

The use of under sleeper pads to improve the performance of ballasted railway track at switches and crossings: A case study

Louis Le Pen, Taufan Abadi, Andrew Hudson Antonis Zervos & William Powrie

Presentation overview

- Under sleeper Pads manufacturers data and laboratory tests
- Geophone measurements from a study site in the UK
- Importance of track support conditions some simple insights from a beam on elastic foundation model

Background: track structure

Southampton

Full scale laboratory tests

Southampton

General test conditions:

3 million equivalent 20 tonne axle passes at 3Hz. The ballast was placed to 300 mm depth and typical size ballast shoulders and crib ballast were placed.

Mono-block sleepers, 3 tests were carried out on NR ballast grading covering: 1 baseline and 2 tests with two different types of under sleeper pad (hard, soft)

Twin-block sleepers, 3 tests were carried out on NR grading covering: 1 baseline 1 test with a hard under sleeper pad and 1 test with a soft under sleeper pad

USPs tested in the laboratory and installed on site

 C_{stat} values give comparative indication of stiffness and performance in track but the stiffness values do not allow direct calculation of in service performance (DIN 45673)

Southampton

Results: Permanent settlement on mono- Southampton **block and twin-block sleeper tests**

Results: Resilient deflection

Results: Stiffness

- Stiffness worked out as equivalent spring stiffness per railseat load
- Spring stiffness of USPs worked out as: $1/k_{usp} = 1/k_{sleeper + USP} 1/k_{twin block}$

Track stiffness: design method

Design methods are usually empirically based. Network Rail currently provide a chart:

Figure 2 - Required Thickness of Trackbed Layers

Sleeper/ballast contact analysis

250 mm Pressure sensitive paper shows contact history at selected locations below sleeper **NetworkRail**

Results: Mono-block SLEEPER/BALLAST interface with USPs

Southampton

Results: Twin-block SLEEPER/BALLAST interface with USPs

Pressure paper analysis, area and number of contacts for 10 MPa to 50MPa paper

Sleeper type	Average (%) contacts per sleeper (mono-block = 0.71 m ² , twin-block = 0.50 m ²)	Average contacts per sleeper (mono-= 0.71 m ² , twin = 0.50 m ²)	Notes
MONO- BLOCK	0.18	147	Baseline
	1.64	314	Hard USP
	1.05	447	Soft USP
TWIN- BLOCK	0.53	243	Baseline
	2.91	268	Hard USP
	4.75	329	Soft USP

Potential sleeper/ballast contacts

Approximated Particle Size Distribution:

Visual idealisation (square packing):

Simplified equation:

Number of contacts=

$$\left(\frac{N. A_{sleeper}}{D_A^2}\right) \cdot \left(\frac{\frac{2}{3}\sqrt{\frac{1}{D_A^3} + \frac{2}{3}\sqrt{\frac{1}{D_B^3} + \dots \sqrt{\frac{2}{D_N^3}}}}{\frac{2}{3}\sqrt{\frac{1}{D_A^3} + \dots \sqrt{\frac{2}{D_N^3}}}}\right)$$

Results evaluated as a contact efficiency:

Sleeper type	Test	Measured contacts	Potential contacts calculated for 5 steps	Contact Efficiency (%)
Mono- block	Baseline	147	513	28.0%
	+ USP 1	314	513	61.2%
	+ USP 2	447	513	87.1%
Duo Block	Baseline	243	357	68.1%
	+ USP 1	268	357	75.1%
	+ USP 2	329	357	92.2%

Abadi, T. C., Le Pen, L. M., Zervos, A. & Powrie, W. (Submitted Spring 2014). Measuring the Contact Area and Pressure Between the Ballast and the Sleeper. *The Network Rail International Journal of Railway Technology.* Saxe-Coburg Publications

A trial site in the UK

The study area – track layout

The study area – schematic of track

NetworkRail

EPSR

 Complex track geometry leads to larger dynamic variation in load and a faster rate of track geometry degradation

The sites

Southampton

CK 21

Site 1: leading switch blades

Site 3: trailing crossing

Site 2: facing crossing

Site 4: trailing switch blades

Background: Monitoring equipment

Background: How geophone data is interpreted

Example data from a 9 car train at 110 mph (~180kmph).

Background: How geophone data is interpreted

The trace shown is of an 11 car Pendolino train.

Typical trace.....

Class 221 (Super-voyager) on site 1

Site 1 – underbridge to leading switch blades Southampton

Site 2 – Crossing area, soft USPs present

K 21

Wooden Gates Site 2 3/2/13 Class 221 super-voyager (leading axle of trailing bogie of car 3)

Cast crossing area

Site 3 -Crossing area (No USPs)

Southampton

Class 221 super-voyager (leading axle of trailing bogie of car 3) **Sleeper number** 7 1 2 3 4 5 6 8 0 0.5 1 1.5 1.5 2 **Cast crossing area** 2.5

Wooden Gates Site 3 3/2/13

Site 4 – Switch area (No USPs)

Wooden Gates Site 4 3/2/13 Class 221 super-voyager (leading axle of trailing bogie of car 3)

Southampton

Switchblade

Common behaviour?

displacements (mm)

Dynamic sleeper displacements measured using remote video monitoring, before, during and after tunnelling at Ashford during the passage of a Series 373 TGV Eurostar trainset

(Bowness, D., Lock, A. C., Powrie, W., Priest, J. A. & Richards, D. J. 2007. Monitoring the dynamic displacements of railway track. Proceedings of the Institution of Mechanical Engineers, Part F (Journal of Rail and Rapid Transit), 221, 13-22.)

Track loading: BOEF

Southampton

$$\frac{4EI}{L^4} = k \qquad L = \sqrt[4]{\frac{4EI}{k}}$$

EI = Bending stiffness of the rail

k = Foundation coefficient or track modulus

- w(x) Rail vertical deflection at longitudinal distance x (which must be positive)
- **D** = **Shear force in rail**
- M = Moment in rail
- q(x) The variation in vertical load with longitudinal distance (x) which is
- = replaced with Q, the wheel load in the derivation process.
- L = Is termed the characteristic length and arises from the derivation process.
- Q = Wheel load

Track loading: Example calculation for a passenger train using approximate data

Q = 80 kN E of rail taken as: 205 000 N/mm² I of high speed rail = 30383000 mm⁴

USPs: How might they bring benefit

- Increase the number and area of contacts
- Reduce the rate of plastic settlement
- Reduce the support stiffness and spread the load along a greater length of track
- Add in a consistent increment to the track deflection and reduce support stiffness variation
 - Thus dynamic load from changing support stiffness is also reduced

Sout

Acknowledgements

- Ian Coleman, Ian Bostock and Andrew Cornish (Network Rail)
- Tom Collins (Tiflex)
- Geof Watson (University of Southampton)
- Many others

Thank you

Any questions?

