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THMC modelling at macro-scale

Porosity
-5.004e01

Chemical fault reactivation:
» Shear heating

« Chemical pressurization
* Mechanical deformation

—2.846e01

— THMC

Macro-scale is insufficient to
describe completely the phenomena,
missing crucial information from the
micro-scale.

400 - Fault's tempercture

THMC modelling should be done
across scales
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Mesh reconstructed from CT-scans

Finite Element simulator REDBACK) Segmented 128x128 LV60A( CT-scan image
— need for a mesh

Stack of segmented 2D CT-scan images
— 3D meshes of digital rock

Meshing flexibility:

« Structured or unstructured

* Multiple element types

* Independent final resolution

+ |terative coarsening away from interface
following an octree method

3D mesh of CT-scan images with optimal
refinement

>

1. T. Poulet and M. Veveakis. A viscoplastic approach for pore collapse in saturated soft rocks using redback: an
open-source parallel simulator for rock mechanics with dissipative feedbacks. Computers and Geotechnics.
2. |.C. C. on Pore-scale Modelling. LV60A sandpack. 10 2014.




Mesh reconstructed from CT-scans

Finite Element simulator REDBACK() Final optimised mesh with 7,597 quadrangle elements
— need for a mesh

Stack of segmented 2D CT-scan images
— 3D meshes of digital rock

Meshing flexibility:

« Structured or unstructured

* Multiple element types

* Independent final resolution

+ |terative coarsening away from interface
following an octree method

3D mesh of CT-scan images with optimal
refinement

1. T. Poulet and M. Veveakis. A viscoplastic approach for pore collapse in saturated soft rocks using redback: an
open-source parallel simulator for rock mechanics with dissipative feedbacks. Computers and Geotechnics.




Mesh reconstructed from CT-scans

CIPS (Calcite In-situ Precipitation
System)

synthetic sandstone sample
composed of pure quartz grains
(diameter 0.15-0.35 mm) and
cemented by calcite.

0.5mm3 sample meshed with
2.4M elements

i

Yang, Sam; Liu, Keyu; Mayo, Sherry; Tulloh, Andrew (2012): CIPS sandstone microstructure.
v2. CSIRO. Data Collection. http://doi.org/10.4225/08/5476787A1A50F




Solid Mechanics Simulator

Stress equilibrium + Constitutive law
(Any constitutive law can be used)

V°0‘3=6

Decomposition of the strain rate of the
solid into an elastic and a plastic part

£y = &° + &P

For the elastic part we assume linear
elasticity .
o, =CegS

For the plastic component, we use an
overstress (visco)plastic formulation with
associative von-Mises plasticity()
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Uniaxial compression for 0.6mm?3 LV60A sample

(1) T. Poulet and M. Veveakis. A viscoplastic approach for pore collapse in saturated soft rocks using
redback: an open-source parallel simulator for rock mechanics with dissipative feedbacks. Computers

and Geotechnics, 74:211-221, 2016.




Velocity intensity 7

Fluid Flow Simulator g
 single phase incompressible fluid
* low-velocity flow — laminar

I low

» steady-state flow in compliance with quasi-
static assumption for mechanics

— Stokes flow:
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2, _ Visualisation of flow intensity and
-V rUf + ,Ofvpf — 07 isualisation of pore space, flow intensity an

streamlines on a 1.5mm?3 subsample of LV60A
= meshed with 1,237,177 elements
—V v f = 0

Validation for Poiseuille flow

Taylor-Hood element used for simulation oz ERataY
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Research School for Fluid Mechanics. Finite element methods for the incompressible 0000k - Analytical solution
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Navier-Stokes equations. Ir. A. Segal. 2017. Delft University of Technology. Vertical coordinates



Hydro-Mechanical Simulator
Coupling: Euler-Lagrange scheme

Effect of mechanical deformation on the flow:
Geometrical changes of the pore space due to the displacement of the pore-grain

interface.

+ flow path variation imposed by grain movements

— Moving pore-grain boundary

A Eulerian Flow vs Lagrangian Mechanics

Solid matrix: ugg)

Scheme: mesh diffusion ﬁAquf)* — O EEREESEESRREEEES

SEENE Q)

adapt the mesh smoothly in the pore space without any
interaction with the mechanical problem




Hydro-Mechanical Simulator )
Coupling: Euler-Lagrange scheme @Aus_(’f) =0

adapt the mesh smoothly in the pore space without any interaction with the
mechanical problem

Unwanted coupled BC at interface — numerical resistance 0BC = ﬁVuS_(’f)*
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Hydro-Mechanical Simulator
Coupling: Fluid pressure force on the grains

Effect of the fluid pressure on the solid stress

Terzaghi’s concept of effective stress at the macro-scale

/
o, =05 —psl
Pore pressure Vertical stress

0.01
d

0.000

The fluid pressure act as 0.005-

a stress boundary for the rock. Solid matrix

0.

System solved with displacement variables Fluid Channel
Fluid pressure = Neumann BC of displacement

Force direction ensured with boundary’s
normal vector
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Summary

Solid ()

Lagrangian: ug Pore-Grain

v . 0_: —0 interface

Solid-Fluid
interaction

Continuity of
¢ displacement
Vi 1 Vg 0, field
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Justification of tight coupling for synthetic coal

o s Solid matrix
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Justification of tight coupling for synthetic coal

Comparison with loose coupling: Mechanical compression E==) Fluid pressurization

)

Fluid pressure feedback

Oscillatory response due to the lagging

application of the FSI slow convergence of loose coupling
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Justification of tight coupling for synthetic coal

Dimensionless pressure
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Normalised Vertical Displacement of X
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Loose coupling simulation of FSI in synthetic pore channel
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Retrieving Terzaghi’s principle at micro-scale

Dry and saturated curves are identical, shifted by a constant

— Terzaghi’s principle is retrieved with a macroscopic value of the pore pressure

Oedometric compression of LV60A sandpack
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Permeability computation during fault reactivation

. . Porosity
Micro&Macro-scale fault reactivation ~5.004e01
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Pressure sensitive yield surface ﬁ

Metals — Non-porous — Pressure-insensitive
Rocks — Porous — Pressure-sensitive

. .. Plastic
Porous J2 material — Pressure-sensitive

This framework can determine yield surfaces that depends
on the micro-structure of the rock and its evolution with

deformation.

Gurson’s? yield surface of a hollow sphere
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