Root anchorage and tree stability under wind load

Pauline Défossez pauline.defossez@inra.fr

UMR ISPA INRA Bordeaux

Pauline Défossez, Ming Yang (phD, post-doc), Clément Saint Cast (phD), Sylvain Dupont

UMR Biogeco, INRA Bordeaux

Frédéric Danjon, Céline Meredieu

AMAP CIRAD Montpellier Thierry Fourcaud

UMR RECOVER IRSTEA Guillaume Veylon

Context

Wind causes damage in forests

- Tropical closed forest
- Tropical open and fragmented forest
- Subtropical closed, open, and fragmented forest
- Temperate closed, open, and fragmented forest
- Boreal closed forest
- Boreal open and fragmented forest

Poland August 2017 (Image: Reuters)

Wisconsin July 2011 Credit: Stacy Hopke / Burnett County Sheriff's Office

NZ Cyclone Gita /Beech Forest April 2018 https://ourtrees.nz

Toppling

Photo : F. Danjon

Toppling

3 years old

Photo : F. Danjon

Tree Breakage

Photo : D.Bert

Wind damage in forests

1950 - 2000 : annual volume of damaged wood = 35 million m^3

storm: 53%, fire: 16%, scolytes : 8%, other biotic : 8%

Schelhaas, 2008

What happens with climate change ?

Changes in soil properties

Agren et al 2015

©BONNAUD GUILLAUME

Potential change in near-surface wind

- Decrease in wind speed
- Increase in wind storm

McVicar et al., 2012 IPCC 2013

Haarsma et al 2013

Climate change and wind risk in forests

Increase in wind risks

- Changes in soil properties
 - decrease in soil mechanical strength
- Potential change in near-surface wind
 Decrease in change in decrease in
 - Decrease in chronics wind but increase in hurricane

Mechanisms of tree anchorage

Angle (degres)

FLEXION TESTS

FLEXION TESTS

Angle (degres)

Dupuy et al 2005, Yang et al., 2014

At root scale

Maximum stress $\propto I \propto D^4$ Maximum stress $\propto I \propto D^2$ I moment of inertia

a,b,c: Maritime pine (from Danjon), d: black spruce (from Krause et al., 2014)

Dupuy et al 2005

Heart

Dupuy et al 2005

- Typology of roots
- Variability and plasticity of morphology

Danjon et al., 2005

Variability and plasticity of root sytems

- Environmental stress
 - Prevailing wind
 - Soil structure (Danjon, 2005)

Virtual root patterns

Deflection angle at critical turning moment for each case

Result: Root strength = 60 % taproot, 25 % windward

Yang et al. 2016

How does the tree anchorage change with time ?

The role of soil properties

Soil properties change with climate conditions

How does the tree anchorage change with time ?

Acclimation of roots under wind

Wind acclimation in roots

- Higher root diameter in leeward sector
- oval cross-section of root
- Increase of root ramification in windward sector

Danjon et al, 2005; Nicoll and Ray, 1996; Stokes, 1995

Wind acclimation in roots

Adult trees

Case 0

maritime pines 19 Years (reference)

Case 1

case 0 without taproot

Case 1-P

Without taproot but with increase in root diameter of leeward sector

Results
➤ Taproot major component
➤ Acclimation may balance taproot loss

Yang et al. 2016 Yang et al. 2018

Mechanisms of wind acclimation in roots ?

Wind acclimation

Aerial part Strain perception => growth response (h, D)

Prunus avium (Coutand, 2010)

Root part ???

Wind acclimation in roots

Numerical experiments to investigate stress/strain experimented by roots during the tree development

Wind acclimation in roots

Root- Soil system

Saint Cast (phD, 2019)

Result: Change in stress distribution with tree development

Saint Cast (phD, 2019)

-60 -70

80

-6

-4

-2

0

Stress (MPa)

2

Taproot

4 years

Tenstle

6 years

13 years

6

Conclusions

 The importance to consider dynamic sollicitations inducing fatigue during the passage of wind storms

Implication for modeling wind risk in forests

- The ability of trees to acclimate their root architecture during their developpemnt as function of their environment
 - Implication for the tree survives in changing environment

Perspectives

- To better understand the soil strength under cyclic loading
- To investigate the acclimation processes in root system

Acknowledgments

- UE Experimental Unit Pierroton
- Technical staff : J.M. Bonnefond, D. Garrigou, R. Ségura
- Computer staff : S. Griffon, M. Irvine

Grants

 Région Aquitaine (projet VENTPIN) ANR (projet TWIST : ANR-1C3-JS06-0006), LabexCOTE (ANR-10-LABX-45)

