

Real scale test design of a sand flowslide by MPM slope (in)stability analysis

Aussois, 28th ALERT Workshop, Session 3, 4th October 2017

Marco Bolognin, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands m.bolognin@tudelft.nl

Prof. Michael Hicks, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands m.a.hicks@tudelft.nl

Dr. Phil Vardon, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands p.j.vardon@tudelft.nl

Dr. Alexander Rohe, Deltares, Boussinesweg 1, 2629 HV, Delft, The Netherlands alex.rohe@deltares.nl

Understanding flowslides in flood defenses

(MPM-Flow Project)

Validation Anura3D – from 2016 to 2020

ÍUDelft

Outline

Real scale test design of a sand flowslide by MPM slope (in)stability analysis

Introduction

Methodology

Real Scale Test

• Questions and answers

Outline

Real scale test design of a sand flowslide by MPM slope (in)stability analysis

Introduction

Methodology

Real Scale Test

Conclusions

Outline

Real scale test design of a sand flowslide by MPM slope (in)stability analysis

Introduction

Methodology

Real Scale Test

Conclusions

What is a flowslide?

(Hungr et al. 2014)

Range of possible behaviors

sea bed

State parameter Ψ Been and Jefferies 1985

sea bed

7

Motivations

Motivations

ŤUDelft

THE SINGULARITY IS NEAR, Ray Kurzweil, Viking Press. Publisher: Viking Adult (2005)

Numerical methods origins

Alternatives to numerical modeling

Experimental investigation:

- Full scale model
 - Expensive and often impossible
 - Measurements errors
- On a scale model
 - Simplified
 - Difficult to extrapolate
 - Measurements errors

Theoretical calculation:

- Analytical solution
 - Exist only for a few cases
 - Sometimes complex
- Numerical solution

UDelft

• For almost any problem

Anura3D MPM software

Possible applications

- Modeling landslides in unsaturated slopes subjected to rainfall infiltration (Bandara 2016)
- Cone penetration (Ceccato 2016)
- Partially drained penetration and pore pressure dissipation in
 piezocone test (Ceccato 2016)
- Unsaturated silica sand in triaxial compre
- Dyke failures involving soft materials (Fern
- Column collapses (Fern 2016)
- Landslide behavior (Parera 2016)
- Pile installation effects in sand (Phuong 2016)
- Solid foundations for dredging projects (Rot
- Flood defences (Rohe 2016)
- Wave attack on sea dikes (Tan 2016)
- Jacked piles (Tehrani 2016)

Publications in the Community 25 in 2016 19 in 2015 10 in 2014 10 in 2013 5 in 2012 6 in 2011 1 in 2010

Impression of possible MPM applications

AVALIABLE OUTPUTS:

	SCALAR: liquid pressure; virtual material point; solid volumetric strain; solid	VECTOR: solid velocity; liquid velocity; solid
	deviatoric strain; mean effective stress; deviatoric stress; solid incremental	displacement; liquid displacement; solid
	volumetric strain; solid incremental deviatoric strain; solid mass; liquid mass; solid	acceleration; global position; local position;
(F)	weight; liquid weight; porosity; integration weight; material point id; element id;	bodyforce; liquid bodyforce; externalforce; liquid
ÍU Delft	entity id; material id; damping; liquid free surface; liquid free surface cumul;	externalforce
	NorSand void ratio; NorSand image pressure; liquid volumetric strain; liquid density	TENSOR: strain; solid effective stress; liquid stress

Sand mining or real scale test?

Plan of actions

TUDelft

2.791e-05 0.02 0.04 0.06 0.08 0.1 1.173e-01

Sondering

S01

S02

S03

S04

S05

CPT correlations

8

ŤUDelft

Desk study (site investigation)

Header data legend

Slope Design (CUR113)

[m3/m]	[m3/m]	[m3/m]	[m3/m]	[m3/m]	[m]
max capa	now	3 berms	1 berm	no berm	depth
950	0	950	750	150	40
563	0	562,5	387,5	400	30
200	0	200	200	200	20
75	0	75	75	75	10

[m]	[m3/m]	[m3/m]	[m3/m]	[m3/m]	[m3/m]
depth	no berm	1 berm	3 berms	now	max capa
22	50	90	130	0	130
20	200	200	200	0	200
10	75	75	75	0	75

Action plan for real scale test

Action plan for real scale test

Stability of underwater slopes realized by means of a suction dredger

Jan Maertens Jan Maertens & Partners BVBA and Cath. Univ. Leuven, <u>janmaertens@janmaertens.com</u> Gauthier Van Alboom

Geotechnics division Flemish Authoristies, gauthier.vanalboom@mow.vlaanderen.be

Koen Haelterman Geotechnics division Flemish Authoristies, <u>koen.haelterman@mow.vlaanderen.be</u>

Jan Couck Geotechnics division Flemish Authoristies, <u>jan.couck@mow.vlaanderen.be</u>

Models in analysis

Models in analysis

My questions...

- Rapid flow or breaching?
- How to model the triggering?
- What sensor technology?
- How to model layers?

Do you have any?

Thank you!

n.bolognin@tudelft.nl