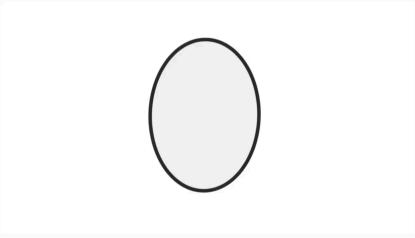
Thermo-hydro-mechanical couplings in geomaterials

Iean-Michel Pereira

ALERT Doctoral School, 2025, Aussois

Laboratoire Navier, École des ponts

Breaking eggs...



(https://www.youtube.com/@TheScienceClassroom)

THM processes in geomaterials

(EPFL – Mathieu Nuth)

Applications:

- \cdot shallow energy geostructures
- slope stability, incl. permafrost
- energy production and storage
- nuclear waste disposal
- CO₂ geological storage
- ...

THM processes in geomaterials

(EPFL – Mathieu Nuth)

Physical processes:

- humidity effects
- thermal stress/strains
- thermal pressurisation
- phase changes
- ٠...

Outline

- 1. Starting from thermodynamics
- 2. Basics of constitutive modelling
 - Thermal problem
 - Hydraulic problem
 - Mechanical problem

- 3. THM couplings
 - Transport properties
 - Thermal expansion
 - Thermal consolidation
- 4. THM models
 - Unsaturated geomaterials
 - Thermoporoelastoplastic models
- 5. Application

Starting from thermodynamics

Pioneers

Pioneers

Prof. Karl von Terzaghi (1883-1963)

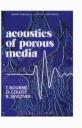
Prof. Maurice A. Biot (1905-1985)

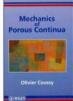
Prof. Olivier Coussy

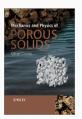
(1953 - 2010)

A poromechanics legacy

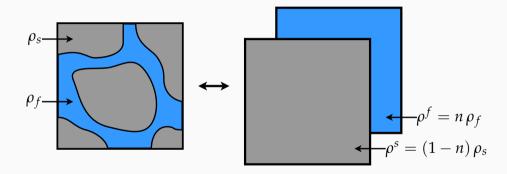
- 5 books
- · c.a. 100 papers in scientific journals
- Laboratoire Navier (ENPC/UGE/CNRS)



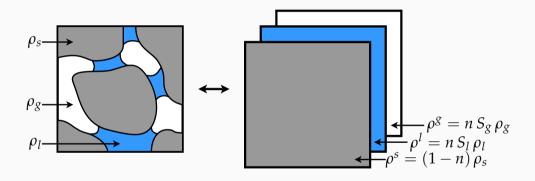




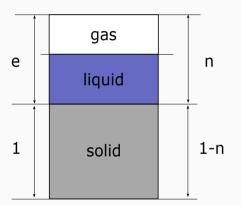
Porous media: a few definitions



Porous media: a few definitions



Porous media: a few definitions



Porosity and degree of saturation:

$$n \text{ or } \phi = \frac{\text{pores vol.}}{\text{total vol.}}$$

$$S_l = \frac{\text{liquid vol.}}{\text{pores vol.}} = 1 - S_g$$

Thermodynamic/energetic approach: overview

- · Define the system!
- Balance of energy at continuum scale¹ (Coussy 2004)
 - state equations (energy potential and state variables)
 - · conjugate variables
- · Identify an energy potential
 - deduce the constitutive relations
 - · e.g. quadratic potential provides linear behaviour

¹RVE, macroscale

Energetic approach – illustration

Infinitesimal work to the initial system

for a 1D spring: dW = F dx

Infinitesimal work to the initial system

for a 1D spring: dW = F dx

for a non porous solid: dW = -p dV

Infinitesimal work to the initial system

for a 1D spring: dW = F dx

for a non porous solid: dW = -p dV

for a porous solid: $dW = -p dV + p_l d(n V)$

Infinitesimal work to the initial system

for a 1D spring: dW = F dx

for a non porous solid: dW = -p dV

for a porous solid: $dW = -p \, dV + p_l \, d(n \, V)$

Infinitesimal strain work (solid skeleton) $dW = dw V_0$

for a porous solid: $dw = p d\epsilon_v + p_l d\phi$

Conjugate variables

Work input (extended to triaxial space)

$$dw = p d\epsilon_v + q d\epsilon_q + p_l d\phi$$

Strain-work conjugate variables

$$p \longleftrightarrow \epsilon_{v}$$
 $q \longleftrightarrow \epsilon_{c}$
 $\epsilon_{l} \longleftrightarrow \phi$

Conjugate variables – Terzaghi stress

Incompressibility of the solid grains ($K_s \gg K$) (Coussy 2004)

$$\mathrm{d}\epsilon_{\mathrm{V}} = -\mathrm{d}\phi$$

Strain work input (Schofield and Wroth 1968)

$$dw = (p - p_l) d\epsilon_v + q d\epsilon_q$$
$$= p' d\epsilon_v + q d\epsilon_q$$

Conjugate variables

$$p' = \frac{1}{3}(\sigma_1' + 2\sigma_3') \longleftrightarrow \epsilon_v = \epsilon_1 + 2\epsilon_3$$
$$q = \sigma_1 - \sigma_3 \longleftrightarrow \epsilon_q = \frac{2}{3}(\epsilon_1 - \epsilon_3)$$

Conjugate variables – tensorial form

Work input

$$dw = \boldsymbol{\sigma} : d\boldsymbol{\epsilon} + p_l d\phi = \sigma_{ij} d\epsilon_{ij} + p_l d\phi$$

Strain-work conjugate variables

$$\sigma \longleftrightarrow \epsilon$$
 $p_l \longleftrightarrow q$

Work input (incompressibility)

$$dw = \boldsymbol{\sigma}' : d\boldsymbol{\epsilon} = \sigma'_{ij} d\epsilon_{ij}$$

Strain-work conjugate variables

$$oldsymbol{\sigma}' \;\;\longleftrightarrow\;\; oldsymbol{\epsilon}$$

How to get the constitutive laws?

Work input and dissipation – Clausius-Duhem inequality

Beyond reversibility?

Application of first and second laws of thermodynamics

$$dD = dw - dF \ge 0$$

D: dissipation

F: free energy of the solid skeleton

State equations in reversible case

Clausius-Duhem inequality

$$dD = \sigma_{ij} d\epsilon_{ij} + p_l d\phi - dF \ge 0$$

Elasticity \Leftrightarrow reversibility i.e. no dissipation (dD = 0 and $\epsilon = \epsilon^e$ and $d\phi = d\phi^e$)

$$dF = \sigma_{ij} d\epsilon_{ij} + p_l d\phi$$

Hence $F = F(\epsilon, \phi)$ and the following state equations hold

$$\sigma = \frac{\partial F}{\partial \epsilon}$$

$$p_l = \frac{\partial F}{\partial \phi}$$

Linear poroelasticity

Energy potential F

Inspecting the state equations, it appears that a linear behaviour stems from a quadratic potential

 \rightarrow From a stress- and pressure-free reference state

$$\sigma = \mathbb{D} \epsilon - b p_l \delta
\phi - \phi_0 = -b \epsilon_v + \frac{p_l}{N}$$

Linear poroelasticity

Energy potential F

Inspecting the state equations, it appears that a linear behaviour stems from a quadratic potential

 \rightarrow From a stress- and pressure-free reference state

$$\sigma = \mathbb{D} \epsilon - b p_l \delta$$

$$\phi - \phi_0 = -b \epsilon_v + \frac{p_l}{N}$$

D: stiffness matrix

b: Biot coefficient, $b = 1 - \frac{K}{K_s}$

N: Biot modulus, $\frac{1}{N} = \frac{b - \phi_0}{K_s}$

Linear poroelasticity

Energy potential F

Inspecting the state equations, it appears that a linear behaviour stems from a quadratic potential

\rightarrow From a pre-stressed state

$$\sigma - \sigma_0 = \mathbb{D} \epsilon - b (p_l - p_{l,0}) \delta$$

$$\phi - \phi_0 = -b \epsilon_V + \frac{p_l - p_{l,0}}{N}$$

D: stiffness matrix

b: Biot coefficient, $b = 1 - \frac{K}{K_s}$

N: Biot modulus, $\frac{1}{N} = \frac{b - \phi_0}{K_c}$

Nonlinear poroelasticity

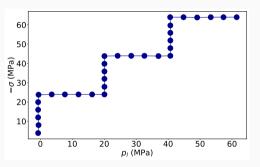
Incremental form of the constitutive equations

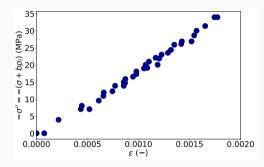
$$d\boldsymbol{\sigma} = \mathbb{D}(\boldsymbol{\sigma}, p_l) d\boldsymbol{\epsilon} - b(\boldsymbol{\sigma}, p_l) dp_l \boldsymbol{\delta}$$
$$d\phi = -b(\boldsymbol{\sigma}, p_l) d\epsilon_v + \frac{dp_l}{N(\boldsymbol{\sigma}, p_l)}$$

Material parameters are tangent properties, and depend on material state

Stress variable(s) – Biot stress and Biot coefficient

From $d\sigma = K d\epsilon_V + b dp_I$, introduce the Biot stress: $d\sigma'' = d\sigma - b dp_I$ so that $d\sigma'' = K d\epsilon_V$





Unjacketed test on a limestone ($K_s = 52.7 \text{ GPa}$) (Coussy 2004)

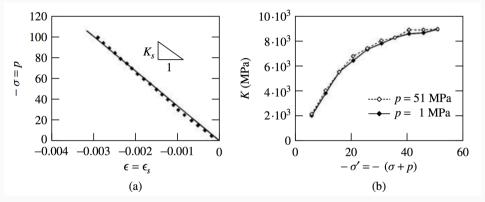
Stress variable(s) – poromechanical properties

Material	φ (%)	$K \text{ (MPa} \times 10^3)$	b (-)	$N \text{ (MPa} \times 10^3)$
Cement paste	40–63	15–2	0.07-0.37	1170–20
Mortar	27–40	15–3	0.04 - 0.35	2340-40
Bone	5	12	0.14	160
Granites	1–2	25–35	0.22 - 0.44	280-370
Marble	2	40	0.20	280
Sandstones	2–26	4.6–13	0.69 - 0.85	~17
Limestones	4–29	5–39	0.34-0.88	100–400

Order of magnitude of poroelastic properties for different materials (Coussy 2004)

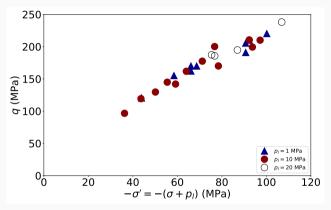
For soils:
$$b = 1 - \frac{K}{K_s} \approx 1$$
 and $N \to \infty$.

Biot (effective?) stress – case of non-linearity



Experimental confirmation of non-linear constitutive equations for a sandstone (after Bemer et al., 2001), cited by (Coussy 2004)

Biot (effective?) stress – yield function



Experimental validation of yield function in terms of Terzaghi stress for a limestone with b = 0.63 (after Vincké et al., 1998), cited by (Coussy 2010)

Back to Clausius-Duhem inequality, beyond reversibility?

$$dD = \sigma_{ij} d\epsilon_{ij} + p_l d\phi - dF \ge 0$$

Assuming that elasticity still gives

$$dF = \sigma_{ij} d\epsilon^e_{ij} + p_l d\phi^e$$

But this time, $dD \neq 0$ and $\epsilon = \epsilon^e + \epsilon^p$ and $d\phi = d\phi^e + d\phi^p$

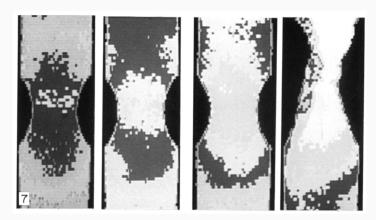
Dissipation

$$dD = \sigma_{ij} d\epsilon_{ij}^p + p_l d\phi^p \ge 0$$

See also hyperplasticity theory (Houlsby and Puzrin 2006) to go further

Dissipation?

Dissipation?



Infrared thermovision of unstable failure in rock salt (Luong 1990)

Basics of constitutive modelling

"A model is a lie that helps you see the truth."

— Howard Skipper

Definitions

Constitutive relations

- · Mathematical relation between conjugate variables
- Introduce material parameters
- · Allow closing the problem

Example in mechanics

Unknowns	Equations	
σ , 6	Equilibrium, 3	
u , 3	Compatibility, 6	
€ , 6	Constitutive law, 6	

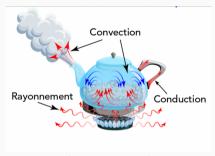
Examples of constitutive relations

Problem	Variables	Relation	Parameters
Thermal	\boldsymbol{q}_t, T	Fourier law	λ
Hydraulic	\mathbf{q}_l, p_l	Darcy law	κ
Mechanical	$\sigma,~\epsilon$	Hooke's law	Ε, ν

Basics of constitutive modelling

Thermal problem

Heat transfer



(parlonssciences.ca)

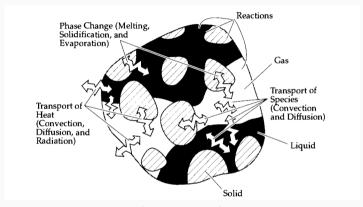
Definitions

Conduction Heat transfer through diffusion within the material (no mass transfer)

Convection Heat transfer through mass transfer

Radiation Heat transfer through electomagnetic waves (no mass support required)

Heat transfer in porous media



(Kaviany 1998)

Fourier law

Joseph Fourier (1768–1830)

Isotropic material

$$\mathbf{q}_{t,i} = -\lambda \, \frac{\partial T}{\partial x_i}$$

with λ : thermal conductivity (scalar) [W / K m]

Anisotropic material

$$\mathbf{q}_{t,i} = -\lambda_{ij} \; \frac{\partial T}{\partial x_j}$$

with λ : thermal conductivity tensor [W / K m]

Thermal diffusivity

Heat equation (energy balance equation & Fourier law)

$$\frac{\partial T}{\partial t} = \frac{\lambda}{\rho \, c} \Delta T + R$$

$$D = \frac{\lambda}{\rho c}$$
: thermal diffusivity [m²/s]

R: volumetric heat source

Phase change (e.g. water solidification)

Heat equation (energy balance equation & Fourier law)

$$\rho c \frac{\partial T}{\partial t} = \lambda \Delta T + L_f \frac{\rho_{ice}}{\rho_w} \frac{\partial \theta_{ice}}{\partial t} + R'$$

R': heat source

Need for a freezing curve $\theta_{ice} = \mathcal{F}(T)$

$$(\rho c + L_f') \frac{\partial T}{\partial t} = \lambda \Delta T + R'$$

Basics of constitutive modelling

Hydraulic problem

Darcy law

Henri Darcy (1803–1858)

$$oldsymbol{q}_l = -rac{\kappa}{\mu} \left(\operatorname{grad} \, p_l - oldsymbol{\gamma}
ight)$$

with

 μ : dynamic viscosity of water (1 mPa.s at 20 °C)

 κ : intrinsic permeability [m²]

k : hydraulic conductivity [m/s]

Unsaturated case: $\kappa \leftarrow \kappa_{app} = \kappa \kappa_{rel}(S_l)$

Basics of constitutive modelling

Mechanical problem

Mechanical constitutive models

Modelling framework: define your needs

- Elasticity vs elastoplasticity
- Cyclic behaviour
- Time and rate effects (viscosity, creep...)
- Humidity effects (capillarity, adsorption)
- Temperature effects
- Damage

Some definitions

- Elasticity: reversibility (energetic point of view)
- · Plasticity: irreversible deformation
- Failure ≠ plasticity

Reversible deformations

Reversible behaviour

- · the stress-strain relation is unique
- no energy dissipation (no hysteresis cycle)
- · no permanent deformation after a loading-unloading cycle

Irreversible behaviour

- · the stress-strain relation is no more unique
- energy dissipation $\rightarrow \int dF = \int \sigma_{ij} d\epsilon_{ij} \ge 0$
- \cdot permanent deformation after a loading-unloading cycle o ϵ^p : plastic strains

• Isotropic linear elasticity (two constant parameters): ex. : $E \& \nu$ or $E(z) \& \nu$ or K & G

• Isotropic linear elasticity (two constant parameters):

ex. : $E \& \nu$ or $E(z) \& \nu$ or K & G

• Anisotropic linear elasticity (5 to 21 constant parameters):

ex. : $E_i \& \nu_i$

ex.: 5 parameters for transverse isotropy

• Isotropic linear elasticity (two constant parameters):

ex. : $E \& \nu$ or $E(z) \& \nu$ or K & G

• Anisotropic linear elasticity (5 to 21 constant parameters):

ex. : $E_i \& \nu_i$

ex.: 5 parameters for transverse isotropy

• Isotropic linear elasticity (two constant parameters):

ex. : $E \& \nu$ or $E(z) \& \nu$ or K & G

· Anisotropic linear elasticity (5 to 21 constant parameters):

ex. : $E_i \& \nu_i$

ex.: 5 parameters for transverse isotropy

• Non-linear elasticity: $E(\sigma)$

• Isotropic linear elasticity (two constant parameters):

ex. :
$$E \& \nu$$
 or $E(z) \& \nu$ or $K \& G$

• Anisotropic linear elasticity (5 to 21 constant parameters):

ex. :
$$E_i \& \nu_i$$

ex.: 5 parameters for transverse isotropy

- Non-linear elasticity: $E(\sigma)$
- · Hyper-elasticity: $\mathrm{d} \boldsymbol{\sigma} = \frac{\partial \mathit{F}}{\partial \boldsymbol{\epsilon}}$

· Isotropic linear elasticity (two constant parameters):

ex. : $E \& \nu$ or $E(z) \& \nu$ or K & G

· Anisotropic linear elasticity (5 to 21 constant parameters):

ex. : $E_i \& \nu_i$

ex.: 5 parameters for transverse isotropy

- · Non-linear elasticity: $E(\sigma)$
- · Hyper-elasticity: $\mathrm{d} \boldsymbol{\sigma} = \frac{\partial \mathit{F}}{\partial \boldsymbol{\epsilon}}$
- \cdot Hypo-elasticity: d $oldsymbol{\sigma}=\mathbb{D}\,\mathrm{d}oldsymbol{\epsilon}$ (does not ensure energy conservation)

Undrained elasticity

Why is this important?

- Short term behaviour of geotechnical structures (foundations, retaining walls, excavations...)
- · Some finite element codes offer undrained analyses

How to get undrained elastic moduli from drained elastic moduli?

Undrained elasticity

How to get undrained elastic moduli from drained elastic moduli?

Use the water bulk moduli: $K_W = 2.2$ GPa at 20 °C. It can be shown that $K_u = K_d + \frac{K_W}{n}$ where n is the porosity.

Since water does not transmit shear stresses (good approximation), $G_{tt} = G_{dt} = G$.

Then, one uses the established relations between elastic moduli:

$$E_u = \frac{9K_uG}{3K_u + G}$$
 $\nu_u = \frac{3K_u - 2G}{2(3K_u + G)}$

If $K_{\mu} >> G$ (usually the case), then?

Undrained elasticity

Soil incompressibility:

If $K_u >> G$ (usually the case), then $\nu_u \to 0.5$

$$K_u = \frac{E_u}{3(1 - 2\nu_u)}$$
 $G_u = \frac{E_u}{2(1 + \nu_u)}$

Do not use $\nu_u=0.5$ in numerical tools, but $\nu=0.49$ for instance (remember that $\nu=0.5$ implies volumetric incompressibility, see K).

Elasto-plastic models: main ingredients

Most of elasto-plastic models rely on the strain partition

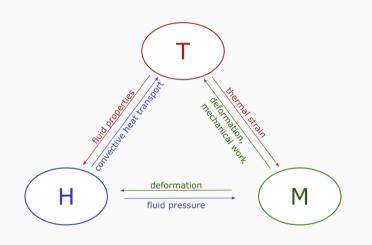
$$\epsilon = \epsilon^e + \epsilon^p$$

What should we know, beyond elasticity?

- WHEN?
 plastic criterion yield surface f
- HOW? increment of plastic strain tensor – flow rule
- CONSEQUENCE ? evolution of the elastic domain – hardening law

THM couplings

About couplings



- **Direct couplings** between balance equations
- Indirect couplings
 affecting material parameters

About couplings – example

Direct coupling

Balance of momentum: div $\sigma + \rho b = 0$ with $\sigma = \sigma' + p_l \mathbf{1}$

Indirect coupling

Darcy law: $q_l = -\frac{\kappa}{\mu} \, (\text{grad } p_l - \gamma)$ with $\kappa = \kappa(\phi)$ (e.g. Kozeny-Carman model) \to depending on deformation

Question

- · What about thermal expansion? Direct or indirect coupling?
- · Other examples of indirect coupling?

THM couplings

Transport properties

Transport properties

Possible use of **apparent properties** (macro- or REV scale) obtained experimentally or through back analysis but need for state surfaces (porosity, water saturation, temperature...)

e.g.
$$\pi = \pi(n, S_w, T...)$$

Or, use homogenisation (upscaling) schemes; they readily account for couplings

Thermal properties and couplings

Volumetric heat capacity easy to estimate

$$C = (1 - n) \rho_{S} c_{S} + n S_{W} \rho_{W} c_{W} + n (1 - S_{W}) \rho_{g} c_{g}$$

Thermal conductivity? Not so easy

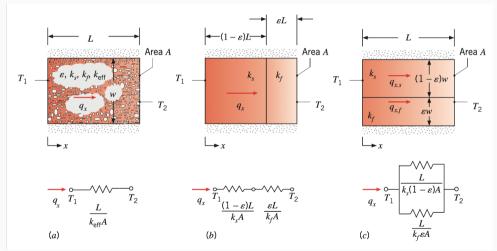
Lazy guess

$$\lambda = (1 - n)\lambda_s + n S_w \lambda_w + n (1 - S_w) \lambda_g$$

Critical review for soils in (Dong, McCartney, and Lu 2015)

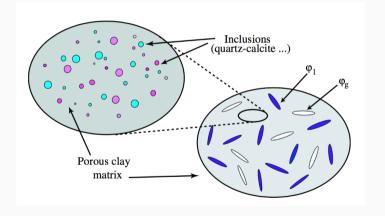
Thermal conductivity – homogenisation i

Microstructure must be accounted for (Bergman et al. 1996)



Thermal conductivity - homogenisation ii

More sophisticated homogenisation schemes, e.g. on claystone (Gruescu et al. 2007)



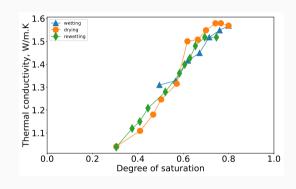
Thermal conductivity – unsaturated case

Thermal conductivity after (Johansen 1975)

$$\lambda_{\mathit{eff}} = \prod_{lpha} \lambda_{lpha}^{f_{lpha}}$$

Unsaturated cases

$$\lambda(S_w) = (\lambda_{sat} - \lambda_{dry}) \beta(S_w) + \lambda_{dry}$$



Thermal conductivity of Bapaume loess (Nguyen, Heindl, et al. 2017)

THM couplings

Thermal expansion

Thermal expansion – an introductory example

Triaxial sample, no stress, perfectly drained

Initial void ratio $e_0 = 1.0$

Soil thermal expansion $\alpha = 10^{-2} \text{ K}^{-1}$

Temperature increment $\Delta T = 10 \text{ K}$

Thermal expansion – an introductory example

Triaxial sample, no stress, perfectly drained

Initial void ratio $e_0 = 1.0$

Soil thermal expansion $\alpha = 10^{-2} \text{ K}^{-1}$

Temperature increment $\Delta T = 10 \text{ K}$

Final stress? Final pore pressure?

Triaxial sample, no stress, perfectly drained

Initial void ratio $e_0 = 1.0$

Soil thermal expansion $\alpha = 10^{-2} \text{ K}^{-1}$

Temperature increment $\Delta T = 10 \text{ K}$

Final stress? Final pore pressure? $\sigma=0$ and $p_l=0$

Triaxial sample, no stress, perfectly drained

Initial void ratio $e_0 = 1.0$

Soil thermal expansion $\alpha = 10^{-2} \text{ K}^{-1}$

Temperature increment $\Delta T = 10 \text{ K}$

Final stress? Final pore pressure? $\sigma = 0$ and $p_l = 0$

Final volumetric strain? Final void ratio?

Triaxial sample, no stress, perfectly drained

Initial void ratio $e_0 = 1.0$

Soil thermal expansion $\alpha = 10^{-2} \text{ K}^{-1}$

Temperature increment $\Delta T = 10 \text{ K}$

Final stress? Final pore pressure? $\sigma=0$ and $p_l=0$

Final volumetric strain? Final void ratio? $\epsilon_{v}=0.1$ and e=1.0

Triaxial sample, no stress, perfectly drained

Initial void ratio $e_0 = 1.0$

Soil thermal expansion $\alpha = 10^{-2} \text{ K}^{-1}$

Temperature increment $\Delta T = 10 \text{ K}$

Final stress? Final pore pressure? $\sigma=0$ and $p_l=0$

Final volumetric strain? Final void ratio? $\epsilon_v = 0.1$ and e = 1.0

Plaxis response?

Triaxial sample, no stress, perfectly drained

Initial void ratio $e_0 = 1.0$

Soil thermal expansion $\alpha = 10^{-2} \text{ K}^{-1}$

Temperature increment $\Delta T = 10 \text{ K}$

Final stress? Final pore pressure? $\sigma=0$ and $p_l=0$

Final volumetric strain? Final void ratio? $\epsilon_{v}=0.1$ and e=1.0

Plaxis response? $\epsilon_{\rm v}=$ 0.1 and e= 1.2 Why?

Triaxial sample, no stress, perfectly drained

Initial void ratio $e_0 = 1.0$

Soil thermal expansion $\alpha = 10^{-2} \text{ K}^{-1}$

Temperature increment $\Delta T = 10 \text{ K}$

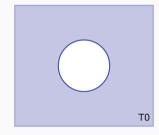
Final stress? Final pore pressure? $\sigma = 0$ and $p_l = 0$

Final volumetric strain? Final void ratio? $\epsilon_{\rm v}=0.1$ and e=1.0

Plaxis response? $\epsilon_v = 0.1$ and e = 1.2 Why?

Probably use of $\Delta e = (1 + e_0) \times \epsilon_v = 0.2$. Why is this wrong?

Thermoporoelasticity



Isotropic behaviour (Cheng 2016; Coussy 2004)

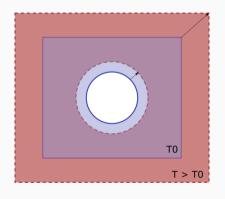
$$p - p_0 = K \epsilon_{v} - b (p_w - p_{w,0}) - 3\alpha K (T - T_0)$$

$$\phi - \phi_0 = b \epsilon_{v} + \frac{p_w - p_{w,0}}{N} - 3\alpha_{\phi} (T - T_0)$$

Relation with microscopic properties

$$\begin{aligned} \epsilon_{V} &= (1 - \phi_{0}) \epsilon_{S} + \phi - \phi_{0} \\ b &= 1 - \frac{K}{K_{S}}; \qquad \frac{1}{N} = \frac{b - \phi_{0}}{K_{S}} \\ \alpha &= \alpha_{S}; \qquad \alpha_{\phi} = \alpha (b - \phi_{0}) \end{aligned}$$

Thermal expansion i



Temperature change assuming matrix incompressibility (drained and stress-free conditions)

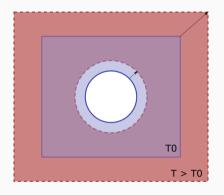
$$\epsilon_{V} = (1 - \phi_{0}) \epsilon_{S} + \phi - \phi_{0} \neq \phi - \phi_{0}$$

$$b = 1 - \frac{K}{K_{S}} \approx 1; \qquad \frac{1}{N} = \frac{b - \phi_{0}}{K_{S}} \approx 0$$

$$\alpha = \alpha_{S}; \qquad \alpha_{\phi} = \alpha (b - \phi_{0}) \approx \alpha (1 - \phi_{0})$$

For homogeneous and isotropic solid, solid skeleton and porosity deform homothetically, so that...

Thermal expansion ii



Lagrangian porosity

$$\phi = \frac{V_{\rm v}}{V_0} \neq \phi_0$$

Eulerian porosity

$$n = \frac{V_{v}}{V} = n_0$$

(Eulerian by nature) void ratio

$$e = \frac{V_{v}}{V_{s}} = e_{0}$$

...but this is not verified in all numerical codes...

So what?

Even in isothermal conditions

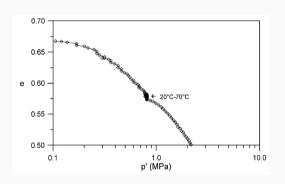
- · Usually, no large difference in case of small deformation...
- But, do use both lagrangian and eulerian porosities!
 - Eulerian porosity for indirect couplings (updating permeability, thermal conductivity...)
 - Lagrangian porosity tracks deformation of the porous network and should be used to solve the mass balance equation (in a conservative manner)
 - · See (Melot et al. 2020) for a study on bitumen, using BIL FEM code (P. Dangla)

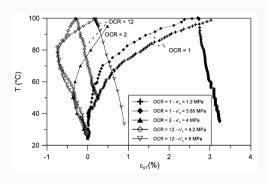
THM couplings

Thermal consolidation

Thermal consolidation

Experimental observations (Baldi et al. 1991; Sultan, Delage, and Cui 2002)





THM models

THM models

_____Unsaturated geomaterials

Context

Simply (?) wet sand (Sculpture of Sagrada Familia) (photo by SetosPuppy / CC BY-SA)

Context

(courtesy: E. Alonso)

Stress state variables

• Extension of Terzaghi's effective stress

$$\sigma' = \sigma - p_q \mathbf{1} + \chi s \mathbf{1}$$
 (Bishop 1959)

- Two state variables approaches
 - simple (measurable) variables

$$\sigma - p_g$$
1, $\sigma - p_l$ 1, s (Coleman 1962; Fredlund and Morgenstern 1977)

use of an "effective" stress

$$\sigma+\pi$$
1, s

Stress state variables

- Extension of Terzaghi's effective stress
- Two state variables approaches
 - · simple (measurable) variables
 - · use of an "effective" stress

Three classes of models (Gens 1995)

$$\begin{cases} \Sigma_1 = \sigma - p_g \mathbf{1} + \mu_1(s, S_l) \mathbf{1} \\ \Sigma_2 = \mu_2(s, S_l) \mathbf{1} \end{cases}$$

Stress state variables

- Extension of Terzaghi's effective stress
- Two state variables approaches
 - simple (measurable) variables
 - · use of an "effective" stress

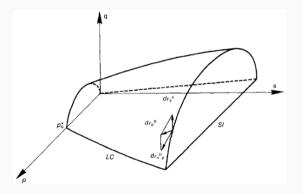
Three classes of models (Gens 1995)

$$\begin{cases} \mathbf{\Sigma}_1 &= \mathbf{\sigma} - p_g \mathbf{1} + \mu_1(s, S_l) \mathbf{1} \\ \mathbf{\Sigma}_2 &= \mathbf{s} \mathbf{1} \end{cases}$$

Classe I $\mu_1=0$ (Alonso, Gens, and Josa 1990)... Classe II $\mu_1=\mu(s)$ (Abou-Bekr 1995; Loret and Khalili 2000)... Classe III $\mu_1=\mu(s,S_l)$ (Dangla 2001; Wheeler, Sharma, and Buisson 2003)...

Barcelona Basic Model (BBM)

- First elastoplastic model for unsaturated soils (Alonso, Gens, and Josa 1990)
- Based on modified cam-clay



Going further

Accounting for water adsorption effects, osmotic effects...

See for instance:

- · On drying induced shrinkage of cement pastes: (Rahoui 2018; Rahoui et al. 2021)
- · Recent works by Prof. Ning Lu, e.g. (Wang et al. 2022)

THM models

______Thermoporoelastoplastic models

Thermomechanical (elastoplastic) models

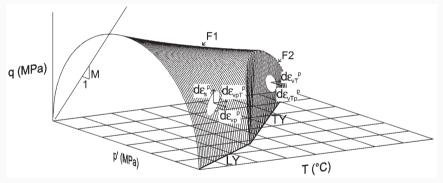
What we know

- · Little effect of temperature on elastic properties
- Same for failure properties (friction angle and cohesion little affected)
- Yield stress is temperature dependent (cf. thermal consolidation)

See (Abuel-Naga et al. 2009; Cui, Sultan, and Delage 2000; Laloui and Cekerevac 2003) for some founding models

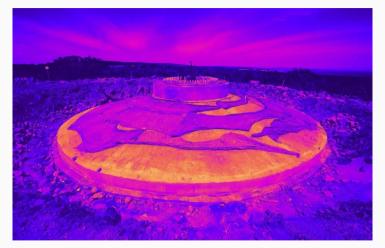
Temperature dependent yield surface

Thermal elastic strain ($\mathrm{d}\epsilon_{\mathrm{v}}^{e}=\mathrm{d}\epsilon_{\mathrm{v},\mathrm{M}}^{e}+\alpha_{\mathrm{T}}\,\mathrm{d}\mathrm{T}$) and temperature dependent yield surface $p_{\mathrm{c0},\mathrm{T}}=p_{\mathrm{c0},\mathrm{T}}(\mathrm{T})$



Yield surface in (p', q, T) space (Cui, Sultan, and Delage 2000)

Is this relevant for energy geostructures?



Infrared thermography of a shallow foundation during cement hydration (https://www.nxfem.com/)

Application

Energy geostructures

Piles, diaphragm walls, tunnel support...

What we know?

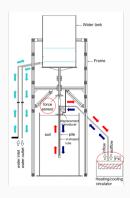
- · Shear strength mostly temperature-independent (Yavari et al. 2016)
- · Thermal consolidation in normally consolidated clays: might not be relevant
- Creep? Temperature enhanced

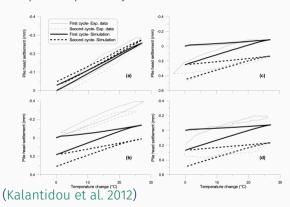
Mainly cyclic and long term effects on vertically (and laterally) loaded piles

Can we keep it simple?

Can we keep it simple?

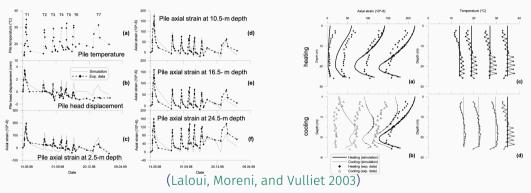
Use of a "decoupled" strategy (Yavari et al. 2014) to model in situ and small scale (1g) lab piles: imposed volumetric strain and perfect plasticity





Can we keep it simple?

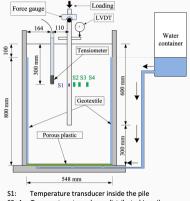
Use of a "decoupled" strategy (Yavari et al. 2014) to model in situ and small scale (1g) lab piles: imposed volumetric strain and perfect plasticity



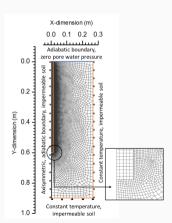
Essential role played by lateral stress variation on mobilisable shaft friction

Refined THM analysis

More detailed analysis (THM coupled) using rather simple constitutive model (MCC) (Nguyen, Wu, et al. 2020)

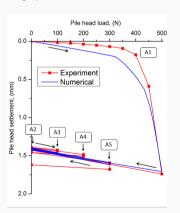


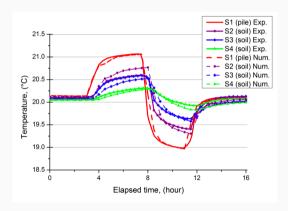




Refined THM analysis

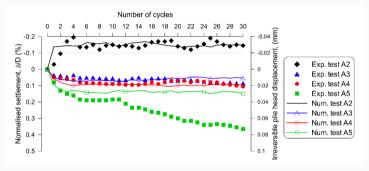
More detailed analysis (THM coupled) using rather simple constitutive model (MCC) (Nguyen, Wu, et al. 2020)





Refined THM analysis

More detailed analysis (THM coupled) using rather simple constitutive model (MCC) (Nguyen, Wu, et al. 2020)



Influence of shaft strength mobilisation (Bourne-Webb and Bodas Freitas 2020; Pasten and Santamarina 2014)

"All models are wrong but some are useful."

— George Box

Thanks for your attention – Questions?

References i

Abou-Bekr, N. (1995). "Modélisation Du Comportement Mécanique et Hydraulique Des Sols Partiellement Saturés". PhD thesis. Ecole Centrale de Paris.

Abuel-Naga, H. M., D. T. Bergado, A. Bouazza, and M. Pender (2009). **"Thermomechanical Model for Saturated Clays"**. In: *Géotechnique* 59.3, p. 273.

Alonso, E. E., A. Gens, and A. Josa (1990). "A Constitutive Model for Partially Saturated Soils". In: *Géotechnique* 40.3, pp. 405–430.

Baldi, G., T. Hueckel, A. Peano, and R. Pellegrini (1991). *Developments in Modelling of Thermo-Hydro-Mechanical Behaviour of Boom Clay and Clay-Based Buffer Materials, Vol. 1 and 2, EUR* 13365/1 and 13365/2. Nuclear Science and Technology, Commission of the European Communities.

Bergman, T. L., A. S. Lavine, F. P. Incropera, and D. P. DeWitt (1996). *Fundamentals of Heat and Mass Transfer*. Seventh edition. New York: John Wiley & Sons.

Bishop, A. W. (1959). "The Principle of Effective Stress". In: Teknisk Ukeblad 106.39, pp. 859–863.

References ii

Bourne-Webb, P. and T. Bodas Freitas (2020). "Thermally-Activated Piles and Pile Groups under Monotonic and Cyclic Thermal Loading—A Review". In: Renewable Energy 147, pp. 2572–2581.

Cheng, A. H.-D. (2016). *Poroelasticity*. Springer. 893 p.

Coleman, J. D. (1962). "Stress Strain Relations for Partly Saturated Soils". In: Géotechnique 12.4, pp. 348–350.

Coussy, O. (1991). Mécanique Des Milieux Poreux. Editions Technip.

Coussy, O. (2010). *Mechanics and Physics of Porous Solids*. Wiley. 297 p.

Coussy, O. (1995). Mechanics of Porous Continua. Chichester: John Wiley & Sons.

Coussy, O. (2004). Poromechanics. Chichester: John Wiley & Sons. 315 p.

Cui, Y. J., N. Sultan, and P. Delage (2000). "A Thermomechanical Model for Saturated Clays". In: Canadian Geotechnical Journal 37.3, pp. 607–620.

References iii

Dong, Y., J. S. McCartney, and N. Lu (2015). "Critical Review of Thermal Conductivity Models for Unsaturated Soils". In: Geotechnical and Geological Engineering 33.2, pp. 207–221.

Fredlund, D. G. and N. R. Morgenstern (1977). "Stress State Variables for Unsaturated Soils". In: Journal of the Geotechnical Engineering Division 103.5, pp. 447–465.

Gens, A. (1995). "Constitutive Laws". In: *Modern Issues in Non-Saturated Soils*. Ed. by A. Gens, P. Jouanna, and B. A. Schrefler. Wien: Springer-Verlag, pp. 129–158.

Gruescu, C., A. Giraud, F. Homand, D. Kondo, and D. P. Do (2007). "Effective Thermal Conductivity of Partially Saturated Porous Rocks". In: *International Journal of Solids and Structures* 44.3, pp. 811–833.

Houlsby, G. T. and A. M. Puzrin (2006). *Principles of Hyperplasticity*. London: Springer London.

References iv

- Johansen, O. (1975). "Varmeledningsevne Av Jordarter (Thermal Conductivity of Soils)". US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Hanover, N.H. CRREL draft English Translation 637. Trondheim, Norway: University of Trondheim.
- Kalantidou, A., A. M. Tang, J. M. Pereira, and G. Hassen (2012). "Preliminary Study on the Mechanical Behaviour of Heat Exchanger Pile in Physical Model". In: Géotechnique 62.11, pp. 1047–1051.
- Kaviany, M. (1998). "Heat Transfer in Porous Media". In: Handbook of Heat Transfer. Ed. by W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho. 3rd edition. McGraw Hill, New York, USA.
- Laloui, L. and C. Cekerevac (2003). "Thermo-Plasticity of Clays: Anisotropic Yield Mechanism". In: Computers and Geotechnics 30, pp. 649–660.
- Laloui, L., M. Moreni, and L. Vulliet (2003). "Comportement d'un Pieu Bi-Fonction, Fondation et Échangeur de Chaleur". In: Canadian Geotechnical Journal 40.2, pp. 388–402.
 - Loret, B. and N. Khalili (2000). "A Three-Phase Model for Unsaturated Soils". In: International Journal for Numerical and Analytical Methods in Geomechanics 24.11, pp. 893–927.

References v

Luong, M. P. (1990). "Infrared Thermovision of Damage Processes in Concrete and Rock". In: Engineering Fracture Mechanics. Special Issue Fracture and Damage of Concrete and Rock 35.1, pp. 291–301.

Melot, G., P. Dangla, S. Granet, S. M'Jahad, J. Champenois, and A. Poulesquen (2020).

"Chemo-Hydro-Mechanical Analysis of Bituminized Waste Swelling Due to Water Uptake: Experimental and Model Comparisons". In: Journal of Nuclear Materials 536, p. 152165.

Nguyen, V. T., H. Heindl, J. M. Pereira, A. M. Tang, and J. D. Frost (2017). "Water Retention and Thermal Conductivity of a Natural Unsaturated Loess". In: Géotechnique Letters 7.4, pp. 286–291.

Nguyen, V. T., N. Wu, Y. Gan, J. M. Pereira, and A. M. Tang (2020). "Long-Term Thermo-Mechanical Behaviour of Energy Piles in Clay". In: *Environmental Geotechnics* 7.4, pp. 237–248.

Pasten, C. and J. C. Santamarina (2014). "Thermally Induced Long-Term Displacement of Thermoactive Piles". In: Journal of Geotechnical and Geoenvironmental Engineering 140.5, pp. 1–5.

Rahoui, H. (2018). "Contribution to understanding the action of shrinkage reducing admixtures in cementitious materials: experiments and modelling". PhD thesis. Université Paris-Est.

References vi

Sultan, N., P. Delage, and Y. J. Cui (2002). "Temperature Effects on the Volume Change Behaviour of Boom Clay". In: Engineering Geology 64.2–3, pp. 135–145.

Wang, Y., L. Hu, S. Luo, and N. Lu (2022). "Soil Water Isotherm Model for Particle Surface Sorption and Interlamellar Sorption". In: Vadose Zone Journal 21.5.

Wheeler, S. J., R. S. Sharma, and M. S. R. Buisson (2003). "Coupling of Hydraulic Hysteresis and Stress-Strain Behaviour in Unsaturated Soils". In: *Géotechnique* 53.1, pp. 41–54.

Yavari, N., A. M. Tang, J. M. Pereira, and G. Hassen (2014). **"A Simple Method for Numerical Modelling of Mechanical Behaviour of an Energy Pile".** In: *Géotechnique Letters* 4, pp. 119–124.

References vii

Yavari, N., A. M. Tang, J. M. Pereira, and G. Hassen (2016). "Effect of Temperature on the Shear Strength of Soils and the Soil–Structure Interface". In: Canadian Geotechnical Journal 53.7, pp. 1186–1194.

