Aussois 2012

ELASTIC WAVES *and particulate materials*

J. Carlos Santamarina Georgia Institute of Technology

References:

Santamarina, J.C., in collaboration with Klein, K. and Fam, M. (2001). <u>Soils and Waves</u>, J. Wiley and Sons, Chichester, UK, 488 pages.

Lee, J. S. and Santamarina, J. C. (2005a). "Bender Elements." ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, No. 9, pp. 1063-1070. Lee, J. S. and Santamarina, J. C. (2005b). "P-wave Reflection Imaging." ASTM Geotechnical Testing Journal, Vol. 28, pp. 197-206.

Wang, Y. H., Santamarina, J. C., and Cascante, G. (2003). "Counter EMF effects in Resonant Column Testing." ASTM Geotechnical Testing Journal, Vol. 26, No. 4, pp. 410-420.

Cascante, G., Santamarina, J. C., and Yassir, N. (1998). "Flexural Excitation in a Standard Torsional-Resonant Column Device." Canadian Geotechnical Journal, Vol. 35, No. 3, pp. 478-490.

Some pdfs (these and related papers) available at <u>http://pmrl.ce.gatech.edu</u> under "Publications"

ELASTIC WAVES

Let's assume...

infinite homogeneous isotropic single-phase linear elastic continuum

Mechanics - 1: Equilibrium

$$\rho \frac{\partial^2 u_x}{\partial t^2} = \frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z}$$

Mechanics - 2: Constitutive Equations

Mechanics - 2: Constitutive Equations

Mechanics - 3: Compatibility

in the continuum

Wave Equation

Equilibrium

$$\rho \frac{\partial^2 u_x}{\partial t^2} = \frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z}$$

Constitutive

$$\sigma_{x} = M\epsilon_{vol} - 2G \, \mathbf{I}_{y} + \epsilon_{z} \, \mathbf{I}_{xy} = G\gamma_{xy}$$

Compatibility

$$\varepsilon_{x} = \frac{\partial u_{x}}{\partial x} \qquad \gamma_{xy} = \frac{\partial u_{x}}{\partial y} + \frac{\partial u_{y}}{\partial x}$$

Wave Equation

$$\rho \frac{\partial^2 u_x}{\partial t^2} = \mathbf{M} - G \left[\frac{\partial^2 u_x}{\partial x^2} + \frac{\partial^2 u_y}{\partial x \partial y} + \frac{\partial^2 u_z}{\partial x \partial z} \right] + G \left(\frac{\partial^2 u_x}{\partial x^2} + \frac{\partial^2 u_x}{\partial y^2} + \frac{\partial^2 u_x}{\partial z^2} \right)$$

Two Propagation Modes

Compression P-wave

Shear S-wave

Solution of the Wave Equation

 $u = Ae^{(\omega t - \kappa x)}$

 $\frac{\partial^2 u_x}{\partial t^2} = \frac{M}{\Omega} \frac{\partial^2 u_x}{\partial x^2}$ $\frac{\partial^2 u_y}{\partial t^2} = \frac{G}{\Omega} \frac{\partial^2 u_y}{\partial x^2}$

 $\frac{\omega}{\kappa} = \sqrt{\frac{M}{\rho}} = V_{P}$ $\frac{\omega}{\kappa} = \sqrt{\frac{G}{\rho}} = V_{S}$

Spectrum

So far...

infinite homogeneous isotropic single-phase linear elastic continuum

Finite:

Geometry dispersion Other propagation modes Reflection & refraction

Geometry Dispersion

S-Wave: NO geometry dispersion

Finite:

Reflection resonance

Reflection:

$$\sigma = 0$$

Add weight W at time t=0

At time t>0

At time t=H/ V

At time t>H/ V

At time t=2H/V


```
At time t>2H/ V
```


Non-Elastic: Lossy

Lossy

 $\frac{\partial^2 u_x}{\partial t^2} = \frac{M}{2} \frac{\partial^2 u_x}{\partial x^2}$

 $V_{P}^{*} = \frac{\omega}{\kappa - i\alpha} = \sqrt{\frac{M^{*}}{\rho}}$

Lossy

$$V_{P}^{*} = \frac{\omega}{\kappa - i\alpha} = \sqrt{\frac{M^{*}}{\rho}} = \sqrt{\frac{M' + iM''}{\rho}} = \sqrt{\frac{M'}{\rho}} \frac{1 + i \tan \delta}{1 + i \tan \delta}$$

$$V_{\rm P} = \frac{\omega}{\kappa} \approx \sqrt{\frac{M'}{\rho}}$$

$$\alpha \approx \frac{\omega \ tan \delta}{2V_{P}}$$

Lossy

 $\alpha = \frac{1}{S_d} = \frac{2\pi D}{\lambda} = \frac{\pi f}{V} \tan \delta$

Total Attenuation

 $\frac{A_1}{A_2} = \left(\frac{r_2}{r_1}\right)^{\varsigma} e^{\alpha r_2 - r_1} T^{-1}$
Material Attenuation ↔ Dispersion Kramers-Kronig

$$\frac{V_b - V_a}{V_b} \approx 1.5 D \qquad \text{for} \quad \omega_b = 10 \omega_a$$

Multiple reflections Interference Diffraction

Interference - Directivity

Diffraction Healing

Gradual Heterogeneity Non-linear: Shock

Ray Bending: Fermat

Homogeneous Isotropic Linear Elastic

Vertically heterogeneous Cross-anisotropic Linear Elastic

Random Heterogeneity

Homogeneous Isotropic Linear Elastic

Correlated Random heterogeneous Isotropic Linear Elastic

Shock waves

Wave Phenomena: Complexity \Leftrightarrow Richness

Infinite, homogeneous, isotropic, single-phase, linear elastic, continuum

Finite medium

Interfaces

Gradually Heterogeneous

Anomalies

Anisotropic

Multiphase (poroelastic)

Visco-elastic

Non-linear

Discrete

P, **S**

R – L – Rod - Tube

Reflection - Transmission,

Refraction - Mode conversion

Curved rays (Fermat)

Diffraction - Scattering (Huygens)

Quasi-propagation - Splitting

Slow-P (Biot)

Attenuation & dispersion - Relaxation

Shock waves - Non-Lin. coupling

Dispersion - Low-pass filtering

Measurement

Laboratory Testing

Quasi-static

E or G = slope

 $D = \frac{\text{area inside loop}}{4\pi \text{ area ABO}}$

STANDING WAVE: Step response Resonant Column

Step Response

 $u(t) = A e^{-\alpha_t t} \cos \mathbf{f}_r t$

 $\mathsf{D} = \frac{\alpha_t}{2\pi}$

Wavelength?Fixed-Fixed or Free-Free λ =2HFixed-Free λ =4H

$$V = \frac{\lambda}{T} = \lambda f_r$$

Resonant Column

Resonant column

Driving head

 $\omega_u\!/\!\omega_n$

Induced Counter emf

Equivalent circuit

Induced counter emf

emf effects

WAVE PROPAGATION

S: bender elements

P: standard piezo-elements

Bender element types

Devices and materials

- 1. Soldering iron and accessories
- 2. Soldering flux
- 3. Coaxial cable
- 4. Epoxy
- 5. Multimeter
- 6. Silver conductive paint
- 7. Heat-shrink tubing
- 8. Nylon flat point socket screw
- 9. Polyurethane

Preparation

Remove outer shield from one end of coaxial cable. Separate the inner core from the copper mesh. Remove the end of inner core shield. If making a parallel BE, divide the copper mesh into two branches.

Coat the ends of the cable and the BE with soldering flux.

Preparation

If making a series type BE, solder the core to one external plate and the copper mesh to the other one.

Preparation

If making a parallel BE, solder the core of the cable to the BE internal plate. Caution: The core/soldering metal should not touch the external plates. Solder the two copper branches to the external plates.

Check connections

Check the circuits with a multimeter. The core-to-shield resistance must be infinite (open circuit).

Coating

Water-proof the BE by coating the BE and the exposed portion of the cables with low viscosity polyurethane. Be sure to coat all BE faces, including the edges. Allow the polyurethane to dry with the BE in the upright position. A second coat may be applied if needed.

Electric shield

An electric shield is needed to prevent cross talk phenomena (critical in wet soils – Parallel bender elements are "self-grounded"). Spread a layer of silver conductive paint over the surfaces of the coated bender element. The conductive paint must contact the shield in the coaxial cable, i.e., ground.

Cable reinforcement

Reinforce the connections using heat-shrink tubing. Shrink the tube using a hair dryer. May use more than one shrink-tube layers.

Housing in nylon socket screw: 1-drill

Take a nylon socket screw and make a hole through its center with a drill

Housing in nylon socket screw: 2-fix

Slide the BE into the hole inside the nylon screw. Fill in the air gap between the BE assembly and the screw with epoxy.

Done !

The BE assembly is ready for use once the epoxy has cured. The threaded nylon screw housing can be conveniently installed in any geotechnical cell, and easily replaced in case of malfunction.

Cross-talk

Directivity

Transverse

In-plane directivity

Directivity

Base-to-borehole tomographic configuration

Transverse directivity: Side lobe P-wave (specimen size)

Input and output - Convolution

Resonant frequency

	Experimental study	Analytical formulation
In Air		$f = \frac{1.875^2}{2\pi} \frac{t}{L^2} \sqrt{\frac{E}{12\rho_{be}}}$
In Soil		$f = \frac{1}{2\pi} \left[\frac{1.875^4 \frac{EI}{L^3} + 2V_s^2 \rho_{sl}(1+\upsilon)L}{\rho_{be}btL + \rho_{sl}b^2L} \right]^{\frac{1}{2}}$

Operating Frequency - Comparison

Analytical Results

Controlling parameter:

Short cantilever length \rightarrow Bender element Long cantilever length

 \rightarrow Soil properties

First arrival?

- A: First deflection
- **B:** First inflection
- C: Zero after first inflection
- D: Second inflection

Multiple Reflection

Goals:

- High R-boundaries
- No P-wave from side walls
- No uncertainty in length
- No uncertainty in time

Experimental Study - Results

Near Field: Signal matching

Mathematical Solution

Cruse and Rizzo (1968)

Stokoe and Sanchez-Salinero (1987)

Procedure: Signal Matching

For given values L and μ

- 1: Measure the signal S_m
- 2: Estimate f_r and V_s
- 3: Compute predicted signal $S_p = f(V_s, f_r)$

4: Change f_r and V_s until $S_p \sim S_m$

Analytical Approach

Predicted signals

P-Transducer

Ultrasound Transducer

Ultrasound Transducer

- Transducer (A3441):
 - GE Panametrics
 - Immersion type
 To avoid z mismatch with water.
 - High frequency (fr \approx 500kHz)
- Goals:
 - Assess homogeneity Layer detection
 - Position objectives (e.g., Transducers)

Directivity

Fixed center-to-center distance (=25mm)

Wave Parameters

Velocity and Attenuation

$$\frac{A_2}{A_1} = e^{-\alpha \Delta x}$$
$$V_s = \sqrt{\frac{G}{\rho}}$$
B

$$V_{P} = \sqrt{\frac{M}{\rho}} = \sqrt{\frac{B + \frac{4}{3}G}{\rho}}$$

Mechanical Waves

S-waves

P-waves

Mindlin contact: Inherently non-elastic

(Fretting damage after 10000 cycles - steel)

Photoelasticity and Thermal IR Imaging

Photoelasticity and Thermal IR Imaging

Thermo-mechanical coupling

IR image

Photoelastic image

Atomic Force Microscopy (AFM)

- Surface topography
- Surface properties
- Forces at nanoscale
- Atomic-scale experiments

Environmental chamber (A) and Isolation box

Tip radius: 20 nm

Stiffness :0.58 N/m

Results of AFM Test

• Force curve

• Pull-out force

Summary

Gravelly Soils		D = 0.008 - 0.018
Sand	Air-dry	D = 0.002 - 0.01
	Saturated	D = 0.003 - 0.021
Clayey soils		D = 0.01 - 0.052
Residual soils		D = 0.009 - 0.054
Peat ($w_g \approx 200\%$)		D ≈ 0.025

The effect of frequency

(Stokoe et al. 1999)

Mechanical Waves

attenuation

P-waves

1: Effective Stress

1: Effective Stress

2: Suction - Unsaturated Soils

Degree of saturation S

3: Cementation

3: Cementation - Loading

' increases

σ

' decreases

σ

T.Y. Yun

3: Cementation - Unloading

A. Fernandez

3: -> Sampling effects

V. Rinaldi

Mechanical Waves

attenuation

S-waves

Bulk Stiffness

$$V_{P} = \sqrt{\frac{M}{\rho}} = \sqrt{\frac{B + \frac{4}{3}G}{\rho}}$$

Saturation

$$V_{P} = \sqrt{\frac{\left(B_{sk} + \frac{4}{3}G_{sk}\right) + \left[n\left(\frac{S}{B_{w}} + \frac{1-S}{B_{a}}\right) + \frac{1-n}{B_{g}}\right]^{-1}}{1-n\ \rho_{g} + nS\rho_{w}}}$$

K. Ishihara
Velocity and Impedance (S=100%)

Mechanical Waves

closing....

Summary: P- and S-waves

- WavesSmall-strain phenomenaMay be used to monitor large-strain processes
- V_s Skeletal stiffness: G → Geo-mechanical design Effective stress, suction, cementation Sampling: pronounced effect → measure in situ ! Simple lab & field devices and methods
- V_P Fluid & skeletal stiffness: B & G Proximity to full saturation
- V_P &Vs: Dry → skeletal Poisson's ratio Saturated → porosity Spatial variability

Summary

V _P in water	1482
V _P in air	343

V _P in saturated soils	1450-1900
V _P in unsaturated soils	<100-800
V _P in lightly cemented soils	400-1000

V _s in saturated soils	<50-400
V_{S} in unsaturated clayey soils	<100-500
V _s in lightly cemented soils	250-700

V_P and V_S

Poisson's ratio (~dry)

Porosity (S=100%)

Venice (M. Jamiolkowski)

Some Applications

P-waves

Data Fusion

http://sunsite.tus.ac.jp/multimed/pics/animals/bat.jpg

http://www.moorhen.demon.co.uk

Homing in

()

Massive data \rightarrow Processing \rightarrow Information

P-monitoring: Bio-gas

Paracoccus denitrificans Nitrate broth F110 + 3%Kaolin

Laboratory: Sedimentation

Anomaly Detection

P-wave scanning – Before Liquefaction

After Liquefaction (~2 hr)

After Liquefaction (2 days)

Before Katrina

Image © 2006 DigitalGlobe

Streaming |||||||||| 100%

After Katrina

Massive data \rightarrow Display \rightarrow Information

New Phenomena: Polygonal Faults

J. Cartwright - www.3DLab.org.uk

500m

S-waves

S-monitoring: Excavation & Retaining Walls

Fernandez, Lee

Imaging the mean stress

Around tunnels

Around tunnels: velocity tomograms

Field: Surface Waves (non-invasive)

Sensor Arrays

Field: Penetration-based (invasive)

Under dams

