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THMC modelling at macro-scale

Chemical fault reactivation:
• Shear heating
• Chemical pressurization
• Mechanical deformation

→ THMC

Macro-scale is insufficient to 
describe completely the phenomena,
missing crucial information from the 
micro-scale.

THMC modelling should be done 
across scales
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Mesh reconstructed from CT-scans

1. T. Poulet and M. Veveakis. A viscoplastic approach for pore collapse in saturated soft rocks using redback: an 
open-source parallel simulator for rock mechanics with dissipative feedbacks. Computers and Geotechnics.

2. I. C. C. on Pore-scale Modelling. LV60A sandpack. 10 2014.

Finite Element simulator REDBACK(1)

→ need for a mesh

Stack of segmented 2D CT-scan images
→ 3D meshes of digital rock

Meshing flexibility:
• Structured or unstructured
• Multiple element types
• Independent final resolution

+ Iterative coarsening away from interface 
following an octree method

3D mesh of CT-scan images with optimal 
refinement

Segmented 128x128 LV60A(2) CT-scan image
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Mesh reconstructed from CT-scans

Final optimised mesh with 7,597 quadrangle elementsFinite Element simulator REDBACK(1)

→ need for a mesh

Stack of segmented 2D CT-scan images
→ 3D meshes of digital rock

Meshing flexibility:
• Structured or unstructured
• Multiple element types
• Independent final resolution

+ Iterative coarsening away from interface 
following an octree method

3D mesh of CT-scan images with optimal 
refinement

1. T. Poulet and M. Veveakis. A viscoplastic approach for pore collapse in saturated soft rocks using redback: an 
open-source parallel simulator for rock mechanics with dissipative feedbacks. Computers and Geotechnics.
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Mesh reconstructed from CT-scans

CIPS (Calcite In-situ Precipitation 
System)

synthetic sandstone sample 
composed of pure quartz grains  
(diameter 0.15-0.35 mm) and 
cemented by calcite.

0.5mm3 sample meshed with
2.4M elements

Yang, Sam; Liu, Keyu; Mayo, Sherry; Tulloh, Andrew (2012): CIPS sandstone microstructure. 
v2. CSIRO. Data Collection. http://doi.org/10.4225/08/5476787A1A50F
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Stress equilibrium + Constitutive law
(Any constitutive law can be used)

Decomposition of the strain rate of the 
solid into an elastic and a plastic part

For the elastic part we assume linear 
elasticity

For the plastic component, we use an 
overstress (visco)plastic formulation with 
associative von-Mises plasticity(1)

→ REDBACK

Solid Mechanics Simulator

(1) T. Poulet and M. Veveakis. A viscoplastic approach for pore collapse in saturated soft rocks using 
redback: an open-source parallel simulator for rock mechanics with dissipative feedbacks. Computers 
and Geotechnics, 74:211–221, 2016.

Uniaxial compression for 0.6mm3 LV60A sample
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Fluid Flow Simulator
• single phase incompressible fluid

• low-velocity flow → laminar

• steady-state flow in compliance with quasi-
static assumption for mechanics

→ Stokes flow:

Visualisation of pore space, flow intensity and 
streamlines on a 1.5mm3 subsample of LV60A 

meshed with 1,237,177 elements

Validation for Poiseuille flow
Taylor-Hood element used for simulation

Research School for Fluid Mechanics. Finite element methods for the incompressible 
Navier-Stokes equations. Ir. A. Segal. 2017. Delft University of Technology.
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Hydro-Mechanical Simulator
Coupling: Euler-Lagrange scheme

Effect of mechanical deformation on the flow:
Geometrical changes of the pore space due to the displacement of the pore-grain 
interface.

+ flow path variation imposed by grain movements

→ Moving pore-grain boundary

Eulerian Flow vs Lagrangian Mechanics

Scheme: mesh diffusion

adapt the mesh smoothly in the pore space without any
interaction with the mechanical problem

Solid matrix: 𝑢"(")

Fluid Channel: 𝑢"(%)
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Hydro-Mechanical Simulator
Coupling: Euler-Lagrange scheme

adapt the mesh smoothly in the pore space without any interaction with the 
mechanical problem

Unwanted coupled BC at interface → numerical resistance 

Solid matrix

Fluid Channel 𝝑 ≪ 𝟏
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Effect of the fluid pressure on the solid stress

Terzaghi’s concept of effective stress at the macro-scale

The fluid pressure act as 
a stress boundary for the rock.

System solved with displacement variables
Fluid pressure = Neumann BC of displacement

Force direction ensured with boundary’s 
normal vector

Hydro-Mechanical Simulator
Coupling: Fluid pressure force on the grains

Solid matrix

Fluid Channel
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Summary
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Solid matrix

Fluid Channel

Justification of tight coupling for synthetic coal
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Comparison with loose coupling: Mechanical compression Fluid pressurization

Fluid pressure feedback

Oscillatory response due to the lagging 
application of the FSI slow convergence of loose coupling

Justification of tight coupling for synthetic coal
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Loose coupling simulation of FSI in synthetic pore channel

Justification of tight coupling for synthetic coal
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Retrieving Terzaghi’s principle at micro-scale

Dry and saturated curves are identical, shifted by a constant

→ Terzaghi’s principle is retrieved with a macroscopic value of the pore pressure

Oedometric compression of LV60A sandpack
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Permeability computation during fault reactivation
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Pressure sensitive yield surface
Metals → Non-porous → Pressure-insensitive
Rocks → Porous → Pressure-sensitive

Porous J2 material → Pressure-sensitive

This framework can determine yield surfaces that depends 
on the micro-structure of the rock and its evolution with 
deformation.

Gurson’s1 yield surface of a hollow sphere

1. Gurson, A. L. (1977). Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria 
and flow rules for porous ductile media. Journal of engineering materials and technology, 99(1), 2-15.
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