

28th ALERT Workshop Program Aussois, 4th October 2017

Eulerian-Lagrangian scheme for hydro-mechanical simulations on CT-scans

Never Stand Still

Unconventional Geomechanics Group

Martin LESUEUR Dr. Manolis VEVEAKIS Dr. Thomas POULET

Lesueur M., et al., Modelling fluid-microstructure interaction on elasto-viscoplastic digital rocks, Geomechanics for Energy and the Environment (2017), http://dx.doi.org/10.1016/j.gete.2017.08.001.

THMC modelling at macro-scale

Chemical fault reactivation:

- Shear heating
- Chemical pressurization
- Mechanical deformation

\rightarrow THMC

Macro-scale is insufficient to describe completely the phenomena, missing crucial information from the micro-scale.

THMC modelling should be done across scales

Mesh reconstructed from CT-scans

Finite Element simulator REDBACK⁽¹⁾ \rightarrow need for a mesh

Stack of segmented 2D CT-scan images \rightarrow 3D meshes of digital rock

Meshing flexibility:

- Structured or unstructured
- Multiple element types
- Independent final resolution

+ Iterative coarsening away from interface following an octree method

<u>3D mesh of CT-scan images with optimal</u> refinement 3

Segmented 128x128 LV60A⁽²⁾ CT-scan image

Mesh reconstructed from CT-scans

Finite Element simulator REDBACK⁽¹⁾ \rightarrow need for a mesh

Stack of segmented 2D CT-scan images \rightarrow 3D meshes of digital rock

Meshing flexibility:

- Structured or unstructured
- Multiple element types
- Independent final resolution

+ Iterative coarsening away from interface following an octree method

<u>3D mesh of CT-scan images with optimal</u> <u>refinement</u>

1. T. Poulet and M. Veveakis. A viscoplastic approach for pore collapse in saturated soft rocks using redback: an open-source parallel simulator for rock mechanics with dissipative feedbacks. Computers and Geotechnics.

Mesh reconstructed from CT-scans

CIPS (Calcite In-situ Precipitation System)

synthetic sandstone sample composed of pure quartz grains (diameter 0.15-0.35 mm) and cemented by calcite.

0.5mm³ sample meshed with 2.4M elements

Yang, Sam; Liu, Keyu; Mayo, Sherry; Tulloh, Andrew (2012): CIPS sandstone microstructure. v2. CSIRO. Data Collection. <u>http://doi.org/10.4225/08/5476787A1A50F</u>

Solid Mechanics Simulator

Stress equilibrium + Constitutive law (Any constitutive law can be used)

 $abla \cdot \boldsymbol{\sigma}_s = \vec{0}$

Decomposition of the strain rate of the solid into an elastic and a plastic part

$$\dot{oldsymbol{arepsilon}}_s=\dot{oldsymbol{arepsilon}}_s^e+\dot{oldsymbol{arepsilon}}_s^p$$

For the elastic part we assume linear elasticity

 $\boldsymbol{\sigma}_s = \mathbb{C} \, \boldsymbol{\varepsilon}_s^e$

For the plastic component, we use an overstress (visco)plastic formulation with associative von-Mises plasticity⁽¹⁾ \rightarrow REDBACK

Uniaxial compression for 0.6mm³ LV60A sample

(1) T. Poulet and M. Veveakis. A viscoplastic approach for pore collapse in saturated soft rocks using redback: an open-source parallel simulator for rock mechanics with dissipative feedbacks. Computers and Geotechnics, 74:211–221, 2016.

Fluid Flow Simulator

- single phase incompressible fluid
- low-velocity flow \rightarrow laminar
- steady-state flow in compliance with quasistatic assumption for mechanics
- \rightarrow Stokes flow:

$$-\nabla^2 \vec{v_f} + \rho_f \nabla p_f = 0,$$
$$-\nabla \cdot \vec{v_f} = 0$$

Visualisation of pore space, flow intensity and streamlines on a 1.5mm³ subsample of LV60A meshed with 1,237,177 elements

Research School for Fluid Mechanics. Finite element methods for the incompressible Navier-Stokes equations. Ir. A. Segal. 2017. Delft University of Technology.

Hydro-Mechanical Simulator

Coupling: Euler-Lagrange scheme

Effect of mechanical deformation on the flow: Geometrical changes of the pore space due to the displacement of the pore-grain interface.

+ flow path variation imposed by grain movements

 \rightarrow Moving pore-grain boundary

A Eulerian Flow vs Lagrangian Mechanics

Scheme: mesh diffusion

$$\vartheta \Delta \vec{u_{s(f)}}^* = 0$$

adapt the mesh smoothly in the pore space without any interaction with the mechanical problem

	Solid matrix: $u_{s(s)}$
_	
	Fluid Channel: $u_{s(f)}$
_	

Hydro-Mechanical Simulator Coupling: Euler-Lagrange scheme

adapt the mesh smoothly in the pore space without any interaction with the mechanical problem

Unwanted coupled BC at interface \rightarrow numerical resistance $\sigma_{BC} = \vartheta \nabla u_{s(f)}$ 10^{0} 10^{-1} 10⁻² 10-3 **J** 10⁻⁴ 10⁻⁵ 10^{-4} Solid matrix 10⁻⁶ Fluid Channel 10^{-7} 10⁻⁸ 10⁻⁹ 10-10 10⁰ 10-2 10^{-4} 10^{-6} 10^{-8} 10⁻¹² 10^{-14} **Relaxation factor**

Hydro-Mechanical Simulator

Coupling: Fluid pressure force on the grains

Effect of the fluid pressure on the solid stress

Terzaghi's concept of effective stress at the macro-scale

$$\sigma'_s = \sigma_s - p_f I$$

The fluid pressure act as a stress boundary for the rock.

System solved with displacement variables Fluid pressure = Neumann BC of displacement

Force direction ensured with boundary's normal vector

Summary

Justification of tight coupling for synthetic coal

Justification of tight coupling for synthetic coal

Justification of tight coupling for synthetic coal

Loose coupling simulation of FSI in synthetic pore channel

Retrieving Terzaghi's principle at micro-scale

Dry and saturated curves are identical, shifted by a constant

 \rightarrow Terzaghi's principle is retrieved with a macroscopic value of the pore pressure

Permeability computation during fault reactivation

Pressure sensitive yield surface

Metals \rightarrow Non-porous \rightarrow Pressure-insensitive Rocks → Porous → Pressure-sensitive

Porous J2 material \rightarrow Pressure-sensitive

This framework can determine yield surfaces that depends on the micro-structure of the rock and its evolution with deformation.

Gurson's¹ yield surface of a hollow sphere 1.0 0.9 0.8 stress ^{0.0} von-mises ^{0.5} ^{0.4} 0,2 0.1 0.0 1.25 0.25 0.50 0.75 1.00 1.50 1.75 2.00 mean stress

1. Gurson, A. L. (1977). Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media. Journal of engineering materials and technology, 99(1), 2-15.

Plastic

