ALERT - Aussois 2017

CRITICAL STATE: MISLEADING ELEGANCE?

J. Carlos Santamarina KAUST

Scientific Revolutions: Kuhn's "Paradigms"

Paradigms:

Copernicus Newton Maxwell Einstein heliocentric optics mechanics calculus electromagnetism relativity

Scientific Revolutions: Geotech

4D ... Projections: $e-p'-q-\varepsilon_a$

Drained Loading: u=constant

Simple, few parameters, robust \rightarrow links p'-q-e- ε ... within Okham's framwork

Undrained Loading: e=constant

Allow us to change a state variable (p or e) without changing the other

Critical State:

Soil deforms at

constant stress (normal and shear)
constant void ratio
constant velocity
statistically steady state
... particle orientation
... particle breakage

Roscoe et al 1958

Poulos 1981 Steady State Line

memoryless characteristic fabric

Terminal/asymptotic states: robust design... essence of engineering philosophy

Michelangelo

Genesis in the beginning...

Genesis → Size, Shape & Forces

Modifications to CS if F_{cap} or F_{elect} change

Genesis: Particle Shape

Packing Coarse Grained Soils: Shape + Relative Size

⁽Youd, 1973; see also Maeda, 2001)

10

Packing *Fine* Grained Soils: Mineral & Fluid (pH c_{ion})

Stern potential and R_{DL} decrease van der Waals attraction prevails

Packing *Mixed* Soils

Coarse-dominant

Transitional

Fines-dominant

Compression

Compression: Fines and Coarse

Sands (and most silts) do not have an inherent virgin consolidation line

Transition: From Clay-to-Sand Control

Transitional Behavior:

Non-unique NCL & CSL

70% sand

5% sand

10% sand

Kaolin NCL • 0.3 - 0.425 mm, slurry DBS NCL (Coop, 1990). 2.8 0.6 - 1.18 mm, slurry natural grading 2.8 2.80.3 - 0.425 mm, slurry 0.8 - 1.18mm, slurry 0.3-0.425 mm, slurry 0.8 - 1.18 mm, dry compaction 1.18 mm, slurry 2.6 2.6 0.425 - 0.6 mm, slurry 2.6 0.425 - 0.6 mm, wet compaction 2.4 2.4 2.4 > Specific volume, v Specific volume, 2.2 2.2 2.2 2. 2 2 1.8 1.8 1.8 1.6 1.6 1.6 1.4 1.4 1.4 1.2 -1.2 1.2 -1 1 11111 10 100 1000 10000 100000 10 100 1000 10000 100000 10 100 1000 10000 100000 ov' (kPa) σ_v (kPa) σv (kPa)

Dogs Bay carbonate sand & kaolin Shipton & Coop 2012

Non-unique NCL: mixed grading, mixed mineralogy, mixed particle types

Sands: State Parameter

Sands do not have an intrinsic consolidation line → Nor Sand

Compression

Why so much emphasis on yield stress?

Compression

Stiffness: Small Strain vs. Tangent

k_o Compression - Kaolinite

Elastic modulus *≠* Tangent to compression line ... and it is non-linear with p'

Elastic Within Yield Surface? Repetitive k_o-Loading

Number of Cycles N

Why "yield-or-not-yield" ?

remains hysteretic

 $e_T = f(e_o) \rightarrow Memory !$

0.006

10000

Diagenesis Structure, cementation

residual soils, dissolution/precipitation

Diagenesis

Locked-in Porosity

Locked-in Porosity

Compression: long memory...

D/L_{corr}~1

Response to Deviatoric Loading

Critical State - large strain (3D)

distributed cementation

patchy cementation

Increased stiffness, strength, dilation - Cement amount and pore habit

Critical State - large strain (3D)

distributed cementation

patchy cementation

Cementation alters CS (e-p and q-p)

Destructuration: Dilative Blocky Structure

Burland's intrinsic properties (remolded clays at w>LL): relevance to field?

Position of $CSL f(e_o) \rightarrow CSL$ has long memory

Leonardo (1452-1519)

Shear CS = statistically steady state inherent and stress induced fabric

Critical State: "Statistically Steady" State

CS Constant Volume Friction

(—) theoretical: Horne (1969)

- (-.-) experiments: Skinner (1969), (+) Rowe (1969)
- (O) DEM 3D Thornton (2000),
- (•) DEM 2D Kruyt & Rothenberg (2006)

Shear strength = <u>allowable anisotropy</u>

Chantawarangul and Rothenburg, 1993

Change in Coordination?

Narsilio, Dodds, Fugle, Trott, Kim, Yun

Frictional strength anisotropy

 ϕ_{E} =1.0 to 1.5 ϕ_{C}

compiled by Ladd et al. 1977 (see Lade and Duncan 1975)

compiled by Mayne and Holtz (1985)

Inherent anisotropy

Oda et al. 1985 Rothenburg and Bathurst 1992/3 Aloufi, M. and Santamarina, J.C. 1995 Lade and Kirkgard (2000) JCS & Cho 2003

Shear strength = $f(\alpha, ecc)$

Eccentric \rightarrow Localization

L/w ~1.1 is enough

Undrained strength anisotropy (Ladd 1967)

Controlled by the generation of pore pressure

- chain buckling and skeletal stiffness
- spatial variability of e
- threshold strain

Yoshimine et al 1999

Mayne and Holtz 1985

Undrained strength anisotropy

Controlled by the generation of pore pressure

- chain buckling and skeletal stiffness
- spatial variability of e
- threshold strain
- fabric anisotropy

higher compressibility within bedding plane

Undrained strength

b=(σ_2 - σ_3)/ (σ_1 - σ_3) α: angle between particle normal and σ_1

200

Toyoura sand, D,=39-41%, b=0.5

α = 30° (e=0.824

6

Shear strain, $\gamma = \varepsilon_1 - \varepsilon_3$ (%)

α = 45° e=0.821

8

10

α = 15° e=0.825 (*a*)

α = 60° e=0.828

> α = 75° e=0.823

12

14

(kPa) م (kPa)

> ษ์ แ

or 100

Shear stress,

50

С

0

2

initial fabric affects behavior

Crushing dilate or slide or BREAK

Grain Crushing

Dilation and ϕ_{peak}

Grain Crushing: Size and Shape

Krumbein and Sloss (1963)

Change gradation, coordination number, shape -> change in critical state

Crushing -> CSL

Linear CSL in e-log(p'): subrounded sans at low stress p'<500 kPa

Strain to critical state is CS a terminal state?

Threshold Strains

Contact sliding – Coarse soils

$$\frac{\delta^*}{d} = \frac{3}{4}\mu(2-\nu_g)\frac{\sigma'}{G_g}\frac{d}{d_c} \qquad \qquad \frac{d_c}{d} = \sqrt[3]{\frac{3(1-\nu_g)}{2}\frac{\sigma'}{G_g}}$$

Contact loss – Fine grained soils

Strain level for constant volume shear

Strain level for particle alignment

Strain level for particle segregation

 $\gamma_t \approx 100\%$

 $\gamma_t > 100\%$

If CS is not a terminal state... then, what is the strain level of interest?

Residual Friction Angle

particle alignment

size segregation

shape segregation

bond breakagedestructuration

Mobility & large strain !!

Spatial Variability heterogeneity

Compression (k_o)

Area ratio that carries 50% of the vertical load [%]

variability \uparrow

stress focusing \uparrow

 $k_o \checkmark$

D/L_{corr}~1

Contractive - Drained

contractive & drained shear: homogenization towards critical state

D/L_{corr}~1

Contractive - Drained

contractive & drained shear: homogenization towards critical state

undrained shear: strain localization

D/L_{corr}~1

Specimen Size Effects: Contractive

δ-fields @ $ε_7$ =20%

0

0.05

0.1

(20cm x 20cm)

0.2

0.15

0.1

0.05

Specimen Size Effects

δ -fields @ end of test

Specimen-size dependent p-q-e

Localization \rightarrow stiffness, ψ , ϕ_{peak} , e_{cs} specimen-size dependent

Localizations

Experimental Limitations

Non CS-fabric within shear band

Burland 1990

Notional axial strain: %

Localization

- Dilative drained
- Dilative undrained due to cavitation
- Contractive undrained (locally undrained)
- Eccentric particles residual strength
- Cemented material due to breakage of cementation
- Unsaturated soils due to breakage of meniscus failure
- Non-homogeneous specimen in drained and undrained
- Non-uniform grain crushing or void collapse

omnipresent !!

State parameter - Softening - CSL

CS requires proper test design But relevance to field?

State parameter - Softening - CSL

State parameter, ψ

State parameter, ψ

CS: soil-intrinsic or a procedural definition (test-dependent)?

State parameter, ψ

Closing Thoughts

CS: Education and Practice

(Limited survey - 2017)

Education

- ASIA: Less than 1% of universities teach CSSM as a formal course A section: <10% (more in the 1980's)
- EUROPE: <50% in UK, Spain, Portugal, Italy, Greece Much less in central & Nordic countries
- AMERICA: some introduction only (2 books in USA have a chapter ~10% universities)

Engineering jobs analyzed using critical-state (or related models)

- YES: complex jobs by large companies
- NO: small companies and routine jobs some if built-in commercial software but without understanding

(Sources: C. Ng, GC Cho, HS Shin, A. Gens, M. Pantazidou R. Bachus, PW Mayne, A. Welker's

why is adoption so low?

Scientific Revolutions: Geotech

Sources not listed in figures: contributions by

GC Cho HK Kim HS Shin JR Valdes GA Narsilio JW Jung JH Park SH Chong A Palomino

Visit egel.kaust.edu.sa for publications

Thank you