =

∑

p

mpw
n
ip (29)

vni =
∑

p

vnpmpw
n
ip/m

n
i (30)

where mn
i and vni are the mass and velocity of grid node i at time step n,

respectively, mp is the mass of particle p, and vnp is the velocity of particle p
at time step n. For each grid node i, its mass and velocity is calculated from
the particles in the grid cells sharing the grid node i. While the particle mass is
transferred using the weighting functions, the transfer of particle velocity uses
both the weighting functions and the particle mass to conserve momentum.

2. Compute grid forces

The force at each grid node comes from elastic stresses of the particles close to
the node, which can be calculated based on the energy density function

fni = −
∑

p

V 0
p

(
∂Ψp(F

n
E,p)

∂F nE,p

)
(F nE,p)

T∇wnip (31)

where V 0
p is the initial volume of particle p, Ψp(F nE,p) is the energy density of

particle p calculated from the elastic particle deformation gradient F nE,p. Know-
ing the Cauchy stress tensor σnp from Eq. (23), the grid force can be expressed
as

fni = −
∑

p

V np σ
n
p∇wnip (32)

where V np = JV 0
p is the particle volume at time step n.
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3. Update grid velocities

The grid velocity at time step n + 1 is updated based on the grid velocity and
acceleration at the previous time step n as follows

vn+1
i = vni +∆tfni /m

n
i (33)

where ∆t is the time interval between the time steps. Furthermore, boundary
conditions need to be considered before the update of the grid velocity. For
example, a grid node in contact with a fixed ground surface might need to take
ground friction into account if the grid velocity is pointing towards the ground
surface. In case of occurrence of the frictional behavior, the grid velocity along
the tangential direction of the ground surface might be adjusted based on the
friction coefficient of the ground surface.

4. Compute trial elastic deformation gradients

Assuming the deformation of the particles is fully elastic, their trial elastic de-
formation gradients can be obtained based on the previous deformation gradient
F nE and the updated motion of the grid vn+1

i

F trial
E =

(
I +∆t

∑

i

vn+1
i (∇wnip)T

)
F nE (34)

where I is the identity matrix.

5. Check yield condition

Having the trial elastic deformation gradients, the trial elastic strains and stresses
can be obtained. Taking the Hencky strain and the Kirchhoff stress in [GGT+18]
as an example, the trial Hencky strain and trail Kirchhoff stress can be calcu-
lated as

εtrialE =
1

2
ln
(
F trial
E (F trial

E )T
)

(35)

τ trial
E = C : εtrialE (36)

where C is the fourth-order elastic modulus tensor. With the obtained elastic
stress, the yield function of the material y can then be computed and checked.
If the state is non-admissible (y > 0), the assumption of pure elasticity has
failed, and parts of the deformation must be plastic. The plastic deformation
needs to be computed through return mapping detailed in step (6). If the state
is admissible (y ≤ 0), the trial elastic deformation gradients will be updated as
the new deformation gradients in step (7).

6. Perform return mapping

When the assumption of pure elastic deformation is failed, plastic deformation
needs to be introduced by projecting the trial state back to the yield surface.
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The difference between the trial state and the projected state gives the amount
of plastic strain

εn+1
P = εtrialE − εn+1

E = γ̇∆t
∂g

∂τ
(37)

where the plastic multiplier γ̇ gives the magnitude of the plastic strain and the
plastic potential function g defines the direction of the plastic strain occurring
during the time interval∆t. The choice of the function g results in different flow
rules. A possible choice is g = y, meaning that the change of the plastic strain
coincides with the gradient of the yield surface. This is known as an associated
flow rule, and all other choices are called non-associative. In pure elasticity,
the total energy of the system remains constant. Plasticity can only decrease the
total energy, otherwise we are in violation of the second law of thermodynamics.
A flow rule should be shown to result in a non-negative plastic rate of dissipation

ėP = τ : lP ≥ 0 (38)

where lP is the plastic rate of deformation. An associated flow rule is a conse-
quence of the principle of maximum plastic dissipation, ensuring the material
dissipates energy due to plastic deformation as efficiently as possible. More-
over, the so-called Kuhn-Tucker conditions (Eq. 26) must be fulfilled.

7. Update deformation gradients

As mentioned in step (5), the trial elastic deformation gradients are taken as the
updated ones if the assumption of pure elastic deformation holds. In case that
plastic deformation occurs, the elastic deformation gradients should be updated
based on the singular value decomposition of the elastic strain εn+1

E obtained in
step (6).

F n+1
E = UEΣEV

T
E (39)

where
ΣE = exp(εn+1

E ) (40)

8. Update particle velocities

The updated grid velocities are transferred to the particles to get updated parti-
cle velocities. The transfer scheme combines Particle-In-Cell (PIC) and Fluid-
Implicit-Particle (FLIP) schemes by assigning different weights as below

vn+1
p = (1− α)vn+1

PICp + αvn+1
FLIPp (41)

where
vn+1
PICp =

∑

i

vn+1
i wnip (42)

vn+1
FLIPp = v

n
p +

∑

i

(vn+1
i − vni )wnip (43)

PIC is simple and effective to implement. However, it suffers from signifi-
cant dissipation/damping during frequent particle/grid transfers. In comparison,
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FLIP addresses the dissipation by transferring incremental grid velocities to par-
ticles, instead of directly interpolating from grid to particles. Nevertheless, FLIP
gives notable noise due to accumulated instability [JSS+15]. Thus, PIC and
FLIP is normally combined to get stable simulations with negligible numerical
damping. The value of α typically ranges from 0.95 to 0.99 [JSS+15, SSC+13].

9. Update particle positions

The new particle positions can be computed based on the updated grid positions

xn+1
p =

∑

i

xn+1
i wip (44)

where
xn+1
i = xni + v

n+1
i ∆t (45)

4 Constitutive Snow Models

In this section, we focus on the description of three snow plasticity models. The first
one is a damaged-based model developed for the graphics needs of the Disney movie
Frozen [SSC+13]. The two other models are based on critical state soil mechanics
and were developed to simulate dense cohesive snow as well as highly porous weak
snowpack layers involved the release of snow slab avalanches [GGT+18].

4.1 Damage-based model: insights from Disney Animation Stu-
dios

The constitutive model developed by [SSC+13] for the needs of the Disney movie
Frozen relies on an update of elastic constants involved in the Hooke’s law µ and λ
based on the amount of plastic deformation as follows:

µ(FP ) = µ0e
ξ(1−JP ) and λ(FP ) = λ0e

ξ(1−JP ), (46)

where JP = detFP , µ0, λ0 are the initial Lamé coefficients and ξ is the hardening
coefficient. Note that JP characterizes the amount of irreversible volume change such
that JP = V sf/V 0 with V sf is the current stress-free volume and V 0 is the initial
volume. To compute JP , [SSC+13] defines critical stretch θs and compression θc
thresholds to start fracture or plastic compaction, respectively. Hence, the singular
values of FE are restricted to the [1− θc, 1 + θs] range. If the deformation exceeds
the critical compression, JP will decrease leading to compaction hardening (volume
decrease and increasing of elastic constants). On the other hand if the deformation
exceeds the critical stretch, JP will increase leading to expansion softening (volume
increase and decrease of elastic constants) promoting fracture.

We present below how the deformation gradient is updated. The procedure first as-
sumes that all the deformation is elastic, i.e. that F̃ n+1

E = F trial
E (Eq. 34) and
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Figure 4: Snow drop test for different parameters of the model [SSC+13].

F̃ n+1
P = F nP . This implies

F n+1 = F̃ n+1
E F nP (47)

and thus
F̃ n+1
E = F n+1 (F nP )

−1 (48)

Then, the procedure of [SSC+13] consists in computing the part of F̃ n+1
E that is out-

side of the admissible deformation range and use it to update F̃ n+1
P . This is performed

by limiting the range of the singular values of F̃ n+1
E . The singular values are the di-

agonal terms of Σ̃E computed according to the singular value decomposition

F̃ n+1
E = UEΣ̃EV

T
E . (49)

To singular values are updated by clamping them to the admissible range according to

ΣE = clamp
(
Σ̃E , [1− θc, 1 + θs]

)
. (50)

At this stage, one can compute the final elastic deformation gradients as

F n+1
E = UEΣEV

T
E , (51)

and the final plastic deformation gradient can be computed owing that the total defor-
mation remains unchanged i.e.

F n+1 = F n+1
E F n+1

P (52)
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which leads to
F n+1
P =

(
F n+1

)−1
F n+1
E . (53)

As show in Fig. 4, this model, which has been designed for visual animation of snow
can mimic the behavior of different snow types. Strength, elasticity and brittleness
can be controlled by tuning the critical deformation, Young’s modulus and hardening
coefficient.

4.2 Critical state soil mechanics: a cohesive Cam Clay model for
snow and weak snow layers

We present here the recent constitutive models based on critical state soil mechanics
developed by [GGT+18]. For plasticity, the yield function y(τ ) ≤ 0 defines admis-
sible stress states in an elastoplastic continuum. We model snow based on the critical
state plasticity theory for soil mechanics [SW68, Par72]. For any stress τ , there exist
a mean effective stress (or pressure) p and a deviatoric stress s. They are given by

p = −1

d
tr(τ ), (54)

s = τ + pI, (55)

respectively, where d = 2 or 3 is the problem dimension, I is the identity matrix and
compression corresponds to p > 0. According to the Von Mises theory [Mis13], we
can derive the Mises equivalent stress q, given by q = (3/2 s : s)1/2.

Recent experiments [RGS15] and simulations based on X-ray microtomography [HCN15,
CSM15, Hag17, SCM17] highlighted the mixed-mode nature of snow failure includ-
ing tensile, shear and compression failure modes. Given these past studies, it appears
that an ellipsoid yield function is appropriate to reproduce this mixed-mode character.
Hence we chose to start from the Modified Cam Clay (MCC) yield surface [RB68]
which has been widely used in the area of soil mechanics. Note that the analogy be-
tween snow and clay was already made by [McC79] who extended the clay model
of [PR73] to model shear fractures induced by strain softening. However, the MCC
model is originally cohesionless and does not exhibit any stress under extension, sim-
ilar to dry sand. Hence, cohesion was added to the yield function by shifting the MCC
model along the p−axis. We thus propose a new Cohesive Cam Clay (CCC) model
similar to that of [MLM96] with the following yield surface:

y(p, q) = q2(1 + 2β) +M2(p+ βp0)(p− p0), (56)

where p0 represents the consolidation pressure and M is the slope of the cohesion-
less Critical State Line (CSL) which controls the amount of friction, β represents the
ratio between tensile and compressive strength and controls the amount of cohesion
(β ≥ 0). This yield surface is represented in Fig. 5a. Both MCC and our model are
ellipsoids and are symmetric around the hydrostatic axis.
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Figure 5: Overview of the elastoplastic model. a Cohesive (black line) and cohesionless (dashed gray line)
Cam Clay yield surface in the p−q space. The red line corresponds to the Critical State Line. b Illustration
of the hardening models p0(εVP ) (for the slab) and p0(η) (for the weak layer): the black arrow shows the
classical hardening law used for the snow slab in which p0 increases in compression (ε̇VP < 0); the blue
arrows represent the new softening model for the weak layer for which p0 decreases under compression
(η̇ = α|ε̇VP | > 0) until εVP = 0 after which the classical hardening law is used with β = 0. c Typical
p− εV curve obtained for the unconfined compression of the weak layer in experiment n◦ 2 (see Methods
section for model parameters) for the classical hardening law (in black) and the new softening one (in blue).
d Same as c but for the q − εV curve. In c and d, p and q in the weak layer (blue curves) do not perfectly
reach zero after softening due to a loss of homogeneity (failure localization).

For the dense snow slab, the hardening and softening is modeled by expanding and
shrinking the yield surface which is performed by varying p0. We assume the harden-
ing and softening only depend on the volumetric plastic deformation εVP = log(det(FP )).
We follow the derivation from [OP04] and use the following hardening law:

p0 = K sinh(ξmax(−εVP , 0)), (57)

where ξ is the hardening factor and K is the material bulk modulus. When the plastic
deformation is compressive (ε̇VP < 0), p0 will increase, causing the yield surface to
grow in size. Snow will consequently receive more elastic responses resisting com-
pression. When the plastic volume is increased (ε̇VP > 0), the yield surface shrinks
to the original size and allows the snow to fracture in tension. This hardening law is
represented in Fig. 5b (in black).

Classical hardening/softening laws such as the one described above for the dense snow
slab (Eq. 57) fail in reproducing the collapse of porous cohesive materials under com-
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Figure 6: MPM simulation of remote avalanche triggering (the trigger is a snowman at the bottom of the
slope) and subsequent flow of the avalanche [GGT+18].

pression. This is shown in Figs 5c and 5d (black lines) in which p significantly in-
creases after reaching the yield surface and q slightly decreases before increasing.
Hence, for the porous weak layer, we propose a modified softening law which de-
scribes cohesion and volume loss under compressive stresses. This new softening law
involves looking at the volumetric plastic strain rate ε̇VP . We introduce the anticrack
plastic strain η which is related to εVP as follows:

η̇ =

{
α|ε̇VP |, if t ≤ tc
ε̇VP , if t > tc

(58)

where α is a softening factor which controls the fracture energy dissipated during col-
lapse and tc is the time corresponding to complete softening, i.e. εVP = 0 and p0 = 0
(state (2*) in Fig. 5). Our new softening law for the weak layer is obtained by replac-
ing εPV by η in Eq. 57 (the discretization is shown in the Methods section). Hence,
when stresses in the weak layer reach the yield surface, the introduction of the norm of
ε̇VP in Eq. 58 will lead to softening (through a decrease in p0) even under compression
for which ε̇VP < 0. The yield surface thus shrinks until it corresponds to a point at the
origin of the p − q space. In addition, cohesion is removed by setting β = 0 when
εVP = 0 which ensures continuity. After reaching this point, the yield surface is free
to expand according to the classical hardening law (Eq. 57), leading to volume reduc-
tion (collapse) due to the weight of the slab (blue arrows in Fig. 5b) and then a purely
frictional/compaction behavior. Our softening rule reproduces bond breaking in the
weak layer and subsequent grain rearrangement leading to volumetric collapse due to
the compressive weight of the slab [vHJ05]. In contrast to classical hardening laws,
our new formulation induces a strain-softening behavior even under macroscopic uni-
axial compression, as shown in Figs 5c and 5d. The observed mechanical behavior is
very similar to that reported in discrete element simulations of porous cohesive gran-
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ular materials [GLTT17] and follows the following sequence of mechanical regimes:
elastic regime, failure, drop in pressure and shear stress (strain softening), plastic con-
solidation corresponding to the volumetric collapse and, finally, dense packing regime
corresponding to the jamming transition. This typical post-peak behavior was also ob-
served in laboratory experiments of snow failure [Rei11, RS13] as well as during the
propagation of compaction bands in confined compression of snow [BBL+17]. Phys-
ically, this behavior is related to the fact that even under a macroscopic compressive
loading mode, the solid matrix of porous cohesive materials is mostly under tension
(bending) and shear [GLTT17].

We show in Fig. 6 that the combination of these two models (weak layer and slab)
could reproduce, for the first time, a very complex and puzzling process in geo-
sciences, namely the remote triggering and flow of a snow slab avalanche. In this
example, the slope is initially metastable. The weight of a snowman located at the
bottom of the slope (on the flat) initiates a failure within the buried weak snow layer
which then propagates accross the slope as a mixed-mode anticrack, leading to the
failure and detachment of the slab (see [GGT+18] and [GvHG+19] for more details).
The model is also able to reproduce the dynamics of the avalanche (see also § 5.3 and
[LSJG20]).

5 Applications of MPM for Snow and Avalanche Me-
chanics

5.1 Microstructure-based snow modeling
The mechanical behavior of snow depends on its microstructure. Snow microstruc-
tures can be experimentally imaged by X-ray micro-computed tomography. Consid-
ering snow as a porous two-phase (solid ice and voids) medium, we can simulate the
mechanical response of snow under imposed loading, see Fig. 7. This necessitates
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Figure 7: Microstructure-based simulations. a Discretized microstructure. b Stress-strain curve from
uniaxial confined compression.
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choosing accurate models for the solid ice behavior. In the present case, ice is mod-
eled using a Drucker-Prager constitutive model with cohesion softening based on the
amount of deviatoric platic deformation. Under loading, we observe a classical stress-
strain curve (Figure 7b), i.e., i) an elastic phase followed by ii) strain softening, iii) vol-
umetric collapse and finally iv) densification. The analysis of simulations performed
for different loading conditions can help define an homogenized microstructure-based
constitutive snow model.

5.2 Anticrack propagation in snow slab avalanche release
The Propagation Saw Test (PST) is one of the most advanced field experiments to
analyze the release process of snow slab avalanches [vHGB+16]. As illustrated by

a

b

Figure 8: a Field experiment of a Propagation Saw Test (reprinted from [RSRvH19]). b MPM simulation
of a Propagation Saw Test, (top) snapshot of the simulation state, (middle) space-time representation of the
anticrack propagation, (bottom) crack propagation speed evolution.
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Fig. 8a, the PST consists of isolating a snowpack column and cutting with a snow saw
through a buried weak snow layer. The initiated crack may propagate dynamically
once a critical length ac is reached. The propagation mechanism may be self-sustained
even on low angle angle terrain due to the volumetric collapse of the weak layer (crack
under compression = anticrack) and thus potential energy released by the slab.

Simulation of such a process is challenging using classical numerical methods because
of mesh interpenetration induced by the anticrack. Yet, dynamic anticrack propagation
can be simulated numerically using MPM and appropriate constitutive laws for both
the slab and the weak layer [GGT+18]. Fig. 8b shows the outcomes of a PST simu-
lation where ac corresponds to the critical crack length, h corresponds to the collapse
height and ȧ corresponds to the crack propagation speed. For crack lengths above ∼
5 m, the crack propagation speed becomes almost constant around 50 m/s.

5.3 Snow avalanches in different flow regimes
Here, we show the capability of MPM and of the general snow constitutive model (no
weak layer) to simulate avalanche dynamics. Fig. 9 demonstrates the distinct profiles
of four simulated snow avalanches. The bed surface in the four cases consists of an
inclined slope, a connecting arc zone, and a horizontal deposition region.

Figure 9: Distinct profiles of four flows in different flow regimes.

With the implementation of different snow properties in the MPM simulations, a wide
range of flow regimes of snow avalanches from fluid-like flow to solid-like sliding
slab has been identified. From top to bottom in Fig. 9, the first flow behaves as a fluid
or a dry cohesionless granular flow, agreeing with the cold dense regime observed in
reality. The second flow demonstrates a fluctuated free surface and a discontinuous
tail, due to the occurrence of a granulation process. In practice, snow granules are
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Figure 10: Front evolution of four flows in different flow regimes.

formed in avalanches in warm shear regime. The third flow displays ductile behavior,
and slides down the slope and reaches the horizontal deposition zone with no signif-
icant deformation and no cracks. These characteristics are consistent with the snow
avalanches in warm plug regime. The fourth flow in Fig. 9 shows rigid and brittle
features as clear cracks and broken pieces are observed, which commonly occur in
snow avalanches in sliding slab regime.

The front evolution of the four flows is presented in Fig. 10. The gray band in Fig. 10
shows the region where a flow front enters the connecting arc zone, below and above
which the flow front is on the slope and in the horizontal deposition area, respectively.
When the flows are on the slope, the front of the cold dense flow is the fastest (low
value of M ), followed by the warm shear and warm plug flows, and the sliding slab is
the slowest. In the warm shear flow, discrete granules form a discontinuous flow front.
The final front position of the four flows show a consistent relation as that obtained
when they are on the slope. More information can be found in [LSJG20].
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1 Introduction

Within the past two decades, mass movements hazards involving fast and large soil
deformation have increased significantly in frequency and magnitude due to climate
changes and global warming. During these extreme phenomena rocks, debris, and
heavy materials can seriously damage and destroy landscape and infrastructures, caus-
ing devastating economic loss, and human casualties.

An essential step to be prepared to the catastrophic effect of these events is the capa-
bility to assess in an accurate way the interaction between the moving mass and the
surrounding structures or landscape. Physical modeling with ad hoc scale model is
not sufficient for this purpose due to its complexity, the difficulty for its scaling up to
real life problems, its long execution time and unaffordable cost. The alternative is,
therefore, numerical modeling.

While the Finite Element Method (FEM) is the standard and well established tech-
nique in engineering applications, unfortunately it shows some limitation when deal-
ing with large deformation problems like those cited before and particle-based ap-
proaches could represent an effectrive solution to such drawbacks. The Material Point
Method in particular, maintains most of the strong features of FEM, overcoming some
of its shortcomings thanks to its hybrid nature.

While the computational analysis of landslide, debris flow or other mass movements
has been mainly dominated by the development of advanced geomechanical constitu-
tive models suited for different types of soil materials such as multi-phase unsaturated
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soil model [SAY+15, AA10, Mas13], this study focuses more on the dynamic inter-
action of such masses with the installed protective structures.

In what follows, an implicit formulation of the Material Point Method (MPM) is im-
plemented to model the dynamics of the mass movements considering finite strain
assumption. In the present work, the soil is modeled as a non-associated elastoplas-
tic constitutive law assuming Mohr-Coulomb yield criterion as specified by [CDA07]
and implemented using Hencky or logarithmic strain assumption. Here, a monolithic
coupling between soil and structural elements is considered; i.e. the linear system of
equations of both soil and structure is solved at the same time. Furthermore, a stag-
gered coupling scheme with traditional Finite Element Method (FEM) is proposed
to simulate accurately and robustly the dynamic force and displacement coupling of
soil-structure interaction (SSI).

All developments of the method are implemented within the Kratos-Multiphysics
opensource framework [DRO10] and available under the BSD license (https://
github.com/KratosMultiphysics/Kratos/wiki).

These notes are mostly based on the following documents and are not intended to be
comprehensive of all details:

• Iaconeta, I. Larese, A., Rossi, R., Oñate, E. A stabilized, mixed, implicit Material Point
Method for non-linear incompressible solid mechanics problems; Computational me-
chanics 175, 226-232,(2019)

• Iaconeta, I., Larese, A., Rossi, R., Guo, Z. Comparison of a Material Point Method and a
Meshfree Galerkin Method for the simulation of cohesive-frictional materials, Materials,
10 , 1150, (2017)

• Chandra, B.; Singer, V.; Teschemacher, T.; Wuechner, R. and Larese, A. Nonconforming
Dirichlet boundary conditions in Implicit Material Point Method by means of penalty
augmentation Submitted to Acta Geotechnica, 2020

• Chandra, B.; Singer Veronika ; Bucher, P.; Larese, A.; Rossi, R. and Wuechner, R. A
staggered Implicit MPM-FEM coupling strategy Submitted, 2020

• PhD Thesis: I. Iaconeta Discrete-continuum hybrid modelling of flowing and static
regimes. Universidad Politécnica de Catalunya, UPCBarcelonaTech, Spain. 29/11/2019

• MsC Thesis: B. Chandra, Soil structure interaction simulation using a coupled implicit
material point- finite element method (2019) , Technical University of Munich (TUM),
Germany;

The interested reader is strongly recommended to refer to the above documentation
and relative literature for a detailed formulation.

1.1 MPM in short
Classical FEM models traditionally employ two different kinematic descriptions: Eu-
lerian and Lagrangian frameworks. While a Lagrangian approach is a preferable
choice when dealing with large deformation problems for its simplicity (absence of
the convective term and “natural” tracking of the interface displacements), we have to
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deal with the need of a frequent remeshing to ensure that the big distortion of the ele-
ments does not compromise the mesh quality. An alternative is to get rid of the mesh
choosing either meshless approaches such as the Smoothed Particle Hydrodynamics
(SPH) or hybrid approaches, such as the Material Point Method (MPM). The later uses
a fixed background grid for the Lagrangian calculation with moving integration points
(the material points MPs) that are storing all the historical variables [VSWN19].

In this study, a fully-implicit formulation of the Material Point Methods (MPM) is
presented. Introduced by [SCS94, SZS95], as the extension of particle-in-cell (PIC)
method [Har64], the MPM has gained a remarkably increasing popularity due to its ca-
pability in simulating solid mechanics problems which involve history-dependent ma-
terials and large deformations. The method stores the historically changing variables
and the material information at the moving particles, the so-called material points
(MP), and uses a constantly-reset background mesh to solve the linear system of equa-
tions. It combines the strengths of Eulerian and Lagrangian methods, with no need to
remesh. MPM has been utilized in various civil engineering applications, mostly in
the analysis of moving discontinuities and large deformation systems. With few no-
table exceptions [GW03, WVHC16], the majority of the MPM algorithms are written
assuming an explicit scheme, in particular, for the simulation of mass movements and
landslides [SAY+15, AA10, Mas13]. While explicit approach is generally favorable
to simulate fast transient problems, the implicit formulation, is often more optimal
to simulate cases when the rate of loading increment is slow, the rate of deformation
is small, or when the driving force is solely gravity. On top of that, the stability of
the method (for properly chosen dissipative methods) does not depend on the wave
propagation speed within the media, and thus, allows the usage of a relatively larger
time increment. This scheme can also be extremely advantageous to solve a multi-
physics coupling problems such as the soil-structure interaction (SSI) being coupled
with FEM or other implicit-based methods.

2 Formulation

2.1 Governing equations
Let us consider the body B which occupies a region Ω of the 3D Euclidean space
E with a regular boundary ∂Ω in its reference configuration. A deformation of B is
defined by a one-to-one mapping

ϕ : Ω→ E (1)

that maps each point p of the body B into a spatial point x

x = ϕ (p) (2)

which represents the location of p in the deformed configuration of B. The region of
E occupied by B in its deformed configuration is denoted as ϕ (Ω).
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The problem is governed by mass and linear momentum balance equations

Dρ

Dt
+ ρ∇ · v = 0 in ϕ(Ω) (3a)

ρa−∇ · σ = ρb in ϕ(Ω) (3b)

where ρ is the mass density, a is the acceleration, v is the velocity, σ is the symmetric
Cauchy stress tensor and b is the body force. Acceleration and velocity are, by defini-
tion, the material derivatives of the velocity, v, and the displacement, u, respectively.
For a compressible material the conservation of mass is satisfied by

ρ =
ρ0

det(F )
(4)

where ρ0 is the density in the undeformed configuration and det(F ) is the determinant
of the total deformation gradient F := dx/dX with x and X representing the current
and initial position, respectively. Equation 4 holds at any point, and in particular at
the sampling points where the equation is written, e.g. the material points. Thermal
effects are not considered in the present work, so the energy balance is considered
implicitly fulfiled.

The balance equations are solved numerically in a three-dimensional region Ω ⊆ R3,
in the time range t ∈ [0, T ], given the following boundary conditions on the Dirichlet
(ϕ(∂ΩD)) and Neumann boundaries (ϕ(∂ΩN )), respectively

u = u on ϕ(∂ΩD) (5a)
σ · n = t on ϕ(∂ΩN ) (5b)

where n is the unit outward normal.

In order to fully define the Boundary Value Problem (BVP) a proper constitutive
model defining the stress strain relation is needed. Since the formulation proposed
is not influenced by the choice of the constitutive law, we will not describe the possi-
ble elasto-plastic models availables in detail. Nevertheless, the interested reader can
refer to [Iac19] for further details on the material laws.

2.2 Weak form
In this section, the weak form is derived. Following the formulation explained in
[Wri06, Wri08], a displacement-based finite element procedure.

Let the displacement space V ∈ [H1(B)]d be the space of vector functions whose
components and their first derivatives are square-integrable, the integral form of the
problem is
∫

ϕ(Ω)

(∇ · σ) ·wdv +

∫

ϕ(Ω)

ρ (b− a) ·wdv −
∫

ϕ(∂ΩN )

(
σ · n− t

)
·wda = 0,

∀w ∈ V
(6)
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where w is an arbitrary test function, such that w = {w ∈ V | w = 0 onϕ(∂ΩD)},
dv is the differential volume and da the differential boundary surface. By integrating
by parts, applying the divergence theorem and considering the symmetry of the stress
tensor, the following expression is obtained

∫

ϕ(Ω)

σ : (∇Sw)dv −
∫

ϕ(Ω)

ρ (b− a) ·wdv −
∫

ϕ(∂ΩN )

t ·wda = 0 (7)

Under the assumption that the stress tensor is a function of the current strain only

σ = σ(ε) (8)

the problem is reduced to find a kinematically admissible field u that satisfies

G(u,w) = 0 ∀w ∈ V (9)

where G is the virtual work functional defined as

G(u,w) =

∫

ϕ(Ω)

σ : (∇Sw)dv −
∫

ϕ(Ω)

ρ (b− a) ·wdv −
∫

ϕ(∂ΩN )

t ·wda (10)

2.3 Linearisation of the spatial weak formulation
In this work the BVP is characterized by both geometrical and material non-linearity.
When a non-linear BVP is considered, the discretisation of the weak form results in a
system of non-linear equations. A linearisation is, therefore, needed for the solution
of such a system. The Newton-Raphson’s iterative procedure is used. This uses direc-
tional derivatives to linearise the non-linear equations. The virtual work functional of
Equation 10 is linearised with respect to the unknown u, using an arbitrary argument
u∗, which is chosen to be the last known equilibrium configuration.

The linearised problem is to find δu such that

L(δu,w) ' G(u∗,w) +DG(u∗,w)[δu] = 0, ∀w ∈ V (11)

where L is the linearised virtual work function and

DG(u∗,w)[δu] =
d

dγ

∣∣∣∣
γ=0

G(u∗ + γδu,w) (12)

is the directional derivative of G at u∗ in the direction of δu, given by

DG(u∗,w)[δu] =
d

dγ

∣∣∣∣
γ=0

∫

ϕ(Ω)

[
σ(ε(γ)) : (∇Sw)− ρ (b− a) ·w

]
dv+

− d

dγ

∣∣∣∣
γ=0

∫

ϕ(∂ΩN )

t ·wda
(13)
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Under the assumption of conservative external loads, only the terms related to the
internal and inertial forces are dependent on the deformation. Using the following
definitions

ε(γ) = ∇S(u∗ + γδu) = ε∗ + γ∇S(δu) (14)

where ε∗ = ∇S(u∗) is the strain field at u∗ and u(γ) = u∗ + γδu, the directional
derivative DG(u∗,w)[δu] reduces to

DG(u∗,w)[δu] =
d

dγ

∣∣∣∣
γ=0

(∫

ϕ(Ω)

[
σ(ε(γ)) : (∇Sw) + ρa(u(γ)) ·w

]
dv

)

= DGstatic(u∗,w)[δu] +DGdynamic(u∗,w)[δu]

(15)

which can be split in a static and dynamic contribution.

Under the assumption of finite strains and adopting an Updated Lagrangian kinematic
framework, the expression of the directional derivative (Equation 15) should be de-
rived in spatial form. A common way to do that consists in linearising the material
weak form and in doing a push-forward operation to recover the spatial form [Wri06].
Therefore, the linearisation of the weak form derived with respect to the initial con-
figuration reads:

DG(u∗,w)[δu] =

∫

Ω

∇XδuS · ∇XwdV

+

∫

Ω

[
(F T∇SxwF ) : C(F T∇SxδuF )

]
dV

+

∫

Ω

ρ0
da

du
·w[δu]dV

(16)

where∇X and∇x are the material and spatial gradient operator, respectively, S is the
Second Piola Kirchhoff stress tensor, C is the fourth order incremental constitutive
tensor and dV is the differential volume element in the underformed configuration.
The linearisation of the weak form with respect to the current configuration can be
derived by pushing-forward the linearisation of Equation 16. The first term can be
directly written in terms of the Kirchhoff stress τ = FSF T as

∇XδuS · ∇Xw = ∇XδuF−1τF−T · ∇Xw (17)

and using this standard identity∇xa = ∇XaF−1, Equation 17 can be written as

∇XδuS · ∇Xw = ∇xδuτ · ∇xw (18)

The second integral of Equation 16 can be re-written as:
∫

Ω

∇Sxw : Ĉ
[
∇Sxδu

]
dV (19)

adopting the transformation of the fourth order incremental constitutive tensor C in
Voigt notation [Wri06]:

Ĉiklm = FiAFlCFmDFkBCABCD (20)
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where lowercase indexes are referred to the incremental constitutive tensor relative to
the Kirchhoff stress, while uppercase indexes to the incremental constitutive tensor
relative to the Second Piola Kirchhoff stress.

With these transformations, the linearisation of the static contribution at the current
configuration is

DGstatic(u∗,w)[δu] =

∫

Ω

∇xδuτ · ∇xw +∇Sxw : Ĉ[∇Sxδu]dV (21)

Considering the definition of the determinant of the deformation gradient: det(F ) =

J =
dv

dV
, the following relations hold

σ =
1

J
τ (22)

Ĉ =
1

J
Ĉ (23)

where σ and τ are the Cauchy and Kirchhoff stress tensor, respectively, and Ĉ is the
incremental constitutive tensor relative to the Cauchy stress. Equation 16 can now be
re-written in the current configuration as

DG(u∗,w)[δu] =

∫

ϕ(Ω)

(
∇xδuσ · ∇xw +∇Sxw : Ĉ[∇Sxδu] + ρ

da

du
·w[δu]

)
dv

(24)
Equation 24 represents the linearisation of the spatial weak formulation, also known
as the Updated Lagrangian formulation, since the deformation state u∗ is continu-
ously updated during the non-linear incremental solution procedure, e.g. the Newton
Raphson’s method.

2.3.1 Spatial Discretisation

Let Vh be a finite element space to approximate V . The problem is now finding uh ∈
Vh such that

DG(u∗h,wh)[δuh] = −G(u∗h,wh), ∀wh ∈ Vh (25)

or using Equation 24
∫

ϕ(Ω)

{
∇xδuhσ · ∇xwh +∇Swh : Ĉ[∇Sδuh] + ρ

dah
duh

·wh[δuh]

}
dv =

−
(∫

ϕ(Ω)

σ : (∇Swh)dv −
∫

ϕ(Ω)

ρ (b− ah) ·whdv −
∫

ϕ(∂ΩN )

t ·whda

) (26)
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Let us assume to discretise the continuum body B by a set of np material points and
to assign a finite volume of the body Ωp to each of those material points. Thus, the
geometrical representation (Bh) of B reads

B ≈ Bh =

np⋃

p=1

Ωp (27)

and with this approximation the integrals of the weak form can be written as

∫

B
(...)dV ≈

∫

Bh

(...)dV =

np⋃

p=1

∫

Ωp

(...)dΩp (28)

For the computation of the linearised system of equations, an integration is necessary
over the volume occupied by each material point Ωp. By using the spatial discretisa-
tion defined in Equation 27, the linearised system of equations (see Equation 26) is
rewritten as

np⋃

p=1

∫

Ωp

({
∇xδuhσ · ∇xwh +∇Swh : Ĉ[∇Sδuh] + ρ

dah
duh

·wh[δuh]

})
dΩp

= −
np⋃

p=1

(∫

Ωp

(
σ : (∇Swh)− ρ (b− ah)

)
dΩp −

∫

∂ΩNp

t ·whdap

)

(29)

and by exploiting the finite element approximation with particle integration the final
discretised form is obtained

np⋃

p=1

n∑

I=1

n∑

K=1

wT
I

(
(∇xNI)T σ (∇xNK) I + BT

I DBK +
NIρNK
β∆t2

I

)
VpδuK

= −
np⋃

p=1

n∑

I=1

wT
I

(
BIσ − ρbNI +

n∑

K=1

NIρNKaK

)
Vp −

nl⋃

l=1

nm∑

I=1

wT
I NItAl

(30)

where I andK are the indexes of the finite element’s nodes,∇xNI is the spatial gradi-
ent of the shape function evaluated at node I , D is the matrix form of the incremental
constitutive tensor Ĉ, Vp is the volume relative to a single material point, Al is the
surface and BI is the deformation matrix relative to node I , expressed here for a 2D
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problem as:

BI =




∂NI
∂x

0

0
∂NI
∂y

∂NI
∂y

∂NI
∂x




(31)

The left hand side of Equation 30 is given by three addends multiplied by the incre-
ment of the unknowns. The first one is commonly known as the geometric stiffness
matrix

KG
IK = (∇xNI)T σ (∇xNK) IVp (32)

while the second term is known as the material stiffness matrix

KM
IK = BT

I DBKVp (33)

and their sum represents the static contribution to the tangent stiffness matrix

Kstatic
IK = KG

IK + KM
IK (34)

The dynamic component is given by

Kdynamic
IK =

NIρNK
β∆t2

IVp (35)

Finally the tangent stiffness matrix is given by

Ktan
IK = Kstatic

IK + Kdynamic
IK (36)

and represents the submatrix relative to one node of the discretisation with dimension
[ndof × ndof ], where ndof is the number of degrees of freedom of a single node. This
matrix can be considered as the Jacobian matrix of the right hand side of Equation 30,
i.e., the residual RI. Equation 30 can be rewritten in compact form as

Ktan
IK δuK = −RI . (37)

2.4 Irreducible vs mixed formulation. Some words
In these notes only the classical irreducible formulation has been derived. It is well
known that overly stiff numerical solutions appear when Poisson’s ratio ν tends to
0.5 or when plastic flow is constrained by the volume conservation condition. In
these cases, the standard Galerkin displacement-based formulation (u formulation)
fails [ZTZ13] due to the inability to evaluate the correct strain field.

In the literature, many possible solutions can be found. For instance, the Mixed En-
hanced Element for small deformation problems [SR90]. The B-bar methods [Hug80]
and the classical incompatible modes formulation [TBW76] fall under this theory. .
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Alternative procedures suitable for geometrically non-linear regimes, are given by the
F-BAR method [dSNPDO96], the non-linear B-bar method [MOS90] and the family
of enhanced elements [SA92]. Though the good performance of all the aforemen-
tioned methods, none of such techniques is, however, suitable for application on sim-
plicial meshes [RS95, OBHC15].

Among the successful strategies, it is worth mentioning the group of the Mixed Vari-
ational Methods. A application of a mixed displacement-pressure (u-p) method to
MPM It is worth mentioning that the treatment of the incompressibility constraint is
relatively new in the context of the Material Point Method (MPM). Most MPM formu-
lations deal with compressible materials, avoiding the issues arising from the imposi-
tion of the incompressibility constraint. However, some procedures for the treatment
of locking issues can be found in the recent literature.

3 MPM formulation

The Material Point Method (MPM)[SCS94, SZS95] is a particle-based method, whose
origin goes back to the paper of [Har64], where the particle-in-cell method (PIC), a
technique for the solution of fluid flow problems, was proposed for the first time.
Some decades after, the PIC method was redefined within the solid mechanics frame-
work, and after that, it was known to the computational community with the name
of Material Point Method. MPM combines a Lagrangian description of the body un-
der analysis, which is represented by a set of particles, the so-called material points,
with the use of a computational mesh, named background grid, as can be observed in
Figure 1.

Figure 1: MPM. The shape functions on the material point pi are evaluated using FE
shape function of element I-J-K.

This distinctive feature allows to track the deformation of the body and retrieve the
history-dependent material information at each time instant of the simulation, with-
out committing mapping information errors, typical of methods which make use of
remeshing techniques. This makes the method particularly attractive for the solution
of problems, characterized by very large deformations and by the use of complex con-
stitutive laws [Wie04, SS15]. For instance, the method has been extensively used for
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geotechnical problems [ZA11, YAP15, SS15] for its capabilities in tracking extremely
large deformation while preserving material properties of the material points.

In the key works of Sulsky and co-workers [SCS94, SZS95], the MPM has been ap-
plied for the first time in the solid mechanics framework. Even if through the orig-
inal MPM it was possible to solve complex problems involving, for instance, con-
tact [HZMH11], interaction between different materials [YSS00, HXQ+09] and the
use of history-dependent material laws [SCS94], it was observed that the first ver-
sion of MPM suffers from some intrinsic shortcomings. Indeed, due to the use of
piece-wise linear shape functions, the latter are only locally defined and their gradi-
ents are discontinuous. This implies that a material point on the cell boundary would
not be covered by the local shape functions defined within the respective cells around
the particle. This would produce a noise in the numerical solution, which is called
cell-crossing error. Recently, many improvements to the original MPM have been
provided to alleviate the cell-crossing noise and to have a more efficient and algo-
rithmically straightforward evaluation of grid node integrals in the weak formulation.
The Generalized Interpolation Material Point method (GIMP) [BK04] represents the
first attempt to provide an improved version of the original MPM. The essence of
this method is based on the definition of a characteristic function χp(x) which has to
satisfy the partition of unity criterion, i.e.,

∑
p χp(x) = 1

The particle characteristic function defines the spatial volume occupied by the particle
Vp as

Vp =

∫

Ωp

⋂
Ω

χp(x)dV (38)

where Ωp and Ω are the current particle domain and the current domain occupied
by the continuum, respectively. Moreover, since a material property f(x) can be
approximated by its particle value fp as

f(x) =
∑

p

fpχp(x) (39)

χp(x) acts as a smoothing of the particle properties and it determines the smoothness
of the spatial variation. The full version of GIMP requires integration over the cur-
rent support of χp(x), which deforms and rotates according to the deformation of the
background grid. To do that, a tracking of the particle shape is mandatory, but in a
multi-dimensional problem this could be very difficult to accomplish. Thus, an alter-
native version of the GIMP is represented by the uniform GIMP (uGIMP), where shear
deformation and rotation of the particles are neglected. The uGIMP assumes that the
sizes of particles are fixed during the material deformation. In this way, the particle
characteristic function, whose support may overlap or leave gaps for very large defor-
mation, is no longer able to satisfy the partition of unity criterion, and, thus, the ability
of computing rigid body motion is lost. Therefore, the uGIMP is unable to completely
eliminate the cell-crossing error.
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In the attempt to improve the issues left by the GIMP, the Convected Particle Domain
Interpolation technique (CPDI) [SBB11] is proposed. In the CPDI the particle has
an initial parallelogram shape and a constant deformation gradient is assumed over
the particle domain. This technique is a first-order accurate approximation of the
particle domain Ωp. Even if in the CPDI a more accurate approximation of Ωp is
obtained, the issues of overlaps and gaps are not overcome. Only with the second-
order Convected Particle Domain Interpolation (CPDI2) [SBG13], an enhanced CPDI,
which provides a second-order approximation of the particle domain, these issues are
totally corrected. It is also worth mentioning the Dual Domain Material Point Method
(DDMPM) [ZMG11], an alternative technique which is able to definitely eliminate
the cell-crossing error. Unlike the GIMP or CPDI, the DDMPM does not make use of
particle characteristic functions and the issue of tracking the particle domain through
the whole simulation is avoided. The essence of this technique relies on the use of
modified gradient of the shape function, defined as follows

∇NI(x) = α(x)∇NI(x) + (1− α(x))∇̂NI(x) (40)

where∇NI(x) is the gradient of the shape function evaluated as in the original MPM,
∇̂NI(x) is the gradient from the node-based calculation as used in FLIP ( FLuid-
Implicit Particle)[BKR88].

Most MPM codes make use of explicit time integration, due to the ease of the formula-
tion and implementation [SCS94, BBS00, WG08]. Explicit methods are preferable to
solve transient problems, such as impact or blast, where high frequencies are excited
in the system [SZS95, ZSM06, HZMH11]. However, when only the low-frequency
motion is of interest, the adoption of an implicit time scheme may reduce the compu-
tational cost in comparison to the employment of an explicit time scheme [ZCL16].
Some implicit versions of MPM can be found in the literature. For instance, Guilkey
[GW03] exploits the similarities between MPM and FEM in an implicit solution strat-
egy. Beuth [BWV11] proposes an implicit MPM formulation for quasi-static prob-
lems using high order elements and a special integration procedure for partially filled
boundary elements. Sanchez [SSSW15] presented an implicit MPM for quasi-static
problems using a Jacobian free algorithm and in [CCA17] a GIMP method is used
together with an implicit formulation.

It is observed that in the small deformation range the MPM has a lower accuracy
and efficiency than a Lagrangian FEM. Nevertheless, the FEM procedure shows its
advantageous use only in a narrow range of strain magnitude, established by a criti-
cal deformed configuration for which the element quality is seriously compromised,
which may cause a drastic deterioration of accuracy or even the end of the computa-
tion. In this regard, it is evident that MPM finds its natural field of application in large
deformation problems. However, it is important to highlight that an extra computa-
tional cost is expected in MPM compared to FEM. This is due to additional steps in
the MPM algorithmic procedure, in order to be able to track the kinematic and his-
torical variables through the deformation process, and to a number of material points
higher than the number of Gauss points normally employed in a FEM simulation.
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The MPM is characterized by some features which make this technique able to over-
come all the typical disadvantages of other particle methods. MPM does not employ
any kind of remeshing procedure, the calculation is performed always at a local level,
allowing an easy adaptation of the code to parallel computation and a good conserva-
tion of the properties. A conservation of the mass is also guaranteed during the whole
simulation time, as the total mass is distributed between the material points repre-
senting the volume of the entire continuum under study. A remapping of the state
variables is avoided and the employment of complex time dependent constitutive laws
can be used without committing any mapping error. In addition, since this technique
is a grid-based method all the issues, related to the meshless methods, such as, lack
of interpolation consistency and difficulties in enforcing the Essential Boundary con-
ditions are (partially) avoided. Last but not least, MPM is a technique defined in the
continuum mechanics framework, thus, it can be easily applied to real scale problems
at an acceptable computational cost.

3.1 MPM Algorithm

Traditionally, the MPM is made of three different phases [SZS95], as graphically rep-
resented in Figure 2 and below described:

a) Initialization phase (Fig.2(a)): at the beginning of the time step the connectivity
is defined for each material points and the initial conditions on the FE grid nodes
are created by means of a projection of material points information obtained at
the previous time step tn;

b) UL-FEM calculation phase (Fig.2(b)): the local elemental matrix, the left-hand-
side (lhs) and the local elemental force vector, the right-hand-side (rhs) are
evaluated in the current configuration; the global matrix LHS and the global
vector RHS are obtained by assembling the local contributions of each ma-
terial point, as in a classical FEM approach, and, finally, the solution system
is iteratively solved. During the iterative procedure, the nodes are allowed to
move, accordingly to the nodal solution, and the material points do not change
their local position within the geometrical element until the solution has reached
convergence;

c) Convective phase (Fig.2(c)): the nodal information at time tn+1 are interpolated
back to the material points. The position of the material points is updated and
the undeformed FE grid is recovered.

Many features of the MPM are features of the Finite Element Method [SCS94]. In-
deed, phase b coincides with the calculation step of a standard non-linear FE code,
while phases a and c are peculiar of the MPM. At the beginning of each time step
(tn), during phase a, the degrees of freedom and the variables on the nodes of the fixed
mesh are defined gathering the information from the material points (Figure 2(a)).

For the sake of clarity, hereinafter, p and I subscripts are used to refer to variables at-
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(a) Initialization phase (b) Updated Lagrangian FEM phase

(c) Convective phase

Figure 2: MPM phases.

tributed to material points and computational nodes, respectively, while n superscript
refers to the time instance in which the variable is defined. The momentum qp and in-
ertia fp on the material points, which are expressed as functions of mass mp, velocity
vp and acceleration ap

qnp := vnpmp (41)

fnp := anpmp (42)

are projected on the background grid by evaluating in a first step, the global values of
mass mI , momentum qI and inertia f I on node I as described in Algorithm 1.

OncemI , qI and f I are obtained, it is possible to compute the values of nodal velocity
ṽnI and nodal acceleration ãnI of the previous time step as

ṽnI =
qnI
mI

(43)

ãnI =
fnI
mI

(44)
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It is worth mentioning that, the initial nodal conditions are evaluated at each time step
using material point information in order to have initial values even on grid elements
empty at the previous time step (tn−1 − tn).

The MPM makes use of a predictor/corrector procedure, based on the Newmark inte-
gration scheme. The prediction of the nodal displacement, velocity and acceleration
reads

it+1∆un+1
I = 0.0 (45)

it+1vn+1
I =

λ

ζ∆t

[
it+1∆un+1

I

]
−
(
λ

ζ
− 1

)
ṽnI −

∆t

2

(
λ

ζ
− 2

)
ãnI (46)

it+1an+1
I =

1

ζ∆t2
[
it+1∆un+1

I

]
− 1

ζ∆t
ṽnI −

(
1

2ζ
− 1

)
ãnI (47)

where the upper-left side index it indicates the iteration counter, while the upper-right
index n the time step. λ and ζ are the Newmark’s coefficients equal to 0.5 and 0.25,
respectively.

Once the nodal velocity and acceleration are predicted (Equations 45-47), the system
of linearised governing equations is formulated, as in classic FEM, and the local ma-
trix Ktan and the residual RI are evaluated and assembled, respectively (phase b,
Figure 2(b)).

The solution in terms of increment of nodal displacement is found iteratively solving
the residual-based system. Once the solution it+1δun+1

I is obtained, a correction of
the nodal increment of displacement is performed

it+1∆un+1
I =it ∆un+1

I +it+1 δun+1
I (48)

Velocity and acceleration are corrected according to Equations 46 and 47, respectively.
This procedure has to be repeated until convergence is reached.

Unlike a FEM code, the nodal information is available only during the calculation of a
time step: at the beginning of each time step a reset of all the nodal information is per-
formed and the accumulated displacement information is deleted. The computational
mesh is allowed to deform only during the iterative procedure of a time step, avoiding
the typical element tangling of a standard FEM. When convergence is achieved, the
position of the nodes is restored to the original one (phase c, Figure 2(c)). Before
restoring the undeformed configuration of the FE grid, the solution in terms of nodal
displacement, velocity and acceleration is interpolated on the material points, as

∆un+1
p =

nn∑

n=1

NI (ξp, ηp) ∆un+1
I (49)

an+1
p =

nn∑

n=1

NI (ξp, ηp)a
n+1
I (50)
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vn+1
p = vnp +

1

2
∆t
(
anp + an+1

p

)
(51)

where nn is the total number of nodes per geometrical element, (ξp, ηp) are the local
coordinates of material point p and NI (ξp, ηp) is the shape function evaluated at the
position of the material point p, relative to node I .

Finally the current position of the material points is updated as

xn+1
p = xnp + ∆un+1

p (52)

The details of the MPM algorithm are presented in Algorithm 1.

4 Coupled problems using MPM

Soil-structure interaction (SSI) is important to be studied in the design of various civil
engineering structures, such as dams, foundations of skyscrapers, tunnels, and other
underground structures. Most of these structures involve direct contact and interac-
tion with the ground, especially in combination with external loads such as wind or
earthquakes, the motion of the structure is inherently depending on the grounds mo-
tion. The accurate understanding of soil characteristics, geomechanical loads exerted
onto the structures, and soil bearing capacity provides important information for the
structural design and safety assessment.

The theory and study of SSI within the field of soil mechanics and geotechnical engi-
neering was initiated back in the early 20th century by [Rei36] about vibrational foun-
dations, and since then, has been continuously developed align with the establishment
of modern seismic design codes [MG00]. To date, SSI has been widely utilized to
predict structural and soil responses, not only during an earthquake but also with re-
spect to other ground-borne vibrations elicited by other sources, such as fast-moving
trains. Although a lot of research has been done in this thriving field, with sometimes
very impressive results, some of the key issues have not been answered yet in a sat-
isfying way, and thus, making the comprehensive study of SSI remains a challenge
[Kau10, LWCZ11]. When superstructures, foundations, and topographic and geolog-
ical conditions become complicated, e.g. by involving other non-linear effects, such
as partial lift-off and multi-phase soil properties, producing a mathematical solution
can be extremely difficult. In order to solve such complex SSI problems, numerical
simulations may be employed, to investigate the fundamental physics involved in the
complex interaction between soil and structures, as analytical solutions are impossible
to obtain and laboratory experiments are limited in scope and scale. Recently, parti-
cle methods have been utilized extensively to study the SSI phenomena, particularly
in the vicinity of problems involving large deformation soil. Discrete approaches,
such as the discrete element method (DEM), has been applied to simulate interactions
between granular soil flows with rigid or flexible structures [OFdSN+04], e.g. by
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Algorithm 1 MPM algorithm.
Material DATA: E, ν, ρ

Initial data on material points: mp, xn
p , ∆t, un

p ,v
n
p ,a

n
p ,F

n
p =

∑

I

∂NI

∂x0
I

· xn
I and

∆Fp =
∑

I

∂NI

∂xn
I

· xn+1
I

Initial data on nodes: NONE - everything is discarded during initialization phase
OUTPUT of calculations: ∆un+1

I ,σn+1
p

1. INITIALIZATION PHASE
• Clear nodal info and recover undeformed grid configuration

• Calculation of initial nodal conditions.
(a) for p = 1:Np

∗ Calculation of nodal data
· qn

I =
∑

pNI mpvn
p

· fnI =
∑

pNImpan
p

· mn
I =

∑
pNImp

(b) for I = 1:NI

∗ ṽn
I =

qn
I

mn
I

∗ ãn
I =

fnI
mn

I

• Newmark method: PREDICTOR. Evaluation of it+1∆un+1
I ,it+1 vn+1

I and it+1an+1
I

using Equations (45)–(47)

2. UL-FEM PHASE
• for p = 1:Np

(a) Evaluation of local residual (rhs)

(b) Evaluation of local Jacobian matrix of residual (lhs)

(c) Assemble rhs and lhs to the global vector RHS and global matrix LHS

• Solving system (∆un+1
I )

• Newmark method: CORRECTOR (Equations (46)–(48))

• Check convergence
(a) NOT converged: go to Step 2

(b) Converged: go to Step 3

3. CONVECTIVE PHASE
• Update the kinematics on the material points by means of an interpolation of nodal informa-

tion (Equations (49)–(52))

• Save the stress σn+1
p , strain εn+1

p and total deformation gradient Fn+1
p on material points

(the latter by Fn+1
p = ∆Fp · Fn

p )
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coupling with FEM [TMC13, LROI12, SILO16]. Meanwhile, within the continuum-
based approaches, the Smoothed Particle Hydrodynamics (SPH) [BFSO08, AA14]
and the Particle Finite Element Method (PFEM) [OCI+11, MCAG16] are the two
most popular methods for the simulations of complex coupled problems, including
the analysis involving the interaction of fluids, soil/rocks, and structures. Within the
MPM, the studies for SSI between landslides or avalanches with obstacles and pro-
tection structures have been discussed by [MMHAM11, MAMMH14, CBVS16] , as-
suming an explicit formulation. The analysis, furthermore, extended by [CLI+19] to
the implicit MPM incorporating finite strain assumption and a prediction-correction
scheme. The particle methods, including the MPM, allow more accurate and realistic
simulations of large deformation in soil, as the traditional FEM will inherently suffer
from mesh entanglement and distortion issues.

4.1 MPM-MPM coupling (the ”natural” way)
The monolithic SSI approach solves the governing equations for both the soil and
the structure simultaneously, within a single solver. This approach produces a larger
and more complex tangent matrix, which could be non-symmetric and may require
suitable preconditioning to invert. As a result, the monolithic SSI problem will con-
verge as fine as the approximation of the tangent matrix allows, resulting in a very
robust solver if it can be done effectively. Disregarding frictional contact MPM-MPM
monolithic coupling strategy is naturally present in MPM. In fact MPM simulates
multi-materials automatically since no slip, no penetration contact is inherent in MPM.
Each material point has its own constitutive law and maps its data to the nodes inde-
pendently of the other material points in the same elements. Let us make a simple
conceptual example looking at Figure 3. We have two materials, the orange (the struc-
ture) and the green one (the soil). Each material point is of either the orange or the
green material (i.e. with its own constitutive law). There are elements of the back-
ground grid which contains only green material points or orange material points, but
there are also elements which contains both. These are the interface elements. Let us
consider the classical solution system K∆u = −R where K is the stiffness matrix,
∆u the increment of the unknown calculated in a Newton-Raphson scheme and R is
the residual of the governing equations and using the subscripts s, st and Γ for the
soil nodes, the structure and the interface nodes, respectively. Setting up the global
solution system (in a FEM fashion), we will obtain



Ks KsΓ 0
KΓs KΓ KΓst

0 KstΓ Kst






∆us
∆uΓ

∆ust


 = −



Rs
RΓ

Rst


 (53)

Nevertheless, often frictional contact plays a relevant role and cannot be omitted. The
reader is recommended to see [VSWN19] for a comprehensive literature overview of
MPM-MPM monolithic algorithms availables.
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structural material points

soil material points

structural nodes

interface nodes

soil nodes

Figure 3: Monolithic coupling in MPM. The concept.

4.2 MPM-FEM coupling, a staggered approach
A staggered, or partitioned, coupling strategy intends to solve a coupled problem,
defined by two fields or subsystems, which are represented by a certain mathemati-
cal model, with possible different discretization, formulations, and algorithms. The
partitioned approach can be: one-way and two-way coupling. The one-way coupling
methods provide a possibility to reduce the computational effort by only passing the
coupling variables from one system to another (and not vice versa) at every calculation
step. On the other hand, the two-way coupling approach transfers the coupling vari-
ables back to the first subsystem as an additional ”feedback step”. In other words the
two systems are mutually influenced b each other. The two-way coupling schemes are
further divided into weakly and strongly coupled approaches, where the convergence
at the interface between the coupled systems is, respectively, neglected or considered.
The different approached are illustrated in the following Figure 4.

4.2.1 Boundary conditions on non matching meshes

Having to deal with bodies that move and deform over a fixed mesh, we often need
to impose boundary conditions on a surface or line which does not match with the
background grid (Figure 5).

This common issue is even more important in the case of coupled problems, In this
case, in fact, the accurate imposition of the coupling variables on the shared interface
is crucial during the whole simulation. This open issue is a well known problem in
the community of unfitted methods for Computational Fluid Dynamics (CFD) [CB09,
UGF14, MSW18, WSMW18, ZLR19]. The MPM community proposed several alter-
native solutions to this problem: one possibility is to move the background fixed mesh
according to the material displacements and deformation [aK13, WCA+17, CBVS16].
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Figure 4: Staggered coupling strategy for two subsystems S1 and S2: (a) one-way
coupling, (b) two-way ”weak” coupling, and (c) two-way ”strong” coupling.

grid-conforming 

Dirichlet boundaries

𝜕Ω𝐷

𝜕Ω𝑁
grid-conforming 

Neumann boundaries

𝜕Ω𝐷

𝜕Ω𝑁

nonconforming 

Dirichlet boundaries

nonconforming 

Neumann boundaries

Figure 5: Grid conforming(a) and non conforming (b) boundaries (source [CST+20]).

While this approach ensures that the interface is always matching with the background
grid, it accuracy strongly depends on the shape of the boundary and on its deformation
and it generates numerical noise due to the cell-crossing instabilities [GBC+17]. An
alternative is to impose the boundary condition directly on the particles either creat-
ing a layer of mass-less particles or using the boundary particles of the given body
[Beu12]. The problem in this case is that the boundary conditions are not applied on
the boundary but on a ”band” [Beu12], [aK13].

Mast et al. [MMHAM11] proposed a dual-grid approach. They introduce an addi-
tional grid which follows the geometry of the material boundary. Unfortunately this
approach seems to be problematic even for simple 1D problems, since it is sensitive
to different boundary cell size and location [BCC+19].

An interesting alternative is represented by the use of a boundary detection algorithm
using the Proximity Field Method (PFM). However, the PFM approach is computa-
tionally expensive, highly mesh dependent, and its accuracy, at the moment, is still
questionable [RVHA17].
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Finally, Bing and coworkers have proposed a more general way to track the evolu-
tion of physical boundary by utilizing a cubic B-spline interpolation method [Bin17,
CCA+18, BCC+19] . The integration of surface traction for Neumann boundary can
be done directly along the B-spline surface by incorporating Gauss quadrature. The
B-spline surface can also be combined with a Dirichlet boundary imposition using
the Implicit Boundary Method (IBM) inherited from FEM [BK08, KBPG08, KPB08,
ZK17]. IBM has been proven to be suitable for imposing homogeneous and non-
homogeneous Dirichlet boundary conditions for 2D quasi-static linear-elastic prob-
lems in MPM with structured quadrilateral elements [Bin17, CCA+18, BCC+19].
Yet, so far, implementation for 3D cases, with unstructured background mesh, and for
nonlinear dynamic problems involving elasto-plastic materials are not yet presented.

We conclude presenting a last alternative, which is the one we developed in Kratos
Multiphysics. We use a penalty approach for the imposition of Dirichlet bound-
ary conditions. Penalty formulation is widely used by the FEM community to im-
pose constraint conditions [BZ73], as well as in isogeometric B-Rep analysis (IBRA)
[BAP+15, TBO+18] to couple boundary conditions between patches. Penalty has
also been used in meshfree methods [ZA98, AZ00, FMH04] and other continuum
based methods, such as in the CutFEM [BCH+15] and the finite cell methods (FCM)
[SRZ+12]. The adaption of the penalty method to MPM is briefly presented in what
follows. The reader is recommended to consult [CST+20] for more details.

The penalty augmentation is adopted using boundary particles, which can be fixed
or can move not only according to the material deformation, but also following pre-
scribed field values, independently from the deformation.

Let us assume two coupling boundary edges Γ1 and Γ2, which can be discretized by
using any methods, e.g. as surface meshes, B-spline surfaces, or even as particles.
Each of the boundary edge contains a corresponding displacement field u1 = u1(x1)
and u2 = u2(x2), respectively. We can therefore define the following virtual work
statement:

δW penalty = β

∫

Γ1

(u1 − u2) · (δu1 − δu2) dΓ1 ,

= β

∫

Γ2

(u2 − u1) · (δu2 − δu1) dΓ2 ,

(54)

where β is the user-defined penalty factor. Here, δW penalty corresponds to the cou-
pling between the displacement (i.e the position) of two coupling surfaces, written in
a weak sense.

The modified system of equations can be written as:
(
Ktan + Kpenalty

)
∆u = −

(
R + Rpenalty

)
, (55)

where Ktan and R are the regular local tangent stiffness matrix and residual vector.
The additional penalty terms in the system matrix is given as:

Kpenalty = β

∫

ΓD

HT ·H dΓD , (56)
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while the additional residual term is:

Rpenalty = β

∫

ΓD

HT · (u− ū) dΓD

=

[
β

∫

ΓD

HT ·H dΓD

]
(uI − ūI)

= Kpenalty (uI − ūI)

(57)

with matrix H is defined as follow:

H =



N1 0 0 · · · Nnel 0 0
0 N1 0 · · · 0 Nnel 0
0 0 N1 · · · 0 0 Nnel


 . (58)

Here, the subscript nel denotes the number of nodes for each element.

4.3 Granular flow impacting on an obstacle

4.3.1 The model

A two-dimensional numerical simulation to analyze the soil-structure interaction cou-
pling schemes is presented. A granular column collapse is impacting on a structural
obstacle with a purpose to block the soil run-out as illustrated in figure 6. In the
present study, two types of materials are considered; one is a concrete-like structure,
which will be referred as ’stiff’ from here on, with a linear-elastic behaviour, and the
other is a ’flexible’ hyper-elastic rubber-like material assuming a neo-Hookean model.
In order to check the simulation performance, a measurement point ”A” is selected to
measure the structural displacement upon the soil impact. The material data used to
simulate the structural obstacle is specified in table 1, while the soil model is consid-
ered to be the same material as in table 2.

200 mm

100 mm

10 mm

100 mm observation

point A

Figure 6: Granular flow simulations with an obstacle: Initial geometry.

4.3.2 Monolithic Coupling by Implicit MPM

A mesh sensitivity analysis is carried out to understand how the mesh refinement af-
fects the obtained coupling results. The SSI simulation is first conducted in a mono-
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Table 1: Granular flow simulations with an obstacle: Material data of the structure.

Case Material type Density Young’s Mod Poisson’s Ratio
[kg/m3] [MPa]

a) Concrete-like (stiff) 2550 3× 104 0.3
b) Rubber-like (flexible) 1100 1 0.0

Table 2: Granular flow validation: Material data.

Material Young’s Poisson’s Angle of Cohesion Dilatancy
density modulus ratio internal angle
[kg/m3] [kPa] friction ◦ ◦

2650 840 0.3 19.8 0.0 0.0

lithic way by using solely the implicit MPM-MPM. Here, three mesh sizes are tested:
h = 5, 2.5, 2 mm for the two structural cases, with 3 MP/cell are assumed in each
simulation. The details of the simulation setup are listed in details in table 3.

Table 3: Granular flow simulations with an obstacle: Mesh and material point setup
for convergence studies.

Case No MP/cell Mesh size [m] MPs Cells Nodes Time step

1 3 0.005 5040 7200 4611 2× 10−4

2 3 0.0025 20160 28800 18101 2.5× 10−5

3* 3 0.002 31500 45150 28252 2× 10−5

* Default case

Figure 7 and 8 present the mesh convergence analysis in the monolithic coupling.
Here, the horizontal displacement at point ”A” is compared for both the stiff (case
a) and the flexible (case b) structure. As the displacement of the stiff structures is
significantly small (figure 7), i.e. in the order of 10−7, it is hard to compare them
and recognize the tendency. However, if we focus at the later end of the plot, where
the vibrations almost reach their steady state, approximately at t = 1.0 s, we can
see the slight increasing pattern from the three different discretizations. Meanwhile,
the displacement results of the flexible structures (figure 8) clearly showed a very
good increasing tendency as the meshes are refined, and according to the results, the
highest amplitude of the displacement may converge at some value around 0.008. One
more thing which can be noticed while comparing the two figures are the comparisons
of the magnitude of both displacement results. Since the stiff structure’s Young’s
modulus is around 104 times larger than the flexible one, the order of the response
displacements obtained is 10−4 times smaller than the flexible one. These provided us
a good assurance that the constitutive laws are formulated well. All in all, by seeing
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these results, it can be verified that our monolithic coupling formulation is able to
reach a converging tendency upon mesh refinement.
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Figure 7: Granular flow simulations with an obstacle: Displacement of stiff structure
(case a) at observation point ”A” for three different mesh sizes assuming monolithic
coupling.
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Figure 8: Granular flow simulations with an obstacle: Displacement of flexible struc-
ture (case b) at observation point ”A” for three different mesh sizes assuming mono-
lithic coupling.

Next, the following figure 9 and 10 present the final deformed configuration and the
Cauchy stress measured at t = 1.0 s for the default case (h = 0.002 m). As can
be noticed the earlier figure, the deformation of the more flexible structure is clearly
seen and larger than the stiffer structure. Moreover, the Cauchy stress profile along
the lateral direction shows a physical and realistic bending stress profile.
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(a)

(b)

Figure 9: Granular flow simulations with an obstacle: Deformed configuration at t =
1.0 s of the monolithic SSI tests with (a) stiff and (b) flexible structure.

Y-Cauchy stress [Pa] Y-Cauchy stress [Pa]

(a) Stiff structure (b) Flexible structure

Figure 10: Granular flow simulations with an obstacle: Stress profile of the structure
at final configuration t = 1.0 s: (a) stiff and (b) flexible structure.

The monolithic SSI coupling by using the implicit MPM shows a very good mesh
convergence as the background grids are refined. It is also very robust as the equilib-
rium of forces and kinematic continuity are directly satisfied after the linear system
of equation for soil and structure are solved simultaneously. However, the ”natural”
monolithic formulation directly assumes a sticking contact at the soil and structural
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interface, as the kinematic variables at the interface material points are interpolated
by the same nodal variables by using the same shape functions. The sticking contact,
here, may result in a stiffer deformation of the structure, as when it moves away from
the soil, the soil will exert a pulling force to the structure by means of the sticking
contact condition. This, furthermore, causes a numerical damping effect to the struc-
ture as it vibrates, which can be noticed clearly from the vibration pattern showed by
figure 8.

4.3.3 Staggered Coupling Using Coupled MPM-FEM

Using the staggered coupling of MPM with FEM a similar model is constructed by us-
ing the nonconforming fixed boundaries and SSI interface by means of penalty meth-
ods. The initial geometry for the staggered MPM-FEM coupling can be seen in figure
11. In this validation, only the flexible structure, case b in table 1, will be considered
since the displacement of this structure is significantly larger than the stiffer one, and
therefore, it is able to validate the performance of the implemented inhomogeneous
Dirichlet imposition along the structural boundaries better. Moreover, we only per-
form tests with h = 0.005, 0.0025 m, as the deformation differences of the h = 0.0025
m and h = 0.002 m cases are not that significant as shown by the monolithic case.

200 mm

100 

mm

nonconforming fixed boundaries

simulation domain

10 mm

100 mm
point A

FEM structure

MPM Soil SSI contact 

interface

Figure 11: Granular flow simulations with an obstacle: Initial geometry for staggered
MPM-FEM coupling.

The staggered coupling simulations are performed considering a strongly coupled for-
mulation, where a series of iteration is performed to reach a certain convergence of
Dirichlet and Neumann conditions at the soil-structure interface. For the MPM sim-
ulations, structured triangular meshes are used to generate particles, as such that the
initial arrangement is the same with the monolithic case with MP/cell = 3. Mean-
while, unstructured triangular background grids are used to perform the MPM com-
putations. As can be seen from figure 11, a nonconforming fixed boundary is assumed
to impose the left and bottom walls. Here, we assume the penalty factor ω = 1011.
The reason that the nonconforming boundaries are preferred here, instead of the fixed
grid-conforming boundaries, is mainly because the bottom wall is intersecting with
another penalty-based imposition, which is the SSI interface (marked by orange lines
in figure 11).

Table 4 listed all the simulation setups including the chosen penalty factors for the
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Table 4: Granular flow simulations with an obstacle: MPM and FEM mesh arrange-
ment.

Case

No

Mesh

size [m]

Implicit MPM FEM Time

StepMPs Cells Penalty Elements Nodes

1 0.005 4800 12,094 2× 108 121 63 2× 10−4

2 0.0025 19200 24,573 3.8× 109 401 205 2.5× 10−5

SSI coupling interface. Here, the value of the interface penalty factors can be chosen
differently than the one used to impose the left and bottom walls. These interface
penalty factors will be used to impose the structural displacement in the MPM system,
and to approximate the contact forces which will be sent back to the FEM as external
loads. The value of these penalty factors should be initially calibrated to eliminate
interpenetration of the particles to the SSI interface, and as can be noticed from table
4, the value for different mesh resolution is generally different to each other, though
showing the same tendency to the increase or decrease of resolution. However, if the
value is set too high, the contact force may be over-estimated, which may lead to local
element inversion in the FEM system or cause further stability issue in the MPM-FEM
coupling loop. Moreover, as the approximated penalty forces are often over-estimated
at the first coupling iteration, a relaxation method based on the multi-vector update
quasi-Newton (MVQN) approach [BKRF14] is assumed in this case. Last but not
least, for the strong coupling iteration settings, the maximum coupling iteration is set
to be 20, and both of the absolute and relative tolerances are set to be 10−5.
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Figure 12: Granular flow simulations with an obstacle: Comparison of displacement
of flexible structure at point ”A” upon impact between the monolithic and staggered
SSI coupling.

Figure 12 shows the comparisons of lateral displacement obtained at the observation
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h=0.005m

h=0.0025m

Staggered MPM-FEM SSIMonolithic MPM-MPM SSI

Figure 13: Granular flow simulations with an obstacle: Comparisons of deformed
configuration at t = 0.5 s between the monolithic MPM-MPM and staggered MPM-
FEM SSI tests: (left) monolithic , (right) staggered, (upper) h = 0.005 m, (lower)
h = 0.0025 m

point A for the monolithic and staggered SSI coupling, while figure 13 shows the
deformed configuration at t = 0.5. In general, the staggered simulations are showing
a good tendency and physical deformation, as can be compared with the results of
monolithic cases. There are, however, two consideration that it is worth making.

First, the displacement of the staggered simulations, in particular for h = 0.0025 m,
reaches a higher peak than the monolithic counterpart, even though at the latter end of
the simulation the displacement shows a lower tendency. Moreover, the staggered SSI
displacements also vibrate with higher amplitude and longer period. These differences
are mostly caused by the different ”contact” conditions assumed. The monolithic
approach, by default, considers a non-slip and sticking contact, where pulling forces
are also exerted from soil to structure and vice versa when the separation between
them occurs. This assumption is, as expected, non-physical. The staggered approach,
on the contrary, assumes an appropriate contact condition, i.e. the coupling is skipped
when the gap computed shows a positive value, which indicates separation. The soil
and the structure are free to separate from each other. This is one of the main reasons
why the staggered simulations show a higher peak during impact.

Secondly, notice that the aforementioned different contact assumptions between the
monolithic and staggered approaches may lead to a different deformed configuration
as shown by figure 13. There, notice two important differences:

1. The staggered simulations (pictures on the left) show a closer gap between the
soil and the structure, than the monolithic results (pictures on the right);
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2. At the upper-left region of each picture, the staggered simulations are able to
mobilize more mass than the monolithic simulations with the same mesh size.
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[OCI+11] E. Oñate, M.A. Celigueta, S.R. Idelsohn, F. Salazar, and B. Suarez.
Possibilities of the particle finite element method for fluid-soil-
structure interaction problems. Journal of Computational Mechanics,
48:307–318, 2011.

[OFdSN+04] DRJ Owen, YT Feng, EA de Souza Neto, MG Cottrell, F Wang,
FM Andrade Pires, and J Yu. The modelling of multi-fracturing solids
and particulate media. International Journal for Numerical Methods
in Engineering, 60(1):317–339, 2004.
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using the material point method. Géotechnique, 61(9):795–808, 2011.
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Upscaling lattice Boltzmann and discrete
element simulations for porous media

WaiChing Sun, PhD

Columbia University

The purpose of this lecture note is to provide a brief overview of the state-of-the-art
multiscale techniques that utilize the lattice Boltzmann for flow simulations and the
discrete element simulations for simulating the granular system fully saturated with
pore fluid. We will review the basics of discrete element and lattice Boltzmann meth-
ods, the different options for multiscale coupling, and the recent research trend for
more accurate and fast predictions for the multiscale modeling of porous media.

1 Introduction

From the bone remodeling to the failure of landslides, the micro-mechanical
coupling between the solid skeleton and the pore fluid plays an important role
to the macroscopic mechanical outcomes. While there are numerous works
dedicated to model the interaction of the solid and fluid constituents at the
representative element volume scale where continuum models are valid, the
recent advancement of computational resource has made it possible to repli-
cate the coupling mechanisms of the pore fluid and solid at the macroscopic
scales. This lecture note provides a brief overview of the theoretical frame-
work and numerical treatment that enables the linkage between the micro-
scopic particle-fluid interactions and the macroscopic responses of the mixture
continua.

Th rest of this lecture note is organized in 4 sections. We begin this lecture note
with a brief review of the discrete element method for the granular materials
and the lattice Boltzmann method for the pore fluid flow. We then present the
multiscale techniques used to upscale the homogenized constitutive responses
inferred from the representative elementary volume to the bulk and interface
effective media. Each section ends with numerical examples used to verify
the implementations and demonstrate the proper usages of the mathematical
models.
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As for notations and symbols, bold-faced letters denote tensors; the symbol ’·’
denotes a single contraction of adjacent indices of two tensors (e.g. a · b = aibi
or c · d = cijdjk ); the symbol ‘:’ denotes a double contraction of adjacent
indices of a tensor of rank two or higher ( e.g. C : εe = Cijklε

e
kl ); the symbol ‘⊗’

denotes a juxtaposition of two vectors (e.g. a ⊗ b = aibj) or two symmetric
second-order tensors (e.g. (α⊗ β)ijkl = αijβkl). Moreover, (α⊕ β)ijkl = αjl βik

and (α	 β)ijkl = αil β jk. We also define identity tensors (I)ij = δij, (I4)ijkl =

δikδjl , and (I4
sym)ijkl = 1

2 (δikδjl + δilδkj), where δij is the Kronecker delta. As
for sign conventions, unless specify otherwise, we consider the direction of
the tensile stress and dilative pressure as positive.

2 Discrete element method for solid skeleton

To obtain effective stress measure from the DEM, we constitute a micro-
scopic problem in which the macroscopic deformation measure is recast as
the boundary condition for the unit problem. The unit cell problem is used
to replace the macroscopic constitutive model that relates macroscopic strain
measure and internal variables with the macroscopic effective stress measure.
In the DEM model we employed, there is no microscopic internal variable in-
troduced for the contact laws. Instead, path dependent behavior is mainly
caused by the rearrangement of the grain contacts and the evolution of the
force chain network topology.

In the unit cell DEM problem, the frame or walls of the particle assemblies are
driven to move according to the macroscopic deformation measure via ap-
plying boundary traction or prescribing displacements on boundary particles
[MDZ10, GZ14]. The contact forces are computed for each particle and the
equations of motion are integrated by an explicit time integrator [CS79]. In
quasi-static problems, to achieve static equilibrium of the particle assemblies,
a dynamic relaxation scheme is employed.

Consider two rigid spheres p and q with radii Rp and Rq modeling a particle
pair in contact inside a granular assembly. Let yp and yq denote the position
vectors of their centers in a global coordinate system, while their orientations
are represented by unit orientation quaternions qp and qq [ŠCC+10]. The rel-
ative velocity ḋt of the contact point yc depends on the rate of change of the
position vectors ẏp and ẏq and the rate of change of the particle orientations
wp and wq, i.e.,

ḋt = ẏq − ẏp −wq × (yc − yq)−wp × (yc − yp) (1)

Assuming that the contact areas of all particle pairs are infinitesimal and ne-
glecting the gravitational force, and we also don’t consider torques/couples at
contacts due to rolling and torsion in the numerical examples in this paper, the
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equations of motion for the translational and rotational degrees of freedom of
particle p reads, 




mpÿp = f p =
nc

∑
c

f c
p

Ipẇp = tp =
nc

∑
c
(yc − yp)× f c

p

(2)

with the mass mp and moment of inertia Ip of the sphere p, f p the sum of nc

contact forces f c
p and tp the sum of nc contact torques due to tangential forces.

In YADE, following the form of Cundall’s global damping [CS79], artificial
numerical damping forces and torques are applied on each particle to reduce
the total force and total torque that increases kinematic energy, while intro-
ducing damping to all eigen-frequencies [ŠCC+10]. The damping force f damp

p
on particle p is a function of the total contact force f p, the particle velocity ẏp
and a dimensionless damping coefficient λdamp (which we set to be 0.2 for all

numerical examples presented in this paper). The damping torque tdamp
p on

the rotational degree of freedom is constructed in a similar way, i.e.,




f damp
p = −λdamp f p sgn( f p · ẏp)

tdamp
p = −λdamp tp sgn(tp · ẇp)

(3)

.

Finally, (2) is integrated with a central difference scheme. Consider the in-
cremental update from time step t to time step t + ∆t and let (yp)t−∆t, (yp)t,
(yp)t+∆t denote the translational degrees of freedom for the p-th particle in
three consecutive time steps. The explicit central difference scheme that up-
dates (yp)t+∆t reads,

(yp)t+∆t =
1

mp

(
f p + f damp

p
)

t∆t2 + 2(yp)t − (yp)t−∆t (4)

For updating the orientation of the p-th particle (qp)t+∆t, the explicit central

difference scheme leads to the angular velocity at time t + ∆t
2 [ŠCC+10],

(wp)t+ ∆t
2
= (wp)t− ∆t

2
+ ∆t(ẇp)t = (wp)t− ∆t

2
+ ∆t

1
Ip

(
tp + tdamp

p
)

t (5)

The Euler axis and angle of the rotation quaternion ∆qp are represented by a
unit vector and the magnitude of the rotation ∆t(wp)t+ ∆t

2
, respectively, i.e.,




(∆qp)u = (̂wp)t+ ∆t

2

(∆qp)θ = |∆t(wp)t+ ∆t
2
|

(6)
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The rotation quaternion (qp)t+∆t is then updated by combining two rotation
quaternions together, i.e.,

(qp)t+∆t = ∆qp(qp)t (7)

Note that the multiplication of quaternions is not commutative. Following the
update of particle positions and orientations, the contact forces, moment are
updated and the energy balance is checked. The static equilibrium is achieved
when the particle velocity becomes sufficiently small. In YADE, this is indi-
cated by the magnitude of the kinetic energy and the unbalanced force index
(cf. [Ng06]).

In the actual numerical simulations, we employ a simple contact law model
that can be decomposed into the normal and tangential components, ( f c

p)
n

and ( f c
p)

t i.e.,
nc

∑
c

f c
p =

nc

∑
c

(
( f c

p)
n + ( f c

p)
t) (8)

The normal contact force between a particle pair p and q is nonzero if and only
if the particles are in contact, i.e.,

( f c
p)

n = ( f c
p)

nn =

{
−kndnn if dn ≤ 0

0 if dn > 0
; dn =

√
(yp − yq) · (yp − yq)−Rp−Rq

(9)
where n is the contact normal vector, dn is the overlapped length. Further-
more, the normal stiffness kn of the grain contact is related to the radii (Rp and
Rq) and Young’s modulus of the particle Eg, i.e.,

kn = 2
EgRpRq

Rp + Rq
(10)

Meanwhile, the tangential force ( f c
p)

t depends on the shear stiffness kt and
the relative tangential displacement, but is also capped by the Coulomb’s fric-
tional force. As shown in [CCB14], the rate form of the tangential constitutive
law reads,

˙
( f c

p)
t =

{−ktḋt if ||ktḋt|| ≤ |( f c
p)

n| tan(β)

0 if ||ktḋt|| > |( f c
p)

n| tan(β)
; kt = Akn (11)

where c is the cohesion, A is a dimensionless material parameter, β is the fric-
tion angle.

Notice that the proposed multiscale coupling model is not limited to the DEM
model with this particular set of constitutive laws.
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RVE generation

The granular assemblies used in this study is obtained using the RVE genera-
tion engine available in an open source DEM software YADE [KD09]. In par-
ticular, we use the isotropic-compression method first introduced in [CS79].
For completeness, we briefly outline the procedure below:

1. First, a cell box with its six faces serving as the periodic boundaries is
prepared. Spheres with defined particle size distribution are then ran-
domly inserted into the box. Initially, these inserted particles are not
allowed to overlap.

2. Material parameters of particles such as the contact stiffness, density and
friction angle are then assigned to the particle. At this point, the assigned
inter-particle friction coefficient is set to an artificial value to manipulate
the amount of particle sliding and achieve the desired porosity. A large
value of friction angle will yield a loosely packed RVE, and the value is
set to a very low value when a dense packing is desired.

3. The unit cell is latter subjected to isotropic compression with prescribed
confining pressure. The loading is carried out by an implemented en-
gine which is capable of controlling either the Cauchy stress or the ve-
locity gradient of the RVE. This process terminates when the entire RVE
achieves static equilibrium.

4. Finally, the real values of friction coefficient are re-assigned to all parti-
cles and the RVE is now ready for future simulations.

If frictionless rigid walls are used as the RVE driving boundary, they are sim-
ply generated in the first step to replace the periodic box. As pointed out
by [JKL03], the isotropic compression method is very efficient in generating
dense granular assemblies. However, it is hard to maintain uniformity for
loose specimens.

2.1 Numerical Example: successive sample reduction test for
boundary condition sensitivity

The size of the unit cell (and therefore number of particles in the RVE) deter-
mines whether the apparent responses homogenized from microstructures of
RVE could give converged coarse-scale effective properties. The size of the
unit cell must be sufficiently large such that the apparent responses are in-
sensitive to the imposed boundary condition [WLW08] and that it contains
statistically enough mechanisms for the deformation processes. To ensure
that the size of the unit cell is sufficiently large to be an RVE, we conduct
a series of numerical experiments to empirically determine the representa-
tive element size. Following the ideas of successive sample tests discussed
in [ZW01, WBF06, SAR11], we first create a large assembly composed of 979
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equal-size spherical particles and obtain the local equilibrium state under a
100 kPa isotropic compression. Then we successively reduce the size of the
cubic sampling window and obtain four other granular assembles with 619,
413, 311 and 75 particles. Four of these assemblies are shown in in Fig. 1. Each
RVE is then brought to equilibrium state under confining pressure of 100 kPa.
To analyze whether the granular assembly is homogeneous, we also plot the
Rose diagram of the contact normal orientation and show them in Fig. 1. We
observed that the the contact normals are distributed quite evenly in all assem-
blies, except the smallest one with 75 particles. This result is consistent with
the finding on 2D granular assemblies reported in [GZ14] in which a granu-
lar assembly consisting of too few particles tends to exhibit more anisotropic
responses. Nevertheless, the contact normal distribution also indicates that a
few hundreds of particles may be enough to generate a dense assembly with
a statistically homogeneous fabric.
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Figure 1: Four different sizes of granular assemblies used in the RVE study
(UPPER) and the corresponding Rose diagram for contact normal orientation
(LOWER).

All five numerical specimens are then subjected to triaxial loading until 20%
axial strain. Previous studies have established that the boundary conditions
driving the frame or surrounding wall of the unit cell may affect the macro-
scopic behavior. This sensitivity to the boundary condition is more severe
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when the unit cell is smaller than the RVE size, but less important when the
unit cell contains enough particles [ZW01, MD04, WBF06, WLW08, MDZ10,
GZ14]. In particular, [MDZ10] has conducted systematic study to compare
various constraints which transform periodic, linear displacement (zero rota-
tion) and uniform stress to particle assemblies and found that all three satisfy a
priori the Hill-Mandel condition. The study in [MDZ10] demonstrates that the
linear displacement constraint produces the stiffest homogenized responses,
the uniform stress constraint leads to the softest homogenized responses,
while the periodic constraint leads to the intermediate response which is con-
sidered the optimal choice in [MD04]. In this study, we conduct numerical
experiments for two types of boundary conditions, i.e. periodic boundary
and frictionless rigid walls that impose linear displacement and zero rotation.
The shear stress responses and porosity paths of triaxial compression tests on
different size of RVEs are shown in Fig. 2.

3 Lattice Boltzmann method for fluid flow

A multi-scale lattice Boltzmann/Finite element method is used to extract ge-
ometrical features and permeability from the granular assemblies. This hy-
brid method was originally proposed in [WBF06] to estimate permeability of
Castlegate Sandstone. Sun et al 2011a [SAR11] improved the accuracy and
computation efficiency of this method by incorporating geometrical analysis
in permeability calculations. The key to this improvement is partitioning the
entire grain assembly into unit cells where pore-scale lattice Boltzmann sim-
ulations are conducted in the connected pores of each unit cell. Since dis-
cretized voxel images may contain isolated pore if the resolution is insuffi-
cient, this method is used to ensure that discretization does not alter connec-
tivity of the pores.

The lattice Boltzmann method we used is a single-relaxation time BGK model
[ZH97], which solves a discretized Boltzmann equation by simulating the evo-
lution of particle distribution that propagates and collides locally among lat-
tice nodes. The evolution of particle distribution function fi in direction ei is
updated in each time step through the following equation,

fi(x + ei, t + ∆t)− fi(x, t) = − 1
τ
( fi(x, t)− f eq

i (x, t)) (12)

where f eq is a truncated equilibrium distribution defined as,

f eq
i = wiρ(1 +

3ei · v
c2

s
+

9(ei · v)2

c4
s

− v · v
2c2

s
) (13)

τ is a parameter related to the dynamic fluid viscosity ν, as shown in the
Chapman-Enskog equation (cf. [Suc01]),

ν = ∆tc2
s (τ −

1
2
) (14)
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Figure 2: Shear stress response and porosity path of triaxial compression tests
on different size of RVEs. (a)(c) RVE driven by periodic boundaries; (b)(d)
RVE driven by frictionless rigid walls

where cs is the constant speed of sound. rho and v are the macroscopic density
and velocity. They are determined from the evolution of the particle distribu-
tion, i.e.,

ρ =
N

∑
i=1

fi ; v =
1
ρ

N

∑
i

fiei (15)

The effective permeability of a porous medium can be measured by applying
a pore pressure gradient along a basis direction and determining the resultant
fluid filtration velocity from a pore-scale hydrodynamics simulation. Then,
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the effective permeability tensor is obtained according to,

kij = −
µv

(∇x p)j

1
VΩ

∫

Ω
vi(x)dΩ (16)

where µv is the kinematic viscosity of the fluid occupying the spatial domain
of the porous medium Ω. To implement this procedure, we first assume that
the effective permeability tensor kij is symmetric and positive definite. We
then determine the diagonal components of the effective permeability ten-
sor kii by three hydrodynamics simulations. In each simulation, we impose
a pressure gradient on two opposite faces orthogonal to an axis ei and no-
slip boundary conditions on the four sides parallel to ei where ei denotes an
orthogonal axis of a Cartesian system.

3.1 Numerical example 1: occluded porosity and its impact on
homogenized permeability

In many situations, particularly in natural porous materials, occluded porosity
occupies a significant portion of the pore space. Failure to identify occluded
porosity can cause dramatic errors in multiscale modes. Typical situations
where significant occluded porosity is expected to play a role include the mi-
gration of pore-fill cement into pore space, pore closure in limestones due to
CO2 sequestration, and the formation of compaction bands [SARE11].

To illustrate this point, let us consider a two dimensional LB simulation of the
sample depicted in Figure 3. In this example, our objective is to obtain the
vertical global permeability of a sample, discretized using a 30 u× 40 u lattice
(u =lattice unit), using three different techniques. In the first technique, LB
simulations are conducted on the entire sample, without any domain decom-
position. This is equivalent to a direct numerical simulation and is interpreted
here as the ‘true’ solution. The second technique uses domain decomposition
(sample is split into four parts along the vertical direction) and uses occluded
space detection, keeping only connected porosity active. The third technique
uses domain decomposition but does not distinguish between connected and
occluded porosity. Global permeabilities for the partitioned samples are ob-
tained from the local estimates by [BBM87],

k =

n

∑
i=1

Li

n

∑
i=1

Li/ki

(17)

where ki are the local values of permeability in each layer of thickness Li, and
n = 4 denotes the number of unit cells (layers).
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(a) (b) (c)

Figure 3: Velocity profiles of lattice Boltzmann simulations on (a) unparti-
tioned domain (k = 0.015 u2), (b) partitioned domain with identified and
deactivated occluded porosity (k = 0.013 u2), and (c) partitioned domain
without any special treatment for occluded porosity (k = 0.0078 u2). Where
u =lattice unit.

Results for the LB calculations are summarized in Table 1. It should be high-
lighted that the relative error induced by the third procedure with partition
but no special treatment of occluded porosity yielded an error four times
greater than that of the partitioned method that takes into account occluded
porosity. It can be seen from Table 1 that the main sources of error come from
the mistreatment of occluded porosities in the central partitions. The mistreat-
ment of occluded porosity is not only the source of errors in the estimation of
permeability, but it leads to longer calculations as occluded porosity is as-
signed active lattices. Hence, not accounting for occluded porosity may lead
to inaccuracies and inefficiencies.

Case 1 2 3
Number of Unit Cell(s) 1 4 4

Occluded Pore Identified? No Yes No
Local Permeability, u2 (top) N/A 0.011 0.011

Local Permeability, u2 (2nd top) N/A 0.015 0.0029
Local Permeability, u2 (2nd bottom) N/A 0.015 0.45

Local Permeability, u2 (bottom) N/A 0.014 0.014
Global Permeability, u2 0.015 0.013 0.0078

Relative Error 0 12 % 48 %

Table 1: Global and local permeabilities obtained from LB simulation scenar-
ios.
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3.2 Numerical Example 2: Verification against periodic simple
cubic (SC) lattice

Simple cubic (SC) cells can be formed by placing the centroid of eight identical
spheres at the corners of a cube of equal dimensions. When the spheres are
making point contact, it is often called SC bead pack [SSD95]. In this packing,
the total porosity is simply φ f = 1 − π/6 and the geometrical tortuosity is
simply unity, as the shortest flow path is one directly though the center of the
cell. Furthermore, as in other simple packings, all porosity is connected.

Unlike micro-structural attributes. permeability of SC packings cannot be di-
rectly obtained using analytical techniques. Instead, numerical procedures
are often employed. The closest analytical solutions are furnished by bounds,
such as the lower bound obtained by Dormieux and co-workers [DKU06]
where pore spaces are ordered in the sense of inclusions and the perme-
ability of a cylinder with cross-section made up by four circles examined.
Since the cylindrical pore space is a subset of that of the SC cell, the per-
meability of the cylindrical pore space serves as a lower bound for that of
the SC cell. The lower bound can be expressed in dimensionless form as
k ≥ 4.84× 10−3R2, where R is the radius of the spheres in the SC cell. Nat-
urally, the permeability tensor in the SC cell is isotropic. Additionally, Zick
and Homsy [ZH82] have analyzed the permeability of the SC bead pack by
reducing the Navier-Stokes equation to a set of Fredholm integral equations.
They found k = 5.04× 10−3R2.

Next, we calculate the effective permeability of the SC bead pack. Our first
task is to correctly identify the connected porosity in the sample. The pore
geometry is discretized in the usual way using a lattice mesh. The resolution
of the lattice, clearly affects the results of the computations. The center of
the pore space is selected as the first active lattice and porosity is determined
using the region-growing algorithm. Figure 4 shows the estimate of porosity
as a function of the lattice resolution. Once the voxel length is smaller that
R/50, the numerical solution closely captures the exact solution (1− π/6).

Using a resolution of R/50, the resultant level set function and the shortest
flow path are illustrated in Figure 5. As shown in the figure, in this simple
example the geometrical tortuosity is unity and Dijkstra’s algorithm is able
to obtain this result without any issues. Finally, turning our attention to the
effective permeability calculation, we obtain an estimate using lattice Boltz-
man at the aforementioned lattice resolution. In addition, we carried out a
three dimensional Navier-Stokes finite element simulation to examine the re-
producibility of the permeability calculation. The FE model is composed of
8937 tetrahedral Crouzeix-Raviat elements with non-periodic side walls ans
prescribed pressures on the top and bottom faces of the cubic domain. The
FE model was solved using an open-source differential solver called FEniCS
[LMW12].
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Figure 4: Connected porosity as a function of voxel length in a SC bead pack-
ing.

Figure 6 illustrates the results of the LB and FE simulations. The permeability
using LB and FE is estimated to be 4.64× 10−3R2 and 4.89× 10−3R2, respec-
tively. Since both methods are inherently different, and since the calculations
are close to the previous values of permeability estimated for SC packings, we
consider the 5.1% difference in solutions acceptable. We therefore conclude
that the proposed framework to estimate permeability based on level sets and
lattice Boltzmann is accurate.

4 Multiscale homogenization for bulk porous me-
dia

In this section, we describe the homogenization theory we adopt to estab-
lish the DEM-mixed-FEM coupling model for fully saturated porous media.
Previous work for dry granular materials, such as [MD04, MDZ10, NCDD11,
GZ14], has demonstrated that a hierarchical discrete-continuum coupling
model can be established by using grain-scale simulations to provide Gauss
point stress update for finite element simulations in a fully implicit scheme.
Nevertheless, the extension of this idea for partially or fully saturated porous
media has not been explored, to the best knowledge of the authors.

In this work, we hypothesize that the pore-fluid flow inside the pores is in the
laminar regime and is dominated by viscous forces such that Darcy’s law is
valid at the representative elementary volume level [SARE11, SAR11, SKR13].
Provided that this assumption is valid, we define the pore pressure field only
at the macroscopic level and neglect local fluctuation of the pore pressure at
the pore- and grain-scale.
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Figure 5: Level set function φ(x, y, z) (represented by the 3D color contour)
and the corresponding shortest flow path (represented by the red straight line)
as determined by Dijkstra’s algorithm.

On the other hand, we abandon the usage of macroscopic constitutive law to
replicate the constitutive responses of the solid constituent. Instead, we ap-
ply the effective stress principle [TTE+43, GSP09, GMS13] and thus allow the
change of the macroscopic effective stress as a direct consequence of the com-
pression, deformation and shear resistance of the solid constituent inferred
from grain-scale simulations. As a result, the effective stress can be obtained
from homogenizing the forces and branch vectors of the force network formed
by the solid particles or aggregates, while the total stress becomes a partition
of the homogenized effective stress from the microscopic granular assemblies,
and the pore pressure from the macroscopic mixture continuum.

4.1 Dual-scale effective stress principle

In this study, we make assumptions that (1) a separation of scale exists and
that (2) a representative volume element (RVE) can be clearly defined. Strictly
speaking, the assumption (2) is true if the unit cell has a periodic microstruc-
ture or when the volume is sufficiently large such that it possesses statistically
homogeneous and ergodic properties [GAS07].

With the aforementioned assumptions in mind, we consider a homogenized
macroscopic solid skeleton continuum Bs ⊂ R3 whose displacement field is
C0 continuous. Each position of the macroscopic solid body in the reference
configuration, i.e., X = Xs ∈ Bs

0, is associated with a micro-structure of the
RVE size. Let us denote the trajectories of the macroscopic solid skeleton and
the fluid constituent in the saturated two-phase porous medium from the ref-
erence configuration to the current solid configuration as,

x = ϕs(X, t) ; x = ϕf (X f , t) (18)

Unless the porous medium is locally undrained, the solid and fluid con-
stituents are not bundled to move along the same trajectory, i.e., ϕs(·, t) 6=
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(a) (b)

Figure 6: (a) Streamline of the simple cubic lattice computed via Stokes finite
element model (k = 4.89× 10−3R2). (b) Velocity profile of the simple cubic
lattice obtained via lattice Boltzmann simulation conducted on connected pore
space (k = 4.64× 10−3R2).

ϕf (·, t). If we choose to follow the macroscopic solid skeleton trajectory to
formulate the macroscopic balance principles, then the control volumes are
attached to solid skeleton only, and the pore fluid motion is described by rel-
ative movement between the fluid constituent and the solid matrix, as shown
in Fig. 7. The deformation gradient of the macroscopic solid constituent F can
therefore be written as,

F =
∂ϕ(Xs, t)

∂Xs =
∂ϕ(X, t)

∂X
=

∂x
∂X

(19)

in which we omit the superscript s when quantities are referred to solid phase.
Now, following [MD04], we associate each point in the current configuration
x with an aggregate of N particles inside the representative volume V . Fur-
thermore, we introduce a local coordinate system for the RVE in which the
position vector y ∈ R3 becomes 0 at the geometric centroid of the RVE. The
locations of the centroids of the N particles expressed using the local coordi-
nate system read, i.e.,

yp ∈ V , p = 1, 2, ...N. (20)

where yp is the local position vector of the center of the p-th particle in the
microstructure and x + yp is the same position expressed in the macroscopic
current coordinate system. Particles inside the RVE may make contacts to each
other. The local position vector of each contact between each particle-pair yc
can be written as,

yc ∈ V , c = 1, 2, ...Nc. (21)

Both the positions of the particles yp and that of the contacts yc are gov-
erned by contact law and the equilibrium equations. Previous works, such as
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Figure 7: Trajectories of the solid and fluid constituents ϕs = ϕ and ϕf . The
motion ϕ conserves all the mass of the solid constituent, while the fluid may
enter or leave the body of the solid constituent. Figure reproduced from
[SOS13]

.

[CVW04, ESZ05, HC11, GTSMW13, RRL14, CLCC14], have found success in
explicitly modeling the pore-scale grain-fluid interaction. Nevertheless, such
grain-fluid interaction simulations do impose a very high computational de-
mand due to the fact that the fluid flow typically requires at least an order
more of degree of freedoms to resolve the flow in the void space among par-
ticles. However, for seepage flow that is within the laminar regime where
Darcy’s law applies, the new insight obtained from the costly simulations will
be limited. As a result, this discrete-continuum coupling model does not ex-
plicitly model the pore-scale solid-fluid interaction. Instead, we rely on the hy-
pothesis that effective stress principle is valid for the specific boundary value
problems we considered. In particular, we make the following assumptions:

• The void space is always fully saturated with one type of fluid and there
is no capillary effect that leads to apparent cohesion of the solid skeleton.

• The flow in the void space remains Darcian at the macroscopic level.

• All particles in the granular assemblies are in contact with the neighbor-
ing particles.

• Fluidization, suffusion and erosion do not occur.

• Grain crushing does not occur.
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• There is no mass exchange between the fluid and solid constituents.

As a result, we may express the total macroscopic Cauchy stress as a function
of homogenized Cauchy effective stress inferred from DEM and the macro-
scopic pore pressure obtained from the mixed finite element, i.e.

σ(x, t) =< σ′(x, t) >RVE −B(x, t)p f (x, t)I (22)

where

< σ′(x, t) >RVE=
1

2VRVE

Nc

∑
c
( f c ⊗ lc + lc ⊗ f c) (23)

f c is the contact force and lc is the branch vector, the vector that connects the
centroids of two grains forming the contact [CMNN81, Bag96, SKR13], at the
grain contact x + yc ∈ R3. VRVE is the volume of the RVE and Nc is the total
number of particles in the RVE. Meanwhile, the Biot’s coefficient B reads,

B(x, t) = 1− KDEM
T (x, t)

Ks
(24)

with KDEM
T (x, t) and Ks being the effective tangential bulk modulus of the

solid matrix inferred from DEM, and the bulk modulus of the solid grain
respectively [NB71, SWZP86]. Notice that, in the geotechnical engineering
and geomechanics literature, such as [Ng06, KRMK14], it is common to im-
pose incompressible volumetric constraint on dry DEM assembly to simulate
undrained condition at meso-scale. This treatment can be considered as a spe-
cial case of (24) when the bulk modulus of the solid grain is significantly
higher than that of the skeleton such that the Biot’s coefficient is approxi-
mately equal to one.

4.2 Micro-macro-transition for solid skeleton

In this study, we consider the class of two-phase porous media of which the
solid skeleton is composed of particles. These particles can be cohesion-less
or cohesive, but the assemblies they formed are assumed to be of particulate
nature and hence suitable for DEM simulations. [CS79].

In our implementation, the DEM simulations are conducted via YADE (Yet
Another Dynamic Engine [ŠCC+10]), an open source code base for discon-
tinua. These grain-scale DEM simulations are used as a replacement to the
macroscopic constitutive laws that relate strain measure with effective stress
measure for each RVE associated with a Gauss point in the macroscopic mixed
finite element. In particular, a velocity gradient is prescribed to move the
frame of the unit cell and the DEM will seek for the static equilibrium state via
dynamics relaxation method. After static equilibrium is achieved, the inter-
nal forces and branch vectors are used to compute the homogenized effective
Cauchy stress via the micro-macro transition theory [MD04, MDZ10, WLW08].
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For completeness, we provide a brief overview of DEM, the procedure for gen-
eration of RVEs and the study on the size of RVEs in Appendix A,B and C.

The Hill-Mandel micro-heterogeneity condition demands that the power at
the microscopic scale must be equal to the the rate of work done measured
by the macroscopic effective stress and strain rate measures. For the solid
constituent of the two-phase porous media, this condition can be expressed
in terms of any power-conjugate effective stress and strain rate pair , such as
(P′, Ḟ) and (S′, Ė) and (σ′, D) [BA95, Arm99]. For instance, the condition can
be written in terms of the effective stress and rate of deformation of the solid
skeleton, i.e.,

< σ′ >RVE : < D >RVE=< σ′ : D >RVE (25)

where D is the rate of deformation, i.e., the symmetric part of the velocity
gradient tensor,

< D >RVE=
1
2
(< L >RVE + < LT >RVE) ; L = ∇x v (26)

and < σ′ >RVE is defined previously in (23). Previous studies, such as,
[MD04, WLW08, MDZ10, Fis13], have established that the linear deformation,
periodic, and uniform traction are three boundary conditions that satisfy the
Hill-Mandel micro-heterogeneity condition. In our implementation, we ap-
ply the periodic boundary condition to obtain the effective stress measure,
because the periodic boundary condition may yield responses that are softer
than those obtained from the linear deformation BC but stiffer than those ob-
tained from the uniform traction BC. In particular, the periodic boundary con-
dition enforces two constraints: (1) the periodicity of the deformation, i.e.,

[[yb]] =< F >RVE [[Yb]] and [[Rb]] = 0 (27)

where [[·]] denotes the jump across boundaries, yb and Yb represent the po-
sition vectors of the particles at the boundary of the reference and current
configurations, Rb ∈ SO(3) represents the rotation tensor of particles at the
boundary, and (2) the anti-periodicity of the force f b and moment on the
boundary of the RVE, i.e.,

[[ f b]] = 0 and [[(yc − yb)× f b]] = 0 (28)

In YADE, the DEM code we employed for grain-scale simulations, the defor-
mation of an RVE is driven by a periodic cell box in which the macroscopic
velocity gradient of the unit cell < L >RVE can both be measured and pre-
scribed.

4.3 Multiscale hydro-mechanical model

The differential equations governing the isothermal saturated porous me-
dia in large deformation are derived based on the mixture theory, in which
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solid matrix and pore fluid are treated together as a multiphase continuum
[Pre82, BA95, Arm99, Cou04, SOS13, MNBT13]. The solid and fluid con-
stituents may simultaneously occupy fractions of the volume of the same ma-
terial point. The physical quantities of the mixture, such as density and total
stress, are spatially homogenized from its components. For example, the av-
eraged density of the fluid saturated soil mixture is defined as:

ρ = ρs + ρ f = (1− φ)ρs + φρ f (29)

where ρα is the partial mass density of the α constituent and ρα is the intrinsic
mass density of the α constituent, with φ being the porosity.

4.3.1 Balance of linear momentum

For the balance of linear momentum law in finite strain, we adopt the total La-
grangian formulation and choose the total second Piola-Kirchhoff stress (PK2)
S as the stress measure. The inertial effect is neglected. The equation takes the
form:

∇X ·(FS) + J(ρs + ρ f )g = 0 (30)

where the Jacobian J = det(F). The principle of effective stress postulates that
the total Cauchy stress σ can be decomposed into an effective stress due to
the solid skeleton deformation and an isotropic pore pressure (p f ) stress. The
effective stress principle in terms of PK2 writes:

S = S′DEM − JF−1BDEM p f IF−T (31)

where

S′DEM
= JF−1σ′DEMF−T = JF−1( 1

VRVE

Nc

∑
i

f ⊗ l
)

F−T (32)

Thus the balance of linear momentum becomes:

∇X ·(FS′DEM − JBDEM p f F−T) + J(ρs + ρ f )g = 0 (33)

4.3.2 Balance of fluid mass

The simplified u-p formulation in finite strain requires another equation illus-
trating the balance of mass for pore fluid constituent:

Dρ f

Dt
= −∇X ·(JF−1[φDEMρ f (v

f − v)]) (34)

where D[�]
Dt = ˙[�] is the material time derivative with respect to the velocity of

solid skeleton v.
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We make isothermal and barotropic assumptions and suppose that p f <<

Ks and that DBDEM

Dt ∼ 0. After simplifications [SOS13], the balance of mass
becomes:

BDEM

J
DJ
Dt

+
1

MDEM
Dp f

Dt
+∇X ·( 1

ρ f
(JF−1[φDEMρ f (v

f − v)])) = 0 (35)

where

MDEM =
KsK f

K f (BDEM − φDEM) + KsφDEM (36)

is the Biot’s modulus [NB71], with K f being the bulk modulus of pore fluid.

In this paper, Darcy’s constitutive law relating the relative flow and the pore
pressure is employed, neglecting the inertial effect:

Q = KDEM · (−∇X p f + ρ f FT · g) (37)

where the pull-back permeability tensor KDEM is defined as

KDEM = JF−1 · kDEM · F-T (38)

Assume that the effective permeability tensor kDEM is isotropic, i.e.,

kDEM = kDEM I (39)

where kDEM is the scalar effective permeability in unit of m2

Pa·s . It is updated
from porosity of DEM RVEs according to the Kozeny-Carmen equation.

4.4 Numerical Example 1: Globally undrained shear test of
dense and loose assemblies

For the second example we employ our multiscale scheme to perform shear
tests on both dense and loose granular assemblies. The macroscopic geome-
try and boundary conditions are illustrated on a sample discretized by coarse
mesh (1×5×5 in X,Y,Z directions) as Fig. 8. We also use a medium fine mesh
(1×8×8) and a fine mesh (1×10×10) to investigate the mesh dependency is-
sue of the proposed scheme. All results in this section are computed from
the fine mesh model, if not specified. The nodes on the bottom boundary are
fixed in all directions and those on the upper boundary are translated identi-
cally towards the positive y axis at a constant rate. They are maintained at a
constant vertical stress σz = 100kPa by a horizontal rigid layer (not shown).
This constraint is imposed in the model by the Lagrange multiplier method.
The lateral surfaces are constrained by frictionless rigid walls (not shown).
All surfaces are impervious. The gravitational effect is not considered in this
study. For coupled microscopic DEM models, periodic unit cells composed
of uniform spheres are prepared by an isotropic compression engine in YADE
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Figure 8: Geometry and boundary conditions for globally undrained shear
test

up to σiso = 100kPa with initial porosity of 0.375 and 0.427 for dense and loose
assemblies respectively, and then are assigned identically to all the integration
points of the FEM model before shearing.

The finite strain formulation is first adopted to study the hydro-mechanical
coupling effect during the shearing of the dense and loose samples with
undrained boundaries. The material parameters used in the simulations al-
lowing hydraulic diffusion within the specimen are presented in Table 2.
They are categorized into micromechanical material parameters used in DEM
solver, poro and poro-plasticity parameters derived from DEM RVEs and
macroscopic properties set in FEM. Note that the permeability k is updated
with porosity of RVEs using the Kozeny-Carman relation during the simula-
tion. To prevent local seepage of water within the samples, the permeability k
is set to 0 m2/(Pa · s).
Fig. 9 represents the global shear stress and volumetric strain behavior
of shear simulations with and without local seepage of water. The strain-
hardening behavior of undrained dense granular assemblies (left column) and
strain-softening behavior of undrained loose granular assemblies (right col-
umn) are recovered [YIV98]. In both assemblies, when local seepage is pro-
hibited, the shear stress immediately rises when the shearing begins and the
saturated porous media behaves stiffer than the samples with local seepage.
Note that the sudden drop in Fig. 9(b) is due to the unstable solid matrix of
loosely confined DEM unit cell. The volumetric strain of the dense sample
with seepage monotonically increases. This phenomenon is attributed to the
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Parameter Value

Microscopic property Solid grain normal stiffness kn 2.2× 106 N/m
in DEM Solid grain tangential stiffness ks 1.9× 106 N/m

Solid grain friction angle β 30◦

Solid grain bulk modulus Ks 0.33 GPa

Macroscopic property Porosity φ dense: 0.375, loose: 0.427
inferred from DEM Biot’s coefficient B dense: 0.976, loose: 0.983

Biot’s Modulus M dense: 180 Mpa, loose: 168 Mpa

Macroscopic property Fluid bulk modulus K f 0.1 GPa
in FEM Initial permeability k 1× 10−9 m2/(Pa · s)

Solid density ρs 2700 kg/m3

Fluid density ρ f 1000 kg/m3

Table 2: Material parameters in globally undrained shear problem

rearrangement of solid matrix as the grains tend to rise over adjacent grains
when they are driven by shear forces. In absence of local diffusion, the dense
sample experiences a reduction of volume instead, suggesting that the com-
pression of overall solid matrix predominates the above phenomenon. As
for loose samples, however, the volumetric behavior is opposite. When local
diffusion of water is prohibited, the pore collapse and densification of local
regions within specimen could occur, resulting in a compression at early stage
of shearing before the dilatancy phenomenon. The curve of no-local-seepage
case shows that the dilatancy phenomenon prevails all along the shearing. In
all cases, the volume changes are beneath 0.12%, confirming that the samples
are indeed sheared under globally undrained condition.

We examine the mesh dependency by three aforementioned mesh densities
adopted in simulations of dense assembly with local seepage. The effect is
presented via plots of global σyz − γyz and εv − γyz responses as Fig. 10. For
stress response, discrepancy between medium and fine meshes is not signif-
icant, but coarse mesh apparently yields stiffer solution after 2% shear strain
and the maximum deviation is about 7.6% with respect to the fine mesh solu-
tion. The differences between εv curves are less significant and do not exceed
4% of the fine mesh solution. Thus, our choice of the fine mesh to conduct
numerical experiments is acceptable.

We next display the difference between the finite-strain and small-strain mul-
tiscale schemes in simulations of dense granular sample in both local diffu-
sion conditions in Fig. 11. According to the global shear responses, the small
strain and finite strain yield consistent solutions within 2% shear strain. Then
the discrepancy gradually emerges and the introduction of geometrical non-
linearity renders the sample stiffer. This observation is the same as the conclu-
sion in the previous Terzaghi’s problem section. Finite strain solutions exhibit
less volume changes in both cases. Moreover, geometrical non-linear term
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Figure 9: Comparison of global shear stress and volumetric strain behavior be-
tween globally undrained dense and loose assemblies with and without local
diffusion

even alters the dilatancy behavior: the sample is computed to be compressed
when no local seepage of water is allowed, while the small strain solution
conserves the dilatant trend.

We also assess the local diffusion effect via color maps of pore pressure de-
veloped during the deformation, as shown in Fig. 12. The dense sample with
local seepage has developed negative pore pressure and the pressure distri-
bution is nearly uniform, since fluid flow could take place inside the spec-
imen to dissipate pressure difference between neighboring pores. Without
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Figure 10: Comparison of global shear stress and global volumetric strain
behavior between coarse mesh (1×5×5), medium mesh (1×8×8), fine mesh
(1×10×10), finite strain formulation

local seepage of water, the pore pressure is concentrated to four corners of the
sample, with the upper left and bottom right corners compressed (positive
pressure) and the other two dilated (negative pressure). Furthermore, these
corners have maximum pressure gradient ||∇p f ||.
The multiscale nature of our method offers more insight into the local states
of granular sample. With the granular material behavior homogenized from
responses of RVEs, the grain displacements, the effective stress paths (shear
stress q = σ1 − σ3 vs. effective mean stress p′ = σ1+σ2+σ3

3 ) and the volumetric
strain paths (εv vs. p′) in each DEM unit cell are directly accessible. As an ex-
ample, the local distribution of q at the end of shearing for globally undrained
yet locally diffused dense sample (13) shows a concentration of shear stress in
upper left and bottom right corners, while the corners correspondent to the
other diagonal sustain comparably very little shear stress. The deformed con-
figuration of spheres in three representative RVEs are colored according to the
dimensionless displacement magnitude ||u||2

inital size of unit cell compared to initial
RVE configuration. We present stress paths of these three RVEs providing ev-
idence that strain-softening (Fig. 14(a)), limited strain-softening (Fig. 14(b))
and strain-hardening (Fig. 14(c)) could locally occur in a dense sample which
globally behaves in a strain-hardening manner. A critical state line q = ηp′ is
drawn for three stress paths and the value of slope η is identified as 1.16. η and
the Mohr-Coulomb friction angle β′ is computed to be 29.1◦ by the following
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Figure 11: Comparison of global shear stress and global volumetric strain
behavior between small strain and finite strain formulation. Left: globally
undrained with local diffusion condition, Right: globally undrained but with-
out local diffusion condition

relation for cohesionless soil [Woo90]:

sin β′ =
3η

6 + η
(40)

, which is close to the inter-particle friction angle β = 30◦. Paths of εv further
demonstrate that large local volume change up to 5.5% is possible even glob-
ally the sample is only dilated about 0.07%. According to these figures, the
small strain and finite strain shear responses are almost identical. The stress
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(a) (b)

Figure 12: Comparison of pore pressure at 10% shear strain between (a) dense
sample with local seepage and (b) dense sample without local seepage

path curves exhibit little difference. However, geometrical non-linearity has
more significant effect on volumetric strain path. A major remark is that, in-
side the strain-softening spot as 14(d), the small strain solution has large fluc-
tuation when the mean effective stress is very small, because DEM assemblies
are highly unstable with nearly zero confining stress. On the contrary, finite
strain scheme avoids this unstable regime and yield smooth solutions.

Figure 13: Spatial distribution of shear stress q at 10% shear strain for globally
undrained dense sample allowing seepage within the specimen, attached with
displacement magnitude of grains in unit cells (normalized by the initial cell
size)

Lastly, we investigate the rate-dependent shearing behavior using the pro-
posed coupling scheme. A faster shearing of saturated granular sample in-
fluences its mechanical response mainly by speeding up the solid matrix re-
arrangement and also by allowing less fluid diffusion inside the sample be-
tween loading steps. The former effect leads to swelling of the sample, while
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Figure 14: Shear stress vs. effective mean stress at different locations indexed
as Fig. 13: (b) stress path at point 1 (c) stress path at point 2 (d) stress path at
point 3; Volumetric strain vs. effective mean stress at different locations: (e)
volume path at point 1 (f) volume path at point 2 (g) volume path at point 3

the latter renders the specimen more locally undrained. Fig.15 illustrates the
combined effect of these two mechanisms on a dense sample with local seep-
age. The evolution of shear stress and volumetric strain with shearing rates of
0.1% and 0.5% per second are compared. When shearing is completed, shear
stress sustained by the sample increases about 4.6% under higher shearing
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rate. The rate effect on volumetric strain is more prominent, by the fact that
the sample experiences more volume expansion of about 13.5% at the end.
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Figure 15: Comparison of global shear stress and global volumetric strain be-
havior between low loading rate (0.1% shear strain per second) and high load-
ing rate (0.5% shear strain per second), finite strain formulation

4.5 Numerical Example 2: Globally drained triaxial compres-
sion test

The third example consists of the globally drained triaxial compression test
on an isotropically consolidated cylindrical specimen. This example demon-
strates the applicability of the proposed multiscale finite strain scheme on 3D
problems. In this numerical example, we analyze (1) the difference between
quarter-domain and full-domain simulations for material subjected to axial-
symmetrical loading, (2) the consequence of the build-up of excess pore pres-
sure due to a high loading rate and (3) the evolution of the fabric tensor inside
and outside the shear band and the implications on the critical state of the ma-
terials. As a result, water is allowed to flow through the bottom and the top of
the specimen. However, triaxial compression simulation is intentionally not
conducted under a fully drained condition at a material point level. Instead,
the rate dependence of the constitutive responses introduced via the hydro-
mechanical coupling effect is studied to quantify what is the acceptable range
of the prescribed loading rate that can prevent significant amount of excess
pore pressure.

In addition, microscopic information such as the Biot’s coefficient, Biot’s mod-
ulus and micro-structure fabric are provided to highlight the advantage of the
DEM-FEM coupled model. The convergence profile of this simulation is also
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presented. In an experimental setting, the drained triaxial test is performed
on a cylindrical water-saturated soil specimen, laterally enveloped by rubber
membrane and drained through top and bottom surfaces. One of the idealized
3D numerical model constitutes only a quarter of the cylinder by assuming
the rotational symmetry. The constant confining pressure is directly applied
on the lateral surface, neglecting the effect of rubber membrane. The quasi-
static compression is achieved by gradually increasing the axial strain εz at
the rate of 0.05% per second. The lateral surface is impermeable and a no-flux
boundary condition is imposed, while the pore water pressure on both top and
bottom surfaces are constrained to be 0. Another simulation is triaxial com-
pression of the full cylindrical domain. Similar confining pressure and pore
pressure boundary conditions are applied. The middle point of the bottom
surface is fixed to prohibit rigid body translation. The geometry, mesh and
boundary conditions of the quarter-/full-domain simulations are illustrated
in Fig. 16. The DEM assembly adopted in these simulations is identical to the
dense sample in the previous section. The fluid bulk modulus in this example
is 2.2 GPa.

(a) (b)

Figure 16: Geometry, mesh and boundary conditions for globally drained tri-
axial compression test. (a) Quarter-domain simulation. (b) Full-domain simu-
lation

Fig. 17 compares the global shear stress and volumetric strain behavior from
quarter-domain and full domain simulations. The shear stress curve ob-
tained from full-domain simulation exhibits less peak stress and more signifi-
cant softening than quarter-domain simulation. The volumetric strain curves,
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however, only show notable difference after the axial strain approaches 7%.
This discrepancy may be attributed to the strain localization in full-domain
simulation, as shown by the distribution of deviatoric strain and porosity in
Fig. 18. A dilatant shear band is developed inside the cylindrical specimen,
while in the quarter-domain, the deformation is nearly homogeneous. This
difference is more profound given the fact that the proposed model also incor-
porates the geometrical effect at the finite strain range. Results from this set of
simulations show that the quarter-domain simulation is insufficient to capture
the deformed configuration when bifurcation occurs. While the assumption of
axial-symmetry is valid before the onset of strain localization, enforcing axial-
symmetry via reduced domain and additional essential boundary condition
may eliminate the bifurcation mode(s) that is not axial-symmetric.
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Figure 17: Global shear stress and volumetric strain behavior in globally
drained triaxial compression test. Comparison of quarter-domain and full-
domain simulations

An additional full-domain simulation is performed at a strain rate ten times
slower: ε̇z = 0.005% per second. The global shear stress and volumetric strain
behavior are compared for the two loading rates in Fig. 19. The specimen
under higher strain rate can sustain higher shear stress, but the strain rate
has very little influence on volumetric strain behavior. The evolution of pore
pressure at the center of the cylindrical specimen in two cases are also shown
in Fig. 20. At a high strain rate, the pore water does not have time to fully
diffuse through local pores and reach steady state. As a result, excess pore
pressure builds up to about 5 kPa while the specimen shrinks. The pressure
then decreases and becomes negative when the specimen dilates. In the low-
strain-rate case, the magnitude of pore pressure is about five times smaller
while the trend looks similar of the high-strain-rate counterpart.

One of the advantages of substituting macroscopic phenomenological consti-
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(a) (b)

(c) (d)

Figure 18: Distribution of deviatoric strain and porosity in globally drained
triaxial compression test at 9% axial strain. Comparison of quarter-domain
and full-domain simulations.

tutive model with DEM simulations for the poromechanics problem is that
the macroscopic poro-elasticity properties, such as Biot’s coefficient B, Biot’s
modulus M and effective permeability k could be inferred and updated from
DEM at each Gauss point. As a result, the spatial variability of these poro-
elasticity parameters triggered by material bifurcation or non-homogeneous
loading can be properly captured. As an example, we monitor the evolution
of these poro-elasticity parameters against axial strain εz for a RVE inside the
shear band (RVE A, shown in Fig. 18(c)) and another RVE outside the shear
band (RVE B, shown in Fig. 18(c)) in the ε̇z = 0.05%-per-second, full-domain
simulation (Fig. 21). The evolution of the Biot’s coefficient B shown in Fig.
21)(a) suggests that the effective bulk modulus of the solid skeleton (KDEM

T )
first increases and then decreases presumably due to the porosity changes in
both RVEs A and B. The Biot’s modulus M, which is related to the Biot’s coeffi-
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Figure 19: Global shear stress and volumetric strain behavior in globally
drained triaxial compression test. Comparison of two loading rate.
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Figure 20: Evolution of pore pressure at the center of the cylindrical specimen
during triaxial compression test subjected to two loading rate.

cient B and porosity φ, exhibits an initial reduction and largely increases after
about εz = 2% for RVE A. For RVE B, M stays at a constant value. The effective
permeability k also evolves with the porosity according to the Kozeny-Carmen
relation.

Another advantage of the multiscale scheme is the accessibility to evolution
of micro-structures during deformations. To demonstrate this, we perform a
simple microstructural analysis in which the Anisotropic Critical State Theory
(ACST) introduced by [LD12, ZG13, LD15] is adopted to analyze the fabric of
the fluid-saturated granular assemblies at the finite strain range. The fabric
anisotropy of two RVEs, one taken inside the shear band (RVE A) and another
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Figure 21: Evolution of (a) Biot’s coefficient, (b) Biot’s modulus and (c) effec-
tive permeability for RVE A (inside shear band, Fig. 18(c)) and RVE B (outside
shear band, Fig. 18(c)).

one in the host matrix (RVE B) are analyzed and compared against each other.
The fabric tensor Gfabric is contact-normal-based and is computed from a DEM
RVE via [LD15]

Gfabric ij =
1

Nc
∑

c∈Nc

nc
i nc

j (41)

where nc is the unit vector of contact normal and Nc is the number of contacts
inside the RVE. The tensor Ffabric characterizes the fabric anisotropy of the
RVE and is written as [ZG13]

Ffabric ij =
15
2
(Gfabric ij −

1
3

δij) (42)

where δij is the Kronecker delta. Its norm Ffabric and direction nF are defined
by

Ffabric = FfabricnF, Ffabric =
√

Ffabric : Ffabric (43)

To analyze whether and how fabric evolves differently inside shear band and
the host matrix, we compute the normalized fabric anisotropy variable (FAV)
A = nF : ns (a measure introduced in [LD12, ZG13] that quantifies the relative
orientation of the tensor Ffabric and the deviatoric stress tensor s) for RVE A
(inside shear band) and RVE B (outside shear band). The evolution of devia-
toric stress q and porosity against axial strain εz are also monitored to measure
how close the materials in the two RVEs reach the critical state according to
the anisotropic critical state theory, i.e.,

η = ηc, e = ec = êc(p) and A = Ac = 1 (44)

where η is the ratio between the effective mean pressure p′ and the deviatoric
stress q and e is the void ratio. ηc, ec = êc(p) and Ac = 1 are critical state values
of the stress ratio, void ratio and fabric anisotropy variable (cf. [LD12, LD15]).
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The results are summarized in Fig. 22. The stress-strain response shown in
Fig. 22(a) indicates that RVE A becomes unstable after the peak shear stress
and experiences significant dilation until the critical state indicated by the
plateau in the porosity curve. The normalized FAV of RVE A rises to about
0.96 quickly upon subjected to the triaxial loading. Then, normalized FAV
stay close to 1, which indicates that the fabric and stress directions in RVE A
is nearly coaxial, as the RVE A approaches the critical state.

On the other hand, RVE B, which lies outside the shear band, experiences
slightly more softening, but the dilatancy is much less than RVE A. The FAV
curve of RVE B deviates from the curve of RVE A after axial strain of 2% and
exhibits opposite trend that the fabric and stress directions loss coaxiality. This
observation suggests that the critical states are not achieved simultaneously
within an specimen that forms deformation band.
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Figure 22: Evolution of (a) deviatoric stress q (b) porosity (c) A = nF : ns (rel-
ative orientation between anisotropic fabric and deviatoric stress directions)
during triaxial compression test (ε̇z = 0.05%/s) for RVE A (inside shear band,
Fig. 18(c)) and RVE B (outside shear band, Fig. 18(c)).

To demonstrate the performance of the multiscale semi-implicit scheme, the
convergence rate of the quarter-domain simulation is illustrated in Fig. 23 as
an example. At different strain levels, the convergence curves show linear
profiles in the logarithm-scale plot. The first step converges the fastest since
the RVEs are linear elastic at εz = 0.1%.

The number of iterations required for convergence increases to 11 when the
global shear stress reaches the peak (about εz = 2%). In the softening stage,
the explicitly treated the elastic-plastic contribution Kep to the material tan-
gential stiffness becomes more significant. Therefore the convergence rate is
further reduced and each time step requires about 20 iterations.
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Figure 23: Convergence profiles of the triaxial compression test at different

axial strain levels. The relative error is defined as ||∆Fi ||
||∆F(i=0) || , where ∆Fi is the

residual force at the iteration step i. The convergence is reached when the
error falls below 10−4.

5 Multiscale homogenization for embedded dis-
continuities

Here we present the procedure to obtain the hydro-mechanical constitutive
updates for embedded strong discontinuity from microscale simulations on
RVEs nested inside the material interfaces. The computational homogeniza-
tion schemes of single-physics material layers have been explored in a num-
ber of previous studies [HRSS09, CKBG12, BKC+14, WS18]. For instance,
[HRSS09] have introduced a procedure to generate an effective cohesive zone
law for a single interface from microscale RVE. In those studies, FE2 simu-
lations with interface elements are used as the test bed. [CKBG12, BKC+14]
establish a multi-scale approach for RVE (or Microstructural Volume Element
as introduced in the literature) having localized zones and proposed a new
generalized periodic boundary condition. The overall macro-homogeneous
deformation is applied to the MVE and the stress and displacement jump are
homogenized. The local equation to be solved is the consistency between the
macro displacement jump and the homogenized displacement jump in the
RVE, instead of the traction continuity equation. [TSH+14, TSP+16] proposed
multiscale model at regular points (MMRp) and singular points (MMSp).
It has been successfully used in enhanced strain finite element simulations
[OCR+15]. In this study, the RVEs of discrete elements describe the underly-
ing microstructures inside the discontinuity interface. Based on the effective
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stress principle, the mechanical and hydraulic constitutive laws are obtained
separately from two types microscale simulations, i.e. the grain-scale DEM
simulation and the pore-scale LBM simulation, as explained in [SKR13] and
[WS16]. In other words, the effective traction and the interfacial permeabil-
ity (and hence the interfacial Darcy’s velocity) are both obtained from the
same deformed configuration. However, the deformed configuration is not
obtained from LBM-DEM simulations but from DEM simulations that gener-
ate the admissible boundary conditions by assuming the validity of the effec-
tive stress principle. The major advantage of this approach is two-fold. First,
the calculations of the interfacial permeability are much faster. This is due to
the fact that the de-coupled permeability calculation can be conducted offline
such that the trained and validated neural network can be used to replace
the costly LB simulations). The second advantage is the simplicity. As the
effective stress approach does not require the introduction of particle-scale
hydro-mechanical force and any treatment to update the fluid-solid bound-
ary at pore scale. Nevertheless, it should be noted that the validity of this
split approach is designed for the case in which the effective stress principle is
applicable for the dual-permeability system. In many situations that involve
particle erosion [GTSMW15, TPF+17], soil liquefaction [ESA14], or solid-fluid
mixture with non-Darcy flow or high Reynold’s number, such a simplification
may lead to significant errors. In such cases, one must derive the correspond-
ing Hill-Mandel condition for the multi-physical poromechanics problems to
obtain the admissible boundary conditions and apply them to the DEM-LBM
model or use direct numerical simulation (DNS) to capture the multi-physical
problems.

The homogenization procedure of mechanical constitutive law for interface
is an extension of the approach described in [HRSS09] to particle assembly
using the theory in [MD04, MDZ10]. Consider a domain at the continuum
scale discretized by a finite element mesh with enhanced assumed strain or
extended finite element to capture the displacement jump kinematics 24.

Figure 24: discrete element-informed interface constitutive responses.

At a material point across the interface, there exists a cubic sampled assem-
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bly of discrete particles representing the granular material inside the strong
discontinuity (Fig. 25). The body force is negligible at micro-scale. This RVE
of domain Ωµ and boundary ∂Ωµ has an initial height of h0

µ and is associated
with a coordinate system with basis vectors Mµ and Nµ. Choose the geomet-
ric center as the origin and place the RVE in alignment with the normal and
tangential directions of the strong discontinuity Γ in the reference configura-
tion (Nµ = N, Mµ = M). The current position xc

µ of a center of a particle is
related to its position Xc

µ in the reference configuration via the deformation

map ϕµ. The local deformation gradient Fµ =
δϕµ

δXc
µ

. The volume average of Fµ

is given as:

〈Fµ〉 =
1

V0

∫

Ωµ

Fµ dΩµ =
1

V0

Nbound

∑
i

(xc
µ)i ⊗ Ac

i , (45)

where V0 is the initial volume of the RVE. Ac
i is the surface vector of ∂Ωµ asso-

ciated with the particle i and Nbound is the number of particles on ∂Ωµ. Assum-
ing rigid particles, the motion of a particle material point can be decomposed
to the motion of the particle center and the particle rotation, i.e.,

xµ = xc
µ + Rµ · (Xµ − Xc

µ); xc
µ = 〈Fµ〉 · Xc

µ + wc, (46)

where wc is the particle center displacement fluctuation and Rµ ∈ SO(3) de-
scribes the particle rotation.

The overall effective Piola stress is given by the volume average

〈P′µ〉 =
1

V0

∫

Ωµ

P′µ dΩµ =
1

V0

Ncont

∑
cont

f cont
µ ⊗ Lcont

µ =
1

V0

Nbound

∑
i

( f ext
µ )i ⊗ (Xc

µ)i,

(47)
where f cont

µ is the contact force at the grain contact xcont
µ . Lcont

µ is the initial
branch vector, the vector that connects the centroids of two grains forming the
contact. Ncont is the total number of particles contacts in the RVE. ( f ext

µ )i is
the external support force acting on the boundary particle i. The transition be-
tween the summation involving contact forces and the summation involving
external support forces is ensured by the equilibrium of the RVE of particles.

The volume average of the virtual power in the RVE is given by

〈P′µ : Ḟµ〉 =
1

V0

∫

Ωµ

P′µ : Ḟµ dΩµ =
1

V0

Nbound

∑
i

( f ext
µ )i · ˙(xc

µ)i. (48)

The Hill-Mandel micro-heterogeneity condition requires the volume average
of the virtual power in the RVE to equal the virtual power done by the volume
averages of power-conjugate stress and deformation measures:

〈P′µ : Ḟµ〉 = 〈P′µ〉 : 〈Ḟµ〉. (49)
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Since the constitutive behavior of the RVE is homogenized to a traction-
separation law on the interface, the Hill-Mandel condition is recast into the
form involving power-conjugate effective traction and displacement jump
measures

h0〈P′µ : Ḟµ〉 = 〈T ′Γ〉 ·Lv JuK = 〈T Γ〉 · ˙JUK. (50)

For the transition between the macro-scale kinematics of the strong discon-
tinuity and the deformation of the micro-scale RVE, the volume average of
deformation gradient is defined as

〈Fµ〉 = I +
1

h0
µ

JuK⊗N. (51)

The effective nominal traction 〈T ′Γ〉 averaged in the RVE representing the in-
terface is given by:

〈T ′Γ〉 = 〈P′µ〉 · N. (52)

Among the admissible boundary conditions fulfilling the Hill-Mandel micro-
heterogeneity condition, we adopt the periodic boundary conditions, where
for a pair of particles on opposite boundaries ∂V+ and ∂V−, the periodicity
enforces the periodicity of fluctuations and rotations

w−c = w+
c , R−µ = R+

µ , (53)

and the anti-periodicity of support forces and couples

a−c = −a+
c , m−c = −m+

c , (54)

where ac is the opposite of the resultant force on the boundary particle exerted
by other particles, mc is the opposite of the resultant couple about the center
Xc on the boundary particle.

5.1 Offline incremental data-driven hydraulic responses for
strong discontinuities

The homogenization procedure used to obtain the effective permeability from
a microstructure RVE has been previously studied in [DOS06, OSDKL07,
SAR11, SKR13]. Here we apply the same procedure to obtain the homog-
enized effective permeability of the embedded strong discontinuities. As-
sume that the separation of the spatial length scale is valid, one may use the
Hill-Mandel lemma corresponding to Darcy’s flow problem to determine the
admissible boundary condition for the flow problems. Recall that the Hill-
Mandel lemma requires that

〈∇x pM · qM〉x = 〈∇x pM〉x · 〈qM〉x (55)
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where 〈·〉x is the spatial volume averaged operator.

As shown in [DOS06] and [OSDKL07], this can lead to a number of admissible
boundary conditions. For instance, one may either prescribe flux or pore pres-
sure gradient in two opposite faces of the RVEs. One interesting aspect found
in previous works (cf. [DOS06, SAR11, SKR13, KSW15]) is that the choice of
the boundary condition does not affect the effective permeability once the size
of the RVE is sufficiently large. We follow the treatment in [dB17] and assume
that there is no pore pressure jump across the interface, whereas discontinu-
ous mass flux is admissible.

The effective permeability tensor of a RVE can be determined via inverse fluid
flow problem performed on the deformed RVE subjected to prescribed load-
ing paths. The Eulerian fluid flux vector q within the RVE is computed when
subjected to Eulerian pressure gradient ∇x p, and the macro-pore effective
permeability kM

RVE is determined by Darcy’s law

qM = − 1
µ

kM
RVE∇x pM. (56)

µ is the dynamic viscosity of the fluid. We assume that the normal and tan-
gential directions of the interface are also the principal directions of the macro-
pore effective permeability tensors. Thus, we need only two hydraulic simu-
lations to determine the permeability values normal and tangential to the in-
terface, denoted as kM

n and kM
m , respectively. Thus the permeability tensor is

expressed as
kM

RVE = kM
n n⊗ n + kM

m m⊗m, (57)

where n = F · N and m = F−T · M. We choose the lattice Boltzmann (LB)
method to solve the inverse fluid flow problem. For brevity, we omit the de-
scription of the LB method. Interested readers are referred to [SARE11, SKR13]
and [KSW15] for details. The LB code used in this study is a C++ open source
code called Palabos [DBBM10]. The procedure to obtain the two normal and
tangential components is as follows. We first record the positions of all grains
in the deformed microstructural assembly at different strain levels. As the
size of each grain is known, the configuration of the pore space can be recon-
structed and subsequently converted into binary images (cf. [SKR13]). Then,
pore pressure difference is imposed on two opposite sides orthogonal to the
flow direction and no-flow boundary conditions are applied on the four re-
maining side faces. This setting leads to a macroscopic pressure gradient. As
the lattice Boltzmann flow simulation reaches steady state, the resultant fluid
flow velocity is computed and the permeability value is derived via Darcy’s
law (Fig. 25). Fig. 28 illustrates an example computation of permeabilities
from LBM. The RVE is subjected to various displacement loading paths with
loading-unloading cycles. The evolution of normal and tangential permeabil-
ities predicted by the neural network are presented and are compared to the
empirical Kozeny-Carman equation.
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Figure 25: Initial and deformed configurations of the particle assembly repre-
senting the granular materials inside strong discontinuity. The effective per-
meabilities in the normal and tangential directions are determined by Lattice-
Boltzmann simulations on representative volume of current particle assembly.

The numerical solutions of Stokes equations using Lattice-Boltzmann method
yield accurate results, especially in the low Reynold number regime, but re-
quire significant computational resources to resolve the flow field at pore
space. To achieve a reasonable accuracy, the number of degree of freedoms
required to obtain the effective permeability is at least a few orders more than
those used in discrete element simulations [SKR13] Thus, querying the effec-
tive permeability tensor from LBM simulations from each RVE for all incre-
mental steps during a multiscale simulation is computationally expensive. In
this work, we resort to a deep learning approach to predict the effective per-
meability for each incremental step. The design, training, and testing of the
LSTM network on path-dependent material constitutive laws are detailed in a
separate and dedicated work (cf. [WS18]). For completeness, a brief overview
is provided.

First, a database containing the prescribed displacement jump loading paths,
porosity and associated computed permeabilities is established by running
multiple LBM simulations on deformed discrete element RVEs. Then, a recur-
rent neural network consisting of Long-Short-Term-Memory (LSTM) layers
(see Figure 26) is trained using the database generated by LBM simulations
[HS97, WS17]. In a nutshell, the training process attempts to minimize an ob-
jective function by adjusting the weights of each neuron in the layers through
a back-propagation process. The LSTM approach is different than the tradi-
tional feed-forward neural network proposed by [GPZHA98] and [LS02] in
the sense that (1) the LSTM neuron (see Figure 27) has the capacity to use in-
ternal memory to process history and sequence and hence ideal for predictions
for path-dependent materials, (2) the LSTM networks are designed to avoid a
problem called vanishing or exploding gradient problems that may otherwise
lead to issues during the training process.
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Figure 26: The recurrent neural network used to predict the permeability of
the interface.

Figure 27: A LSTM block with input, output and forget gates.

Finally, in each incremental update of the multiscale strong discontinuity
simulation, the updated effective permeability components are generated by
propagating signals from the input layer of the recurrent neural network to
the output layers. In this particular case, the current displacement jumps and
porosity are used as the input and the principal values and the spectral direc-
tions of the effective permeability tensor are the output of the recurrent neural
network. One important upshot of this approach is that the querying time is
largely reduced, as the deep learning permeability model typically requires
only few seconds to make predictions.

5.2 Numerical Example: Reactivation of faults

This example analyzes the slip of a pre-existing and formerly stable fault in
saturated soil triggered by the injection of water at a nearby location. The
idealized problem geometry and boundary conditions are shown in Fig. 29.
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(a) Displacement jump loading path (b) Evolution of permeabilities along
loading path

Figure 28: Example of permeability data generated from LBM simulations on
RVEs undergoing loading-unloading sequences. (a) loading path of the nor-
mal Un and tangential displacement jumps Us. (b) Comparison between the
normal kn and tangential ks permeability data from LBM simulations and the
permeability components from predictions of LSTM neural network model.

The calculation from empirical Kozeny-Carman equation k =
d2

50
180

φ3

(1−φ)2 (d50 =

1mm) is shown for comparison.

The dimensions of the 2D field of saturated porous media are 10 m x 10 m.
The domain is constrained in the x-direction on the left boundary and in the
y-direction on the bottom boundary. A foundation has been constructed on
top of the domain, generating a uniform loading pressure of 10 MPa. A lateral
confining pressure of 5 MPa is applied on the right boundary for the frictional
porous media to sustain the vertical load. There exists a 45-degree fault under
the foundation. The entire system is stable and has been in equilibrium for a
long time since the construction of the foundation, thus the excess pore pres-
sures in both fractures and host matrix are zero. The initial effective stress of
the porous solid is hence

σ
′
Init =

[−5 0
0 −10

]

xy
MPa, (58)

where the subscript xy refers to the coordinate system {x, y} depicted in Fig.
29.

The DEM RVEs characterizing the traction-separation law of the fault are
placed in alignment with the strong discontinuity. They must be in the ini-
tial stress state consistent to the macroscopic boundary conditions. From the
initial stress state of the macro-scale problem (Eq. 58) and via a coordinate
transformation (σmn = RT · σxy · R), the initial stress tensor of the DEM as-
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Figure 29: Geometry of fault reactivation problem and boundary conditions.
Red line represents the pre-existing fault.

semblies is expressed as

σ
′
InitRVE =

[−7.5 2.5
2.5 −7.5

]

mn
MPa, (59)

where the subscript mn refers to the rotated frame {m, n} for the fault depicted
in Fig. 29. The initial DEM RVEs in this stress state provide the correct amount
of initial shear and normal tractions along the strong discontinuity.

In this example, the particle contact model for DEM is frictional and with-
out cohesion. The normal and tangential permeabilities are obtained from
machine learning models trained with LBM simulation data. The bulk mate-
rial is idealized as isotropic hyperelastic material. The permeability tensors
in macro- and micro-pores of the bulk are assumed isotropic and evolve ac-
cording to the Kozeny-Carman equation. The material parameters used in the
numerical example are summarized in [WS19].

Water is injected to the macropore space (pre-existing fractures) of the field
through the source S located at the center of the domain. The macropore
pressure is zero on the top surface and the other three surfaces are no-flow
boundaries. There is no drainage boundary for micropore pressure. This flow
boundary condition is to suppress spurious micropore pressure oscillations
near the drainage boundary [CB15]. The prescribed time history of Darcy ve-
locity at the source is shown in Fig. 30. The injection profile is composed of
injection-pause cycles, in which water supply is provided for 40 hours under
a constant rate of 0.02 m/s, followed by a pause for 10 hours before the next
cycle of injection. From the simulation results, the time history of the pore
pressure in both scales at the source S is presented in Fig. 30. Upon injection
or pause, the macropore injection pressure jumps up or plunges immediately,
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(a) (b)

Figure 30: Water supply in the fault reactivation problem. (a) Time history
of the prescribed injection velocity in macropore at the source point. (b)
Computed responses of injection pressure in macropore and micropore at the
source point. The numbers mark the sequence of injection-pause cycles.

while the micropore pressure at the injection point has the opposite behavior.
This is caused by the low mass transfer permeability between the macropores
and micropores. Then in the transient regime, when fluid gradually diffuses
into the micropores by mass transfer, micropore pressure slowly approaches
the macropore pressure. The two pressures will eventually be identical when
the diffusion between pores reaches equilibrium.

The macropore and micropore pressure field at time 40 h, 100 h and 180 h are
presented in Fig. 31. The pressure plume is initially of the shape of a circle and
then expands as the increasing amount of water are being injected through the
source. The pore pressure drops when the injection pauses, but the plume is
still expanding, driven by the excess pore pressure that has not been entirely
diffused. When the injection is resumed, the pore pressure rises again.

The presence of the fault with higher permeability disturbs the pressure
plume. The fluid flows more quickly to the top surface through the chan-
nel inside the fault. As for the micropore pressure field, it has a similar but
delayed evolution behavior, due to the time required for the fluid transfer be-
tween macropores and micropores. The difference between macropore and
micropore pressure is due to the different permeability in macropores and
micropores for the fluid to diffuse in the macro-scale field, and also the low
transfer permeability between pores.

Due to the fully coupled nature of the problem, the mechanical responses of
the porous solid, especially the displacement jump and traction at the strong
discontinuity, strongly depend on how pore fluid diffuses inside the pore
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(a) 40 hours (b) 100 hours (c) 180 hours

(d) 40 hours (e) 100 hours (f) 180 hours

Figure 31: Evolution of macropore pressure (a-c) and micropore pressure (d-f)
field. Arrows indicate the fluid flux vector field in macropores (a-c) and in
micropores (d-f). The non-zero components normal to the impervious bound-
aries are due to the inaccuracy of the nodal projection of the flow vector field
evaluated at quadrature points.

(a) 40 hours (b) 100 hours (c) 180 hours

Figure 32: Evolution of the mean effective stress field in the macro-scale sim-
ulation.

space. The evolution of macro-scale mean effective stress field during the fluid
injection cycles is shown in Fig. 32.
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(a) 40 hours (b) 100 hours (c) 180 hours

Figure 33: Evolution of the differential strain field in the macro-scale simula-
tion.

The increase in the mean effective stress is due to the increase in excess pore
pressure, in agreement to the effective stress principle. This results in a re-
duction in the normal compression traction. As the fault is frictional, this re-
duction in normal compression also reduce the shear strength and ultimately
leads to the reactivation of the fault. The slip can be clearly observed from
the changes in deviatoric strain field illustrated in 33. The deviatoric strain
gradually increases and concentrates inside the fault zone.

(a) RVE A (b) RVE B (c) RVE C

Figure 34: History of normal Un and tangential Us components of the dis-
placement jump JuK for local RVEs A, B and C (location shown in Fig. 33). The
numbers mark the sequence of injection-pause cycles (Fig. 30).

This simulation result suggests the hazardous effect of injecting water to the
underground, as a fast fluid flow may trigger the slip of a nearby pre-existing
fault, leading to the failure of the foundation.

The Figures clearly illustrate the failure of the fault system by the opening and
sliding of the local microstructures, caused by reductions in both normal and
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(a) RVE A (b) RVE B (c) RVE C

The local responses to the fluid injection-pause cycles, including the spatial
displacement jump, effective nominal traction and spatial macropore

permeability, are illustrated in Fig. 34, Fig. 35 and 36 respectively for three
locations A, B, C in the fault indicated in Fig. 33.

Figure 35: History of normal Tn and tangential Ts components of the effective
nominal traction T ′ for local RVEs A, B and C (location shown in Fig. 33). The
numbers mark the sequence of injection-pause cycles (Fig. 30).

tangential traction.

(a) RVE A (b) RVE B (c) RVE C

Figure 36: History of normal kn and tangential ks components of the macro-
pore permeability kRVE for local RVEs A, B and C (location shown in Fig. 33).
The numbers mark the sequence of injection-pause cycles (Fig. 30).

These results demonstrate the capacity of our proposed multiscale model in
capturing the complex mechanical and hydraulic behaviors of the interfa-
cial materials. This is an improvement over the phenomenological traction-
separation laws where idealized tensile and shear (linear or exponential) be-
havior is often adopted [PP11, BS18].
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